lpass-cdc-rx-macro.c 153 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/io.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/clk.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/pcm.h>
  13. #include <sound/pcm_params.h>
  14. #include <sound/soc-dapm.h>
  15. #include <sound/tlv.h>
  16. #include <soc/swr-common.h>
  17. #include <soc/swr-wcd.h>
  18. #include <asoc/msm-cdc-pinctrl.h>
  19. #include "lpass-cdc.h"
  20. #include "lpass-cdc-comp.h"
  21. #include "lpass-cdc-registers.h"
  22. #include "lpass-cdc-clk-rsc.h"
  23. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  24. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  27. SNDRV_PCM_RATE_384000)
  28. /* Fractional Rates */
  29. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  30. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  31. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  32. SNDRV_PCM_FMTBIT_S24_LE |\
  33. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  34. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  35. SNDRV_PCM_RATE_48000)
  36. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  37. SNDRV_PCM_FMTBIT_S24_LE |\
  38. SNDRV_PCM_FMTBIT_S24_3LE)
  39. #define SAMPLING_RATE_44P1KHZ 44100
  40. #define SAMPLING_RATE_88P2KHZ 88200
  41. #define SAMPLING_RATE_176P4KHZ 176400
  42. #define SAMPLING_RATE_352P8KHZ 352800
  43. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  44. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  45. #define RX_SWR_STRING_LEN 80
  46. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  47. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  48. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  49. #define LPASS_CDC_RX_MACRO_FIR_COEFF_MAX 100
  50. #define LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX \
  51. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX + 1)
  52. /* first value represent number of coefficients in each 100 integer group */
  53. #define LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES \
  54. (sizeof(u32) * LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX)
  55. #define STRING(name) #name
  56. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  57. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  58. static const struct snd_kcontrol_new name##_mux = \
  59. SOC_DAPM_ENUM(STRING(name), name##_enum)
  60. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  61. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  62. static const struct snd_kcontrol_new name##_mux = \
  63. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  64. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  65. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  66. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET \
  67. (LPASS_CDC_RX_RX1_RX_PATH_CTL - LPASS_CDC_RX_RX0_RX_PATH_CTL)
  68. #define LPASS_CDC_RX_MACRO_COMP_OFFSET \
  69. (LPASS_CDC_RX_COMPANDER1_CTL0 - LPASS_CDC_RX_COMPANDER0_CTL0)
  70. #define MAX_IMPED_PARAMS 6
  71. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  72. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  73. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  74. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  75. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  76. /* Define macros to increase PA Gain by half */
  77. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  78. #define COMP_MAX_COEFF 25
  79. struct wcd_imped_val {
  80. u32 imped_val;
  81. u8 index;
  82. };
  83. static const struct wcd_imped_val imped_index[] = {
  84. {4, 0},
  85. {5, 1},
  86. {6, 2},
  87. {7, 3},
  88. {8, 4},
  89. {9, 5},
  90. {10, 6},
  91. {11, 7},
  92. {12, 8},
  93. {13, 9},
  94. };
  95. enum {
  96. HPH_ULP,
  97. HPH_LOHIFI,
  98. HPH_MODE_MAX,
  99. };
  100. static struct comp_coeff_val
  101. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  102. {
  103. {0x40, 0x00},
  104. {0x4C, 0x00},
  105. {0x5A, 0x00},
  106. {0x6B, 0x00},
  107. {0x7F, 0x00},
  108. {0x97, 0x00},
  109. {0xB3, 0x00},
  110. {0xD5, 0x00},
  111. {0xFD, 0x00},
  112. {0x2D, 0x01},
  113. {0x66, 0x01},
  114. {0xA7, 0x01},
  115. {0xF8, 0x01},
  116. {0x57, 0x02},
  117. {0xC7, 0x02},
  118. {0x4B, 0x03},
  119. {0xE9, 0x03},
  120. {0xA3, 0x04},
  121. {0x7D, 0x05},
  122. {0x90, 0x06},
  123. {0xD1, 0x07},
  124. {0x49, 0x09},
  125. {0x00, 0x0B},
  126. {0x01, 0x0D},
  127. {0x59, 0x0F},
  128. },
  129. {
  130. {0x40, 0x00},
  131. {0x4C, 0x00},
  132. {0x5A, 0x00},
  133. {0x6B, 0x00},
  134. {0x80, 0x00},
  135. {0x98, 0x00},
  136. {0xB4, 0x00},
  137. {0xD5, 0x00},
  138. {0xFE, 0x00},
  139. {0x2E, 0x01},
  140. {0x66, 0x01},
  141. {0xA9, 0x01},
  142. {0xF8, 0x01},
  143. {0x56, 0x02},
  144. {0xC4, 0x02},
  145. {0x4F, 0x03},
  146. {0xF0, 0x03},
  147. {0xAE, 0x04},
  148. {0x8B, 0x05},
  149. {0x8E, 0x06},
  150. {0xBC, 0x07},
  151. {0x56, 0x09},
  152. {0x0F, 0x0B},
  153. {0x13, 0x0D},
  154. {0x6F, 0x0F},
  155. },
  156. };
  157. enum {
  158. RX_MODE_ULP,
  159. RX_MODE_LOHIFI,
  160. RX_MODE_EAR,
  161. RX_MODE_MAX
  162. };
  163. static struct lpass_cdc_comp_setting comp_setting_table[RX_MODE_MAX] =
  164. {
  165. {12, -60, 12},
  166. {0, -60, 12},
  167. {12, -36, 12},
  168. };
  169. struct lpass_cdc_rx_macro_reg_mask_val {
  170. u16 reg;
  171. u8 mask;
  172. u8 val;
  173. };
  174. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  175. {
  176. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  177. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  178. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  179. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  180. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  181. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  182. },
  183. {
  184. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  185. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  186. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  187. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  188. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  189. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  190. },
  191. {
  192. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  193. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  194. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  195. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  196. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  197. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  198. },
  199. {
  200. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  201. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  202. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  203. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  204. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  205. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  206. },
  207. {
  208. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  209. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  210. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  211. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  212. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  213. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  214. },
  215. {
  216. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  217. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  218. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  219. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  220. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  221. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  222. },
  223. {
  224. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  225. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  226. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  227. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  228. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  229. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  230. },
  231. {
  232. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  233. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  234. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  235. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  236. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  237. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  238. },
  239. {
  240. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  241. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  242. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  243. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  244. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  245. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  246. },
  247. };
  248. enum {
  249. INTERP_HPHL,
  250. INTERP_HPHR,
  251. INTERP_AUX,
  252. INTERP_MAX
  253. };
  254. enum {
  255. LPASS_CDC_RX_MACRO_RX0,
  256. LPASS_CDC_RX_MACRO_RX1,
  257. LPASS_CDC_RX_MACRO_RX2,
  258. LPASS_CDC_RX_MACRO_RX3,
  259. LPASS_CDC_RX_MACRO_RX4,
  260. LPASS_CDC_RX_MACRO_RX5,
  261. LPASS_CDC_RX_MACRO_PORTS_MAX
  262. };
  263. enum {
  264. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  265. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  266. LPASS_CDC_RX_MACRO_COMP_MAX
  267. };
  268. enum {
  269. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  270. LPASS_CDC_RX_MACRO_EC1_MUX,
  271. LPASS_CDC_RX_MACRO_EC2_MUX,
  272. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  273. };
  274. enum {
  275. INTn_1_INP_SEL_ZERO = 0,
  276. INTn_1_INP_SEL_DEC0,
  277. INTn_1_INP_SEL_DEC1,
  278. INTn_1_INP_SEL_IIR0,
  279. INTn_1_INP_SEL_IIR1,
  280. INTn_1_INP_SEL_RX0,
  281. INTn_1_INP_SEL_RX1,
  282. INTn_1_INP_SEL_RX2,
  283. INTn_1_INP_SEL_RX3,
  284. INTn_1_INP_SEL_RX4,
  285. INTn_1_INP_SEL_RX5,
  286. };
  287. enum {
  288. INTn_2_INP_SEL_ZERO = 0,
  289. INTn_2_INP_SEL_RX0,
  290. INTn_2_INP_SEL_RX1,
  291. INTn_2_INP_SEL_RX2,
  292. INTn_2_INP_SEL_RX3,
  293. INTn_2_INP_SEL_RX4,
  294. INTn_2_INP_SEL_RX5,
  295. };
  296. enum {
  297. INTERP_MAIN_PATH,
  298. INTERP_MIX_PATH,
  299. };
  300. /* Codec supports 2 IIR filters */
  301. enum {
  302. IIR0 = 0,
  303. IIR1,
  304. IIR_MAX,
  305. };
  306. /* Each IIR has 5 Filter Stages */
  307. enum {
  308. BAND1 = 0,
  309. BAND2,
  310. BAND3,
  311. BAND4,
  312. BAND5,
  313. BAND_MAX,
  314. };
  315. #define LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE (sizeof(u32) * BAND_MAX)
  316. struct lpass_cdc_rx_macro_iir_filter_ctl {
  317. unsigned int iir_idx;
  318. unsigned int band_idx;
  319. struct soc_bytes_ext bytes_ext;
  320. };
  321. #define LPASS_CDC_RX_MACRO_IIR_FILTER_CTL(xname, iidx, bidx) \
  322. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  323. .info = lpass_cdc_rx_macro_iir_filter_info, \
  324. .get = lpass_cdc_rx_macro_iir_band_audio_mixer_get, \
  325. .put = lpass_cdc_rx_macro_iir_band_audio_mixer_put, \
  326. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_iir_filter_ctl) { \
  327. .iir_idx = iidx, \
  328. .band_idx = bidx, \
  329. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_IIR_FILTER_SIZE, }, \
  330. } \
  331. }
  332. /* Codec supports 2 FIR filters Path */
  333. enum {
  334. RX0_PATH = 0,
  335. RX1_PATH,
  336. FIR_PATH_MAX,
  337. };
  338. /* Each RX Path has 2 group of coefficients */
  339. enum {
  340. GRP0 = 0,
  341. GRP1,
  342. GRP_MAX,
  343. };
  344. struct lpass_cdc_rx_macro_fir_filter_ctl {
  345. unsigned int path_idx;
  346. unsigned int grp_idx;
  347. struct soc_bytes_ext bytes_ext;
  348. };
  349. #define LPASS_CDC_RX_MACRO_FIR_FILTER_CTL(xname, pidx, gidx) \
  350. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  351. .info = lpass_cdc_rx_macro_fir_filter_info, \
  352. .get = lpass_cdc_rx_macro_fir_audio_mixer_get, \
  353. .put = lpass_cdc_rx_macro_fir_audio_mixer_put, \
  354. .private_value = (unsigned long)&(struct lpass_cdc_rx_macro_fir_filter_ctl) { \
  355. .path_idx = pidx, \
  356. .grp_idx = gidx, \
  357. .bytes_ext = {.max = LPASS_CDC_RX_MACRO_FIR_FILTER_BYTES, }, \
  358. } \
  359. }
  360. struct lpass_cdc_rx_macro_idle_detect_config {
  361. u8 hph_idle_thr;
  362. u8 hph_idle_detect_en;
  363. };
  364. struct interp_sample_rate {
  365. int sample_rate;
  366. int rate_val;
  367. };
  368. static struct interp_sample_rate sr_val_tbl[] = {
  369. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  370. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  371. {176400, 0xB}, {352800, 0xC},
  372. };
  373. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable);
  374. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  375. struct snd_pcm_hw_params *params,
  376. struct snd_soc_dai *dai);
  377. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  378. unsigned int *tx_num, unsigned int *tx_slot,
  379. unsigned int *rx_num, unsigned int *rx_slot);
  380. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  381. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  382. struct snd_ctl_elem_value *ucontrol);
  383. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  384. struct snd_ctl_elem_value *ucontrol);
  385. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  386. struct snd_ctl_elem_value *ucontrol);
  387. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  388. int event, int interp_idx);
  389. /* Hold instance to soundwire platform device */
  390. struct rx_swr_ctrl_data {
  391. struct platform_device *rx_swr_pdev;
  392. };
  393. struct rx_swr_ctrl_platform_data {
  394. void *handle; /* holds codec private data */
  395. int (*read)(void *handle, int reg);
  396. int (*write)(void *handle, int reg, int val);
  397. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  398. int (*clk)(void *handle, bool enable);
  399. int (*core_vote)(void *handle, bool enable);
  400. int (*handle_irq)(void *handle,
  401. irqreturn_t (*swrm_irq_handler)(int irq,
  402. void *data),
  403. void *swrm_handle,
  404. int action);
  405. };
  406. enum {
  407. RX_MACRO_AIF_INVALID = 0,
  408. RX_MACRO_AIF1_PB,
  409. RX_MACRO_AIF2_PB,
  410. RX_MACRO_AIF3_PB,
  411. RX_MACRO_AIF4_PB,
  412. RX_MACRO_AIF_ECHO,
  413. RX_MACRO_AIF5_PB,
  414. RX_MACRO_AIF6_PB,
  415. LPASS_CDC_RX_MACRO_MAX_DAIS,
  416. };
  417. enum {
  418. RX_MACRO_AIF1_CAP = 0,
  419. RX_MACRO_AIF2_CAP,
  420. RX_MACRO_AIF3_CAP,
  421. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  422. };
  423. /*
  424. * @dev: rx macro device pointer
  425. * @comp_enabled: compander enable mixer value set
  426. * @prim_int_users: Users of interpolator
  427. * @rx_mclk_users: RX MCLK users count
  428. * @vi_feed_value: VI sense mask
  429. * @swr_clk_lock: to lock swr master clock operations
  430. * @swr_ctrl_data: SoundWire data structure
  431. * @swr_plat_data: Soundwire platform data
  432. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  433. * @rx_swr_gpio_p: used by pinctrl API
  434. * @component: codec handle
  435. */
  436. struct lpass_cdc_rx_macro_priv {
  437. struct device *dev;
  438. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  439. /* Main path clock users count */
  440. int main_clk_users[INTERP_MAX];
  441. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  442. u16 prim_int_users[INTERP_MAX];
  443. int rx_mclk_users;
  444. int swr_clk_users;
  445. bool dapm_mclk_enable;
  446. bool reset_swr;
  447. int clsh_users;
  448. int rx_mclk_cnt;
  449. u8 fir_total_coeff_num[FIR_PATH_MAX];
  450. bool is_native_on;
  451. bool is_ear_mode_on;
  452. bool is_fir_filter_on;
  453. bool is_fir_coeff_written[FIR_PATH_MAX][GRP_MAX];
  454. bool is_fir_capable;
  455. bool dev_up;
  456. bool pre_dev_up;
  457. bool hph_pwr_mode;
  458. bool hph_hd2_mode;
  459. struct mutex mclk_lock;
  460. struct mutex swr_clk_lock;
  461. struct rx_swr_ctrl_data *swr_ctrl_data;
  462. struct rx_swr_ctrl_platform_data swr_plat_data;
  463. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  464. struct device_node *rx_swr_gpio_p;
  465. struct snd_soc_component *component;
  466. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  467. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  468. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  469. char __iomem *rx_io_base;
  470. char __iomem *rx_mclk_mode_muxsel;
  471. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  472. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  473. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  474. /* NOT designed to always reflect the actual hardware value */
  475. u32 fir_coeff_array[FIR_PATH_MAX][GRP_MAX]
  476. [LPASS_CDC_RX_MACRO_FIR_COEFF_MAX];
  477. u32 num_fir_coeff[FIR_PATH_MAX][GRP_MAX];
  478. struct platform_device *pdev_child_devices
  479. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  480. int child_count;
  481. int is_softclip_on;
  482. int is_aux_hpf_on;
  483. int softclip_clk_users;
  484. u16 clk_id;
  485. u16 default_clk_id;
  486. struct clk *hifi_fir_clk;
  487. int8_t rx0_gain_val;
  488. int8_t rx1_gain_val;
  489. };
  490. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  491. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  492. static const char * const rx_int_mix_mux_text[] = {
  493. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  494. };
  495. static const char * const rx_prim_mix_text[] = {
  496. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  497. "RX3", "RX4", "RX5"
  498. };
  499. static const char * const rx_sidetone_mix_text[] = {
  500. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  501. };
  502. static const char * const iir_inp_mux_text[] = {
  503. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  504. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  505. };
  506. static const char * const rx_int_dem_inp_mux_text[] = {
  507. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  508. };
  509. static const char * const rx_int0_1_interp_mux_text[] = {
  510. "ZERO", "RX INT0_1 MIX1",
  511. };
  512. static const char * const rx_int1_1_interp_mux_text[] = {
  513. "ZERO", "RX INT1_1 MIX1",
  514. };
  515. static const char * const rx_int2_1_interp_mux_text[] = {
  516. "ZERO", "RX INT2_1 MIX1",
  517. };
  518. static const char * const rx_int0_2_interp_mux_text[] = {
  519. "ZERO", "RX INT0_2 MUX",
  520. };
  521. static const char * const rx_int1_2_interp_mux_text[] = {
  522. "ZERO", "RX INT1_2 MUX",
  523. };
  524. static const char * const rx_int2_2_interp_mux_text[] = {
  525. "ZERO", "RX INT2_2 MUX",
  526. };
  527. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  528. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  529. };
  530. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  531. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  532. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  533. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  534. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  535. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  536. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  537. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  538. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  539. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  540. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  541. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  542. static const char *const lpass_cdc_rx_macro_fir_filter_text[] = {"OFF", "ON"};
  543. static const struct soc_enum lpass_cdc_rx_macro_fir_filter_enum =
  544. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_fir_filter_text);
  545. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  546. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  547. };
  548. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  549. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  550. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  551. rx_int_mix_mux_text);
  552. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  553. rx_int_mix_mux_text);
  554. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  555. rx_int_mix_mux_text);
