dp_rx_defrag.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_api.h"
  22. #include "qdf_trace.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_rx_defrag.h"
  25. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  26. #include "dp_rx_defrag.h"
  27. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  28. "AES-CCM",
  29. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  30. IEEE80211_WEP_MICLEN,
  31. 0,
  32. };
  33. const struct dp_rx_defrag_cipher dp_f_tkip = {
  34. "TKIP",
  35. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  36. IEEE80211_WEP_CRCLEN,
  37. IEEE80211_WEP_MICLEN,
  38. };
  39. const struct dp_rx_defrag_cipher dp_f_wep = {
  40. "WEP",
  41. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  42. IEEE80211_WEP_CRCLEN,
  43. 0,
  44. };
  45. /*
  46. * dp_rx_defrag_frames_free(): Free fragment chain
  47. * @frames: Fragment chain
  48. *
  49. * Iterates through the fragment chain and frees them
  50. * Returns: None
  51. */
  52. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  53. {
  54. qdf_nbuf_t next, frag = frames;
  55. while (frag) {
  56. next = qdf_nbuf_next(frag);
  57. qdf_nbuf_free(frag);
  58. frag = next;
  59. }
  60. }
  61. /*
  62. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  63. * @peer: Pointer to the peer data structure
  64. * @tid: Transmit ID (TID)
  65. *
  66. * Saves MPDU descriptor info and MSDU link pointer from REO
  67. * ring descriptor. The cache is created per peer, per TID
  68. *
  69. * Returns: None
  70. */
  71. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  72. {
  73. if (peer->rx_tid[tid].dst_ring_desc)
  74. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  75. peer->rx_tid[tid].dst_ring_desc = NULL;
  76. }
  77. /*
  78. * dp_rx_reorder_flush_frag(): Flush the frag list
  79. * @peer: Pointer to the peer data structure
  80. * @tid: Transmit ID (TID)
  81. *
  82. * Flush the per-TID frag list
  83. *
  84. * Returns: None
  85. */
  86. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  87. unsigned int tid)
  88. {
  89. struct dp_soc *soc;
  90. struct dp_srng *dp_rxdma_srng;
  91. struct rx_desc_pool *rx_desc_pool;
  92. struct dp_pdev *pdev;
  93. union dp_rx_desc_list_elem_t *head = NULL;
  94. union dp_rx_desc_list_elem_t *tail = NULL;
  95. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  96. FL("Flushing TID %d"), tid);
  97. if (peer == NULL)
  98. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  99. "%s: NULL peer\n", __func__);
  100. pdev = peer->vdev->pdev;
  101. soc = pdev->soc;
  102. if (peer->rx_tid[tid].dst_ring_desc) {
  103. if (dp_rx_link_desc_return(soc,
  104. peer->rx_tid[tid].dst_ring_desc,
  105. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  106. QDF_STATUS_SUCCESS)
  107. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  108. "%s: Failed to return link desc\n",
  109. __func__);
  110. }
  111. if (peer->rx_tid[tid].head_frag_desc) {
  112. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  113. rx_desc_pool = &soc->rx_desc_buf[0];
  114. dp_rx_add_to_free_desc_list(&head, &tail,
  115. peer->rx_tid[tid].head_frag_desc);
  116. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  117. 1, &head, &tail, HAL_RX_BUF_RBM_SW3_BM);
  118. }
  119. dp_rx_defrag_cleanup(peer, tid);
  120. }
  121. /*
  122. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  123. * @soc: DP SOC
  124. *
  125. * Flush fragments of all waitlisted TID's
  126. *
  127. * Returns: None
  128. */
  129. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  130. {
  131. struct dp_rx_tid *rx_reorder, *tmp;
  132. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  133. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  134. defrag_waitlist_elem, tmp) {
  135. struct dp_peer *peer;
  136. struct dp_rx_tid *rx_reorder_base;
  137. unsigned int tid;
  138. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  139. FL("Current time %u"), now_ms);
  140. if (rx_reorder->defrag_timeout_ms > now_ms)
  141. break;
  142. tid = rx_reorder->tid;
  143. if (tid >= DP_MAX_TIDS) {
  144. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  145. "%s: TID out of bounds: %d", __func__, tid);
  146. qdf_assert(0);
  147. continue;
  148. }
  149. /* get index 0 of the rx_reorder array */
  150. rx_reorder_base = rx_reorder - tid;
  151. peer =
  152. container_of(rx_reorder_base, struct dp_peer,
  153. rx_tid[0]);
  154. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  155. defrag_waitlist_elem);
  156. //dp_rx_defrag_waitlist_remove(peer, tid);
  157. dp_rx_reorder_flush_frag(peer, tid);
  158. }
  159. }
  160. /*
  161. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  162. * @peer: Pointer to the peer data structure
  163. * @tid: Transmit ID (TID)
  164. *
  165. * Appends per-tid fragments to global fragment wait list
  166. *
  167. * Returns: None
  168. */
  169. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  170. {
  171. struct dp_soc *psoc = peer->vdev->pdev->soc;
  172. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  173. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  174. FL("Adding TID %u to waitlist"), tid);
  175. /* TODO: use LIST macros instead of TAIL macros */
  176. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  177. defrag_waitlist_elem);
  178. }
  179. /*
  180. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  181. * @peer: Pointer to the peer data structure
  182. * @tid: Transmit ID (TID)
  183. *
  184. * Remove fragments from waitlist
  185. *
  186. * Returns: None
  187. */
  188. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  189. {
  190. struct dp_pdev *pdev = peer->vdev->pdev;
  191. struct dp_soc *soc = pdev->soc;
  192. struct dp_rx_tid *rx_reorder;
  193. if (tid > DP_MAX_TIDS) {
  194. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  195. "TID out of bounds: %d", tid);
  196. qdf_assert(0);
  197. return;
  198. }
  199. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  200. FL("Remove TID %u from waitlist"), tid);
  201. TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
  202. defrag_waitlist_elem) {
  203. if (rx_reorder->tid == tid)
  204. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  205. rx_reorder, defrag_waitlist_elem);
  206. }
  207. }
  208. /*
  209. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  210. * @peer: Pointer to the peer data structure
  211. * @tid: Transmit ID (TID)
  212. * @head_addr: Pointer to head list
  213. * @tail_addr: Pointer to tail list
  214. * @frag: Incoming fragment
  215. * @all_frag_present: Flag to indicate whether all fragments are received
  216. *
  217. * Build a per-tid, per-sequence fragment list.
