dp_rx.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifdef ATH_RX_PRI_SAVE
  37. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  38. (qdf_nbuf_set_priority(_nbuf, _tid))
  39. #else
  40. #define DP_RX_TID_SAVE(_nbuf, _tid)
  41. #endif
  42. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  43. static inline
  44. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  45. {
  46. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  47. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  48. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  49. return false;
  50. }
  51. return true;
  52. }
  53. #else
  54. static inline
  55. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  56. {
  57. return true;
  58. }
  59. #endif
  60. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  61. {
  62. return vdev->ap_bridge_enabled;
  63. }
  64. #ifdef DUP_RX_DESC_WAR
  65. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  66. hal_ring_handle_t hal_ring,
  67. hal_ring_desc_t ring_desc,
  68. struct dp_rx_desc *rx_desc)
  69. {
  70. void *hal_soc = soc->hal_soc;
  71. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  72. dp_rx_desc_dump(rx_desc);
  73. }
  74. #else
  75. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  76. hal_ring_handle_t hal_ring_hdl,
  77. hal_ring_desc_t ring_desc,
  78. struct dp_rx_desc *rx_desc)
  79. {
  80. hal_soc_handle_t hal_soc = soc->hal_soc;
  81. dp_rx_desc_dump(rx_desc);
  82. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  83. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  84. qdf_assert_always(0);
  85. }
  86. #endif
  87. #ifdef RX_DESC_SANITY_WAR
  88. static inline
  89. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  90. hal_ring_handle_t hal_ring_hdl,
  91. hal_ring_desc_t ring_desc,
  92. struct dp_rx_desc *rx_desc)
  93. {
  94. uint8_t return_buffer_manager;
  95. if (qdf_unlikely(!rx_desc)) {
  96. /*
  97. * This is an unlikely case where the cookie obtained
  98. * from the ring_desc is invalid and hence we are not
  99. * able to find the corresponding rx_desc
  100. */
  101. goto fail;
  102. }
  103. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  104. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  105. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  106. goto fail;
  107. }
  108. return QDF_STATUS_SUCCESS;
  109. fail:
  110. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  111. dp_err("Ring Desc:");
  112. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  113. ring_desc);
  114. return QDF_STATUS_E_NULL_VALUE;
  115. }
  116. #else
  117. static inline
  118. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  119. hal_ring_handle_t hal_ring_hdl,
  120. hal_ring_desc_t ring_desc,
  121. struct dp_rx_desc *rx_desc)
  122. {
  123. return QDF_STATUS_SUCCESS;
  124. }
  125. #endif
  126. /**
  127. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  128. *
  129. * @dp_soc: struct dp_soc *
  130. * @nbuf_frag_info_t: nbuf frag info
  131. * @dp_pdev: struct dp_pdev *
  132. * @rx_desc_pool: Rx desc pool
  133. *
  134. * Return: QDF_STATUS
  135. */
  136. #ifdef DP_RX_MON_MEM_FRAG
  137. static inline QDF_STATUS
  138. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  139. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  140. struct dp_pdev *dp_pdev,
  141. struct rx_desc_pool *rx_desc_pool)
  142. {
  143. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  144. (nbuf_frag_info_t->virt_addr).vaddr =
  145. qdf_frag_alloc(rx_desc_pool->buf_size);
  146. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  147. dp_err("Frag alloc failed");
  148. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  149. return QDF_STATUS_E_NOMEM;
  150. }
  151. ret = qdf_mem_map_page(dp_soc->osdev,
  152. (nbuf_frag_info_t->virt_addr).vaddr,
  153. QDF_DMA_FROM_DEVICE,
  154. rx_desc_pool->buf_size,
  155. &nbuf_frag_info_t->paddr);
  156. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  157. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  158. dp_err("Frag map failed");
  159. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  160. return QDF_STATUS_E_FAULT;
  161. }
  162. return QDF_STATUS_SUCCESS;
  163. }
  164. #else
  165. static inline QDF_STATUS
  166. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  167. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  168. struct dp_pdev *dp_pdev,
  169. struct rx_desc_pool *rx_desc_pool)
  170. {
  171. return QDF_STATUS_SUCCESS;
  172. }
  173. #endif /* DP_RX_MON_MEM_FRAG */
  174. /**
  175. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  176. *
  177. * @dp_soc: struct dp_soc *
  178. * @mac_id: Mac id
  179. * @num_entries_avail: num_entries_avail