  556. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  557. rx_prim_mix_text);
  558. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  559. rx_prim_mix_text);
  560. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  561. rx_prim_mix_text);
  562. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  563. rx_prim_mix_text);
  564. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  565. rx_prim_mix_text);
  566. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  567. rx_prim_mix_text);
  568. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  569. rx_prim_mix_text);
  570. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  571. rx_prim_mix_text);
  572. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  573. rx_prim_mix_text);
  574. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  575. rx_sidetone_mix_text);
  576. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  577. rx_sidetone_mix_text);
  578. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  579. rx_sidetone_mix_text);
  580. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  581. iir_inp_mux_text);
  582. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  583. iir_inp_mux_text);
  584. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  585. iir_inp_mux_text);
  586. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  587. iir_inp_mux_text);
  588. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  589. iir_inp_mux_text);
  590. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  591. iir_inp_mux_text);
  592. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  593. iir_inp_mux_text);
  594. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  595. iir_inp_mux_text);
  596. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  597. rx_int0_1_interp_mux_text);
  598. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  599. rx_int1_1_interp_mux_text);
  600. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  601. rx_int2_1_interp_mux_text);
  602. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  603. rx_int0_2_interp_mux_text);
  604. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  605. rx_int1_2_interp_mux_text);
  606. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  607. rx_int2_2_interp_mux_text);
  608. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  609. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  610. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  611. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  612. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  613. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  614. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  615. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  616. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  617. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  618. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  619. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  620. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  621. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  622. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  623. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  624. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  625. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  626. static const char * const rx_echo_mux_text[] = {
  627. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  628. };
  629. static const struct soc_enum rx_mix_tx2_mux_enum =
  630. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  631. rx_echo_mux_text);
  632. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  633. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  634. static const struct soc_enum rx_mix_tx1_mux_enum =
  635. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  636. rx_echo_mux_text);
  637. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  638. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  639. static const struct soc_enum rx_mix_tx0_mux_enum =
  640. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  641. rx_echo_mux_text);
  642. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  643. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  644. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  645. .hw_params = lpass_cdc_rx_macro_hw_params,
  646. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  647. .mute_stream = lpass_cdc_rx_macro_mute_stream,
  648. };
  649. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  650. {
  651. .name = "rx_macro_rx1",
  652. .id = RX_MACRO_AIF1_PB,
  653. .playback = {
  654. .stream_name = "RX_MACRO_AIF1 Playback",
  655. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  656. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  657. .rate_max = 384000,
  658. .rate_min = 8000,
  659. .channels_min = 1,
  660. .channels_max = 2,
  661. },
  662. .ops = &lpass_cdc_rx_macro_dai_ops,
  663. },
  664. {
  665. .name = "rx_macro_rx2",
  666. .id = RX_MACRO_AIF2_PB,
  667. .playback = {
  668. .stream_name = "RX_MACRO_AIF2 Playback",
  669. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  670. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  671. .rate_max = 384000,
  672. .rate_min = 8000,
  673. .channels_min = 1,
  674. .channels_max = 2,
  675. },
  676. .ops = &lpass_cdc_rx_macro_dai_ops,
  677. },
  678. {
  679. .name = "rx_macro_rx3",
  680. .id = RX_MACRO_AIF3_PB,
  681. .playback = {
  682. .stream_name = "RX_MACRO_AIF3 Playback",
  683. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  684. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  685. .rate_max = 384000,
  686. .rate_min = 8000,
  687. .channels_min = 1,
  688. .channels_max = 2,
  689. },
  690. .ops = &lpass_cdc_rx_macro_dai_ops,
  691. },
  692. {
  693. .name = "rx_macro_rx4",
  694. .id = RX_MACRO_AIF4_PB,
  695. .playback = {
  696. .stream_name = "RX_MACRO_AIF4 Playback",
  697. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  698. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  699. .rate_max = 384000,
  700. .rate_min = 8000,
  701. .channels_min = 1,
  702. .channels_max = 2,
  703. },
  704. .ops = &lpass_cdc_rx_macro_dai_ops,
  705. },
  706. {
  707. .name = "rx_macro_echo",
  708. .id = RX_MACRO_AIF_ECHO,
  709. .capture = {
  710. .stream_name = "RX_AIF_ECHO Capture",
  711. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  712. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  713. .rate_max = 48000,
  714. .rate_min = 8000,
  715. .channels_min = 1,
  716. .channels_max = 3,
  717. },
  718. .ops = &lpass_cdc_rx_macro_dai_ops,
  719. },
  720. {
  721. .name = "rx_macro_rx5",
  722. .id = RX_MACRO_AIF5_PB,
  723. .playback = {
  724. .stream_name = "RX_MACRO_AIF5 Playback",
  725. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  726. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  727. .rate_max = 384000,
  728. .rate_min = 8000,
  729. .channels_min = 1,
  730. .channels_max = 4,
  731. },
  732. .ops = &lpass_cdc_rx_macro_dai_ops,
  733. },
  734. {
  735. .name = "rx_macro_rx6",
  736. .id = RX_MACRO_AIF6_PB,
  737. .playback = {
  738. .stream_name = "RX_MACRO_AIF6 Playback",
  739. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  740. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  741. .rate_max = 384000,
  742. .rate_min = 8000,
  743. .channels_min = 1,
  744. .channels_max = 4,
  745. },
  746. .ops = &lpass_cdc_rx_macro_dai_ops,
  747. },
  748. };
  749. static int get_impedance_index(int imped)
  750. {
  751. int i = 0;
  752. if (imped < imped_index[i].imped_val) {
  753. pr_debug("%s, detected impedance is less than %d Ohm\n",
  754. __func__, imped_index[i].imped_val);
  755. i = 0;
  756. goto ret;
  757. }
  758. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  759. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  760. __func__,
  761. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  762. i = ARRAY_SIZE(imped_index) - 1;
  763. goto ret;
  764. }
  765. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  766. if (imped >= imped_index[i].imped_val &&
  767. imped < imped_index[i + 1].imped_val)
  768. break;
  769. }
  770. ret:
  771. pr_debug("%s: selected impedance index = %d\n",
  772. __func__, imped_index[i].index);
  773. return imped_index[i].index;
  774. }
  775. /*
  776. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  777. * This function updates HPHL and HPHR gain settings
  778. * according to the impedance value.
  779. *
  780. * @component: codec pointer handle
  781. * @imped: impedance value of HPHL/R
  782. * @reset: bool variable to reset registers when teardown
  783. */
  784. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  785. int imped, bool reset)
  786. {
  787. int i;
  788. int index = 0;
  789. int table_size;
  790. static const struct lpass_cdc_rx_macro_reg_mask_val
  791. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  792. table_size = ARRAY_SIZE(imped_table);
  793. imped_table_ptr = imped_table;
  794. /* reset = 1, which means request is to reset the register values */
  795. if (reset) {
  796. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  797. snd_soc_component_update_bits(component,
  798. imped_table_ptr[index][i].reg,
  799. imped_table_ptr[index][i].mask, 0);
  800. return;
  801. }
  802. index = get_impedance_index(imped);
  803. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  804. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  805. return;
  806. }
  807. if (index >= table_size) {
  808. pr_debug("%s, impedance index not in range = %d\n", __func__,
  809. index);
  810. return;
  811. }
  812. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  813. snd_soc_component_update_bits(component,
  814. imped_table_ptr[index][i].reg,
  815. imped_table_ptr[index][i].mask,
  816. imped_table_ptr[index][i].val);
  817. }
  818. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  819. struct device **rx_dev,
  820. struct lpass_cdc_rx_macro_priv **rx_priv,
  821. const char *func_name)
  822. {
  823. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  824. if (!(*rx_dev)) {
  825. dev_err_ratelimited(component->dev,
  826. "%s: null device for macro!\n", func_name);
  827. return false;
  828. }
  829. *rx_priv = dev_get_drvdata((*rx_dev));
  830. if (!(*rx_priv)) {
  831. dev_err_ratelimited(component->dev,
  832. "%s: priv is null for macro!\n", func_name);
  833. return false;
  834. }
  835. if (!(*rx_priv)->component) {
  836. dev_err_ratelimited(component->dev,
  837. "%s: rx_priv component is not initialized!\n", func_name);
  838. return false;
  839. }
  840. return true;
  841. }
  842. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  843. u32 usecase, u32 size, void *data)
  844. {
  845. struct device *rx_dev = NULL;
  846. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  847. struct swrm_port_config port_cfg;
  848. int ret = 0;
  849. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  850. return -EINVAL;
  851. memset(&port_cfg, 0, sizeof(port_cfg));
  852. port_cfg.uc = usecase;
  853. port_cfg.size = size;
  854. port_cfg.params = data;
  855. if (rx_priv->swr_ctrl_data)
  856. ret = swrm_wcd_notify(
  857. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  858. SWR_SET_PORT_MAP, &port_cfg);
  859. return ret;
  860. }
  861. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  862. struct snd_ctl_elem_value *ucontrol)
  863. {
  864. struct snd_soc_dapm_widget *widget =
  865. snd_soc_dapm_kcontrol_widget(kcontrol);
  866. struct snd_soc_component *component =
  867. snd_soc_dapm_to_component(widget->dapm);
  868. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  869. unsigned int val = 0;
  870. unsigned short look_ahead_dly_reg =
  871. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  872. val = ucontrol->value.enumerated.item[0];
  873. if (val >= e->items)
  874. return -EINVAL;
  875. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  876. widget->name, val);
  877. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  878. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  879. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  880. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  881. /* Set Look Ahead Delay */
  882. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  883. 0x08, (val ? 0x08 : 0x00));
  884. /* Set DEM INP Select */
  885. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  886. }
  887. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  888. u8 rate_reg_val,
  889. u32 sample_rate)
  890. {
  891. u8 int_1_mix1_inp = 0;
  892. u32 j = 0, port = 0;
  893. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  894. u16 int_fs_reg = 0;
  895. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  896. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  897. struct snd_soc_component *component = dai->component;
  898. struct device *rx_dev = NULL;
  899. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  900. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  901. return -EINVAL;
  902. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  903. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  904. int_1_mix1_inp = port;
  905. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  906. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  907. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  908. __func__, dai->id);
  909. return -EINVAL;
  910. }
  911. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  912. /*
  913. * Loop through all interpolator MUX inputs and find out
  914. * to which interpolator input, the rx port
  915. * is connected
  916. */
  917. for (j = 0; j < INTERP_MAX; j++) {
  918. int_mux_cfg1 = int_mux_cfg0 + 4;
  919. int_mux_cfg0_val = snd_soc_component_read(
  920. component, int_mux_cfg0);
  921. int_mux_cfg1_val = snd_soc_component_read(
  922. component, int_mux_cfg1);
  923. inp0_sel = int_mux_cfg0_val & 0x0F;
  924. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  925. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  926. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  927. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  928. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  929. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  930. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  931. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  932. __func__, dai->id, j);
  933. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  934. __func__, j, sample_rate);
  935. /* sample_rate is in Hz */
  936. snd_soc_component_update_bits(component,
  937. int_fs_reg,
  938. 0x0F, rate_reg_val);
  939. }
  940. int_mux_cfg0 += 8;
  941. }
  942. }
  943. return 0;
  944. }
  945. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  946. u8 rate_reg_val,
  947. u32 sample_rate)
  948. {
  949. u8 int_2_inp = 0;
  950. u32 j = 0, port = 0;
  951. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  952. u8 int_mux_cfg1_val = 0;
  953. struct snd_soc_component *component = dai->component;
  954. struct device *rx_dev = NULL;
  955. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  956. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  957. return -EINVAL;
  958. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  959. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  960. int_2_inp = port;
  961. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  962. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  963. pr_err_ratelimited("%s: Invalid RX port, Dai ID is %d\n",
  964. __func__, dai->id);
  965. return -EINVAL;
  966. }
  967. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  968. for (j = 0; j < INTERP_MAX; j++) {
  969. int_mux_cfg1_val = snd_soc_component_read(
  970. component, int_mux_cfg1) &
  971. 0x0F;
  972. if (int_mux_cfg1_val == int_2_inp +
  973. INTn_2_INP_SEL_RX0) {
  974. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  975. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * j;
  976. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  977. __func__, dai->id, j);
  978. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  979. __func__, j, sample_rate);
  980. snd_soc_component_update_bits(
  981. component, int_fs_reg,
  982. 0x0F, rate_reg_val);
  983. }
  984. int_mux_cfg1 += 8;
  985. }
  986. }
  987. return 0;
  988. }
  989. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  990. {
  991. switch (sample_rate) {
  992. case SAMPLING_RATE_44P1KHZ:
  993. case SAMPLING_RATE_88P2KHZ:
  994. case SAMPLING_RATE_176P4KHZ:
  995. case SAMPLING_RATE_352P8KHZ:
  996. return true;
  997. default:
  998. return false;
  999. }
  1000. return false;
  1001. }
  1002. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  1003. u32 sample_rate)
  1004. {
  1005. struct snd_soc_component *component = dai->component;
  1006. int rate_val = 0;
  1007. int i = 0, ret = 0;
  1008. struct device *rx_dev = NULL;
  1009. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1010. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1011. return -EINVAL;
  1012. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  1013. if (sample_rate == sr_val_tbl[i].sample_rate) {
  1014. rate_val = sr_val_tbl[i].rate_val;
  1015. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  1016. rx_priv->is_native_on = true;
  1017. else
  1018. rx_priv->is_native_on = false;
  1019. break;
  1020. }
  1021. }
  1022. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  1023. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  1024. __func__, sample_rate);
  1025. return -EINVAL;
  1026. }
  1027. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1028. if (ret)
  1029. return ret;
  1030. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  1031. if (ret)
  1032. return ret;
  1033. return ret;
  1034. }
  1035. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  1036. struct snd_pcm_hw_params *params,
  1037. struct snd_soc_dai *dai)
  1038. {
  1039. struct snd_soc_component *component = dai->component;
  1040. int ret = 0;
  1041. struct device *rx_dev = NULL;
  1042. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1043. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1044. return -EINVAL;
  1045. dev_dbg(component->dev,
  1046. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  1047. dai->name, dai->id, params_rate(params),
  1048. params_channels(params));
  1049. switch (substream->stream) {
  1050. case SNDRV_PCM_STREAM_PLAYBACK:
  1051. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  1052. if (ret) {
  1053. pr_err_ratelimited("%s: cannot set sample rate: %u\n",
  1054. __func__, params_rate(params));
  1055. return ret;
  1056. }
  1057. rx_priv->bit_width[dai->id] = params_width(params);
  1058. break;
  1059. case SNDRV_PCM_STREAM_CAPTURE:
  1060. default:
  1061. break;
  1062. }
  1063. return 0;
  1064. }
  1065. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  1066. unsigned int *tx_num, unsigned int *tx_slot,
  1067. unsigned int *rx_num, unsigned int *rx_slot)
  1068. {
  1069. struct snd_soc_component *component = dai->component;
  1070. struct device *rx_dev = NULL;
  1071. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1072. unsigned int temp = 0, ch_mask = 0;
  1073. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1074. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1075. return -EINVAL;
  1076. switch (dai->id) {
  1077. case RX_MACRO_AIF1_PB:
  1078. case RX_MACRO_AIF2_PB:
  1079. case RX_MACRO_AIF3_PB:
  1080. case RX_MACRO_AIF4_PB:
  1081. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1082. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1083. ch_mask |= (1 << temp);
  1084. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1085. break;
  1086. }
  1087. /*
  1088. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1089. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1090. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1091. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1092. * AIFn can pair to any CDC_DMA_RX_n port.