  218. *
  219. * Returns: Success, if inserted
  220. */
  221. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  222. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  223. uint8_t *all_frag_present)
  224. {
  225. qdf_nbuf_t next;
  226. qdf_nbuf_t prev = NULL;
  227. qdf_nbuf_t cur;
  228. uint16_t head_fragno, cur_fragno, next_fragno;
  229. uint8_t last_morefrag = 1, count = 0;
  230. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  231. uint8_t *rx_desc_info;
  232. qdf_assert(frag);
  233. qdf_assert(head_addr);
  234. qdf_assert(tail_addr);
  235. *all_frag_present = 0;
  236. rx_desc_info = qdf_nbuf_data(frag);
  237. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  238. /* If this is the first fragment */
  239. if (!(*head_addr)) {
  240. *head_addr = *tail_addr = frag;
  241. qdf_nbuf_set_next(*tail_addr, NULL);
  242. rx_tid->curr_frag_num = cur_fragno;
  243. goto insert_done;
  244. }
  245. /* In sequence fragment */
  246. if (cur_fragno > rx_tid->curr_frag_num) {
  247. qdf_nbuf_set_next(*tail_addr, frag);
  248. *tail_addr = frag;
  249. qdf_nbuf_set_next(*tail_addr, NULL);
  250. rx_tid->curr_frag_num = cur_fragno;
  251. } else {
  252. /* Out of sequence fragment */
  253. cur = *head_addr;
  254. rx_desc_info = qdf_nbuf_data(cur);
  255. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  256. if (cur_fragno == head_fragno) {
  257. qdf_nbuf_free(frag);
  258. goto insert_fail;
  259. } else if (head_fragno > cur_fragno) {
  260. qdf_nbuf_set_next(frag, cur);
  261. cur = frag;
  262. *head_addr = frag; /* head pointer to be updated */
  263. } else {
  264. while ((cur_fragno > head_fragno) && cur != NULL) {
  265. prev = cur;
  266. cur = qdf_nbuf_next(cur);
  267. rx_desc_info = qdf_nbuf_data(cur);
  268. head_fragno =
  269. dp_rx_frag_get_mpdu_frag_number(
  270. rx_desc_info);
  271. }
  272. if (cur_fragno == head_fragno) {
  273. qdf_nbuf_free(frag);
  274. goto insert_fail;
  275. }
  276. qdf_nbuf_set_next(prev, frag);
  277. qdf_nbuf_set_next(frag, cur);
  278. }
  279. }
  280. next = qdf_nbuf_next(*head_addr);
  281. rx_desc_info = qdf_nbuf_data(*tail_addr);
  282. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  283. /* TODO: optimize the loop */
  284. if (!last_morefrag) {
  285. /* Check if all fragments are present */
  286. do {
  287. rx_desc_info = qdf_nbuf_data(next);
  288. next_fragno =
  289. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  290. count++;
  291. if (next_fragno != count)
  292. break;
  293. next = qdf_nbuf_next(next);
  294. } while (next);
  295. if (!next) {
  296. *all_frag_present = 1;
  297. return QDF_STATUS_SUCCESS;
  298. }
  299. }
  300. insert_done:
  301. return QDF_STATUS_SUCCESS;
  302. insert_fail:
  303. return QDF_STATUS_E_FAILURE;
  304. }
  305. /*
  306. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  307. * @msdu: Pointer to the fragment
  308. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  309. *
  310. * decap tkip encrypted fragment
  311. *
  312. * Returns: QDF_STATUS
  313. */
  314. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  315. {
  316. uint8_t *ivp, *orig_hdr;
  317. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  318. /* start of 802.11 header info */
  319. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  320. /* TKIP header is located post 802.11 header */
  321. ivp = orig_hdr + hdrlen;
  322. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  323. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  324. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  325. return QDF_STATUS_E_DEFRAG_ERROR;
  326. }
  327. qdf_mem_move(orig_hdr + dp_f_tkip.ic_header, orig_hdr, hdrlen);
  328. qdf_nbuf_pull_head(msdu, dp_f_tkip.ic_header);
  329. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  330. return QDF_STATUS_SUCCESS;
  331. }
  332. /*
  333. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  334. * @nbuf: Pointer to the fragment buffer
  335. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  336. *
  337. * Remove MIC information from CCMP fragment
  338. *
  339. * Returns: QDF_STATUS
  340. */
  341. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  342. {
  343. uint8_t *ivp, *orig_hdr;
  344. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  345. /* start of the 802.11 header */
  346. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  347. /* CCMP header is located after 802.11 header */
  348. ivp = orig_hdr + hdrlen;
  349. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  350. return QDF_STATUS_E_DEFRAG_ERROR;
  351. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  352. return QDF_STATUS_SUCCESS;
  353. }
  354. /*
  355. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  356. * @nbuf: Pointer to the fragment
  357. * @hdrlen: length of the header information
  358. *
  359. * decap CCMP encrypted fragment
  360. *
  361. * Returns: QDF_STATUS
  362. */
  363. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  364. {
  365. uint8_t *ivp, *origHdr;
  366. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  367. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  368. ivp = origHdr + hdrlen;
  369. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  370. return QDF_STATUS_E_DEFRAG_ERROR;
  371. /* Let's pull the header later */
  372. return QDF_STATUS_SUCCESS;
  373. }
  374. /*
  375. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  376. * @msdu: Pointer to the fragment
  377. * @hdrlen: length of the header information
  378. *
  379. * decap WEP encrypted fragment
  380. *
  381. * Returns: QDF_STATUS
  382. */
  383. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  384. {
  385. uint8_t *origHdr;
  386. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  387. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  388. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  389. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  390. return QDF_STATUS_SUCCESS;
