synaptics_tcm_spi.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * Synaptics TCM touchscreen driver
  3. *
  4. * Copyright (C) 2017-2019 Synaptics Incorporated. All rights reserved.
  5. *
  6. * Copyright (C) 2017-2019 Scott Lin <[email protected]>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
  19. * EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
  20. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
  21. * AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
  22. * IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23. * SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
  24. * WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
  25. * AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  26. * NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
  27. * THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
  28. * NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
  29. * TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
  30. * DOLLARS.
  31. */
  32. #include <linux/spi/spi.h>
  33. #include <linux/of_gpio.h>
  34. #include "synaptics_tcm_core.h"
  35. static unsigned char *buf;
  36. static unsigned int buf_size;
  37. static struct spi_transfer *xfer;
  38. static struct syna_tcm_bus_io bus_io;
  39. static struct syna_tcm_hw_interface hw_if;
  40. static struct platform_device *syna_tcm_spi_device;
  41. #ifdef CONFIG_OF
  42. static int parse_dt(struct device *dev, struct syna_tcm_board_data *bdata)
  43. {
  44. int retval;
  45. u32 value;
  46. struct property *prop;
  47. struct device_node *np = dev->of_node;
  48. const char *name;
  49. prop = of_find_property(np, "synaptics,irq-gpio", NULL);
  50. if (prop && prop->length) {
  51. bdata->irq_gpio = of_get_named_gpio_flags(np,
  52. "synaptics,irq-gpio", 0,
  53. (enum of_gpio_flags *)&bdata->irq_flags);
  54. } else {
  55. bdata->irq_gpio = -1;
  56. }
  57. retval = of_property_read_u32(np, "synaptics,irq-on-state", &value);
  58. if (retval < 0)
  59. bdata->irq_on_state = 0;
  60. else
  61. bdata->irq_on_state = value;
  62. retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
  63. if (retval < 0)
  64. bdata->pwr_reg_name = NULL;
  65. else
  66. bdata->pwr_reg_name = name;
  67. retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
  68. if (retval < 0)
  69. bdata->bus_reg_name = NULL;
  70. else
  71. bdata->bus_reg_name = name;
  72. prop = of_find_property(np, "synaptics,power-gpio", NULL);
  73. if (prop && prop->length) {
  74. bdata->power_gpio = of_get_named_gpio_flags(np,
  75. "synaptics,power-gpio", 0, NULL);
  76. } else {
  77. bdata->power_gpio = -1;
  78. }
  79. prop = of_find_property(np, "synaptics,power-on-state", NULL);
  80. if (prop && prop->length) {
  81. retval = of_property_read_u32(np, "synaptics,power-on-state",
  82. &value);
  83. if (retval < 0) {
  84. LOGE(dev,
  85. "Failed to read synaptics,power-on-state\n");
  86. return retval;
  87. }
  88. bdata->power_on_state = value;
  89. } else {
  90. bdata->power_on_state = 0;
  91. }
  92. prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
  93. if (prop && prop->length) {
  94. retval = of_property_read_u32(np, "synaptics,power-delay-ms",
  95. &value);
  96. if (retval < 0) {
  97. LOGE(dev, "Failed to read synaptics,power-delay-ms\n");
  98. return retval;
  99. }
  100. bdata->power_delay_ms = value;
  101. } else {
  102. bdata->power_delay_ms = 0;
  103. }
  104. prop = of_find_property(np, "synaptics,reset-gpio", NULL);
  105. if (prop && prop->length) {
  106. bdata->reset_gpio = of_get_named_gpio_flags(np,
  107. "synaptics,reset-gpio", 0, NULL);
  108. } else {
  109. bdata->reset_gpio = -1;
  110. }
  111. prop = of_find_property(np, "synaptics,reset-on-state", NULL);