  1093. * In general, below convention is used::
  1094. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1095. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1096. * Above is reflected in machine driver BE dailink
  1097. */
  1098. if (ch_mask & 0x0C)
  1099. ch_mask = ch_mask >> 2;
  1100. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1101. ch_mask = 0x1;
  1102. *rx_slot = ch_mask;
  1103. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1104. dev_dbg(rx_priv->dev,
  1105. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1106. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1107. break;
  1108. case RX_MACRO_AIF5_PB:
  1109. *rx_slot = 0x1;
  1110. *rx_num = 0x01;
  1111. dev_dbg(rx_priv->dev,
  1112. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1113. __func__, dai->id, *rx_slot, *rx_num);
  1114. break;
  1115. case RX_MACRO_AIF6_PB:
  1116. *rx_slot = 0x1;
  1117. *rx_num = 0x01;
  1118. dev_dbg(rx_priv->dev,
  1119. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1120. __func__, dai->id, *rx_slot, *rx_num);
  1121. break;
  1122. case RX_MACRO_AIF_ECHO:
  1123. val = snd_soc_component_read(component,
  1124. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1125. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1126. mask |= 0x1;
  1127. cnt++;
  1128. }
  1129. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1130. mask |= 0x2;
  1131. cnt++;
  1132. }
  1133. val = snd_soc_component_read(component,
  1134. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1135. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1136. mask |= 0x4;
  1137. cnt++;
  1138. }
  1139. *tx_slot = mask;
  1140. *tx_num = cnt;
  1141. break;
  1142. default:
  1143. dev_err_ratelimited(rx_dev, "%s: Invalid AIF\n", __func__);
  1144. break;
  1145. }
  1146. return 0;
  1147. }
  1148. static int lpass_cdc_rx_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1149. {
  1150. struct snd_soc_component *component = dai->component;
  1151. struct device *rx_dev = NULL;
  1152. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1153. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1154. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1155. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1156. if (mute)
  1157. return 0;
  1158. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1159. return -EINVAL;
  1160. switch (dai->id) {
  1161. case RX_MACRO_AIF1_PB:
  1162. case RX_MACRO_AIF2_PB:
  1163. case RX_MACRO_AIF3_PB:
  1164. case RX_MACRO_AIF4_PB:
  1165. for (j = 0; j < INTERP_MAX; j++) {
  1166. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1167. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1168. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1169. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1170. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1171. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1172. if (j == INTERP_AUX)
  1173. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1174. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1175. int_mux_cfg1 = int_mux_cfg0 + 4;
  1176. int_mux_cfg0_val = snd_soc_component_read(component,
  1177. int_mux_cfg0);
  1178. int_mux_cfg1_val = snd_soc_component_read(component,
  1179. int_mux_cfg1);
  1180. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  1181. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1182. snd_soc_component_update_bits(component,
  1183. reg, 0x20, 0x20);
  1184. if (int_mux_cfg1_val & 0x0F) {
  1185. snd_soc_component_update_bits(component,
  1186. reg, 0x20, 0x20);
  1187. snd_soc_component_update_bits(component,
  1188. mix_reg, 0x20, 0x20);
  1189. }
  1190. }
  1191. }
  1192. break;
  1193. default:
  1194. break;
  1195. }
  1196. return 0;
  1197. }
  1198. static int lpass_cdc_rx_macro_mclk_enable(
  1199. struct lpass_cdc_rx_macro_priv *rx_priv,
  1200. bool mclk_enable, bool dapm)
  1201. {
  1202. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1203. int ret = 0;
  1204. if (regmap == NULL) {
  1205. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1206. return -EINVAL;
  1207. }
  1208. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1209. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1210. mutex_lock(&rx_priv->mclk_lock);
  1211. if (mclk_enable) {
  1212. if (rx_priv->rx_mclk_users == 0) {
  1213. if (rx_priv->is_native_on)
  1214. rx_priv->clk_id = RX_CORE_CLK;
  1215. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1216. if (ret < 0) {
  1217. dev_err_ratelimited(rx_priv->dev,
  1218. "%s: rx request core vote failed\n",
  1219. __func__);
  1220. goto exit;
  1221. }
  1222. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1223. rx_priv->default_clk_id,
  1224. rx_priv->clk_id,
  1225. true);
  1226. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1227. if (ret < 0) {
  1228. dev_err_ratelimited(rx_priv->dev,
  1229. "%s: rx request clock enable failed\n",
  1230. __func__);
  1231. goto exit;
  1232. }
  1233. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1234. true);
  1235. regcache_mark_dirty(regmap);
  1236. regcache_sync_region(regmap,
  1237. RX_START_OFFSET,
  1238. RX_MAX_OFFSET);
  1239. regmap_update_bits(regmap,
  1240. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1241. 0x01, 0x01);
  1242. regmap_update_bits(regmap,
  1243. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1244. 0x02, 0x02);
  1245. regmap_update_bits(regmap,
  1246. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1247. 0x02, 0x00);
  1248. regmap_update_bits(regmap,
  1249. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1250. 0x01, 0x01);
  1251. }
  1252. rx_priv->rx_mclk_users++;
  1253. } else {
  1254. if (rx_priv->rx_mclk_users <= 0) {
  1255. dev_err_ratelimited(rx_priv->dev, "%s: clock already disabled\n",
  1256. __func__);
  1257. rx_priv->rx_mclk_users = 0;
  1258. goto exit;
  1259. }
  1260. rx_priv->rx_mclk_users--;
  1261. if (rx_priv->rx_mclk_users == 0) {
  1262. regmap_update_bits(regmap,
  1263. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1264. 0x01, 0x00);
  1265. regmap_update_bits(regmap,
  1266. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1267. 0x02, 0x02);
  1268. regmap_update_bits(regmap,
  1269. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1270. 0x02, 0x00);
  1271. regmap_update_bits(regmap,
  1272. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1273. 0x01, 0x00);
  1274. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1275. false);
  1276. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1277. if (ret < 0) {
  1278. dev_err_ratelimited(rx_priv->dev,
  1279. "%s: rx request core vote failed\n",
  1280. __func__);
  1281. }
  1282. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1283. rx_priv->default_clk_id,
  1284. rx_priv->clk_id,
  1285. false);
  1286. if (!ret)
  1287. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1288. rx_priv->clk_id = rx_priv->default_clk_id;
  1289. }
  1290. }
  1291. exit:
  1292. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1293. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1294. mutex_unlock(&rx_priv->mclk_lock);
  1295. return ret;
  1296. }
  1297. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1298. struct snd_kcontrol *kcontrol, int event)
  1299. {
  1300. struct snd_soc_component *component =
  1301. snd_soc_dapm_to_component(w->dapm);
  1302. int ret = 0;
  1303. struct device *rx_dev = NULL;
  1304. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1305. int mclk_freq = MCLK_FREQ;
  1306. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1307. return -EINVAL;
  1308. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1309. switch (event) {
  1310. case SND_SOC_DAPM_PRE_PMU:
  1311. if (rx_priv->is_native_on)
  1312. mclk_freq = MCLK_FREQ_NATIVE;
  1313. if (rx_priv->swr_ctrl_data)
  1314. swrm_wcd_notify(
  1315. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1316. SWR_CLK_FREQ, &mclk_freq);
  1317. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1318. if (ret)
  1319. rx_priv->dapm_mclk_enable = false;
  1320. else
  1321. rx_priv->dapm_mclk_enable = true;
  1322. break;
  1323. case SND_SOC_DAPM_POST_PMD:
  1324. if (rx_priv->dapm_mclk_enable)
  1325. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1326. break;
  1327. default:
  1328. dev_err_ratelimited(rx_priv->dev,
  1329. "%s: invalid DAPM event %d\n", __func__, event);
  1330. ret = -EINVAL;
  1331. }
  1332. return ret;
  1333. }
  1334. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1335. u16 event, u32 data)
  1336. {
  1337. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1338. struct device *rx_dev = NULL;
  1339. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1340. int ret = 0;
  1341. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1342. return -EINVAL;
  1343. switch (event) {
  1344. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1345. rx_idx = data >> 0x10;
  1346. mute = data & 0xffff;
  1347. val = mute ? 0x10 : 0x00;
  1348. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1349. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1350. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1351. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1352. snd_soc_component_update_bits(component, reg,
  1353. 0x10, val);
  1354. snd_soc_component_update_bits(component, reg_mix,
  1355. 0x10, val);
  1356. break;
  1357. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1358. rx_idx = data >> 0x10;
  1359. if (rx_idx == INTERP_AUX)
  1360. goto done;
  1361. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1362. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1363. snd_soc_component_write(component, reg,
  1364. snd_soc_component_read(component, reg));
  1365. break;
  1366. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1367. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1368. break;
  1369. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1370. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1371. break;
  1372. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1373. trace_printk("%s, enter SSR down\n", __func__);
  1374. rx_priv->pre_dev_up = false;
  1375. rx_priv->dev_up = false;
  1376. if (rx_priv->swr_ctrl_data) {
  1377. swrm_wcd_notify(
  1378. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1379. SWR_DEVICE_SSR_DOWN, NULL);
  1380. }
  1381. if ((!pm_runtime_enabled(rx_dev) ||
  1382. !pm_runtime_suspended(rx_dev))) {
  1383. ret = lpass_cdc_runtime_suspend(rx_dev);
  1384. if (!ret) {
  1385. pm_runtime_disable(rx_dev);
  1386. pm_runtime_set_suspended(rx_dev);
  1387. pm_runtime_enable(rx_dev);
  1388. }
  1389. }
  1390. break;
  1391. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1392. rx_priv->pre_dev_up = true;
  1393. ret = lpass_cdc_rx_macro_core_vote(rx_priv, true);
  1394. if (ret < 0) {
  1395. dev_err_ratelimited(rx_priv->dev,
  1396. "%s: rx request core vote failed\n",
  1397. __func__);
  1398. break;
  1399. }
  1400. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1401. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1402. rx_priv->default_clk_id,
  1403. RX_CORE_CLK, true);
  1404. if (ret < 0)
  1405. dev_err_ratelimited(rx_priv->dev,
  1406. "%s, failed to enable clk, ret:%d\n",
  1407. __func__, ret);
  1408. else
  1409. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1410. rx_priv->default_clk_id,
  1411. RX_CORE_CLK, false);
  1412. lpass_cdc_rx_macro_core_vote(rx_priv, false);
  1413. break;
  1414. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1415. trace_printk("%s, enter SSR up\n", __func__);
  1416. rx_priv->dev_up = true;
  1417. /* reset swr after ssr/pdr */
  1418. rx_priv->reset_swr = true;
  1419. if (rx_priv->swr_ctrl_data)
  1420. swrm_wcd_notify(
  1421. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1422. SWR_DEVICE_SSR_UP, NULL);
  1423. break;
  1424. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1425. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1426. lpass_cdc_rsc_clk_reset(rx_dev, RX_TX_CORE_CLK);
  1427. break;
  1428. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1429. rx_priv->rx0_gain_val = snd_soc_component_read(component,
  1430. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1431. rx_priv->rx1_gain_val = snd_soc_component_read(component,
  1432. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1433. if (data) {
  1434. /* Reduce gain by half only if its greater than -6DB */
  1435. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1436. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1437. snd_soc_component_update_bits(component,
  1438. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1439. (rx_priv->rx0_gain_val -
  1440. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1441. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1442. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1443. snd_soc_component_update_bits(component,
  1444. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1445. (rx_priv->rx1_gain_val -
  1446. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1447. }
  1448. else {
  1449. /* Reset gain value to default */
  1450. if ((rx_priv->rx0_gain_val >=
  1451. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1452. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1453. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1454. snd_soc_component_update_bits(component,
  1455. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1456. (rx_priv->rx0_gain_val +
  1457. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1458. if ((rx_priv->rx1_gain_val >=
  1459. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1460. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1461. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1462. snd_soc_component_update_bits(component,
  1463. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1464. (rx_priv->rx1_gain_val +
  1465. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1466. }
  1467. break;
  1468. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1469. /* Enable hd2 config for hphl*/
  1470. snd_soc_component_update_bits(component,
  1471. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1472. break;
  1473. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1474. /* Enable hd2 config for hphr*/
  1475. snd_soc_component_update_bits(component,
  1476. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1477. break;
  1478. }
  1479. done:
  1480. return ret;
  1481. }
  1482. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1483. struct lpass_cdc_rx_macro_priv *rx_priv)
  1484. {
  1485. int i = 0;
  1486. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1487. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1488. return i;
  1489. }
  1490. return -EINVAL;
  1491. }
  1492. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1493. struct lpass_cdc_rx_macro_priv *rx_priv,
  1494. int interp, int path_type)
  1495. {
  1496. int port_id[4] = { 0, 0, 0, 0 };
  1497. int *port_ptr = NULL;
  1498. int num_ports = 0;
  1499. int bit_width = 0, i = 0;
  1500. int mux_reg = 0, mux_reg_val = 0;
  1501. int dai_id = 0, idle_thr = 0;
  1502. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1503. return 0;
  1504. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1505. return 0;
  1506. port_ptr = &port_id[0];
  1507. num_ports = 0;
  1508. /*
  1509. * Read interpolator MUX input registers and find
  1510. * which cdc_dma port is connected and store the port
  1511. * numbers in port_id array.