  391. }
  392. /*
  393. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  394. * @nbuf: Pointer to the fragment
  395. *
  396. * Calculate the header size of the received fragment
  397. *
  398. * Returns: header size (uint16_t)
  399. */
  400. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  401. {
  402. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  403. uint16_t size = sizeof(struct ieee80211_frame);
  404. uint16_t fc = 0;
  405. uint32_t to_ds, fr_ds;
  406. uint8_t frm_ctrl_valid;
  407. uint16_t frm_ctrl_field;
  408. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  409. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  410. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  411. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  412. if (to_ds && fr_ds)
  413. size += IEEE80211_ADDR_LEN;
  414. if (frm_ctrl_valid) {
  415. fc = frm_ctrl_field;
  416. /* use 1-st byte for validation */
  417. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  418. size += sizeof(uint16_t);
  419. /* use 2-nd byte for validation */
  420. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  421. size += sizeof(struct ieee80211_htc);
  422. }
  423. }
  424. return size;
  425. }
  426. /*
  427. * dp_rx_defrag_michdr(): Calculate a psuedo MIC header
  428. * @wh0: Pointer to the wireless header of the fragment
  429. * @hdr: Array to hold the psuedo header
  430. *
  431. * Calculate a psuedo MIC header
  432. *
  433. * Returns: None
  434. */
  435. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  436. uint8_t hdr[])
  437. {
  438. const struct ieee80211_frame_addr4 *wh =
  439. (const struct ieee80211_frame_addr4 *)wh0;
  440. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  441. case IEEE80211_FC1_DIR_NODS:
  442. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  443. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  444. wh->i_addr2);
  445. break;
  446. case IEEE80211_FC1_DIR_TODS:
  447. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  448. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  449. wh->i_addr2);
  450. break;
  451. case IEEE80211_FC1_DIR_FROMDS:
  452. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  453. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  454. wh->i_addr3);
  455. break;
  456. case IEEE80211_FC1_DIR_DSTODS:
  457. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  458. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  459. wh->i_addr4);
  460. break;
  461. }
  462. /*
  463. * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  464. * it could also be set for deauth, disassoc, action, etc. for
  465. * a mgt type frame. It comes into picture for MFP.
  466. */
  467. if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  468. const struct ieee80211_qosframe *qwh =
  469. (const struct ieee80211_qosframe *)wh;
  470. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  471. } else {
  472. hdr[12] = 0;
  473. }
  474. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  475. }
  476. /*
  477. * dp_rx_defrag_mic(): Calculate MIC header
  478. * @key: Pointer to the key
  479. * @wbuf: fragment buffer
  480. * @off: Offset
  481. * @data_len: Data lengh
  482. * @mic: Array to hold MIC
  483. *
  484. * Calculate a psuedo MIC header
  485. *
  486. * Returns: QDF_STATUS
  487. */
  488. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  489. uint16_t off, uint16_t data_len, uint8_t mic[])
  490. {
  491. uint8_t hdr[16] = { 0, };
  492. uint32_t l, r;
  493. const uint8_t *data;
  494. uint32_t space;
  495. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  496. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  497. + rx_desc_len), hdr);
  498. l = dp_rx_get_le32(key);
  499. r = dp_rx_get_le32(key + 4);
  500. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  501. l ^= dp_rx_get_le32(hdr);
  502. dp_rx_michael_block(l, r);
  503. l ^= dp_rx_get_le32(&hdr[4]);
  504. dp_rx_michael_block(l, r);
  505. l ^= dp_rx_get_le32(&hdr[8]);
  506. dp_rx_michael_block(l, r);
  507. l ^= dp_rx_get_le32(&hdr[12]);
  508. dp_rx_michael_block(l, r);
  509. /* first buffer has special handling */
  510. data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len + off;
  511. space = qdf_nbuf_len(wbuf) - rx_desc_len - off;
  512. for (;; ) {
  513. if (space > data_len)
  514. space = data_len;
  515. /* collect 32-bit blocks from current buffer */
  516. while (space >= sizeof(uint32_t)) {
  517. l ^= dp_rx_get_le32(data);
  518. dp_rx_michael_block(l, r);
  519. data += sizeof(uint32_t);
  520. space -= sizeof(uint32_t);
  521. data_len -= sizeof(uint32_t);
  522. }
  523. if (data_len < sizeof(uint32_t))
  524. break;
  525. wbuf = qdf_nbuf_next(wbuf);
  526. if (wbuf == NULL)
  527. return QDF_STATUS_E_DEFRAG_ERROR;
  528. if (space != 0) {
  529. const uint8_t *data_next;
  530. /*
  531. * Block straddles buffers, split references.
  532. */
  533. data_next =
  534. (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
  535. if ((qdf_nbuf_len(wbuf) - rx_desc_len) <
  536. sizeof(uint32_t) - space) {
  537. return QDF_STATUS_E_DEFRAG_ERROR;
  538. }
  539. switch (space) {
  540. case 1:
  541. l ^= dp_rx_get_le32_split(data[0],
  542. data_next[0], data_next[1],
  543. data_next[2]);
  544. data = data_next + 3;
  545. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  546. - 3;
  547. break;
  548. case 2:
  549. l ^= dp_rx_get_le32_split(data[0], data[1],
  550. data_next[0], data_next[1]);
  551. data = data_next + 2;
  552. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  553. - 2;
  554. break;
  555. case 3:
  556. l ^= dp_rx_get_le32_split(data[0], data[1],
  557. data[2], data_next[0]);
  558. data = data_next + 1;
  559. space = (qdf_nbuf_len(wbuf) - rx_desc_len)
  560. - 1;
  561. break;
  562. }
  563. dp_rx_michael_block(l, r);
  564. data_len -= sizeof(uint32_t);
  565. } else {
  566. /*
  567. * Setup for next buffer.