  112. if (prop && prop->length) {
  113. retval = of_property_read_u32(np, "synaptics,reset-on-state",
  114. &value);
  115. if (retval < 0) {
  116. LOGE(dev, "Failed to read synaptics,reset-on-state\n");
  117. return retval;
  118. }
  119. bdata->reset_on_state = value;
  120. } else {
  121. bdata->reset_on_state = 0;
  122. }
  123. prop = of_find_property(np, "synaptics,reset-active-ms", NULL);
  124. if (prop && prop->length) {
  125. retval = of_property_read_u32(np, "synaptics,reset-active-ms",
  126. &value);
  127. if (retval < 0) {
  128. LOGE(dev, "Failed to read synaptics,reset-active-ms\n");
  129. return retval;
  130. }
  131. bdata->reset_active_ms = value;
  132. } else {
  133. bdata->reset_active_ms = 0;
  134. }
  135. prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
  136. if (prop && prop->length) {
  137. retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
  138. &value);
  139. if (retval < 0) {
  140. LOGE(dev, "Unable to read synaptics,reset-delay-ms\n");
  141. return retval;
  142. }
  143. bdata->reset_delay_ms = value;
  144. } else {
  145. bdata->reset_delay_ms = 0;
  146. }
  147. prop = of_find_property(np, "synaptics,x-flip", NULL);
  148. bdata->x_flip = prop > 0 ? true : false;
  149. prop = of_find_property(np, "synaptics,y-flip", NULL);
  150. bdata->y_flip = prop > 0 ? true : false;
  151. prop = of_find_property(np, "synaptics,swap-axes", NULL);
  152. bdata->swap_axes = prop > 0 ? true : false;
  153. prop = of_find_property(np, "synaptics,byte-delay-us", NULL);
  154. if (prop && prop->length) {
  155. retval = of_property_read_u32(np, "synaptics,byte-delay-us",
  156. &value);
  157. if (retval < 0) {
  158. LOGE(dev, "Unable to read synaptics,byte-delay-us\n");
  159. return retval;
  160. }
  161. bdata->byte_delay_us = value;
  162. } else {
  163. bdata->byte_delay_us = 0;
  164. }
  165. prop = of_find_property(np, "synaptics,block-delay-us", NULL);
  166. if (prop && prop->length) {
  167. retval = of_property_read_u32(np, "synaptics,block-delay-us",
  168. &value);
  169. if (retval < 0) {
  170. LOGE(dev, "Unable to read synaptics,block-delay-us\n");
  171. return retval;
  172. }
  173. bdata->block_delay_us = value;
  174. } else {
  175. bdata->block_delay_us = 0;
  176. }
  177. prop = of_find_property(np, "synaptics,spi-mode", NULL);
  178. if (prop && prop->length) {
  179. retval = of_property_read_u32(np, "synaptics,spi-mode",
  180. &value);
  181. if (retval < 0) {
  182. LOGE(dev, "Unable to read synaptics,spi-mode\n");
  183. return retval;
  184. }
  185. bdata->spi_mode = value;
  186. } else {
  187. bdata->spi_mode = 0;
  188. }
  189. prop = of_find_property(np, "synaptics,ubl-max-freq", NULL);
  190. if (prop && prop->length) {
  191. retval = of_property_read_u32(np, "synaptics,ubl-max-freq",
  192. &value);
  193. if (retval < 0) {
  194. LOGE(dev, "Unable to read synaptics,ubl-max-freq\n");
  195. return retval;
  196. }
  197. bdata->ubl_max_freq = value;
  198. } else {
  199. bdata->ubl_max_freq = 0;
  200. }
  201. prop = of_find_property(np, "synaptics,ubl-byte-delay-us", NULL);
  202. if (prop && prop->length) {
  203. retval = of_property_read_u32(np, "synaptics,ubl-byte-delay-us",
  204. &value);
  205. if (retval < 0) {
  206. LOGE(dev,
  207. "Unable to read synaptics,ubl-byte-delay-us\n");
  208. return retval;
  209. }
  210. bdata->ubl_byte_delay_us = value;
  211. } else {
  212. bdata->ubl_byte_delay_us = 0;
  213. }
  214. return 0;
  215. }
  216. #endif
  217. static int syna_tcm_spi_alloc_mem(struct syna_tcm_hcd *tcm_hcd,
  218. unsigned int count, unsigned int size)
  219. {
  220. static unsigned int xfer_count;
  221. struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