  1512. */
  1513. if (path_type == INTERP_MIX_PATH) {
  1514. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1515. 2 * interp;
  1516. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1517. 0x0f;
  1518. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1519. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1520. *port_ptr++ = mux_reg_val - 1;
  1521. num_ports++;
  1522. }
  1523. }
  1524. if (path_type == INTERP_MAIN_PATH) {
  1525. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1526. 2 * (interp - 1);
  1527. mux_reg_val = snd_soc_component_read(component, mux_reg) &
  1528. 0x0f;
  1529. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1530. while (i) {
  1531. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1532. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1533. *port_ptr++ = mux_reg_val -
  1534. INTn_1_INP_SEL_RX0;
  1535. num_ports++;
  1536. }
  1537. mux_reg_val =
  1538. (snd_soc_component_read(component, mux_reg) &
  1539. 0xf0) >> 4;
  1540. mux_reg += 1;
  1541. i--;
  1542. }
  1543. }
  1544. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1545. __func__, num_ports, port_id[0], port_id[1],
  1546. port_id[2], port_id[3]);
  1547. i = 0;
  1548. while (num_ports) {
  1549. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1550. rx_priv);
  1551. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1552. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1553. __func__, dai_id,
  1554. rx_priv->bit_width[dai_id]);
  1555. if (rx_priv->bit_width[dai_id] > bit_width)
  1556. bit_width = rx_priv->bit_width[dai_id];
  1557. }
  1558. num_ports--;
  1559. }
  1560. switch (bit_width) {
  1561. case 16:
  1562. idle_thr = 0xff; /* F16 */
  1563. break;
  1564. case 24:
  1565. case 32:
  1566. idle_thr = 0x03; /* F22 */
  1567. break;
  1568. default:
  1569. idle_thr = 0x00;
  1570. break;
  1571. }
  1572. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1573. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1574. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1575. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1576. snd_soc_component_write(component,
  1577. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1578. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1579. }
  1580. return 0;
  1581. }
  1582. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1583. struct snd_kcontrol *kcontrol, int event)
  1584. {
  1585. struct snd_soc_component *component =
  1586. snd_soc_dapm_to_component(w->dapm);
  1587. u16 gain_reg = 0, mix_reg = 0;
  1588. struct device *rx_dev = NULL;
  1589. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1590. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1591. return -EINVAL;
  1592. if (w->shift >= INTERP_MAX) {
  1593. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1594. __func__, w->shift, w->name);
  1595. return -EINVAL;
  1596. }
  1597. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1598. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1599. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1600. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1601. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1602. switch (event) {
  1603. case SND_SOC_DAPM_PRE_PMU:
  1604. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1605. INTERP_MIX_PATH);
  1606. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1607. break;
  1608. case SND_SOC_DAPM_POST_PMU:
  1609. snd_soc_component_write(component, gain_reg,
  1610. snd_soc_component_read(component, gain_reg));
  1611. break;
  1612. case SND_SOC_DAPM_POST_PMD:
  1613. /* Clk Disable */
  1614. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1615. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1616. /* Reset enable and disable */
  1617. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1618. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1619. break;
  1620. }
  1621. return 0;
  1622. }
  1623. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1624. int interp_idx)
  1625. {
  1626. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1627. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1628. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1629. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1630. int_mux_cfg1 = int_mux_cfg0 + 4;
  1631. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1632. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1633. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1634. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1635. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1636. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1637. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1638. return true;
  1639. int_n_inp1 = int_mux_cfg0_val >> 4;
  1640. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1641. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1642. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1643. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1644. return true;
  1645. int_n_inp2 = int_mux_cfg1_val >> 4;
  1646. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1647. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1648. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1649. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1650. return true;
  1651. return false;
  1652. }
  1653. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1654. struct snd_kcontrol *kcontrol,
  1655. int event)
  1656. {
  1657. struct snd_soc_component *component =
  1658. snd_soc_dapm_to_component(w->dapm);
  1659. u16 gain_reg = 0;
  1660. u16 reg = 0;
  1661. struct device *rx_dev = NULL;
  1662. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1663. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1664. return -EINVAL;
  1665. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1666. if (w->shift >= INTERP_MAX) {
  1667. dev_err_ratelimited(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1668. __func__, w->shift, w->name);
  1669. return -EINVAL;
  1670. }
  1671. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1672. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1673. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1674. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1675. switch (event) {
  1676. case SND_SOC_DAPM_PRE_PMU:
  1677. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1678. INTERP_MAIN_PATH);
  1679. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1680. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1681. snd_soc_component_update_bits(component,
  1682. reg, 0x20, 0x20);
  1683. break;
  1684. case SND_SOC_DAPM_POST_PMU:
  1685. snd_soc_component_write(component, gain_reg,
  1686. snd_soc_component_read(component, gain_reg));
  1687. break;
  1688. case SND_SOC_DAPM_POST_PMD:
  1689. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1690. break;
  1691. }
  1692. return 0;
  1693. }
  1694. static void lpass_cdc_rx_macro_droop_setting(struct snd_soc_component *component,
  1695. int interp_n, int event)
  1696. {
  1697. u8 pcm_rate = 0, val = 0;
  1698. u16 rx0_path_ctl_reg = 0, rx_path_cfg3_reg = 0;
  1699. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1700. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1701. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1702. (interp_n * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1703. pcm_rate = (snd_soc_component_read(component, rx0_path_ctl_reg)
  1704. & 0x0F);
  1705. if (pcm_rate < 0x06)
  1706. val = 0x03;
  1707. else if (pcm_rate < 0x08)
  1708. val = 0x01;
  1709. else if (pcm_rate < 0x0B)
  1710. val = 0x02;
  1711. else
  1712. val = 0x00;
  1713. if (SND_SOC_DAPM_EVENT_ON(event))
  1714. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1715. 0x03, val);
  1716. if (SND_SOC_DAPM_EVENT_OFF(event))
  1717. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1718. 0x03, 0x03);
  1719. }
  1720. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1721. struct lpass_cdc_rx_macro_priv *rx_priv,
  1722. int interp_n, int event)
  1723. {
  1724. int comp = 0;
  1725. u16 comp_ctl0_reg = 0, comp_ctl8_reg = 0, rx_path_cfg0_reg = 0;
  1726. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1727. u16 mode = rx_priv->hph_pwr_mode;
  1728. /* AUX does not have compander */
  1729. if (interp_n == INTERP_AUX)
  1730. return 0;
  1731. comp = interp_n;
  1732. if (!rx_priv->comp_enabled[comp])
  1733. return 0;
  1734. if (rx_priv->is_ear_mode_on && interp_n == INTERP_HPHL)
  1735. mode = RX_MODE_EAR;
  1736. if (interp_n == INTERP_HPHL) {
  1737. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1738. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1739. } else if (interp_n == INTERP_HPHR) {
  1740. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1741. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1742. } else {
  1743. /* compander coefficients are loaded only for hph path */
  1744. return 0;
  1745. }
  1746. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1747. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1748. comp_ctl8_reg = LPASS_CDC_RX_COMPANDER0_CTL8 +
  1749. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1750. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1751. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1752. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1753. lpass_cdc_load_compander_coeff(component,
  1754. comp_coeff_lsb_reg, comp_coeff_msb_reg,
  1755. comp_coeff_table[rx_priv->hph_pwr_mode],
  1756. COMP_MAX_COEFF);
  1757. lpass_cdc_update_compander_setting(component,
  1758. comp_ctl8_reg,
  1759. &comp_setting_table[mode]);
  1760. /* Enable Compander Clock */
  1761. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1762. 0x01, 0x01);
  1763. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1764. 0x02, 0x02);
  1765. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1766. 0x02, 0x00);
  1767. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1768. 0x02, 0x02);
  1769. }
  1770. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1771. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1772. 0x04, 0x04);
  1773. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1774. 0x02, 0x00);
  1775. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1776. 0x01, 0x00);
  1777. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1778. 0x04, 0x00);
  1779. }
  1780. return 0;
  1781. }
  1782. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1783. struct lpass_cdc_rx_macro_priv *rx_priv,
  1784. bool enable)
  1785. {
  1786. if (enable) {
  1787. if (rx_priv->softclip_clk_users == 0)
  1788. snd_soc_component_update_bits(component,
  1789. LPASS_CDC_RX_SOFTCLIP_CRC,
  1790. 0x01, 0x01);
  1791. rx_priv->softclip_clk_users++;
  1792. } else {
  1793. rx_priv->softclip_clk_users--;
  1794. if (rx_priv->softclip_clk_users == 0)
  1795. snd_soc_component_update_bits(component,
  1796. LPASS_CDC_RX_SOFTCLIP_CRC,
  1797. 0x01, 0x00);
  1798. }
  1799. }
  1800. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1801. struct lpass_cdc_rx_macro_priv *rx_priv,
  1802. int event)
  1803. {
  1804. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1805. __func__, event, rx_priv->is_softclip_on);
  1806. if (!rx_priv->is_softclip_on)
  1807. return 0;
  1808. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1809. /* Enable Softclip clock */
  1810. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1811. /* Enable Softclip control */
  1812. snd_soc_component_update_bits(component,
  1813. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1814. }
  1815. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1816. snd_soc_component_update_bits(component,
  1817. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1818. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1819. }
  1820. return 0;
  1821. }
  1822. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1823. struct lpass_cdc_rx_macro_priv *rx_priv,
  1824. int event)
  1825. {
  1826. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1827. __func__, event, rx_priv->is_aux_hpf_on);
  1828. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1829. /* Update Aux HPF control */
  1830. if (!rx_priv->is_aux_hpf_on)
  1831. snd_soc_component_update_bits(component,
  1832. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1833. }
  1834. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1835. /* Reset to default (HPF=ON) */
  1836. snd_soc_component_update_bits(component,
  1837. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1838. }
  1839. return 0;
  1840. }
  1841. static inline void
  1842. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1843. {
  1844. if ((enable && ++rx_priv->clsh_users == 1) ||
  1845. (!enable && --rx_priv->clsh_users == 0))
  1846. snd_soc_component_update_bits(rx_priv->component,
  1847. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1848. (u8) enable);
  1849. if (rx_priv->clsh_users < 0)
  1850. rx_priv->clsh_users = 0;
  1851. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1852. rx_priv->clsh_users, enable);
  1853. }
  1854. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1855. struct lpass_cdc_rx_macro_priv *rx_priv,
  1856. int interp_n, int event)
  1857. {
  1858. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1859. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1860. return 0;
  1861. }
  1862. if (!SND_SOC_DAPM_EVENT_ON(event))
  1863. return 0;
  1864. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1865. if (interp_n == INTERP_HPHL ||
  1866. interp_n == INTERP_HPHR) {
  1867. /*
  1868. * These K1 values depend on the Headphone Impedance
  1869. * For now it is assumed to be 16 ohm
  1870. */
  1871. snd_soc_component_update_bits(component,
  1872. LPASS_CDC_RX_CLSH_K1_LSB,
  1873. 0xFF, 0xC0);
  1874. snd_soc_component_update_bits(component,
  1875. LPASS_CDC_RX_CLSH_K1_MSB,
  1876. 0x0F, 0x00);
  1877. }
  1878. switch (interp_n) {
  1879. case INTERP_HPHL:
  1880. if (rx_priv->is_ear_mode_on)
  1881. snd_soc_component_update_bits(component,
  1882. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1883. 0x3F, 0x39);
  1884. else
  1885. snd_soc_component_update_bits(component,
  1886. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1887. 0x3F, 0x1C);
  1888. snd_soc_component_update_bits(component,
  1889. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1890. 0x07, 0x00);
  1891. snd_soc_component_update_bits(component,
  1892. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1893. 0x40, 0x40);
  1894. break;
  1895. case INTERP_HPHR:
  1896. if (rx_priv->is_ear_mode_on)
  1897. snd_soc_component_update_bits(component,
  1898. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1899. 0x3F, 0x39);
  1900. else
  1901. snd_soc_component_update_bits(component,
  1902. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1903. 0x3F, 0x1C);
  1904. snd_soc_component_update_bits(component,
  1905. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1906. 0x07, 0x00);
  1907. snd_soc_component_update_bits(component,
  1908. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1909. 0x40, 0x40);
  1910. break;
  1911. case INTERP_AUX:
  1912. snd_soc_component_update_bits(component,
  1913. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1914. 0x08, 0x08);
  1915. snd_soc_component_update_bits(component,
  1916. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1917. 0x10, 0x10);
  1918. break;
  1919. }
  1920. return 0;
  1921. }
  1922. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1923. u16 interp_idx, int event)
  1924. {
  1925. u16 hd2_scale_reg = 0;
  1926. u16 hd2_enable_reg = 0;
  1927. switch (interp_idx) {
  1928. case INTERP_HPHL:
  1929. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1930. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1931. break;
  1932. case INTERP_HPHR:
  1933. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1934. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1935. break;
  1936. }
  1937. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1938. snd_soc_component_update_bits(component, hd2_scale_reg,
  1939. 0x3C, 0x14);
  1940. snd_soc_component_update_bits(component, hd2_enable_reg,
  1941. 0x04, 0x04);
  1942. }
  1943. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1944. snd_soc_component_update_bits(component, hd2_enable_reg,
  1945. 0x04, 0x00);
  1946. snd_soc_component_update_bits(component, hd2_scale_reg,
  1947. 0x3C, 0x00);
  1948. }
  1949. }
  1950. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1951. struct snd_ctl_elem_value *ucontrol)
  1952. {
  1953. struct snd_soc_component *component =
  1954. snd_soc_kcontrol_component(kcontrol);
  1955. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1956. struct device *rx_dev = NULL;
  1957. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1958. return -EINVAL;
  1959. ucontrol->value.integer.value[0] =
  1960. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1961. return 0;
  1962. }
  1963. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1964. struct snd_ctl_elem_value *ucontrol)
  1965. {
  1966. struct snd_soc_component *component =
  1967. snd_soc_kcontrol_component(kcontrol);
  1968. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1969. struct device *rx_dev = NULL;
  1970. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1971. return -EINVAL;
  1972. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1973. ucontrol->value.integer.value[0];
  1974. return 0;
  1975. }
  1976. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1977. struct snd_ctl_elem_value *ucontrol)
  1978. {
  1979. struct snd_soc_component *component =
  1980. snd_soc_kcontrol_component(kcontrol);
  1981. int comp = ((struct soc_multi_mixer_control *)
  1982. kcontrol->private_value)->shift;
  1983. struct device *rx_dev = NULL;
  1984. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1985. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1986. return -EINVAL;
  1987. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1988. return 0;
  1989. }
  1990. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1991. struct snd_ctl_elem_value *ucontrol)
  1992. {
  1993. struct snd_soc_component *component =
  1994. snd_soc_kcontrol_component(kcontrol);
  1995. int comp = ((struct soc_multi_mixer_control *)
  1996. kcontrol->private_value)->shift;
  1997. int value = ucontrol->value.integer.value[0];
  1998. struct device *rx_dev = NULL;
  1999. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2000. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2001. return -EINVAL;
  2002. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  2003. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  2004. rx_priv->comp_enabled[comp] = value;
  2005. return 0;
  2006. }
  2007. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  2008. struct snd_ctl_elem_value *ucontrol)
  2009. {
  2010. struct snd_soc_dapm_widget *widget =
  2011. snd_soc_dapm_kcontrol_widget(kcontrol);
  2012. struct snd_soc_component *component =
  2013. snd_soc_dapm_to_component(widget->dapm);
  2014. struct device *rx_dev = NULL;
  2015. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2016. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2017. return -EINVAL;
  2018. ucontrol->value.integer.value[0] =
  2019. rx_priv->rx_port_value[widget->shift];
  2020. return 0;
  2021. }
  2022. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  2023. struct snd_ctl_elem_value *ucontrol)
  2024. {
  2025. struct snd_soc_dapm_widget *widget =
  2026. snd_soc_dapm_kcontrol_widget(kcontrol);
  2027. struct snd_soc_component *component =
  2028. snd_soc_dapm_to_component(widget->dapm);
  2029. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2030. struct snd_soc_dapm_update *update = NULL;
  2031. u32 rx_port_value = ucontrol->value.integer.value[0];
  2032. u32 aif_rst = 0;
  2033. struct device *rx_dev = NULL;
  2034. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2035. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2036. return -EINVAL;
  2037. aif_rst = rx_priv->rx_port_value[widget->shift];
  2038. if (!rx_port_value) {
  2039. if (aif_rst == 0) {
  2040. dev_err_ratelimited(rx_dev, "%s:AIF reset already\n", __func__);
  2041. return 0;
  2042. }
  2043. if (aif_rst > RX_MACRO_AIF4_PB) {
  2044. dev_err_ratelimited(rx_dev, "%s: Invalid AIF reset\n", __func__);
  2045. return 0;
  2046. }
  2047. }
  2048. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  2049. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  2050. __func__, rx_port_value, widget->shift, aif_rst);
  2051. switch (rx_port_value) {
  2052. case 0:
  2053. if (rx_priv->active_ch_cnt[aif_rst]) {
  2054. clear_bit(widget->shift,
  2055. &rx_priv->active_ch_mask[aif_rst]);
  2056. rx_priv->active_ch_cnt[aif_rst]--;
  2057. }
  2058. break;
  2059. case 1:
  2060. case 2:
  2061. case 3:
  2062. case 4:
  2063. set_bit(widget->shift,
  2064. &rx_priv->active_ch_mask[rx_port_value]);
  2065. rx_priv->active_ch_cnt[rx_port_value]++;
  2066. break;
  2067. default:
  2068. dev_err_ratelimited(component->dev,
  2069. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  2070. __func__, rx_port_value);
  2071. goto err;
  2072. }
  2073. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2074. rx_port_value, e, update);
  2075. return 0;
  2076. err:
  2077. return -EINVAL;
  2078. }
  2079. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  2080. struct snd_ctl_elem_value *ucontrol)
  2081. {
  2082. struct snd_soc_component *component =
  2083. snd_soc_kcontrol_component(kcontrol);
  2084. struct device *rx_dev = NULL;
  2085. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2086. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2087. return -EINVAL;
  2088. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2089. return 0;
  2090. }
  2091. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2092. struct snd_ctl_elem_value *ucontrol)
  2093. {
  2094. struct snd_soc_component *component =
  2095. snd_soc_kcontrol_component(kcontrol);
  2096. struct device *rx_dev = NULL;
  2097. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2098. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2099. return -EINVAL;
  2100. rx_priv->is_ear_mode_on =
  2101. (!ucontrol->value.integer.value[0] ? false : true);
  2102. return 0;
  2103. }
  2104. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2105. struct snd_ctl_elem_value *ucontrol)
  2106. {
  2107. struct snd_soc_component *component =
  2108. snd_soc_kcontrol_component(kcontrol);
  2109. struct device *rx_dev = NULL;
  2110. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2111. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2112. return -EINVAL;
  2113. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2114. return 0;
  2115. }
  2116. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2117. struct snd_ctl_elem_value *ucontrol)
  2118. {
  2119. struct snd_soc_component *component =
  2120. snd_soc_kcontrol_component(kcontrol);
  2121. struct device *rx_dev = NULL;
  2122. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2123. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2124. return -EINVAL;
  2125. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2126. return 0;
  2127. }
  2128. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2129. struct snd_ctl_elem_value *ucontrol)
  2130. {
  2131. struct snd_soc_component *component =
  2132. snd_soc_kcontrol_component(kcontrol);
  2133. struct device *rx_dev = NULL;
  2134. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2135. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2136. return -EINVAL;
  2137. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2138. return 0;
  2139. }
  2140. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2141. struct snd_ctl_elem_value *ucontrol)
  2142. {
  2143. struct snd_soc_component *component =
  2144. snd_soc_kcontrol_component(kcontrol);
  2145. struct device *rx_dev = NULL;
  2146. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2147. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2148. return -EINVAL;
  2149. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2150. return 0;
  2151. }
  2152. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2153. struct snd_ctl_elem_value *ucontrol)
  2154. {
  2155. struct snd_soc_component *component =
  2156. snd_soc_kcontrol_component(kcontrol);
  2157. ucontrol->value.integer.value[0] =
  2158. ((snd_soc_component_read(
  2159. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2160. 1 : 0);
  2161. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2162. ucontrol->value.integer.value[0]);
  2163. return 0;
  2164. }
  2165. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2166. struct snd_ctl_elem_value *ucontrol)
  2167. {
  2168. struct snd_soc_component *component =
  2169. snd_soc_kcontrol_component(kcontrol);
  2170. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2171. ucontrol->value.integer.value[0]);
  2172. /* Set Vbat register configuration for GSM mode bit based on value */
  2173. if (ucontrol->value.integer.value[0])
  2174. snd_soc_component_update_bits(component,
  2175. LPASS_CDC_RX_BCL_VBAT_CFG,
  2176. 0x04, 0x04);
  2177. else
  2178. snd_soc_component_update_bits(component,
  2179. LPASS_CDC_RX_BCL_VBAT_CFG,
  2180. 0x04, 0x00);
  2181. return 0;
  2182. }
  2183. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2184. struct snd_ctl_elem_value *ucontrol)
  2185. {
  2186. struct snd_soc_component *component =
  2187. snd_soc_kcontrol_component(kcontrol);
  2188. struct device *rx_dev = NULL;
  2189. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2190. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2191. return -EINVAL;
  2192. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2193. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2194. __func__, ucontrol->value.integer.value[0]);
  2195. return 0;
  2196. }
  2197. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2198. struct snd_ctl_elem_value *ucontrol)
  2199. {
  2200. struct snd_soc_component *component =
  2201. snd_soc_kcontrol_component(kcontrol);
  2202. struct device *rx_dev = NULL;
  2203. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2204. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2205. return -EINVAL;
  2206. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2207. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2208. rx_priv->is_softclip_on);
  2209. return 0;
  2210. }
  2211. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2212. struct snd_ctl_elem_value *ucontrol)
  2213. {
  2214. struct snd_soc_component *component =
  2215. snd_soc_kcontrol_component(kcontrol);