  180. * @nbuf_frag_info_t: nbuf frag info
  181. * @dp_pdev: struct dp_pdev *
  182. * @rx_desc_pool: Rx desc pool
  183. *
  184. * Return: QDF_STATUS
  185. */
  186. static inline QDF_STATUS
  187. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  188. uint32_t mac_id,
  189. uint32_t num_entries_avail,
  190. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  191. struct dp_pdev *dp_pdev,
  192. struct rx_desc_pool *rx_desc_pool)
  193. {
  194. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  195. (nbuf_frag_info_t->virt_addr).nbuf =
  196. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  197. mac_id,
  198. rx_desc_pool,
  199. num_entries_avail);
  200. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  201. dp_err("nbuf alloc failed");
  202. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  203. return QDF_STATUS_E_NOMEM;
  204. }
  205. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  206. (nbuf_frag_info_t->virt_addr).nbuf,
  207. QDF_DMA_FROM_DEVICE,
  208. rx_desc_pool->buf_size);
  209. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  210. dp_rx_buffer_pool_nbuf_free(dp_soc,
  211. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  212. dp_err("nbuf map failed");
  213. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  214. return QDF_STATUS_E_FAULT;
  215. }
  216. nbuf_frag_info_t->paddr =
  217. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  218. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  219. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  220. rx_desc_pool->buf_size,
  221. true);
  222. ret = check_x86_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  223. &nbuf_frag_info_t->paddr,
  224. rx_desc_pool);
  225. if (ret == QDF_STATUS_E_FAILURE) {
  226. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev,
  227. (nbuf_frag_info_t->virt_addr).nbuf,
  228. QDF_DMA_FROM_DEVICE,
  229. rx_desc_pool->buf_size);
  230. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  231. return QDF_STATUS_E_ADDRNOTAVAIL;
  232. }
  233. return QDF_STATUS_SUCCESS;
  234. }
  235. /*
  236. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  237. * called during dp rx initialization
  238. * and at the end of dp_rx_process.
  239. *
  240. * @soc: core txrx main context
  241. * @mac_id: mac_id which is one of 3 mac_ids
  242. * @dp_rxdma_srng: dp rxdma circular ring
  243. * @rx_desc_pool: Pointer to free Rx descriptor pool
  244. * @num_req_buffers: number of buffer to be replenished
  245. * @desc_list: list of descs if called from dp_rx_process
  246. * or NULL during dp rx initialization or out of buffer
  247. * interrupt.
  248. * @tail: tail of descs list
  249. * @func_name: name of the caller function
  250. * Return: return success or failure
  251. */
  252. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  253. struct dp_srng *dp_rxdma_srng,
  254. struct rx_desc_pool *rx_desc_pool,
  255. uint32_t num_req_buffers,
  256. union dp_rx_desc_list_elem_t **desc_list,
  257. union dp_rx_desc_list_elem_t **tail,
  258. const char *func_name)
  259. {
  260. uint32_t num_alloc_desc;
  261. uint16_t num_desc_to_free = 0;
  262. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  263. uint32_t num_entries_avail;
  264. uint32_t count;
  265. int sync_hw_ptr = 1;
  266. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  267. void *rxdma_ring_entry;
  268. union dp_rx_desc_list_elem_t *next;
  269. QDF_STATUS ret;
  270. void *rxdma_srng;
  271. rxdma_srng = dp_rxdma_srng->hal_srng;
  272. if (!rxdma_srng) {
  273. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  274. "rxdma srng not initialized");
  275. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  276. return QDF_STATUS_E_FAILURE;
  277. }
  278. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  279. "requested %d buffers for replenish", num_req_buffers);
  280. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  281. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  282. rxdma_srng,
  283. sync_hw_ptr);
  284. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  285. "no of available entries in rxdma ring: %d",
  286. num_entries_avail);
  287. if (!(*desc_list) && (num_entries_avail >
  288. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  289. num_req_buffers = num_entries_avail;
  290. } else if (num_entries_avail < num_req_buffers) {
  291. num_desc_to_free = num_req_buffers - num_entries_avail;
  292. num_req_buffers = num_entries_avail;
  293. }
  294. if (qdf_unlikely(!num_req_buffers)) {
  295. num_desc_to_free = num_req_buffers;
  296. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  297. goto free_descs;
  298. }
  299. /*