  568. */
  569. data = (uint8_t *) qdf_nbuf_data(wbuf) + rx_desc_len;
  570. space = qdf_nbuf_len(wbuf) - rx_desc_len;
  571. }
  572. }
  573. /* Last block and padding (0x5a, 4..7 x 0) */
  574. switch (data_len) {
  575. case 0:
  576. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  577. break;
  578. case 1:
  579. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  580. break;
  581. case 2:
  582. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  583. break;
  584. case 3:
  585. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  586. break;
  587. }
  588. dp_rx_michael_block(l, r);
  589. dp_rx_michael_block(l, r);
  590. dp_rx_put_le32(mic, l);
  591. dp_rx_put_le32(mic + 4, r);
  592. return QDF_STATUS_SUCCESS;
  593. }
  594. /*
  595. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  596. * @key: Pointer to the key
  597. * @msdu: fragment buffer
  598. * @hdrlen: Length of the header information
  599. *
  600. * Remove MIC information from the TKIP frame
  601. *
  602. * Returns: QDF_STATUS
  603. */
  604. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  605. qdf_nbuf_t msdu, uint16_t hdrlen)
  606. {
  607. QDF_STATUS status;
  608. uint32_t pktlen;
  609. uint8_t mic[IEEE80211_WEP_MICLEN];
  610. uint8_t mic0[IEEE80211_WEP_MICLEN];
  611. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  612. pktlen = qdf_nbuf_len(msdu) - rx_desc_len;
  613. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  614. pktlen - (hdrlen + dp_f_tkip.ic_miclen), mic);
  615. if (QDF_IS_STATUS_ERROR(status))
  616. return status;
  617. qdf_nbuf_copy_bits(msdu, pktlen - dp_f_tkip.ic_miclen + rx_desc_len,
  618. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  619. if (!qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  620. return QDF_STATUS_E_DEFRAG_ERROR;
  621. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_miclen);
  622. return QDF_STATUS_SUCCESS;
  623. }
  624. /*
  625. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  626. * @nbuf: buffer pointer
  627. * @hdrsize: size of the header to be pulled
  628. *
  629. * Pull the RXTLV & the 802.11 headers
  630. *
  631. * Returns: None
  632. */
  633. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  634. {
  635. qdf_nbuf_pull_head(nbuf,
  636. RX_PKT_TLVS_LEN + hdrsize);
  637. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  638. "%s: final pktlen %d .11len %d\n",
  639. __func__,
  640. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  641. }
  642. /*
  643. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  644. * @peer: Pointer to the peer
  645. * @head: Pointer to list of fragments
  646. * @hdrsize: Size of the header to be pulled
  647. *
  648. * Construct a nbuf fraglist
  649. *
  650. * Returns: None
  651. */
  652. static void
  653. dp_rx_construct_fraglist(struct dp_peer *peer,
  654. qdf_nbuf_t head, uint16_t hdrsize)
  655. {
  656. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  657. qdf_nbuf_t rx_nbuf = msdu;
  658. uint32_t len = 0;
  659. while (msdu) {
  660. dp_rx_frag_pull_hdr(msdu, hdrsize);
  661. len += qdf_nbuf_len(msdu);
  662. msdu = qdf_nbuf_next(msdu);
  663. }
  664. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  665. qdf_nbuf_set_next(head, NULL);
  666. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  667. "%s: head len %d ext len %d data len %d \n",
  668. __func__,
  669. (uint32_t)qdf_nbuf_len(head),
  670. (uint32_t)qdf_nbuf_len(rx_nbuf),
  671. (uint32_t)(head->data_len));
  672. }
  673. /**
  674. * dp_rx_defrag_err() - rx err handler
  675. * @pdev: handle to pdev object
  676. * @vdev_id: vdev id
  677. * @peer_mac_addr: peer mac address
  678. * @tid: TID
  679. * @tsf32: TSF
  680. * @err_type: error type
  681. * @rx_frame: rx frame
  682. * @pn: PN Number
  683. * @key_id: key id
  684. *
  685. * This function handles rx error and send MIC error notification
  686. *
  687. * Return: None
  688. */
  689. static void dp_rx_defrag_err(uint8_t vdev_id, uint8_t *peer_mac_addr,
  690. int tid, uint32_t tsf32, uint32_t err_type, qdf_nbuf_t rx_frame,
  691. uint64_t *pn, uint8_t key_id)
  692. {
  693. /* TODO: Who needs to know about the TKIP MIC error */
  694. }
  695. /*
  696. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  697. * @nbuf: Pointer to the fragment buffer
  698. * @hdrsize: Size of headers
  699. *
  700. * Transcap the fragment from 802.11 to 802.3
  701. *
  702. * Returns: None
  703. */
  704. static void
  705. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  706. {
  707. struct llc_snap_hdr_t *llchdr;
  708. struct ethernet_hdr_t *eth_hdr;
  709. uint8_t ether_type[2];
  710. uint16_t fc = 0;
  711. union dp_align_mac_addr mac_addr;
  712. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  713. if (rx_desc_info == NULL) {
  714. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  715. "%s: Memory alloc failed ! \n", __func__);
  716. QDF_ASSERT(0);
  717. return;
  718. }
  719. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  720. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  721. RX_PKT_TLVS_LEN + hdrsize);
  722. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  723. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  724. sizeof(struct llc_snap_hdr_t) -
  725. sizeof(struct ethernet_hdr_t)));
  726. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  727. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  728. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  729. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  730. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  731. "%s: frame control type: 0x%x", __func__, fc);
  732. case IEEE80211_FC1_DIR_NODS:
  733. hal_rx_mpdu_get_addr1(rx_desc_info,
  734. &mac_addr.raw[0]);
  735. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  736. IEEE80211_ADDR_LEN);
  737. hal_rx_mpdu_get_addr2(rx_desc_info,
  738. &mac_addr.raw[0]);
  739. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  740. IEEE80211_ADDR_LEN);
  741. break;
  742. case IEEE80211_FC1_DIR_TODS:
  743. hal_rx_mpdu_get_addr3(rx_desc_info,
  744. &mac_addr.raw[0]);
  745. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  746. IEEE80211_ADDR_LEN);
  747. hal_rx_mpdu_get_addr2(rx_desc_info,
  748. &mac_addr.raw[0]);
  749. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  750. IEEE80211_ADDR_LEN);
  751. break;
  752. case IEEE80211_FC1_DIR_FROMDS:
  753. hal_rx_mpdu_get_addr1(rx_desc_info,
  754. &mac_addr.raw[0]);
  755. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  756. IEEE80211_ADDR_LEN);
  757. hal_rx_mpdu_get_addr3(rx_desc_info,
  758. &mac_addr.raw[0]);
  759. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  760. IEEE80211_ADDR_LEN);
  761. break;
  762. case IEEE80211_FC1_DIR_DSTODS:
  763. hal_rx_mpdu_get_addr3(rx_desc_info,
  764. &mac_addr.raw[0]);
  765. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  766. IEEE80211_ADDR_LEN);
  767. hal_rx_mpdu_get_addr4(rx_desc_info,
  768. &mac_addr.raw[0]);
  769. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  770. IEEE80211_ADDR_LEN);
  771. break;
  772. default:
  773. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  774. "%s: Unknown frame control type: 0x%x", __func__, fc);
  775. }
  776. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  777. sizeof(ether_type));
  778. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  779. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  780. qdf_mem_free(rx_desc_info);
  781. }
  782. /*
  783. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  784. * @peer: Pointer to the peer
  785. * @tid: Transmit Identifier
  786. * @head: Buffer to be reinjected back
  787. *
  788. * Reinject the fragment chain back into REO
  789. *
  790. * Returns: QDF_STATUS
  791. */
  792. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  793. unsigned tid, qdf_nbuf_t head)
  794. {
  795. struct dp_pdev *pdev = peer->vdev->pdev;
  796. struct dp_soc *soc = pdev->soc;
  797. struct hal_buf_info buf_info;
  798. void *link_desc_va;
  799. void *msdu0, *msdu_desc_info;
  800. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  801. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  802. qdf_dma_addr_t paddr;
  803. uint32_t nbuf_len, seq_no, dst_ind;
  804. uint32_t *mpdu_wrd;
  805. uint32_t ret, cookie;
  806. void *dst_ring_desc =
  807. peer->rx_tid[tid].dst_ring_desc;
  808. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  809. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  810. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  811. qdf_assert(link_desc_va);
  812. msdu0 = (uint8_t *)link_desc_va +
  813. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  814. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  815. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  816. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  817. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  818. /* msdu reconfig */
  819. msdu_desc_info = (uint8_t *)msdu0 +
  820. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  821. dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
  822. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  823. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  824. FIRST_MSDU_IN_MPDU_FLAG, 1);
  825. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  826. LAST_MSDU_IN_MPDU_FLAG, 1);
  827. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  828. MSDU_CONTINUATION, 0x0);
  829. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  830. REO_DESTINATION_INDICATION, dst_ind);
  831. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  832. MSDU_LENGTH, nbuf_len);
  833. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  834. SA_IS_VALID, 1);
  835. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  836. DA_IS_VALID, 1);
  837. /* change RX TLV's */
  838. hal_rx_msdu_start_msdu_len_set(
  839. qdf_nbuf_data(head), nbuf_len);
  840. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  841. /* map the nbuf before reinject it into HW */
  842. ret = qdf_nbuf_map_single(soc->osdev, head,
  843. QDF_DMA_BIDIRECTIONAL);
  844. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  845. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  846. "%s: nbuf map failed !\n", __func__);
  847. qdf_nbuf_free(head);
  848. return QDF_STATUS_E_FAILURE;
  849. }
  850. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  851. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  852. if (ret == QDF_STATUS_E_FAILURE) {
  853. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  854. "%s: x86 check failed !\n", __func__);
  855. return QDF_STATUS_E_FAILURE;
  856. }
  857. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie,
  858. HAL_RX_BUF_RBM_SW3_BM);
  859. /* Lets fill entrance ring now !!! */
  860. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  861. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  862. "HAL RING Access For REO entrance SRNG Failed: %pK",
  863. hal_srng);
  864. return QDF_STATUS_E_FAILURE;
  865. }
  866. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  867. qdf_assert(ent_ring_desc);
  868. paddr = (uint64_t)buf_info.paddr;
  869. /* buf addr */
  870. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  871. buf_info.sw_cookie,
  872. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  873. /* mpdu desc info */
  874. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  875. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  876. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  877. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  878. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  879. sizeof(struct rx_mpdu_desc_info));
  880. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  881. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  882. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  883. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  884. MSDU_COUNT, 0x1);
  885. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  886. MPDU_SEQUENCE_NUMBER, seq_no);
  887. /* unset frag bit */