  2216. struct device *rx_dev = NULL;
  2217. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2218. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2219. return -EINVAL;
  2220. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2221. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2222. __func__, ucontrol->value.integer.value[0]);
  2223. return 0;
  2224. }
  2225. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2226. struct snd_ctl_elem_value *ucontrol)
  2227. {
  2228. struct snd_soc_component *component =
  2229. snd_soc_kcontrol_component(kcontrol);
  2230. struct device *rx_dev = NULL;
  2231. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2232. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2233. return -EINVAL;
  2234. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2235. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2236. rx_priv->is_aux_hpf_on);
  2237. return 0;
  2238. }
  2239. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2240. struct snd_kcontrol *kcontrol,
  2241. int event)
  2242. {
  2243. struct snd_soc_component *component =
  2244. snd_soc_dapm_to_component(w->dapm);
  2245. struct device *rx_dev = NULL;
  2246. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2247. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2248. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2249. return -EINVAL;
  2250. switch (event) {
  2251. case SND_SOC_DAPM_PRE_PMU:
  2252. /* Enable clock for VBAT block */
  2253. snd_soc_component_update_bits(component,
  2254. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2255. /* Enable VBAT block */
  2256. snd_soc_component_update_bits(component,
  2257. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2258. /* Update interpolator with 384K path */
  2259. snd_soc_component_update_bits(component,
  2260. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2261. /* Update DSM FS rate */
  2262. snd_soc_component_update_bits(component,
  2263. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2264. /* Use attenuation mode */
  2265. snd_soc_component_update_bits(component,
  2266. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2267. /* BCL block needs softclip clock to be enabled */
  2268. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2269. /* Enable VBAT at channel level */
  2270. snd_soc_component_update_bits(component,
  2271. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2272. /* Set the ATTK1 gain */
  2273. snd_soc_component_update_bits(component,
  2274. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2275. 0xFF, 0xFF);
  2276. snd_soc_component_update_bits(component,
  2277. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2278. 0xFF, 0x03);
  2279. snd_soc_component_update_bits(component,
  2280. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2281. 0xFF, 0x00);
  2282. /* Set the ATTK2 gain */
  2283. snd_soc_component_update_bits(component,
  2284. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2285. 0xFF, 0xFF);
  2286. snd_soc_component_update_bits(component,
  2287. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2288. 0xFF, 0x03);
  2289. snd_soc_component_update_bits(component,
  2290. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2291. 0xFF, 0x00);
  2292. /* Set the ATTK3 gain */
  2293. snd_soc_component_update_bits(component,
  2294. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2295. 0xFF, 0xFF);
  2296. snd_soc_component_update_bits(component,
  2297. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2298. 0xFF, 0x03);
  2299. snd_soc_component_update_bits(component,
  2300. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2301. 0xFF, 0x00);
  2302. /* Enable CB decode block clock */
  2303. snd_soc_component_update_bits(component,
  2304. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  2305. /* Enable BCL path */
  2306. snd_soc_component_update_bits(component,
  2307. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  2308. /* Request for BCL data */
  2309. snd_soc_component_update_bits(component,
  2310. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  2311. break;
  2312. case SND_SOC_DAPM_POST_PMD:
  2313. snd_soc_component_update_bits(component,
  2314. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  2315. snd_soc_component_update_bits(component,
  2316. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  2317. snd_soc_component_update_bits(component,
  2318. LPASS_CDC_RX_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  2319. snd_soc_component_update_bits(component,
  2320. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2321. 0x80, 0x00);
  2322. snd_soc_component_update_bits(component,
  2323. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2324. 0x02, 0x00);
  2325. snd_soc_component_update_bits(component,
  2326. LPASS_CDC_RX_BCL_VBAT_CFG,
  2327. 0x02, 0x02);
  2328. snd_soc_component_update_bits(component,
  2329. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2330. 0x02, 0x00);
  2331. snd_soc_component_update_bits(component,
  2332. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2333. 0xFF, 0x00);
  2334. snd_soc_component_update_bits(component,
  2335. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2336. 0xFF, 0x00);
  2337. snd_soc_component_update_bits(component,
  2338. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2339. 0xFF, 0x00);
  2340. snd_soc_component_update_bits(component,
  2341. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2342. 0xFF, 0x00);
  2343. snd_soc_component_update_bits(component,
  2344. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2345. 0xFF, 0x00);
  2346. snd_soc_component_update_bits(component,
  2347. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2348. 0xFF, 0x00);
  2349. snd_soc_component_update_bits(component,
  2350. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2351. 0xFF, 0x00);
  2352. snd_soc_component_update_bits(component,
  2353. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2354. 0xFF, 0x00);
  2355. snd_soc_component_update_bits(component,
  2356. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2357. 0xFF, 0x00);
  2358. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2359. snd_soc_component_update_bits(component,
  2360. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2361. snd_soc_component_update_bits(component,
  2362. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2363. break;
  2364. default:
  2365. dev_err_ratelimited(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2366. break;
  2367. }
  2368. return 0;
  2369. }
  2370. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2371. struct lpass_cdc_rx_macro_priv *rx_priv,
  2372. int interp, int event)
  2373. {
  2374. int reg = 0, mask = 0, val = 0;
  2375. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2376. return;
  2377. if (interp == INTERP_HPHL) {
  2378. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2379. mask = 0x01;
  2380. val = 0x01;
  2381. }
  2382. if (interp == INTERP_HPHR) {
  2383. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2384. mask = 0x02;
  2385. val = 0x02;
  2386. }
  2387. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2388. snd_soc_component_update_bits(component, reg, mask, val);
  2389. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2390. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2391. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2392. snd_soc_component_write(component,
  2393. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2394. }
  2395. }
  2396. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2397. struct lpass_cdc_rx_macro_priv *rx_priv,
  2398. u16 interp_idx, int event)
  2399. {
  2400. u16 hph_lut_bypass_reg = 0;
  2401. u16 hph_comp_ctrl7 = 0;
  2402. switch (interp_idx) {
  2403. case INTERP_HPHL:
  2404. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2405. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2406. break;
  2407. case INTERP_HPHR:
  2408. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2409. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2410. break;
  2411. default:
  2412. break;
  2413. }
  2414. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2415. if (interp_idx == INTERP_HPHL) {
  2416. if (rx_priv->is_ear_mode_on)
  2417. snd_soc_component_update_bits(component,
  2418. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2419. 0x02, 0x02);
  2420. else
  2421. snd_soc_component_update_bits(component,
  2422. hph_lut_bypass_reg,
  2423. 0x80, 0x80);
  2424. } else {
  2425. snd_soc_component_update_bits(component,
  2426. hph_lut_bypass_reg,
  2427. 0x80, 0x80);
  2428. }
  2429. if (rx_priv->hph_pwr_mode)
  2430. snd_soc_component_update_bits(component,
  2431. hph_comp_ctrl7,
  2432. 0x20, 0x00);
  2433. }
  2434. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2435. snd_soc_component_update_bits(component,
  2436. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2437. 0x02, 0x00);
  2438. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2439. 0x80, 0x00);
  2440. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2441. 0x20, 0x20);
  2442. }
  2443. }
  2444. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2445. int event, int interp_idx)
  2446. {
  2447. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2448. struct device *rx_dev = NULL;
  2449. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2450. if (!component) {
  2451. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2452. return -EINVAL;
  2453. }
  2454. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2455. return -EINVAL;
  2456. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2457. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2458. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2459. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2460. if (interp_idx == INTERP_AUX)
  2461. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2462. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2463. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2464. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2465. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2466. /* Main path PGA mute enable */
  2467. snd_soc_component_update_bits(component, main_reg,
  2468. 0x10, 0x10);
  2469. snd_soc_component_update_bits(component, dsm_reg,
  2470. 0x01, 0x01);
  2471. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2472. 0x03, 0x03);
  2473. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2474. interp_idx, event);
  2475. if (rx_priv->hph_hd2_mode)
  2476. lpass_cdc_rx_macro_hd2_control(
  2477. component, interp_idx, event);
  2478. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2479. interp_idx, event);
  2480. lpass_cdc_rx_macro_droop_setting(component,
  2481. interp_idx, event);
  2482. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2483. interp_idx, event);
  2484. if (interp_idx == INTERP_AUX) {
  2485. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2486. event);
  2487. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2488. event);
  2489. }
  2490. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2491. interp_idx, event);
  2492. }
  2493. rx_priv->main_clk_users[interp_idx]++;
  2494. }
  2495. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2496. rx_priv->main_clk_users[interp_idx]--;
  2497. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2498. rx_priv->main_clk_users[interp_idx] = 0;
  2499. /* Main path PGA mute enable */
  2500. snd_soc_component_update_bits(component, main_reg,
  2501. 0x10, 0x10);
  2502. /* Clk Disable */
  2503. snd_soc_component_update_bits(component, dsm_reg,
  2504. 0x01, 0x00);
  2505. snd_soc_component_update_bits(component, main_reg,
  2506. 0x20, 0x00);
  2507. /* Reset enable and disable */
  2508. snd_soc_component_update_bits(component, main_reg,
  2509. 0x40, 0x40);
  2510. snd_soc_component_update_bits(component, main_reg,
  2511. 0x40, 0x00);
  2512. /* Reset rate to 48K*/
  2513. snd_soc_component_update_bits(component, main_reg,
  2514. 0x0F, 0x04);
  2515. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2516. 0x03, 0x00);
  2517. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2518. interp_idx, event);
  2519. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2520. interp_idx, event);
  2521. if (interp_idx == INTERP_AUX) {
  2522. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2523. event);
  2524. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2525. event);
  2526. }
  2527. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2528. interp_idx, event);
  2529. if (rx_priv->hph_hd2_mode)
  2530. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2531. event);
  2532. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2533. interp_idx, event);
  2534. }
  2535. }
  2536. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2537. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2538. return rx_priv->main_clk_users[interp_idx];
  2539. }
  2540. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2541. struct snd_kcontrol *kcontrol, int event)
  2542. {
  2543. struct snd_soc_component *component =
  2544. snd_soc_dapm_to_component(w->dapm);
  2545. u16 sidetone_reg = 0, fs_reg = 0;
  2546. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2547. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2548. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2549. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2550. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2551. switch (event) {
  2552. case SND_SOC_DAPM_PRE_PMU:
  2553. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2554. snd_soc_component_update_bits(component, sidetone_reg,
  2555. 0x10, 0x10);
  2556. snd_soc_component_update_bits(component, fs_reg,
  2557. 0x20, 0x20);
  2558. break;
  2559. case SND_SOC_DAPM_POST_PMD:
  2560. snd_soc_component_update_bits(component, sidetone_reg,
  2561. 0x10, 0x00);
  2562. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2563. break;
  2564. default:
  2565. break;
  2566. };
  2567. return 0;
  2568. }
  2569. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2570. int band_idx)
  2571. {
  2572. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2573. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2574. if (regmap == NULL) {
  2575. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2576. return;
  2577. }
  2578. regmap_write(regmap,
  2579. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2580. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2581. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2582. /* 5 coefficients per band and 4 writes per coefficient */
  2583. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2584. coeff_idx++) {
  2585. /* Four 8 bit values(one 32 bit) per coefficient */
  2586. regmap_write(regmap, reg_add,
  2587. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2588. regmap_write(regmap, reg_add,
  2589. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2590. regmap_write(regmap, reg_add,
  2591. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2592. regmap_write(regmap, reg_add,
  2593. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2594. }
  2595. }
  2596. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2597. struct snd_ctl_elem_value *ucontrol)
  2598. {
  2599. struct snd_soc_component *component =
  2600. snd_soc_kcontrol_component(kcontrol);
  2601. int iir_idx = ((struct soc_multi_mixer_control *)
  2602. kcontrol->private_value)->reg;
  2603. int band_idx = ((struct soc_multi_mixer_control *)
  2604. kcontrol->private_value)->shift;
  2605. /* IIR filter band registers are at integer multiples of 0x80 */
  2606. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2607. ucontrol->value.integer.value[0] = (
  2608. snd_soc_component_read(component, iir_reg) &
  2609. (1 << band_idx)) != 0;
  2610. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2611. iir_idx, band_idx,
  2612. (uint32_t)ucontrol->value.integer.value[0]);
  2613. return 0;
  2614. }
  2615. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2616. struct snd_ctl_elem_value *ucontrol)
  2617. {
  2618. struct snd_soc_component *component =
  2619. snd_soc_kcontrol_component(kcontrol);
  2620. int iir_idx = ((struct soc_multi_mixer_control *)
  2621. kcontrol->private_value)->reg;
  2622. int band_idx = ((struct soc_multi_mixer_control *)
  2623. kcontrol->private_value)->shift;
  2624. bool iir_band_en_status = 0;
  2625. int value = ucontrol->value.integer.value[0];
  2626. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2627. struct device *rx_dev = NULL;
  2628. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2629. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2630. return -EINVAL;
  2631. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2632. /* Mask first 5 bits, 6-8 are reserved */
  2633. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2634. (value << band_idx));
  2635. iir_band_en_status = ((snd_soc_component_read(component, iir_reg) &
  2636. (1 << band_idx)) != 0);
  2637. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2638. iir_idx, band_idx, iir_band_en_status);
  2639. return 0;
  2640. }
  2641. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2642. int iir_idx, int band_idx,
  2643. int coeff_idx)
  2644. {
  2645. uint32_t value = 0;
  2646. /* Address does not automatically update if reading */
  2647. snd_soc_component_write(component,
  2648. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2649. ((band_idx * BAND_MAX + coeff_idx)
  2650. * sizeof(uint32_t)) & 0x7F);
  2651. value |= snd_soc_component_read(component,
  2652. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2653. snd_soc_component_write(component,
  2654. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2655. ((band_idx * BAND_MAX + coeff_idx)
  2656. * sizeof(uint32_t) + 1) & 0x7F);
  2657. value |= (snd_soc_component_read(component,
  2658. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2659. 0x80 * iir_idx)) << 8);
  2660. snd_soc_component_write(component,
  2661. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2662. ((band_idx * BAND_MAX + coeff_idx)
  2663. * sizeof(uint32_t) + 2) & 0x7F);
  2664. value |= (snd_soc_component_read(component,
  2665. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2666. 0x80 * iir_idx)) << 16);
  2667. snd_soc_component_write(component,
  2668. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2669. ((band_idx * BAND_MAX + coeff_idx)
  2670. * sizeof(uint32_t) + 3) & 0x7F);
  2671. /* Mask bits top 2 bits since they are reserved */
  2672. value |= ((snd_soc_component_read(component,
  2673. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2674. 0x80 * iir_idx)) & 0x3F) << 24);
  2675. return value;
  2676. }
  2677. static int lpass_cdc_rx_macro_iir_filter_info(struct snd_kcontrol *kcontrol,
  2678. struct snd_ctl_elem_info *ucontrol)
  2679. {
  2680. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2681. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2682. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2683. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2684. ucontrol->count = params->max;
  2685. return 0;
  2686. }
  2687. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2688. struct snd_ctl_elem_value *ucontrol)
  2689. {
  2690. struct snd_soc_component *component =
  2691. snd_soc_kcontrol_component(kcontrol);
  2692. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2693. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2694. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2695. int iir_idx = ctl->iir_idx;
  2696. int band_idx = ctl->band_idx;
  2697. u32 coeff[BAND_MAX];
  2698. int coeff_idx = 0;
  2699. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2700. coeff_idx++) {
  2701. coeff[coeff_idx] =
  2702. get_iir_band_coeff(component, iir_idx, band_idx, coeff_idx);
  2703. }
  2704. memcpy(ucontrol->value.bytes.data, &coeff[0], params->max);
  2705. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2706. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2707. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2708. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2709. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2710. __func__, iir_idx, band_idx, coeff[0],
  2711. __func__, iir_idx, band_idx, coeff[1],
  2712. __func__, iir_idx, band_idx, coeff[2],
  2713. __func__, iir_idx, band_idx, coeff[3],
  2714. __func__, iir_idx, band_idx, coeff[4]);
  2715. return 0;
  2716. }
  2717. static void set_iir_band_coeff(struct snd_soc_component *component,
  2718. int iir_idx, int band_idx,
  2719. uint32_t value)
  2720. {
  2721. snd_soc_component_write(component,
  2722. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2723. (value & 0xFF));
  2724. snd_soc_component_write(component,
  2725. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2726. (value >> 8) & 0xFF);
  2727. snd_soc_component_write(component,
  2728. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2729. (value >> 16) & 0xFF);
  2730. /* Mask top 2 bits, 7-8 are reserved */
  2731. snd_soc_component_write(component,
  2732. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2733. (value >> 24) & 0x3F);
  2734. }
  2735. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2736. struct snd_ctl_elem_value *ucontrol)
  2737. {
  2738. struct snd_soc_component *component =
  2739. snd_soc_kcontrol_component(kcontrol);
  2740. struct lpass_cdc_rx_macro_iir_filter_ctl *ctl =
  2741. (struct lpass_cdc_rx_macro_iir_filter_ctl *)kcontrol->private_value;
  2742. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2743. int iir_idx = ctl->iir_idx;
  2744. int band_idx = ctl->band_idx;
  2745. u32 coeff[BAND_MAX];
  2746. int coeff_idx, idx = 0;
  2747. struct device *rx_dev = NULL;
  2748. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2749. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2750. return -EINVAL;
  2751. memcpy(&coeff[0], ucontrol->value.bytes.data, params->max);
  2752. /*
  2753. * Mask top bit it is reserved
  2754. * Updates addr automatically for each B2 write
  2755. */
  2756. snd_soc_component_write(component,
  2757. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2758. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2759. /* Store the coefficients in sidetone coeff array */
  2760. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2761. coeff_idx++) {
  2762. uint32_t value = coeff[coeff_idx];
  2763. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2764. /* Four 8 bit values(one 32 bit) per coefficient */
  2765. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2766. (value & 0xFF);
  2767. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2768. (value >> 8) & 0xFF;
  2769. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2770. (value >> 16) & 0xFF;
  2771. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2772. (value >> 24) & 0xFF;
  2773. }
  2774. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2775. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2776. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2777. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2778. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2779. __func__, iir_idx, band_idx,
  2780. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2781. __func__, iir_idx, band_idx,
  2782. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2783. __func__, iir_idx, band_idx,
  2784. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2785. __func__, iir_idx, band_idx,
  2786. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2787. __func__, iir_idx, band_idx,
  2788. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2789. return 0;
  2790. }
  2791. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2792. struct snd_kcontrol *kcontrol, int event)
  2793. {
  2794. struct snd_soc_component *component =
  2795. snd_soc_dapm_to_component(w->dapm);
  2796. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2797. switch (event) {
  2798. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2799. case SND_SOC_DAPM_PRE_PMD:
  2800. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2801. snd_soc_component_write(component,
  2802. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2803. snd_soc_component_read(component,
  2804. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2805. snd_soc_component_write(component,
  2806. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2807. snd_soc_component_read(component,
  2808. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2809. snd_soc_component_write(component,
  2810. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2811. snd_soc_component_read(component,
  2812. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2813. snd_soc_component_write(component,
  2814. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2815. snd_soc_component_read(component,
  2816. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2817. } else {
  2818. snd_soc_component_write(component,
  2819. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2820. snd_soc_component_read(component,
  2821. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2822. snd_soc_component_write(component,
  2823. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2824. snd_soc_component_read(component,
  2825. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2826. snd_soc_component_write(component,
  2827. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2828. snd_soc_component_read(component,
  2829. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2830. snd_soc_component_write(component,
  2831. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2832. snd_soc_component_read(component,
  2833. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2834. }
  2835. break;
  2836. }
  2837. return 0;
  2838. }
  2839. static int lpass_cdc_rx_macro_fir_filter_enable_get(struct snd_kcontrol *kcontrol,
  2840. struct snd_ctl_elem_value *ucontrol)
  2841. {
  2842. struct snd_soc_component *component =
  2843. snd_soc_kcontrol_component(kcontrol);
  2844. struct device *rx_dev = NULL;
  2845. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2846. if (!component) {
  2847. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2848. return -EINVAL;
  2849. }
  2850. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2851. return -EINVAL;
  2852. ucontrol->value.bytes.data[0] = (unsigned char)rx_priv->is_fir_filter_on;
  2853. return 0;
  2854. }
  2855. static int lpass_cdc_rx_macro_fir_filter_enable_put(struct snd_kcontrol *kcontrol,
  2856. struct snd_ctl_elem_value *ucontrol)
  2857. {
  2858. struct snd_soc_component *component =
  2859. snd_soc_kcontrol_component(kcontrol);