  300. * if desc_list is NULL, allocate the descs from freelist
  301. */
  302. if (!(*desc_list)) {
  303. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  304. rx_desc_pool,
  305. num_req_buffers,
  306. desc_list,
  307. tail);
  308. if (!num_alloc_desc) {
  309. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  310. "no free rx_descs in freelist");
  311. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  312. num_req_buffers);
  313. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  314. return QDF_STATUS_E_NOMEM;
  315. }
  316. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  317. "%d rx desc allocated", num_alloc_desc);
  318. num_req_buffers = num_alloc_desc;
  319. }
  320. count = 0;
  321. while (count < num_req_buffers) {
  322. /* Flag is set while pdev rx_desc_pool initialization */
  323. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  324. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  325. &nbuf_frag_info,
  326. dp_pdev,
  327. rx_desc_pool);
  328. else
  329. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  330. mac_id,
  331. num_entries_avail, &nbuf_frag_info,
  332. dp_pdev, rx_desc_pool);
  333. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  334. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  335. continue;
  336. break;
  337. }
  338. count++;
  339. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  340. rxdma_srng);
  341. qdf_assert_always(rxdma_ring_entry);
  342. next = (*desc_list)->next;
  343. /* Flag is set while pdev rx_desc_pool initialization */
  344. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  345. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  346. &nbuf_frag_info);
  347. else
  348. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  349. &nbuf_frag_info);
  350. /* rx_desc.in_use should be zero at this time*/
  351. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  352. (*desc_list)->rx_desc.in_use = 1;
  353. (*desc_list)->rx_desc.in_err_state = 0;
  354. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  355. func_name, RX_DESC_REPLENISHED);
  356. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  357. nbuf_frag_info.virt_addr.nbuf,
  358. (unsigned long long)(nbuf_frag_info.paddr),
  359. (*desc_list)->rx_desc.cookie);
  360. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  361. nbuf_frag_info.paddr,
  362. (*desc_list)->rx_desc.cookie,
  363. rx_desc_pool->owner);
  364. *desc_list = next;
  365. }
  366. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  367. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  368. count, num_desc_to_free);
  369. /* No need to count the number of bytes received during replenish.
  370. * Therefore set replenish.pkts.bytes as 0.
  371. */
  372. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  373. free_descs:
  374. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  375. /*
  376. * add any available free desc back to the free list
  377. */
  378. if (*desc_list)
  379. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  380. mac_id, rx_desc_pool);
  381. return QDF_STATUS_SUCCESS;
  382. }
  383. /*
  384. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  385. * pkts to RAW mode simulation to
  386. * decapsulate the pkt.
  387. *
  388. * @vdev: vdev on which RAW mode is enabled
  389. * @nbuf_list: list of RAW pkts to process
  390. * @peer: peer object from which the pkt is rx
  391. *
  392. * Return: void
  393. */
  394. void
  395. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  396. struct dp_peer *peer)
  397. {
  398. qdf_nbuf_t deliver_list_head = NULL;
  399. qdf_nbuf_t deliver_list_tail = NULL;
  400. qdf_nbuf_t nbuf;
  401. nbuf = nbuf_list;
  402. while (nbuf) {
  403. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  404. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  405. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  406. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  407. /*
  408. * reset the chfrag_start and chfrag_end bits in nbuf cb
  409. * as this is a non-amsdu pkt and RAW mode simulation expects
  410. * these bit s to be 0 for non-amsdu pkt.
  411. */
  412. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  413. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  414. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  415. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  416. }
  417. nbuf = next;
  418. }
  419. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  420. &deliver_list_tail, peer->mac_addr.raw);
  421. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  422. }
  423. #ifdef DP_LFR
  424. /*
  425. * In case of LFR, data of a new peer might be sent up
  426. * even before peer is added.