  888. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  889. FRAGMENT_FLAG, 0x0);
  890. /* set sa/da valid bits */
  891. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  892. SA_IS_VALID, 0x1);
  893. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  894. DA_IS_VALID, 0x1);
  895. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  896. RAW_MPDU, 0x0);
  897. /* qdesc addr */
  898. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  899. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  900. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  901. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  902. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  903. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  904. REO_DESTINATION_INDICATION, dst_ind);
  905. hal_srng_access_end(soc->hal_soc, hal_srng);
  906. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  907. "%s: reinjection done !\n", __func__);
  908. return QDF_STATUS_SUCCESS;
  909. }
  910. /*
  911. * dp_rx_defrag(): Defragment the fragment chain
  912. * @peer: Pointer to the peer
  913. * @tid: Transmit Identifier
  914. * @frag_list_head: Pointer to head list
  915. * @frag_list_tail: Pointer to tail list
  916. *
  917. * Defragment the fragment chain
  918. *
  919. * Returns: QDF_STATUS
  920. */
  921. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  922. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  923. {
  924. qdf_nbuf_t tmp_next, prev;
  925. qdf_nbuf_t cur = frag_list_head, msdu;
  926. uint32_t index, tkip_demic = 0;
  927. uint16_t hdr_space;
  928. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  929. struct dp_vdev *vdev = peer->vdev;
  930. hdr_space = dp_rx_defrag_hdrsize(cur);
  931. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  932. dp_sec_mcast : dp_sec_ucast;
  933. /* Remove FCS from all fragments */
  934. while (cur) {
  935. tmp_next = qdf_nbuf_next(cur);
  936. qdf_nbuf_set_next(cur, NULL);
  937. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  938. prev = cur;
  939. qdf_nbuf_set_next(cur, tmp_next);
  940. cur = tmp_next;
  941. }
  942. cur = frag_list_head;
  943. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  944. "%s: Security type: %d\n", __func__,
  945. peer->security[index].sec_type);
  946. /* Temporary fix to drop TKIP encrypted packets */
  947. if (peer->security[index].sec_type ==
  948. htt_sec_type_tkip) {
  949. return QDF_STATUS_E_DEFRAG_ERROR;
  950. }
  951. switch (peer->security[index].sec_type) {
  952. case htt_sec_type_tkip:
  953. tkip_demic = 1;
  954. case htt_sec_type_tkip_nomic:
  955. while (cur) {
  956. tmp_next = qdf_nbuf_next(cur);
  957. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  958. /* TKIP decap failed, discard frags */
  959. dp_rx_defrag_frames_free(frag_list_head);
  960. QDF_TRACE(QDF_MODULE_ID_TXRX,
  961. QDF_TRACE_LEVEL_ERROR,
  962. "dp_rx_defrag: TKIP decap failed");
  963. return QDF_STATUS_E_DEFRAG_ERROR;
  964. }
  965. cur = tmp_next;
  966. }
  967. break;
  968. case htt_sec_type_aes_ccmp:
  969. while (cur) {
  970. tmp_next = qdf_nbuf_next(cur);
  971. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  972. /* CCMP demic failed, discard frags */
  973. dp_rx_defrag_frames_free(frag_list_head);
  974. QDF_TRACE(QDF_MODULE_ID_TXRX,
  975. QDF_TRACE_LEVEL_ERROR,
  976. "dp_rx_defrag: CCMP demic failed");
  977. return QDF_STATUS_E_DEFRAG_ERROR;
  978. }
  979. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  980. /* CCMP decap failed, discard frags */
  981. dp_rx_defrag_frames_free(frag_list_head);
  982. QDF_TRACE(QDF_MODULE_ID_TXRX,
  983. QDF_TRACE_LEVEL_ERROR,
  984. "dp_rx_defrag: CCMP decap failed");
  985. return QDF_STATUS_E_DEFRAG_ERROR;
  986. }
  987. cur = tmp_next;
  988. }
  989. /* If success, increment header to be stripped later */
  990. hdr_space += dp_f_ccmp.ic_header;
  991. break;
  992. case htt_sec_type_wep40:
  993. case htt_sec_type_wep104:
  994. case htt_sec_type_wep128:
  995. while (cur) {
  996. tmp_next = qdf_nbuf_next(cur);
  997. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  998. /* WEP decap failed, discard frags */
  999. dp_rx_defrag_frames_free(frag_list_head);
  1000. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1001. QDF_TRACE_LEVEL_ERROR,
  1002. "dp_rx_defrag: WEP decap failed");
  1003. return QDF_STATUS_E_DEFRAG_ERROR;
  1004. }
  1005. cur = tmp_next;
  1006. }
  1007. /* If success, increment header to be stripped later */
  1008. hdr_space += dp_f_wep.ic_header;
  1009. break;
  1010. default:
  1011. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1012. QDF_TRACE_LEVEL_ERROR,
  1013. "dp_rx_defrag: Did not match any security type");
  1014. break;
  1015. }
  1016. if (tkip_demic) {
  1017. msdu = frag_list_tail; /* Only last fragment has the MIC */
  1018. qdf_mem_copy(key,
  1019. peer->security[index].michael_key,
  1020. sizeof(peer->security[index].michael_key));
  1021. if (dp_rx_defrag_tkip_demic(key, msdu, hdr_space)) {
  1022. qdf_nbuf_free(msdu);
  1023. dp_rx_defrag_err(vdev->vdev_id, peer->mac_addr.raw,
  1024. tid, 0, QDF_STATUS_E_DEFRAG_ERROR, msdu,
  1025. NULL, 0);
  1026. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1027. "dp_rx_defrag: TKIP demic failed");
  1028. return QDF_STATUS_E_DEFRAG_ERROR;
  1029. }
  1030. }
  1031. /* Convert the header to 802.3 header */
  1032. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1033. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1034. return QDF_STATUS_SUCCESS;
  1035. }
  1036. /*
  1037. * dp_rx_defrag_cleanup(): Clean up activities
  1038. * @peer: Pointer to the peer
  1039. * @tid: Transmit Identifier
  1040. *
  1041. * Returns: None
  1042. */
  1043. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1044. {
  1045. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1046. peer->rx_tid[tid].array;
  1047. /* Free up nbufs */
  1048. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1049. /* Free up saved ring descriptors */
  1050. dp_rx_clear_saved_desc_info(peer, tid);
  1051. rx_reorder_array_elem->head = NULL;