  2860. struct device *rx_dev = NULL;
  2861. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2862. int ret = 0;
  2863. if (!component) {
  2864. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2865. return -EINVAL;
  2866. }
  2867. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2868. return -EINVAL;
  2869. if (!rx_priv->hifi_fir_clk) {
  2870. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  2871. __func__);
  2872. return 0;
  2873. }
  2874. if (!rx_priv->is_fir_capable) {
  2875. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  2876. __func__);
  2877. return 0;
  2878. }
  2879. rx_priv->is_fir_filter_on =
  2880. (!ucontrol->value.bytes.data[0] ? false : true);
  2881. dev_dbg(rx_priv->dev, "%s:is_fir_filter_on=%d\n",
  2882. __func__, rx_priv->is_fir_filter_on);
  2883. if (rx_priv->is_fir_filter_on) {
  2884. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  2885. if (ret < 0) {
  2886. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  2887. __func__);
  2888. return ret;
  2889. }
  2890. snd_soc_component_write(component, LPASS_CDC_RX_RX0_RX_FIR_CFG,
  2891. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2892. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2893. " number written: %d.\n",
  2894. __func__, RX0_PATH,
  2895. rx_priv->fir_total_coeff_num[RX0_PATH]);
  2896. snd_soc_component_write(component, LPASS_CDC_RX_RX1_RX_FIR_CFG,
  2897. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2898. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  2899. " number written: %d.\n",
  2900. __func__, RX1_PATH,
  2901. rx_priv->fir_total_coeff_num[RX1_PATH]);
  2902. /* Enable HIFI_FEAT_EN bit */
  2903. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  2904. /* Enable FIR_CLK_EN */
  2905. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x80);
  2906. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x80);
  2907. /* Start the FIR filter */
  2908. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x05);
  2909. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x05);
  2910. } else {
  2911. /* Stop the FIR filter */
  2912. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_FIR_CTL, 0x0D, 0x00);
  2913. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_FIR_CTL, 0x0D, 0x00);
  2914. /* Disable FIR_CLK_EN */
  2915. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX0_RX_PATH_CTL, 0x80, 0x00);
  2916. snd_soc_component_update_bits(component, LPASS_CDC_RX_RX1_RX_PATH_CTL, 0x80, 0x00);
  2917. /* Disable HIFI_FEAT_EN bit */
  2918. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  2919. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  2920. }
  2921. return 0;
  2922. }
  2923. static int lpass_cdc_rx_macro_fir_filter_info(struct snd_kcontrol *kcontrol,
  2924. struct snd_ctl_elem_info *ucontrol)
  2925. {
  2926. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2927. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2928. struct soc_bytes_ext *params = &ctl->bytes_ext;
  2929. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  2930. ucontrol->count = params->max;
  2931. return 0;
  2932. }
  2933. static int lpass_cdc_rx_macro_fir_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2934. struct snd_ctl_elem_value *ucontrol)
  2935. {
  2936. struct snd_soc_component *component =
  2937. snd_soc_kcontrol_component(kcontrol);
  2938. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  2939. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  2940. unsigned int path_idx = ctl->path_idx;
  2941. unsigned int grp_idx = ctl->grp_idx;
  2942. u32 num_coeff_grp = 0;
  2943. u32 readArray[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  2944. unsigned int coeff_idx = 0, array_idx = 0;
  2945. unsigned int copy_size;
  2946. struct device *rx_dev = NULL;
  2947. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2948. if (!component) {
  2949. pr_err_ratelimited("%s: component is NULL\n", __func__);
  2950. return -EINVAL;
  2951. }
  2952. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2953. return -EINVAL;
  2954. if (path_idx >= FIR_PATH_MAX) {
  2955. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  2956. __func__, path_idx);
  2957. return -EINVAL;
  2958. }
  2959. if (grp_idx >= GRP_MAX) {
  2960. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  2961. __func__, grp_idx);
  2962. return -EINVAL;
  2963. }
  2964. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  2965. readArray[array_idx++] = num_coeff_grp;
  2966. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++) {
  2967. readArray[array_idx++] =
  2968. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx];
  2969. }
  2970. copy_size = array_idx;
  2971. memcpy(ucontrol->value.bytes.data, &readArray[0], sizeof(readArray[0]) * copy_size);
  2972. return 0;
  2973. }
  2974. static int set_fir_filter_coeff(struct snd_soc_component *component,
  2975. struct lpass_cdc_rx_macro_priv *rx_priv,
  2976. unsigned int path_idx)
  2977. {
  2978. int grp_idx = 0, coeff_idx = 0;
  2979. unsigned int ret = 0;
  2980. unsigned int max_coeff_num, num_coeff_grp;
  2981. unsigned int path_ctl_addr = 0, wdata0_addr = 0, coeff_addr = 0;
  2982. unsigned int fir_ctl_addr = 0;
  2983. bool all_coeff_written = true;
  2984. switch (path_idx) {
  2985. case RX0_PATH:
  2986. path_ctl_addr = LPASS_CDC_RX_RX0_RX_PATH_CTL;
  2987. wdata0_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_WDATA0;
  2988. coeff_addr = LPASS_CDC_RX_RX0_RX_FIR_COEFF_ADDR;
  2989. fir_ctl_addr = LPASS_CDC_RX_RX0_RX_FIR_CTL;
  2990. break;
  2991. case RX1_PATH:
  2992. path_ctl_addr = LPASS_CDC_RX_RX1_RX_PATH_CTL;
  2993. wdata0_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_WDATA0;
  2994. coeff_addr = LPASS_CDC_RX_RX1_RX_FIR_COEFF_ADDR;
  2995. fir_ctl_addr = LPASS_CDC_RX_RX1_RX_FIR_CTL;
  2996. break;
  2997. default:
  2998. dev_err_ratelimited(rx_priv->dev,
  2999. "%s: inavlid FIR ID: %d\n", __func__, path_idx);
  3000. ret = -EINVAL;
  3001. goto exit;
  3002. }
  3003. max_coeff_num = LPASS_CDC_RX_MACRO_FIR_COEFF_MAX;
  3004. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3005. all_coeff_written = all_coeff_written &&
  3006. rx_priv->is_fir_coeff_written[path_idx][grp_idx];
  3007. if (all_coeff_written)
  3008. goto exit;
  3009. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, false);
  3010. if (ret < 0) {
  3011. dev_err_ratelimited(rx_priv->dev, "%s:rx_macro_mclk enable failed\n",
  3012. __func__);
  3013. goto exit;
  3014. }
  3015. ret = clk_prepare_enable(rx_priv->hifi_fir_clk);
  3016. if (ret < 0) {
  3017. dev_err_ratelimited(rx_priv->dev, "%s:hifi_fir_clk enable failed\n",
  3018. __func__);
  3019. goto disable_mclk_block;
  3020. }
  3021. /* Enable HIFI_FEAT_EN bit */
  3022. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x01);
  3023. /* Enable FIR_CLK_EN, datapath reset */
  3024. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0xC0);
  3025. /* Enable FIR_CLK_EN, Release Reset */
  3026. snd_soc_component_update_bits(component, path_ctl_addr, 0xC0, 0x80);
  3027. /* wait for data ram initialization after enabling clock */
  3028. usleep_range(10, 11);
  3029. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++) {
  3030. unsigned int coeff_idx_start = 0, array_idx = 0;
  3031. /* Skip if this group is written and no futher update */
  3032. if (rx_priv->is_fir_coeff_written[path_idx][grp_idx])
  3033. continue;
  3034. num_coeff_grp = rx_priv->num_fir_coeff[path_idx][grp_idx];
  3035. if (num_coeff_grp > max_coeff_num) {
  3036. dev_err_ratelimited(rx_priv->dev,
  3037. "%s: inavlid number of RX_FIR coefficients:%d"
  3038. " in path:%d, group:%d\n",
  3039. __func__, num_coeff_grp, path_idx, grp_idx);
  3040. ret = -EINVAL;
  3041. goto disable_FIR;
  3042. }
  3043. coeff_idx_start = grp_idx * max_coeff_num;
  3044. for (coeff_idx = coeff_idx_start;
  3045. coeff_idx < coeff_idx_start + num_coeff_grp / 2 * 2;
  3046. coeff_idx += 2) {
  3047. unsigned int addr_offset = coeff_idx / 2;
  3048. /* First coefficient in pair */
  3049. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3050. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3051. __func__, coeff_idx, value);
  3052. snd_soc_component_write(component, wdata0_addr,
  3053. value & 0xFF);
  3054. snd_soc_component_write(component, wdata0_addr + 0x4,
  3055. (value >> 8) & 0xFF);
  3056. snd_soc_component_write(component, wdata0_addr + 0x8,
  3057. (value >> 16) & 0xFF);
  3058. snd_soc_component_write(component, wdata0_addr + 0xC,
  3059. (value >> 24) & 0xFF);
  3060. /* Second coefficient in pair */
  3061. value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3062. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3063. __func__, coeff_idx, value);
  3064. snd_soc_component_write(component, wdata0_addr + 0x10,
  3065. value & 0xFF);
  3066. snd_soc_component_write(component, wdata0_addr + 0x14,
  3067. (value >> 8) & 0xFF);
  3068. snd_soc_component_write(component, wdata0_addr + 0x18,
  3069. (value >> 16) & 0xFF);
  3070. snd_soc_component_write(component, wdata0_addr + 0x1C,
  3071. (value >> 24) & 0xFF);
  3072. snd_soc_component_write(component, coeff_addr, addr_offset);
  3073. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3074. usleep_range(13, 15);
  3075. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3076. }
  3077. /* odd number of coefficients in this group, handle last one */
  3078. if (num_coeff_grp % 2 != 0) {
  3079. int addr_offset = coeff_idx / 2;
  3080. /* First coefficient in pair */
  3081. u32 value = rx_priv->fir_coeff_array[path_idx][grp_idx][array_idx++];
  3082. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3083. __func__, coeff_idx, value);
  3084. snd_soc_component_write(component, wdata0_addr,
  3085. value & 0xFF);
  3086. snd_soc_component_write(component, wdata0_addr + 0x4,
  3087. (value >> 8) & 0xFF);
  3088. snd_soc_component_write(component, wdata0_addr + 0x8,
  3089. (value >> 16) & 0xFF);
  3090. snd_soc_component_write(component, wdata0_addr + 0xC,
  3091. (value >> 24) & 0xFF);
  3092. /* Second coefficient in pair */
  3093. dev_dbg(rx_priv->dev, "%s: val of coeff_idx:%d, COEFF:0x%x\n",
  3094. __func__, coeff_idx, 0x0);
  3095. snd_soc_component_write(component, wdata0_addr + 0x10, 0x0);
  3096. snd_soc_component_write(component, wdata0_addr + 0x14, 0x0);
  3097. snd_soc_component_write(component, wdata0_addr + 0x18, 0x0);
  3098. snd_soc_component_write(component, wdata0_addr + 0x1C, 0x0);
  3099. snd_soc_component_write(component, coeff_addr, addr_offset);
  3100. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x02);
  3101. usleep_range(13, 15);
  3102. snd_soc_component_update_bits(component, fir_ctl_addr, 0x02, 0x00);
  3103. }
  3104. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = true;
  3105. dev_dbg(component->dev, "%s: HIFI FIR Path:%d Group:%d coefficients"
  3106. " updated.\n",
  3107. __func__, path_idx, grp_idx);
  3108. }
  3109. disable_FIR:
  3110. /* disable FIR_CLK_EN */
  3111. snd_soc_component_update_bits(component, path_ctl_addr, 0x80, 0x00);
  3112. /* Disable HIFI_FEAT_EN bit */
  3113. snd_soc_component_update_bits(component, LPASS_CDC_RX_TOP_TOP_CFG1, 0x01, 0x00);
  3114. clk_disable_unprepare(rx_priv->hifi_fir_clk);
  3115. disable_mclk_block:
  3116. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, false);
  3117. exit:
  3118. return ret;
  3119. }
  3120. static int lpass_cdc_rx_macro_fir_audio_mixer_put(struct snd_kcontrol *kcontrol,
  3121. struct snd_ctl_elem_value *ucontrol)
  3122. {
  3123. struct snd_soc_component *component =
  3124. snd_soc_kcontrol_component(kcontrol);
  3125. struct lpass_cdc_rx_macro_fir_filter_ctl *ctl =
  3126. (struct lpass_cdc_rx_macro_fir_filter_ctl *)kcontrol->private_value;
  3127. unsigned int path_idx = ctl->path_idx;
  3128. unsigned int grp_idx = ctl->grp_idx;
  3129. u32 ele_size = 0, num_coeff_grp = 0;
  3130. u32 coeff[LPASS_CDC_RX_MACRO_FIR_COEFF_ARRAY_MAX];
  3131. int ret = 0;
  3132. unsigned int stored_total_num = 0;
  3133. unsigned int grp_iidx = 0, coeff_idx = 0, array_idx = 0;
  3134. struct device *rx_dev = NULL;
  3135. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3136. if (!component) {
  3137. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3138. return -EINVAL;
  3139. }
  3140. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3141. return -EINVAL;
  3142. if (path_idx >= FIR_PATH_MAX) {
  3143. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3144. __func__, path_idx);
  3145. return -EINVAL;
  3146. }
  3147. if (grp_idx >= GRP_MAX) {
  3148. dev_err_ratelimited(rx_priv->dev, "%s: grp_idx:%d is invalid\n",
  3149. __func__, grp_idx);
  3150. return -EINVAL;
  3151. }
  3152. if (!rx_priv->hifi_fir_clk) {
  3153. dev_dbg(rx_priv->dev, "%s: Undefined HIFI FIR Clock.\n",
  3154. __func__);
  3155. return 0;
  3156. }
  3157. if (!rx_priv->is_fir_capable) {
  3158. dev_dbg(rx_priv->dev, "%s: HIFI FIR is not supported.\n",
  3159. __func__);
  3160. return 0;
  3161. }
  3162. ele_size = sizeof(coeff[0]);
  3163. memcpy(&coeff[0], ucontrol->value.bytes.data, ele_size);
  3164. num_coeff_grp = coeff[0];
  3165. dev_dbg(rx_priv->dev, "%s: bytes.data: path:%d, grp:%d, num_coeff_grp:%d\n",
  3166. __func__, path_idx, grp_idx, num_coeff_grp);
  3167. if (num_coeff_grp > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX) {
  3168. dev_err_ratelimited(rx_priv->dev,
  3169. "%s: inavlid number of RX_FIR coefficients:%d in path:%d, group:%d\n",
  3170. __func__, num_coeff_grp, path_idx, grp_idx);
  3171. rx_priv->num_fir_coeff[path_idx][grp_idx] = 0;
  3172. return -EINVAL;
  3173. } else {
  3174. rx_priv->num_fir_coeff[path_idx][grp_idx] = num_coeff_grp;
  3175. }
  3176. memcpy(&coeff[1], &(ucontrol->value.bytes.data[ele_size]), ele_size * num_coeff_grp);
  3177. /* Store the coefficients in FIR coeff array */
  3178. array_idx = 1;
  3179. for (coeff_idx = 0; coeff_idx < num_coeff_grp; coeff_idx++)
  3180. rx_priv->fir_coeff_array[path_idx][grp_idx][coeff_idx] = coeff[array_idx++];
  3181. /* Clear the written flag so this group is ready to be written */
  3182. rx_priv->is_fir_coeff_written[path_idx][grp_idx] = false;
  3183. stored_total_num = 0;
  3184. for (grp_iidx = 0; grp_iidx < GRP_MAX; grp_iidx++) {
  3185. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_iidx];
  3186. }
  3187. /* Only write coeffs if total num matches, otherwise delay the write */
  3188. if (rx_priv->fir_total_coeff_num[path_idx] == stored_total_num)
  3189. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3190. return ret;
  3191. }
  3192. static int lpass_cdc_rx_macro_fir_coeff_num_get(struct snd_kcontrol *kcontrol,
  3193. struct snd_ctl_elem_value *ucontrol)
  3194. {
  3195. struct snd_soc_component *component =
  3196. snd_soc_kcontrol_component(kcontrol);
  3197. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3198. kcontrol->private_value)->shift;
  3199. struct device *rx_dev = NULL;
  3200. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3201. if (!component) {
  3202. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3203. return -EINVAL;
  3204. }
  3205. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3206. return -EINVAL;
  3207. if (path_idx >= FIR_PATH_MAX) {
  3208. dev_err_ratelimited(rx_priv->dev, "%s: path_idx:%d is invalid\n",
  3209. __func__, path_idx);
  3210. return -EINVAL;
  3211. }
  3212. ucontrol->value.bytes.data[0] = rx_priv->fir_total_coeff_num[path_idx];
  3213. return 0;
  3214. }
  3215. static int lpass_cdc_rx_macro_fir_coeff_num_put(struct snd_kcontrol *kcontrol,
  3216. struct snd_ctl_elem_value *ucontrol)
  3217. {
  3218. struct snd_soc_component *component =
  3219. snd_soc_kcontrol_component(kcontrol);
  3220. unsigned int path_idx = ((struct soc_multi_mixer_control *)
  3221. kcontrol->private_value)->shift;
  3222. u8 fir_total_coeff_num = ucontrol->value.bytes.data[0];
  3223. struct device *rx_dev = NULL;
  3224. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3225. unsigned int ret = 0;
  3226. unsigned int grp_idx, stored_total_num;
  3227. if (!component) {
  3228. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3229. return -EINVAL;
  3230. }
  3231. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3232. return -EINVAL;
  3233. if (fir_total_coeff_num > LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX) {
  3234. dev_err_ratelimited(rx_priv->dev,
  3235. "%s: inavlid total number of RX_FIR coefficients:%d"
  3236. " in path:%d\n",
  3237. __func__, fir_total_coeff_num, path_idx);
  3238. rx_priv->fir_total_coeff_num[path_idx] = 0;
  3239. return -EINVAL;
  3240. } else {
  3241. rx_priv->fir_total_coeff_num[path_idx] = fir_total_coeff_num;
  3242. }
  3243. dev_dbg(component->dev, "%s: HIFI FIR Path:%d total coefficients"
  3244. " number updated in private data: %d.\n",
  3245. __func__, path_idx, fir_total_coeff_num);
  3246. stored_total_num = 0;
  3247. for (grp_idx = 0; grp_idx < GRP_MAX; grp_idx++)
  3248. stored_total_num += rx_priv->num_fir_coeff[path_idx][grp_idx];
  3249. if (fir_total_coeff_num == stored_total_num)
  3250. ret = set_fir_filter_coeff(component, rx_priv, path_idx);
  3251. return ret;
  3252. }
  3253. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  3254. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  3255. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  3256. -84, 40, digital_gain),
  3257. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  3258. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  3259. -84, 40, digital_gain),
  3260. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  3261. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  3262. -84, 40, digital_gain),
  3263. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  3264. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  3265. -84, 40, digital_gain),
  3266. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  3267. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  3268. -84, 40, digital_gain),
  3269. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  3270. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  3271. -84, 40, digital_gain),
  3272. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  3273. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3274. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  3275. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  3276. SOC_SINGLE_EXT("RX0 FIR Coeff Num", SND_SOC_NOPM, RX0_PATH,
  3277. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3278. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3279. SOC_SINGLE_EXT("RX1 FIR Coeff Num", SND_SOC_NOPM, RX1_PATH,
  3280. (LPASS_CDC_RX_MACRO_FIR_COEFF_MAX * GRP_MAX), 0,
  3281. lpass_cdc_rx_macro_fir_coeff_num_get, lpass_cdc_rx_macro_fir_coeff_num_put),
  3282. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  3283. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  3284. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  3285. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  3286. SOC_ENUM_EXT("RX_FIR Filter", lpass_cdc_rx_macro_fir_filter_enum,
  3287. lpass_cdc_rx_macro_fir_filter_enable_get, lpass_cdc_rx_macro_fir_filter_enable_put),
  3288. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  3289. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  3290. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  3291. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  3292. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  3293. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  3294. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  3295. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  3296. lpass_cdc_rx_macro_soft_clip_enable_get,
  3297. lpass_cdc_rx_macro_soft_clip_enable_put),
  3298. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  3299. lpass_cdc_rx_macro_aux_hpf_mode_get,
  3300. lpass_cdc_rx_macro_aux_hpf_mode_put),
  3301. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  3302. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  3303. digital_gain),
  3304. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  3305. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  3306. digital_gain),
  3307. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  3308. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  3309. digital_gain),
  3310. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  3311. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  3312. digital_gain),
  3313. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  3314. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  3315. digital_gain),
  3316. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  3317. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  3318. digital_gain),
  3319. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  3320. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  3321. digital_gain),
  3322. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  3323. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  3324. digital_gain),
  3325. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  3326. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3327. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3328. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  3329. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3330. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3331. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  3332. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3333. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3334. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  3335. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3336. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3337. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  3338. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3339. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3340. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  3341. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3342. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3343. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  3344. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3345. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3346. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  3347. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3348. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3349. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  3350. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3351. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3352. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  3353. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  3354. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  3355. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band1", IIR0, BAND1),
  3356. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band2", IIR0, BAND2),
  3357. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band3", IIR0, BAND3),
  3358. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band4", IIR0, BAND4),
  3359. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR0 Band5", IIR0, BAND5),
  3360. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band1", IIR1, BAND1),
  3361. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band2", IIR1, BAND2),
  3362. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band3", IIR1, BAND3),
  3363. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band4", IIR1, BAND4),
  3364. LPASS_CDC_RX_MACRO_IIR_FILTER_CTL("IIR1 Band5", IIR1, BAND5),
  3365. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group0", RX0_PATH, GRP0),
  3366. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX0 FIR Coeff Group1", RX0_PATH, GRP1),
  3367. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group0", RX1_PATH, GRP0),
  3368. LPASS_CDC_RX_MACRO_FIR_FILTER_CTL("RX1 FIR Coeff Group1", RX1_PATH, GRP1),
  3369. };
  3370. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  3371. struct snd_kcontrol *kcontrol,
  3372. int event)
  3373. {
  3374. struct snd_soc_component *component =
  3375. snd_soc_dapm_to_component(w->dapm);
  3376. struct device *rx_dev = NULL;
  3377. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3378. u16 val = 0, ec_hq_reg = 0;
  3379. int ec_tx = 0;
  3380. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3381. return -EINVAL;
  3382. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  3383. val = snd_soc_component_read(component,
  3384. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  3385. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  3386. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  3387. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  3388. ec_tx = (val & 0x0f) - 1;
  3389. val = snd_soc_component_read(component,
  3390. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  3391. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  3392. ec_tx = (val & 0x0f) - 1;
  3393. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  3394. dev_err_ratelimited(rx_dev, "%s: EC mix control not set correctly\n",
  3395. __func__);
  3396. return -EINVAL;
  3397. }
  3398. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  3399. 0x40 * ec_tx;
  3400. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  3401. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  3402. 0x40 * ec_tx;
  3403. /* default set to 48k */
  3404. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  3405. return 0;
  3406. }
  3407. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  3408. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  3409. SND_SOC_NOPM, 0, 0),
  3410. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  3411. SND_SOC_NOPM, 0, 0),
  3412. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  3413. SND_SOC_NOPM, 0, 0),
  3414. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  3415. SND_SOC_NOPM, 0, 0),
  3416. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  3417. SND_SOC_NOPM, 0, 0),
  3418. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  3419. SND_SOC_NOPM, 0, 0),
  3420. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  3421. SND_SOC_NOPM, 0, 0),