  427. */
  428. static inline struct dp_vdev *
  429. dp_get_vdev_from_peer(struct dp_soc *soc,
  430. uint16_t peer_id,
  431. struct dp_peer *peer,
  432. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  433. {
  434. struct dp_vdev *vdev;
  435. uint8_t vdev_id;
  436. if (unlikely(!peer)) {
  437. if (peer_id != HTT_INVALID_PEER) {
  438. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  439. mpdu_desc_info.peer_meta_data);
  440. QDF_TRACE(QDF_MODULE_ID_DP,
  441. QDF_TRACE_LEVEL_DEBUG,
  442. FL("PeerID %d not found use vdevID %d"),
  443. peer_id, vdev_id);
  444. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  445. vdev_id);
  446. } else {
  447. QDF_TRACE(QDF_MODULE_ID_DP,
  448. QDF_TRACE_LEVEL_DEBUG,
  449. FL("Invalid PeerID %d"),
  450. peer_id);
  451. return NULL;
  452. }
  453. } else {
  454. vdev = peer->vdev;
  455. }
  456. return vdev;
  457. }
  458. #else
  459. static inline struct dp_vdev *
  460. dp_get_vdev_from_peer(struct dp_soc *soc,
  461. uint16_t peer_id,
  462. struct dp_peer *peer,
  463. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  464. {
  465. if (unlikely(!peer)) {
  466. QDF_TRACE(QDF_MODULE_ID_DP,
  467. QDF_TRACE_LEVEL_DEBUG,
  468. FL("Peer not found for peerID %d"),
  469. peer_id);
  470. return NULL;
  471. } else {
  472. return peer->vdev;
  473. }
  474. }
  475. #endif
  476. #ifndef FEATURE_WDS
  477. static void
  478. dp_rx_da_learn(struct dp_soc *soc,
  479. uint8_t *rx_tlv_hdr,
  480. struct dp_peer *ta_peer,
  481. qdf_nbuf_t nbuf)
  482. {
  483. }
  484. #endif
  485. /*
  486. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  487. *
  488. * @soc: core txrx main context
  489. * @ta_peer : source peer entry
  490. * @rx_tlv_hdr : start address of rx tlvs
  491. * @nbuf : nbuf that has to be intrabss forwarded
  492. *
  493. * Return: bool: true if it is forwarded else false
  494. */
  495. static bool
  496. dp_rx_intrabss_fwd(struct dp_soc *soc,
  497. struct dp_peer *ta_peer,
  498. uint8_t *rx_tlv_hdr,
  499. qdf_nbuf_t nbuf,
  500. struct hal_rx_msdu_metadata msdu_metadata)
  501. {
  502. uint16_t len;
  503. uint8_t is_frag;
  504. struct dp_peer *da_peer;
  505. struct dp_ast_entry *ast_entry;
  506. qdf_nbuf_t nbuf_copy;
  507. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  508. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  509. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  510. tid_stats.tid_rx_stats[ring_id][tid];
  511. /* check if the destination peer is available in peer table
  512. * and also check if the source peer and destination peer
  513. * belong to the same vap and destination peer is not bss peer.
  514. */
  515. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  516. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  517. if (!ast_entry)
  518. return false;
  519. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  520. ast_entry->is_active = TRUE;
  521. return false;
  522. }
  523. da_peer = ast_entry->peer;
  524. if (!da_peer)
  525. return false;
  526. /* TA peer cannot be same as peer(DA) on which AST is present
  527. * this indicates a change in topology and that AST entries
  528. * are yet to be updated.
  529. */
  530. if (da_peer == ta_peer)
  531. return false;
  532. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  533. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  534. is_frag = qdf_nbuf_is_frag(nbuf);
  535. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  536. /* If the source or destination peer in the isolation
  537. * list then dont forward instead push to bridge stack.