  222. if (count > xfer_count) {
  223. kfree(xfer);
  224. xfer = kcalloc(count, sizeof(*xfer), GFP_KERNEL);
  225. if (!xfer) {
  226. LOGE(&spi->dev,
  227. "Failed to allocate memory for xfer\n");
  228. xfer_count = 0;
  229. return -ENOMEM;
  230. }
  231. xfer_count = count;
  232. } else {
  233. memset(xfer, 0, count * sizeof(*xfer));
  234. }
  235. if (size > buf_size) {
  236. if (buf_size)
  237. kfree(buf);
  238. buf = kmalloc(size, GFP_KERNEL);
  239. if (!buf) {
  240. LOGE(&spi->dev,
  241. "Failed to allocate memory for buf\n");
  242. buf_size = 0;
  243. return -ENOMEM;
  244. }
  245. buf_size = size;
  246. }
  247. return 0;
  248. }
  249. static int syna_tcm_spi_rmi_read(struct syna_tcm_hcd *tcm_hcd,
  250. unsigned short addr, unsigned char *data, unsigned int length)
  251. {
  252. int retval;
  253. unsigned int idx;
  254. unsigned int mode;
  255. unsigned int byte_count;
  256. struct spi_message msg;
  257. struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
  258. const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
  259. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  260. spi_message_init(&msg);
  261. byte_count = length + 2;
  262. if (bdata->ubl_byte_delay_us == 0)
  263. retval = syna_tcm_spi_alloc_mem(tcm_hcd, 2, byte_count);
  264. else
  265. retval = syna_tcm_spi_alloc_mem(tcm_hcd, byte_count, 3);
  266. if (retval < 0) {
  267. LOGE(&spi->dev,
  268. "Failed to allocate memory\n");
  269. goto exit;
  270. }
  271. buf[0] = (unsigned char)(addr >> 8) | 0x80;
  272. buf[1] = (unsigned char)addr;
  273. if (bdata->ubl_byte_delay_us == 0) {
  274. xfer[0].len = 2;
  275. xfer[0].tx_buf = buf;
  276. xfer[0].speed_hz = bdata->ubl_max_freq;
  277. spi_message_add_tail(&xfer[0], &msg);
  278. memset(&buf[2], 0xff, length);
  279. xfer[1].len = length;
  280. xfer[1].tx_buf = &buf[2];
  281. xfer[1].rx_buf = data;
  282. if (bdata->block_delay_us)
  283. xfer[1].delay_usecs = bdata->block_delay_us;
  284. xfer[1].speed_hz = bdata->ubl_max_freq;
  285. spi_message_add_tail(&xfer[1], &msg);
  286. } else {
  287. buf[2] = 0xff;
  288. for (idx = 0; idx < byte_count; idx++) {
  289. xfer[idx].len = 1;
  290. if (idx < 2) {
  291. xfer[idx].tx_buf = &buf[idx];
  292. } else {
  293. xfer[idx].tx_buf = &buf[2];
  294. xfer[idx].rx_buf = &data[idx - 2];
  295. }
  296. xfer[idx].delay_usecs = bdata->ubl_byte_delay_us;
  297. if (bdata->block_delay_us && (idx == byte_count - 1))
  298. xfer[idx].delay_usecs = bdata->block_delay_us;
  299. xfer[idx].speed_hz = bdata->ubl_max_freq;
  300. spi_message_add_tail(&xfer[idx], &msg);
  301. }
  302. }
  303. mode = spi->mode;
  304. spi->mode = SPI_MODE_3;
  305. retval = spi_sync(spi, &msg);
  306. if (retval == 0) {
  307. retval = length;
  308. } else {
  309. LOGE(&spi->dev,
  310. "Failed to complete SPI transfer, error = %d\n",
  311. retval);
  312. }
  313. spi->mode = mode;
  314. exit:
  315. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  316. return retval;
  317. }
  318. static int syna_tcm_spi_rmi_write(struct syna_tcm_hcd *tcm_hcd,
  319. unsigned short addr, unsigned char *data, unsigned int length)
  320. {
  321. int retval;
  322. unsigned int mode;
  323. unsigned int byte_count;
  324. struct spi_message msg;
  325. struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
  326. const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
  327. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  328. spi_message_init(&msg);
  329. byte_count = length + 2;
  330. retval = syna_tcm_spi_alloc_mem(tcm_hcd, 1, byte_count);
  331. if (retval < 0) {
  332. LOGE(&spi->dev,
  333. "Failed to allocate memory\n");
  334. goto exit;
  335. }
  336. buf[0] = (unsigned char)(addr >> 8) & ~0x80;