  3422. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  3423. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  3424. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  3425. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  3426. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  3427. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  3428. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  3429. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3430. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3431. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  3432. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  3433. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  3434. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  3435. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  3436. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  3437. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  3438. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  3439. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  3440. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  3441. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  3442. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  3443. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  3444. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  3445. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3446. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  3447. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  3448. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  3449. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3450. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  3451. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  3452. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  3453. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3454. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  3455. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3456. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3457. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  3458. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  3459. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  3460. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  3461. 4, 0, NULL, 0),
  3462. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  3463. 4, 0, NULL, 0),
  3464. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  3465. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  3466. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  3467. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3468. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3469. SND_SOC_DAPM_POST_PMD),
  3470. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  3471. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3472. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3473. SND_SOC_DAPM_POST_PMD),
  3474. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  3475. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  3476. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3477. SND_SOC_DAPM_POST_PMD),
  3478. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  3479. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  3480. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  3481. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  3482. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  3483. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  3484. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  3485. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  3486. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  3487. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  3488. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3489. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3490. SND_SOC_DAPM_POST_PMD),
  3491. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  3492. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3493. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3494. SND_SOC_DAPM_POST_PMD),
  3495. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  3496. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  3497. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  3498. SND_SOC_DAPM_POST_PMD),
  3499. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  3500. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  3501. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  3502. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3503. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3504. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3505. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3506. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  3507. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  3508. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  3509. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3510. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3511. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  3512. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3513. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3514. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  3515. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3516. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3517. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3518. 0, 0, rx_int2_1_vbat_mix_switch,
  3519. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3520. lpass_cdc_rx_macro_enable_vbat,
  3521. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3522. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3523. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3524. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3525. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3526. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3527. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3528. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3529. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3530. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3531. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3532. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3533. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3534. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3535. };
  3536. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3537. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3538. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3539. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3540. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3541. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3542. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3543. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3544. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3545. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3546. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3547. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3548. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3549. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3550. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3551. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3552. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3553. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3554. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3555. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3556. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3557. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3558. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3559. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3560. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3561. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3562. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3563. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3564. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3565. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3566. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3567. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3568. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3569. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3570. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3571. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3572. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3573. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3574. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3575. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3576. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3577. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3578. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3579. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3580. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3581. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3582. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3583. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3584. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3585. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3586. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3587. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3588. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3589. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3590. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3591. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3592. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3593. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3594. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3595. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3596. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3597. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3598. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3599. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3600. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3601. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3602. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3603. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3604. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3605. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3606. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3607. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3608. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3609. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3610. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3611. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3612. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3613. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3614. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3615. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3616. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3617. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3618. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3619. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3620. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3621. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3622. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3623. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3624. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3625. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3626. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3627. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3628. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3629. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3630. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3631. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3632. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3633. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3634. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3635. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3636. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3637. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3638. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3639. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3640. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3641. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3642. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3643. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3644. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3645. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3646. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3647. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3648. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3649. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3650. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3651. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3652. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3653. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3654. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3655. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3656. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3657. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3658. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3659. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3660. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3661. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3662. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3663. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3664. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3665. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3666. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3667. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3668. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3669. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3670. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3671. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3672. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3673. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3674. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3675. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3676. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3677. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3678. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3679. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3680. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3681. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3682. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3683. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3684. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3685. /* Mixing path INT0 */
  3686. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3687. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3688. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3689. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3690. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3691. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3692. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3693. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3694. /* Mixing path INT1 */
  3695. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3696. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3697. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3698. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3699. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3700. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3701. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3702. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3703. /* Mixing path INT2 */
  3704. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3705. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3706. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3707. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3708. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3709. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3710. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3711. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3712. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3713. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3714. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3715. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3716. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3717. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3718. {"HPHL_OUT", NULL, "RX_MCLK"},
  3719. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3720. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3721. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3722. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3723. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3724. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3725. {"HPHR_OUT", NULL, "RX_MCLK"},
  3726. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3727. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3728. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3729. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3730. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3731. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3732. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3733. {"AUX_OUT", NULL, "RX_MCLK"},
  3734. {"IIR0", NULL, "RX_MCLK"},
  3735. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3736. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3737. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3738. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3739. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3740. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3741. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3742. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3743. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3744. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3745. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3746. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3747. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3748. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3749. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3750. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3751. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3752. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3753. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3754. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3755. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3756. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3757. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3758. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3759. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3760. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3761. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3762. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3763. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3764. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3765. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3766. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3767. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3768. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3769. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3770. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3771. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3772. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3773. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3774. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3775. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3776. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3777. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3778. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3779. {"IIR1", NULL, "RX_MCLK"},
  3780. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3781. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3782. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3783. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3784. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3785. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3786. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3787. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3788. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3789. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3790. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3791. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3792. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3793. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3794. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3795. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3796. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3797. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3798. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3799. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3800. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3801. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3802. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3803. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3804. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3805. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3806. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3807. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3808. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3809. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3810. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3811. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3812. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3813. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3814. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3815. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3816. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3817. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3818. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3819. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3820. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3821. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3822. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3823. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3824. {"SRC0", NULL, "IIR0"},
  3825. {"SRC1", NULL, "IIR1"},
  3826. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3827. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3828. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3829. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3830. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3831. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3832. };
  3833. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3834. {
  3835. int rc = 0;
  3836. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3837. if (rx_priv == NULL) {
  3838. pr_err_ratelimited("%s: rx priv data is NULL\n", __func__);
  3839. return -EINVAL;
  3840. }
  3841. if (!rx_priv->pre_dev_up && enable) {
  3842. pr_debug("%s: adsp is not up\n", __func__);
  3843. return -EINVAL;
  3844. }
  3845. if (enable) {
  3846. pm_runtime_get_sync(rx_priv->dev);
  3847. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3848. rc = 0;
  3849. else
  3850. rc = -ENOTSYNC;
  3851. } else {
  3852. pm_runtime_put_autosuspend(rx_priv->dev);
  3853. pm_runtime_mark_last_busy(rx_priv->dev);
  3854. }
  3855. return rc;
  3856. }
  3857. static int rx_swrm_clock(void *handle, bool enable)
  3858. {
  3859. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3860. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3861. int ret = 0;
  3862. if (regmap == NULL) {
  3863. dev_err_ratelimited(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3864. return -EINVAL;
  3865. }
  3866. mutex_lock(&rx_priv->swr_clk_lock);
  3867. trace_printk("%s: swrm clock %s\n",
  3868. __func__, (enable ? "enable" : "disable"));
  3869. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3870. __func__, (enable ? "enable" : "disable"));
  3871. if (enable) {
  3872. pm_runtime_get_sync(rx_priv->dev);
  3873. if (rx_priv->swr_clk_users == 0) {
  3874. ret = msm_cdc_pinctrl_select_active_state(
  3875. rx_priv->rx_swr_gpio_p);
  3876. if (ret < 0) {
  3877. dev_err_ratelimited(rx_priv->dev,
  3878. "%s: rx swr pinctrl enable failed\n",
  3879. __func__);
  3880. pm_runtime_mark_last_busy(rx_priv->dev);
  3881. pm_runtime_put_autosuspend(rx_priv->dev);
  3882. goto exit;
  3883. }
  3884. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3885. if (ret < 0) {
  3886. msm_cdc_pinctrl_select_sleep_state(
  3887. rx_priv->rx_swr_gpio_p);
  3888. dev_err_ratelimited(rx_priv->dev,
  3889. "%s: rx request clock enable failed\n",
  3890. __func__);
  3891. pm_runtime_mark_last_busy(rx_priv->dev);
  3892. pm_runtime_put_autosuspend(rx_priv->dev);
  3893. goto exit;
  3894. }
  3895. if (rx_priv->reset_swr)
  3896. regmap_update_bits(regmap,
  3897. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3898. 0x02, 0x02);
  3899. regmap_update_bits(regmap,
  3900. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3901. 0x01, 0x01);
  3902. if (rx_priv->reset_swr)
  3903. regmap_update_bits(regmap,
  3904. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3905. 0x02, 0x00);
  3906. rx_priv->reset_swr = false;
  3907. }
  3908. pm_runtime_mark_last_busy(rx_priv->dev);
  3909. pm_runtime_put_autosuspend(rx_priv->dev);
  3910. rx_priv->swr_clk_users++;
  3911. } else {
  3912. if (rx_priv->swr_clk_users <= 0) {
  3913. dev_err_ratelimited(rx_priv->dev,
  3914. "%s: rx swrm clock users already reset\n",
  3915. __func__);
  3916. rx_priv->swr_clk_users = 0;
  3917. goto exit;
  3918. }
  3919. rx_priv->swr_clk_users--;
  3920. if (rx_priv->swr_clk_users == 0) {
  3921. regmap_update_bits(regmap,
  3922. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3923. 0x01, 0x00);
  3924. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3925. ret = msm_cdc_pinctrl_select_sleep_state(
  3926. rx_priv->rx_swr_gpio_p);
  3927. if (ret < 0) {
  3928. dev_err_ratelimited(rx_priv->dev,
  3929. "%s: rx swr pinctrl disable failed\n",
  3930. __func__);
  3931. goto exit;
  3932. }
  3933. }
  3934. }
  3935. trace_printk("%s: swrm clock users %d\n",
  3936. __func__, rx_priv->swr_clk_users);
  3937. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3938. __func__, rx_priv->swr_clk_users);
  3939. exit:
  3940. mutex_unlock(&rx_priv->swr_clk_lock);
  3941. return ret;
  3942. }
  3943. /**
  3944. * lpass_cdc_rx_set_fir_capability - Set RX HIFI FIR Filter capability
  3945. *
  3946. * @component: Codec component ptr.