  1052. rx_reorder_array_elem->tail = NULL;
  1053. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1054. peer->rx_tid[tid].curr_frag_num = 0;
  1055. peer->rx_tid[tid].curr_seq_num = 0;
  1056. peer->rx_tid[tid].head_frag_desc = NULL;
  1057. }
  1058. /*
  1059. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1060. * @ring_desc: Pointer to the dst ring descriptor
  1061. * @peer: Pointer to the peer
  1062. * @tid: Transmit Identifier
  1063. *
  1064. * Returns: None
  1065. */
  1066. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  1067. struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
  1068. {
  1069. void *dst_ring_desc = qdf_mem_malloc(
  1070. sizeof(struct reo_destination_ring));
  1071. if (dst_ring_desc == NULL) {
  1072. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1073. "%s: Memory alloc failed !\n", __func__);
  1074. QDF_ASSERT(0);
  1075. return QDF_STATUS_E_NOMEM;
  1076. }
  1077. qdf_mem_copy(dst_ring_desc, ring_desc,
  1078. sizeof(struct reo_destination_ring));
  1079. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1080. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1081. return QDF_STATUS_SUCCESS;
  1082. }
  1083. /*
  1084. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1085. * @soc: Pointer to the SOC data structure
  1086. * @ring_desc: Pointer to the ring descriptor
  1087. * @mpdu_desc_info: MPDU descriptor info
  1088. * @tid: Traffic Identifier
  1089. * @rx_desc: Pointer to rx descriptor
  1090. * @rx_bfs: Number of bfs consumed
  1091. *
  1092. * Returns: QDF_STATUS
  1093. */
  1094. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1095. void *ring_desc,
  1096. union dp_rx_desc_list_elem_t **head,
  1097. union dp_rx_desc_list_elem_t **tail,
  1098. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1099. unsigned tid, struct dp_rx_desc *rx_desc,
  1100. uint32_t *rx_bfs)
  1101. {
  1102. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1103. struct dp_pdev *pdev;
  1104. struct dp_peer *peer;
  1105. uint16_t peer_id;
  1106. uint8_t fragno, more_frag, all_frag_present = 0;
  1107. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1108. QDF_STATUS status;
  1109. struct dp_rx_tid *rx_tid;
  1110. uint8_t mpdu_sequence_control_valid;
  1111. uint8_t mpdu_frame_control_valid;
  1112. qdf_nbuf_t frag = rx_desc->nbuf;
  1113. /* Check if the packet is from a valid peer */
  1114. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1115. mpdu_desc_info->peer_meta_data);
  1116. peer = dp_peer_find_by_id(soc, peer_id);
  1117. if (!peer) {
  1118. /* We should not recieve anything from unknown peer
  1119. * however, that might happen while we are in the monitor mode.
  1120. * We don't need to handle that here
  1121. */
  1122. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1123. "Unknown peer, dropping the fragment");
  1124. qdf_nbuf_free(frag);
  1125. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1126. *rx_bfs = 1;
  1127. return QDF_STATUS_E_DEFRAG_ERROR;
  1128. }
  1129. pdev = peer->vdev->pdev;
  1130. rx_tid = &peer->rx_tid[tid];
  1131. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1132. mpdu_sequence_control_valid =
  1133. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1134. /* Invalid MPDU sequence control field, MPDU is of no use */
  1135. if (!mpdu_sequence_control_valid) {
  1136. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1137. "Invalid MPDU seq control field, dropping MPDU");
  1138. qdf_nbuf_free(frag);
  1139. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1140. *rx_bfs = 1;
  1141. qdf_assert(0);
  1142. goto end;
  1143. }
  1144. mpdu_frame_control_valid =
  1145. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1146. /* Invalid frame control field */
  1147. if (!mpdu_frame_control_valid) {
  1148. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1149. "Invalid frame control field, dropping MPDU");
  1150. qdf_nbuf_free(frag);
  1151. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1152. *rx_bfs = 1;
  1153. qdf_assert(0);
  1154. goto end;
  1155. }
  1156. /* Current mpdu sequence */
  1157. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1158. /* HW does not populate the fragment number as of now
  1159. * need to get from the 802.11 header
  1160. */
  1161. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1162. /*
  1163. * !more_frag: no more fragments to be delivered
  1164. * !frag_no: packet is not fragmented
  1165. * !rx_reorder_array_elem->head: no saved fragments so far
  1166. */
  1167. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1168. /* We should not get into this situation here.
  1169. * It means an unfragmented packet with fragment flag
  1170. * is delivered over the REO exception ring.
  1171. * Typically it follows normal rx path.
  1172. */
  1173. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1174. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1175. qdf_nbuf_free(frag);
  1176. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1177. *rx_bfs = 1;
  1178. qdf_assert(0);
  1179. goto end;
  1180. }
  1181. /* Check if the fragment is for the same sequence or a different one */
  1182. if (rx_reorder_array_elem->head) {
  1183. if (rxseq != rx_tid->curr_seq_num) {
  1184. /* Drop stored fragments if out of sequence
  1185. * fragment is received
  1186. */
  1187. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1188. rx_reorder_array_elem->head = NULL;
  1189. rx_reorder_array_elem->tail = NULL;
  1190. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1191. "%s mismatch, dropping earlier sequence ",
  1192. (rxseq == rx_tid->curr_seq_num)
  1193. ? "address"
  1194. : "seq number");
  1195. /*
  1196. * The sequence number for this fragment becomes the
  1197. * new sequence number to be processed
  1198. */
  1199. rx_tid->curr_seq_num = rxseq;
  1200. }
  1201. } else {
  1202. /* Start of a new sequence */
  1203. dp_rx_defrag_cleanup(peer, tid);
  1204. rx_tid->curr_seq_num = rxseq;
  1205. }
  1206. /*
  1207. * If the earlier sequence was dropped, this will be the fresh start.