  337. buf[1] = (unsigned char)addr;
  338. retval = secure_memcpy(&buf[2],
  339. buf_size - 2,
  340. data,
  341. length,
  342. length);
  343. if (retval < 0) {
  344. LOGE(&spi->dev,
  345. "Failed to copy write data\n");
  346. goto exit;
  347. }
  348. xfer[0].len = byte_count;
  349. xfer[0].tx_buf = buf;
  350. if (bdata->block_delay_us)
  351. xfer[0].delay_usecs = bdata->block_delay_us;
  352. spi_message_add_tail(&xfer[0], &msg);
  353. mode = spi->mode;
  354. spi->mode = SPI_MODE_3;
  355. retval = spi_sync(spi, &msg);
  356. if (retval == 0) {
  357. retval = length;
  358. } else {
  359. LOGE(&spi->dev,
  360. "Failed to complete SPI transfer, error = %d\n",
  361. retval);
  362. }
  363. spi->mode = mode;
  364. exit:
  365. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  366. return retval;
  367. }
  368. static int syna_tcm_spi_read(struct syna_tcm_hcd *tcm_hcd, unsigned char *data,
  369. unsigned int length)
  370. {
  371. int retval;
  372. unsigned int idx;
  373. struct spi_message msg;
  374. struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
  375. const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
  376. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  377. spi_message_init(&msg);
  378. if (bdata->byte_delay_us == 0)
  379. retval = syna_tcm_spi_alloc_mem(tcm_hcd, 1, length);
  380. else
  381. retval = syna_tcm_spi_alloc_mem(tcm_hcd, length, 1);
  382. if (retval < 0) {
  383. LOGE(tcm_hcd->pdev->dev.parent,
  384. "Failed to allocate memory\n");
  385. goto exit;
  386. }
  387. if (bdata->byte_delay_us == 0) {
  388. memset(buf, 0xff, length);
  389. xfer[0].len = length;
  390. xfer[0].tx_buf = buf;
  391. xfer[0].rx_buf = data;
  392. if (bdata->block_delay_us)
  393. xfer[0].delay_usecs = bdata->block_delay_us;
  394. spi_message_add_tail(&xfer[0], &msg);
  395. } else {
  396. buf[0] = 0xff;
  397. for (idx = 0; idx < length; idx++) {
  398. xfer[idx].len = 1;
  399. xfer[idx].tx_buf = buf;
  400. xfer[idx].rx_buf = &data[idx];
  401. xfer[idx].delay_usecs = bdata->byte_delay_us;
  402. if (bdata->block_delay_us && (idx == length - 1))
  403. xfer[idx].delay_usecs = bdata->block_delay_us;
  404. spi_message_add_tail(&xfer[idx], &msg);
  405. }
  406. }
  407. retval = spi_sync(spi, &msg);
  408. if (retval == 0) {
  409. retval = length;
  410. } else {
  411. LOGE(&spi->dev,
  412. "Failed to complete SPI transfer, error = %d\n",
  413. retval);
  414. }
  415. exit:
  416. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  417. return retval;
  418. }
  419. static int syna_tcm_spi_write(struct syna_tcm_hcd *tcm_hcd, unsigned char *data,
  420. unsigned int length)
  421. {
  422. int retval;
  423. unsigned int idx;
  424. struct spi_message msg;
  425. struct spi_device *spi = to_spi_device(tcm_hcd->pdev->dev.parent);
  426. const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
  427. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  428. spi_message_init(&msg);
  429. if (bdata->byte_delay_us == 0)
  430. retval = syna_tcm_spi_alloc_mem(tcm_hcd, 1, 0);
  431. else
  432. retval = syna_tcm_spi_alloc_mem(tcm_hcd, length, 0);
  433. if (retval < 0) {
  434. LOGE(&spi->dev,
  435. "Failed to allocate memory\n");
  436. goto exit;
  437. }
  438. if (bdata->byte_delay_us == 0) {
  439. xfer[0].len = length;
  440. xfer[0].tx_buf = data;
  441. if (bdata->block_delay_us)
  442. xfer[0].delay_usecs = bdata->block_delay_us;
  443. spi_message_add_tail(&xfer[0], &msg);
  444. } else {
  445. for (idx = 0; idx < length; idx++) {
  446. xfer[idx].len = 1;
  447. xfer[idx].tx_buf = &data[idx];
  448. xfer[idx].delay_usecs = bdata->byte_delay_us;
  449. if (bdata->block_delay_us && (idx == length - 1))