  538. */
  539. if (dp_get_peer_isolation(ta_peer) ||
  540. dp_get_peer_isolation(da_peer))
  541. return false;
  542. /* linearize the nbuf just before we send to
  543. * dp_tx_send()
  544. */
  545. if (qdf_unlikely(is_frag)) {
  546. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  547. return false;
  548. nbuf = qdf_nbuf_unshare(nbuf);
  549. if (!nbuf) {
  550. DP_STATS_INC_PKT(ta_peer,
  551. rx.intra_bss.fail,
  552. 1,
  553. len);
  554. /* return true even though the pkt is
  555. * not forwarded. Basically skb_unshare
  556. * failed and we want to continue with
  557. * next nbuf.
  558. */
  559. tid_stats->fail_cnt[INTRABSS_DROP]++;
  560. return true;
  561. }
  562. }
  563. if (!dp_tx_send((struct cdp_soc_t *)soc,
  564. ta_peer->vdev->vdev_id, nbuf)) {
  565. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  566. len);
  567. return true;
  568. } else {
  569. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  570. len);
  571. tid_stats->fail_cnt[INTRABSS_DROP]++;
  572. return false;
  573. }
  574. }
  575. }
  576. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  577. * source, then clone the pkt and send the cloned pkt for
  578. * intra BSS forwarding and original pkt up the network stack
  579. * Note: how do we handle multicast pkts. do we forward
  580. * all multicast pkts as is or let a higher layer module
  581. * like igmpsnoop decide whether to forward or not with
  582. * Mcast enhancement.
  583. */
  584. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  585. !ta_peer->bss_peer))) {
  586. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  587. goto end;
  588. /* If the source peer in the isolation list
  589. * then dont forward instead push to bridge stack
  590. */
  591. if (dp_get_peer_isolation(ta_peer))
  592. goto end;
  593. nbuf_copy = qdf_nbuf_copy(nbuf);
  594. if (!nbuf_copy)
  595. goto end;
  596. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  597. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  598. /* Set cb->ftype to intrabss FWD */
  599. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  600. if (dp_tx_send((struct cdp_soc_t *)soc,
  601. ta_peer->vdev->vdev_id, nbuf_copy)) {
  602. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  603. tid_stats->fail_cnt[INTRABSS_DROP]++;
  604. qdf_nbuf_free(nbuf_copy);
  605. } else {
  606. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  607. tid_stats->intrabss_cnt++;
  608. }
  609. }
  610. end:
  611. /* return false as we have to still send the original pkt
  612. * up the stack
  613. */
  614. return false;
  615. }
  616. #ifdef MESH_MODE_SUPPORT
  617. /**
  618. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  619. *
  620. * @vdev: DP Virtual device handle
  621. * @nbuf: Buffer pointer
  622. * @rx_tlv_hdr: start of rx tlv header
  623. * @peer: pointer to peer
  624. *
  625. * This function allocated memory for mesh receive stats and fill the
  626. * required stats. Stores the memory address in skb cb.
  627. *
  628. * Return: void
  629. */
  630. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  631. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  632. {
  633. struct mesh_recv_hdr_s *rx_info = NULL;
  634. uint32_t pkt_type;
  635. uint32_t nss;
  636. uint32_t rate_mcs;
  637. uint32_t bw;
  638. uint8_t primary_chan_num;
  639. uint32_t center_chan_freq;
  640. struct dp_soc *soc;
  641. /* fill recv mesh stats */
  642. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  643. /* upper layers are resposible to free this memory */
  644. if (!rx_info) {
  645. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  646. "Memory allocation failed for mesh rx stats");
  647. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  648. return;
  649. }
  650. rx_info->rs_flags = MESH_RXHDR_VER1;
  651. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  652. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  653. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  654. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  655. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  656. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  657. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  658. if (vdev->osif_get_key)
  659. vdev->osif_get_key(vdev->osif_vdev,
  660. &rx_info->rs_decryptkey[0],
  661. &peer->mac_addr.raw[0],
  662. rx_info->rs_keyix);
  663. }
  664. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  665. soc = vdev->pdev->soc;
  666. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  667. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  668. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  669. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  670. soc->ctrl_psoc,
  671. vdev->pdev->pdev_id,
  672. center_chan_freq);
  673. }
  674. rx_info->rs_channel = primary_chan_num;
  675. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  676. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  677. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  678. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  679. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  680. (bw << 24);
  681. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  682. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  683. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  684. rx_info->rs_flags,
  685. rx_info->rs_rssi,
  686. rx_info->rs_channel,
  687. rx_info->rs_ratephy1,
  688. rx_info->rs_keyix);
  689. }
  690. /**
  691. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  692. *
  693. * @vdev: DP Virtual device handle
  694. * @nbuf: Buffer pointer
  695. * @rx_tlv_hdr: start of rx tlv header
  696. *
  697. * This checks if the received packet is matching any filter out
  698. * catogery and and drop the packet if it matches.