  1208. * Else, continue with next fragment in a given sequence
  1209. */
  1210. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1211. &rx_reorder_array_elem->tail, frag,
  1212. &all_frag_present);
  1213. /*
  1214. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1215. * packet sequence has more than 6 MSDUs for some reason, we will
  1216. * have to use the next MSDU link descriptor and chain them together
  1217. * before reinjection
  1218. */
  1219. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1220. (rx_reorder_array_elem->head == frag)) {
  1221. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1222. rx_desc, peer, tid);
  1223. if (status != QDF_STATUS_SUCCESS) {
  1224. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1225. "%s: Unable to store ring desc !\n", __func__);
  1226. goto end;
  1227. }
  1228. } else {
  1229. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1230. *rx_bfs = 1;
  1231. /* Return the non-head link desc */
  1232. if (dp_rx_link_desc_return(soc, ring_desc,
  1233. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1234. QDF_STATUS_SUCCESS)
  1235. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1236. "%s: Failed to return link desc\n",
  1237. __func__);
  1238. }
  1239. if (pdev->soc->rx.flags.defrag_timeout_check)
  1240. dp_rx_defrag_waitlist_remove(peer, tid);
  1241. /* Yet to receive more fragments for this sequence number */
  1242. if (!all_frag_present) {
  1243. uint32_t now_ms =
  1244. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1245. peer->rx_tid[tid].defrag_timeout_ms =
  1246. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1247. dp_rx_defrag_waitlist_add(peer, tid);
  1248. return QDF_STATUS_SUCCESS;
  1249. }
  1250. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1251. "All fragments received for sequence: %d", rxseq);
  1252. /* Process the fragments */
  1253. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1254. rx_reorder_array_elem->tail);
  1255. if (QDF_IS_STATUS_ERROR(status)) {
  1256. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1257. "Fragment processing failed");
  1258. dp_rx_add_to_free_desc_list(head, tail,
  1259. peer->rx_tid[tid].head_frag_desc);
  1260. *rx_bfs = 1;
  1261. if (dp_rx_link_desc_return(soc,
  1262. peer->rx_tid[tid].dst_ring_desc,
  1263. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1264. QDF_STATUS_SUCCESS)
  1265. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1266. "%s: Failed to return link desc\n",
  1267. __func__);
  1268. dp_rx_defrag_cleanup(peer, tid);
  1269. goto end;
  1270. }
  1271. /* Re-inject the fragments back to REO for further processing */
  1272. status = dp_rx_defrag_reo_reinject(peer, tid,
  1273. rx_reorder_array_elem->head);
  1274. if (QDF_IS_STATUS_SUCCESS(status)) {
  1275. rx_reorder_array_elem->head = NULL;
  1276. rx_reorder_array_elem->tail = NULL;
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1278. "Fragmented sequence successfully reinjected");
  1279. }
  1280. else
  1281. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1282. "Fragmented sequence reinjection failed");
  1283. dp_rx_defrag_cleanup(peer, tid);
  1284. return QDF_STATUS_SUCCESS;
  1285. end:
  1286. return QDF_STATUS_E_DEFRAG_ERROR;
  1287. }
  1288. /**
  1289. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1290. *
  1291. * @soc: core txrx main context
  1292. * @ring_desc: opaque pointer to the REO error ring descriptor
  1293. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1294. * @head: head of the local descriptor free-list
  1295. * @tail: tail of the local descriptor free-list
  1296. * @quota: No. of units (packets) that can be serviced in one shot.
  1297. *
  1298. * This function implements RX 802.11 fragmentation handling
  1299. * The handling is mostly same as legacy fragmentation handling.
  1300. * If required, this function can re-inject the frames back to
  1301. * REO ring (with proper setting to by-pass fragmentation check
  1302. * but use duplicate detection / re-ordering and routing these frames
  1303. * to a different core.
  1304. *
  1305. * Return: uint32_t: No. of elements processed
  1306. */
  1307. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1308. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1309. union dp_rx_desc_list_elem_t **head,
  1310. union dp_rx_desc_list_elem_t **tail,
  1311. uint32_t quota)
  1312. {
  1313. uint32_t rx_bufs_used = 0;
  1314. void *link_desc_va;
  1315. struct hal_buf_info buf_info;
  1316. struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
  1317. qdf_nbuf_t msdu = NULL;
  1318. uint32_t tid, msdu_len;
  1319. int idx, rx_bfs = 0;
  1320. QDF_STATUS status;
  1321. qdf_assert(soc);
  1322. qdf_assert(mpdu_desc_info);
  1323. /* Fragment from a valid peer */
  1324. hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
  1325. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1326. qdf_assert(link_desc_va);
  1327. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1328. "Number of MSDUs to process, num_msdus: %d",
  1329. mpdu_desc_info->msdu_count);
  1330. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1331. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1332. "Not sufficient MSDUs to process");
  1333. return rx_bufs_used;
  1334. }
  1335. /* Get msdu_list for the given MPDU */
  1336. hal_rx_msdu_list_get(link_desc_va, &msdu_list,
  1337. &mpdu_desc_info->msdu_count);
  1338. /* Process all MSDUs in the current MPDU */
  1339. for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
  1340. struct dp_rx_desc *rx_desc =
  1341. dp_rx_cookie_2_va_rxdma_buf(soc,
  1342. msdu_list.sw_cookie[idx]);
  1343. qdf_assert(rx_desc);
  1344. msdu = rx_desc->nbuf;
  1345. qdf_nbuf_unmap_single(soc->osdev, msdu,
  1346. QDF_DMA_BIDIRECTIONAL);
  1347. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1348. msdu_len = hal_rx_msdu_start_msdu_len_get(
  1349. rx_desc->rx_buf_start);
  1350. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1351. tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
  1352. /* Process fragment-by-fragment */
  1353. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1354. head, tail, mpdu_desc_info,
  1355. tid, rx_desc, &rx_bfs);
  1356. if (rx_bfs)
  1357. rx_bufs_used++;
  1358. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1359. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1360. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1361. mpdu_desc_info->mpdu_seq,
  1362. mpdu_desc_info->msdu_count,
  1363. mpdu_desc_info->mpdu_flags);
  1364. /* No point in processing rest of the fragments */
  1365. break;
  1366. }
  1367. }
  1368. return rx_bufs_used;
  1369. }