  3947. * @capable: if the target have RX HIFI FIR available.
  3948. *
  3949. * Set RX HIFI FIR capability, stored the capability into RX macro private data.
  3950. */
  3951. int lpass_cdc_rx_set_fir_capability(struct snd_soc_component *component, bool capable)
  3952. {
  3953. struct device *rx_dev = NULL;
  3954. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3955. if (!component) {
  3956. pr_err_ratelimited("%s: component is NULL\n", __func__);
  3957. return -EINVAL;
  3958. }
  3959. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3960. return -EINVAL;
  3961. rx_priv->is_fir_capable = capable;
  3962. return 0;
  3963. }
  3964. EXPORT_SYMBOL(lpass_cdc_rx_set_fir_capability);
  3965. static const struct lpass_cdc_rx_macro_reg_mask_val
  3966. lpass_cdc_rx_macro_reg_init[] = {
  3967. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3968. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3969. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3970. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3971. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3972. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3973. };
  3974. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3975. {
  3976. struct snd_soc_dapm_context *dapm =
  3977. snd_soc_component_get_dapm(component);
  3978. int ret = 0;
  3979. struct device *rx_dev = NULL;
  3980. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3981. int i;
  3982. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3983. if (!rx_dev) {
  3984. dev_err(component->dev,
  3985. "%s: null device for macro!\n", __func__);
  3986. return -EINVAL;
  3987. }
  3988. rx_priv = dev_get_drvdata(rx_dev);
  3989. if (!rx_priv) {
  3990. dev_err(component->dev,
  3991. "%s: priv is null for macro!\n", __func__);
  3992. return -EINVAL;
  3993. }
  3994. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3995. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3996. if (ret < 0) {
  3997. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3998. return ret;
  3999. }
  4000. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  4001. ARRAY_SIZE(rx_audio_map));
  4002. if (ret < 0) {
  4003. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  4004. return ret;
  4005. }
  4006. ret = snd_soc_dapm_new_widgets(dapm->card);
  4007. if (ret < 0) {
  4008. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  4009. return ret;
  4010. }
  4011. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  4012. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  4013. if (ret < 0) {
  4014. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  4015. return ret;
  4016. }
  4017. rx_priv->dev_up = true;
  4018. rx_priv->rx0_gain_val = 0;
  4019. rx_priv->rx1_gain_val = 0;
  4020. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  4021. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  4022. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  4023. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  4024. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  4025. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  4026. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  4027. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  4028. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  4029. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  4030. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  4031. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  4032. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  4033. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  4034. snd_soc_dapm_sync(dapm);
  4035. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  4036. snd_soc_component_update_bits(component,
  4037. lpass_cdc_rx_macro_reg_init[i].reg,
  4038. lpass_cdc_rx_macro_reg_init[i].mask,
  4039. lpass_cdc_rx_macro_reg_init[i].val);
  4040. rx_priv->component = component;
  4041. return 0;
  4042. }
  4043. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  4044. {
  4045. struct device *rx_dev = NULL;
  4046. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4047. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  4048. return -EINVAL;
  4049. rx_priv->component = NULL;
  4050. return 0;
  4051. }
  4052. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  4053. {
  4054. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4055. struct platform_device *pdev = NULL;
  4056. struct device_node *node = NULL;
  4057. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  4058. int ret = 0;
  4059. u16 count = 0, ctrl_num = 0;
  4060. struct rx_swr_ctrl_platform_data *platdata = NULL;
  4061. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  4062. bool rx_swr_master_node = false;
  4063. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  4064. lpass_cdc_rx_macro_add_child_devices_work);
  4065. if (!rx_priv) {
  4066. pr_err("%s: Memory for rx_priv does not exist\n",
  4067. __func__);
  4068. return;
  4069. }
  4070. if (!rx_priv->dev) {
  4071. pr_err("%s: RX device does not exist\n", __func__);
  4072. return;
  4073. }
  4074. if(!rx_priv->dev->of_node) {
  4075. dev_err(rx_priv->dev,
  4076. "%s: DT node for RX dev does not exist\n", __func__);
  4077. return;
  4078. }
  4079. platdata = &rx_priv->swr_plat_data;
  4080. rx_priv->child_count = 0;
  4081. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  4082. rx_swr_master_node = false;
  4083. if (strnstr(node->name, "rx_swr_master",
  4084. strlen("rx_swr_master")) != NULL)
  4085. rx_swr_master_node = true;
  4086. if(rx_swr_master_node)
  4087. strlcpy(plat_dev_name, "rx_swr_ctrl",
  4088. (RX_SWR_STRING_LEN - 1));
  4089. else
  4090. strlcpy(plat_dev_name, node->name,
  4091. (RX_SWR_STRING_LEN - 1));
  4092. pdev = platform_device_alloc(plat_dev_name, -1);
  4093. if (!pdev) {
  4094. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  4095. __func__);
  4096. ret = -ENOMEM;
  4097. goto err;
  4098. }
  4099. pdev->dev.parent = rx_priv->dev;
  4100. pdev->dev.of_node = node;
  4101. if (rx_swr_master_node) {
  4102. ret = platform_device_add_data(pdev, platdata,
  4103. sizeof(*platdata));
  4104. if (ret) {
  4105. dev_err(&pdev->dev,
  4106. "%s: cannot add plat data ctrl:%d\n",
  4107. __func__, ctrl_num);
  4108. goto fail_pdev_add;
  4109. }
  4110. temp = krealloc(swr_ctrl_data,
  4111. (ctrl_num + 1) * sizeof(
  4112. struct rx_swr_ctrl_data),
  4113. GFP_KERNEL);
  4114. if (!temp) {
  4115. ret = -ENOMEM;
  4116. goto fail_pdev_add;
  4117. }
  4118. swr_ctrl_data = temp;
  4119. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  4120. ctrl_num++;
  4121. dev_dbg(&pdev->dev,
  4122. "%s: Adding soundwire ctrl device(s)\n",
  4123. __func__);
  4124. rx_priv->swr_ctrl_data = swr_ctrl_data;
  4125. }
  4126. ret = platform_device_add(pdev);
  4127. if (ret) {
  4128. dev_err(&pdev->dev,
  4129. "%s: Cannot add platform device\n",
  4130. __func__);
  4131. goto fail_pdev_add;
  4132. }
  4133. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  4134. rx_priv->pdev_child_devices[
  4135. rx_priv->child_count++] = pdev;
  4136. else
  4137. goto err;
  4138. }
  4139. return;
  4140. fail_pdev_add:
  4141. for (count = 0; count < rx_priv->child_count; count++)
  4142. platform_device_put(rx_priv->pdev_child_devices[count]);
  4143. err:
  4144. return;
  4145. }
  4146. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  4147. {
  4148. memset(ops, 0, sizeof(struct macro_ops));
  4149. ops->init = lpass_cdc_rx_macro_init;
  4150. ops->exit = lpass_cdc_rx_macro_deinit;
  4151. ops->io_base = rx_io_base;
  4152. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  4153. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  4154. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  4155. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  4156. }
  4157. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  4158. {
  4159. struct macro_ops ops = {0};
  4160. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4161. u32 rx_base_addr = 0, muxsel = 0;
  4162. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  4163. int ret = 0;
  4164. u32 default_clk_id = 0;
  4165. struct clk *hifi_fir_clk = NULL;
  4166. u32 is_used_rx_swr_gpio = 1;
  4167. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  4168. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  4169. dev_err(&pdev->dev,
  4170. "%s: va-macro not registered yet, defer\n", __func__);
  4171. return -EPROBE_DEFER;
  4172. }
  4173. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  4174. GFP_KERNEL);
  4175. if (!rx_priv)
  4176. return -ENOMEM;
  4177. rx_priv->pre_dev_up = true;
  4178. rx_priv->dev = &pdev->dev;
  4179. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  4180. &rx_base_addr);
  4181. if (ret) {
  4182. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4183. __func__, "reg");
  4184. return ret;
  4185. }
  4186. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  4187. &muxsel);
  4188. if (ret) {
  4189. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4190. __func__, "reg");
  4191. return ret;
  4192. }
  4193. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  4194. &default_clk_id);
  4195. if (ret) {
  4196. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  4197. __func__, "qcom,default-clk-id");
  4198. default_clk_id = RX_CORE_CLK;
  4199. }
  4200. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  4201. NULL)) {
  4202. ret = of_property_read_u32(pdev->dev.of_node,
  4203. is_used_rx_swr_gpio_dt,
  4204. &is_used_rx_swr_gpio);
  4205. if (ret) {
  4206. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  4207. __func__, is_used_rx_swr_gpio_dt);
  4208. is_used_rx_swr_gpio = 1;
  4209. }
  4210. }
  4211. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  4212. "qcom,rx-swr-gpios", 0);
  4213. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  4214. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  4215. __func__);
  4216. return -EINVAL;
  4217. }
  4218. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  4219. is_used_rx_swr_gpio) {
  4220. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  4221. __func__);
  4222. return -EPROBE_DEFER;
  4223. }
  4224. msm_cdc_pinctrl_set_wakeup_capable(
  4225. rx_priv->rx_swr_gpio_p, false);
  4226. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  4227. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  4228. if (!rx_io_base) {
  4229. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  4230. return -ENOMEM;
  4231. }
  4232. rx_priv->rx_io_base = rx_io_base;
  4233. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  4234. if (!muxsel_io) {
  4235. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  4236. __func__);
  4237. return -ENOMEM;
  4238. }
  4239. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  4240. rx_priv->reset_swr = true;
  4241. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  4242. lpass_cdc_rx_macro_add_child_devices);
  4243. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  4244. rx_priv->swr_plat_data.read = NULL;
  4245. rx_priv->swr_plat_data.write = NULL;
  4246. rx_priv->swr_plat_data.bulk_write = NULL;
  4247. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  4248. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  4249. rx_priv->swr_plat_data.handle_irq = NULL;
  4250. rx_priv->clk_id = default_clk_id;
  4251. rx_priv->default_clk_id = default_clk_id;
  4252. ops.clk_id_req = rx_priv->clk_id;
  4253. ops.default_clk_id = default_clk_id;
  4254. hifi_fir_clk = devm_clk_get(&pdev->dev, "rx_mclk2_2x_clk");
  4255. if (IS_ERR(hifi_fir_clk)) {
  4256. ret = PTR_ERR(hifi_fir_clk);
  4257. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  4258. __func__, "rx_mclk2_2x_clk", ret);
  4259. hifi_fir_clk = NULL;
  4260. }
  4261. rx_priv->hifi_fir_clk = hifi_fir_clk;
  4262. rx_priv->is_aux_hpf_on = 1;
  4263. dev_set_drvdata(&pdev->dev, rx_priv);
  4264. mutex_init(&rx_priv->mclk_lock);
  4265. mutex_init(&rx_priv->swr_clk_lock);
  4266. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  4267. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  4268. if (ret) {
  4269. dev_err(&pdev->dev,
  4270. "%s: register macro failed\n", __func__);
  4271. goto err_reg_macro;
  4272. }
  4273. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  4274. pm_runtime_use_autosuspend(&pdev->dev);
  4275. pm_runtime_set_suspended(&pdev->dev);
  4276. pm_suspend_ignore_children(&pdev->dev, true);
  4277. pm_runtime_enable(&pdev->dev);
  4278. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  4279. return 0;
  4280. err_reg_macro:
  4281. mutex_destroy(&rx_priv->mclk_lock);
  4282. mutex_destroy(&rx_priv->swr_clk_lock);
  4283. return ret;
  4284. }
  4285. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  4286. {
  4287. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  4288. u16 count = 0;
  4289. rx_priv = dev_get_drvdata(&pdev->dev);
  4290. if (!rx_priv)
  4291. return -EINVAL;
  4292. for (count = 0; count < rx_priv->child_count &&
  4293. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  4294. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  4295. pm_runtime_disable(&pdev->dev);
  4296. pm_runtime_set_suspended(&pdev->dev);
  4297. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  4298. mutex_destroy(&rx_priv->mclk_lock);
  4299. mutex_destroy(&rx_priv->swr_clk_lock);
  4300. kfree(rx_priv->swr_ctrl_data);
  4301. return 0;
  4302. }
  4303. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  4304. {.compatible = "qcom,lpass-cdc-rx-macro"},
  4305. {}
  4306. };
  4307. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  4308. SET_SYSTEM_SLEEP_PM_OPS(
  4309. pm_runtime_force_suspend,
  4310. pm_runtime_force_resume
  4311. )
  4312. SET_RUNTIME_PM_OPS(
  4313. lpass_cdc_runtime_suspend,
  4314. lpass_cdc_runtime_resume,
  4315. NULL
  4316. )
  4317. };
  4318. static struct platform_driver lpass_cdc_rx_macro_driver = {
  4319. .driver = {
  4320. .name = "lpass_cdc_rx_macro",
  4321. .owner = THIS_MODULE,
  4322. .pm = &lpass_cdc_dev_pm_ops,
  4323. .of_match_table = lpass_cdc_rx_macro_dt_match,
  4324. .suppress_bind_attrs = true,
  4325. },
  4326. .probe = lpass_cdc_rx_macro_probe,
  4327. .remove = lpass_cdc_rx_macro_remove,
  4328. };
  4329. module_platform_driver(lpass_cdc_rx_macro_driver);
  4330. MODULE_DESCRIPTION("RX macro driver");
  4331. MODULE_LICENSE("GPL v2");