  450. xfer[idx].delay_usecs = bdata->block_delay_us;
  451. spi_message_add_tail(&xfer[idx], &msg);
  452. }
  453. }
  454. retval = spi_sync(spi, &msg);
  455. if (retval == 0) {
  456. retval = length;
  457. } else {
  458. LOGE(&spi->dev,
  459. "Failed to complete SPI transfer, error = %d\n",
  460. retval);
  461. }
  462. exit:
  463. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  464. return retval;
  465. }
  466. static int syna_tcm_spi_probe(struct spi_device *spi)
  467. {
  468. int retval;
  469. if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) {
  470. LOGE(&spi->dev,
  471. "Full duplex not supported by host\n");
  472. return -EIO;
  473. }
  474. syna_tcm_spi_device = platform_device_alloc(PLATFORM_DRIVER_NAME, 0);
  475. if (!syna_tcm_spi_device) {
  476. LOGE(&spi->dev,
  477. "Failed to allocate platform device\n");
  478. return -ENOMEM;
  479. }
  480. #ifdef CONFIG_OF
  481. hw_if.bdata = devm_kzalloc(&spi->dev, sizeof(*hw_if.bdata), GFP_KERNEL);
  482. if (!hw_if.bdata) {
  483. LOGE(&spi->dev,
  484. "Failed to allocate memory for board data\n");
  485. return -ENOMEM;
  486. }
  487. parse_dt(&spi->dev, hw_if.bdata);
  488. #else
  489. hw_if.bdata = spi->dev.platform_data;
  490. #endif
  491. switch (hw_if.bdata->spi_mode) {
  492. case 0:
  493. spi->mode = SPI_MODE_0;
  494. break;
  495. case 1:
  496. spi->mode = SPI_MODE_1;
  497. break;
  498. case 2:
  499. spi->mode = SPI_MODE_2;
  500. break;
  501. case 3:
  502. spi->mode = SPI_MODE_3;
  503. break;
  504. }
  505. bus_io.type = BUS_SPI;
  506. bus_io.read = syna_tcm_spi_read;
  507. bus_io.write = syna_tcm_spi_write;
  508. bus_io.rmi_read = syna_tcm_spi_rmi_read;
  509. bus_io.rmi_write = syna_tcm_spi_rmi_write;
  510. hw_if.bus_io = &bus_io;
  511. spi->bits_per_word = 8;
  512. retval = spi_setup(spi);
  513. if (retval < 0) {
  514. LOGE(&spi->dev,
  515. "Failed to set up SPI protocol driver\n");
  516. return retval;
  517. }
  518. syna_tcm_spi_device->dev.parent = &spi->dev;
  519. syna_tcm_spi_device->dev.platform_data = &hw_if;
  520. retval = platform_device_add(syna_tcm_spi_device);
  521. if (retval < 0) {
  522. LOGE(&spi->dev,
  523. "Failed to add platform device\n");
  524. return retval;
  525. }
  526. return 0;
  527. }
  528. static int syna_tcm_spi_remove(struct spi_device *spi)
  529. {
  530. syna_tcm_spi_device->dev.platform_data = NULL;
  531. platform_device_unregister(syna_tcm_spi_device);
  532. return 0;
  533. }
  534. static const struct spi_device_id syna_tcm_id_table[] = {
  535. {SPI_MODULE_NAME, 0},
  536. {},
  537. };
  538. MODULE_DEVICE_TABLE(spi, syna_tcm_id_table);
  539. #ifdef CONFIG_OF
  540. static const struct of_device_id syna_tcm_of_match_table[] = {
  541. {
  542. .compatible = "synaptics,tcm-spi",
  543. },
  544. {},
  545. };
  546. MODULE_DEVICE_TABLE(of, syna_tcm_of_match_table);
  547. #else
  548. #define syna_tcm_of_match_table NULL
  549. #endif
  550. static struct spi_driver syna_tcm_spi_driver = {
  551. .driver = {
  552. .name = SPI_MODULE_NAME,
  553. .owner = THIS_MODULE,
  554. .of_match_table = syna_tcm_of_match_table,
  555. },
  556. .probe = syna_tcm_spi_probe,
  557. .remove = syna_tcm_spi_remove,
  558. .id_table = syna_tcm_id_table,
  559. };
  560. int syna_tcm_bus_init_spi(void)
  561. {
  562. return spi_register_driver(&syna_tcm_spi_driver);
  563. }
  564. EXPORT_SYMBOL(syna_tcm_bus_init_spi);
  565. void syna_tcm_bus_exit_spi(void)
  566. {
  567. kfree(buf);
  568. kfree(xfer);
  569. spi_unregister_driver(&syna_tcm_spi_driver);
  570. }
  571. EXPORT_SYMBOL(syna_tcm_bus_exit_spi);
  572. MODULE_AUTHOR("Synaptics, Inc.");
  573. MODULE_DESCRIPTION("Synaptics TCM SPI Bus Module");
  574. MODULE_LICENSE("GPL v2");