  699. *
  700. * Return: status(0 indicates drop, 1 indicate to no drop)
  701. */
  702. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  703. uint8_t *rx_tlv_hdr)
  704. {
  705. union dp_align_mac_addr mac_addr;
  706. struct dp_soc *soc = vdev->pdev->soc;
  707. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  708. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  709. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  710. rx_tlv_hdr))
  711. return QDF_STATUS_SUCCESS;
  712. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  713. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  714. rx_tlv_hdr))
  715. return QDF_STATUS_SUCCESS;
  716. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  717. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  718. rx_tlv_hdr) &&
  719. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  720. rx_tlv_hdr))
  721. return QDF_STATUS_SUCCESS;
  722. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  723. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  724. rx_tlv_hdr,
  725. &mac_addr.raw[0]))
  726. return QDF_STATUS_E_FAILURE;
  727. if (!qdf_mem_cmp(&mac_addr.raw[0],
  728. &vdev->mac_addr.raw[0],
  729. QDF_MAC_ADDR_SIZE))
  730. return QDF_STATUS_SUCCESS;
  731. }
  732. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  733. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  734. rx_tlv_hdr,
  735. &mac_addr.raw[0]))
  736. return QDF_STATUS_E_FAILURE;
  737. if (!qdf_mem_cmp(&mac_addr.raw[0],
  738. &vdev->mac_addr.raw[0],
  739. QDF_MAC_ADDR_SIZE))
  740. return QDF_STATUS_SUCCESS;
  741. }
  742. }
  743. return QDF_STATUS_E_FAILURE;
  744. }
  745. #else
  746. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  747. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  748. {
  749. }
  750. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  751. uint8_t *rx_tlv_hdr)
  752. {
  753. return QDF_STATUS_E_FAILURE;
  754. }
  755. #endif
  756. #ifdef FEATURE_NAC_RSSI
  757. /**
  758. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  759. * clients
  760. * @pdev: DP pdev handle
  761. * @rx_pkt_hdr: Rx packet Header
  762. *
  763. * return: dp_vdev*
  764. */
  765. static
  766. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  767. uint8_t *rx_pkt_hdr)
  768. {
  769. struct ieee80211_frame *wh;
  770. struct dp_neighbour_peer *peer = NULL;
  771. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  772. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  773. return NULL;
  774. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  775. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  776. neighbour_peer_list_elem) {
  777. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  778. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  779. QDF_TRACE(
  780. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  781. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  782. peer->neighbour_peers_macaddr.raw[0],
  783. peer->neighbour_peers_macaddr.raw[1],
  784. peer->neighbour_peers_macaddr.raw[2],
  785. peer->neighbour_peers_macaddr.raw[3],
  786. peer->neighbour_peers_macaddr.raw[4],
  787. peer->neighbour_peers_macaddr.raw[5]);
  788. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  789. return pdev->monitor_vdev;
  790. }
  791. }
  792. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  793. return NULL;
  794. }
  795. /**
  796. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  797. * @soc: DP SOC handle
  798. * @mpdu: mpdu for which peer is invalid
  799. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  800. * pool_id has same mapping)
  801. *
  802. * return: integer type
  803. */
  804. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  805. uint8_t mac_id)
  806. {
  807. struct dp_invalid_peer_msg msg;
  808. struct dp_vdev *vdev = NULL;
  809. struct dp_pdev *pdev = NULL;
  810. struct ieee80211_frame *wh;
  811. qdf_nbuf_t curr_nbuf, next_nbuf;
  812. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  813. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  814. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  815. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  816. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  817. "Drop decapped frames");
  818. goto free;
  819. }
  820. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  821. if (!DP_FRAME_IS_DATA(wh)) {
  822. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  823. "NAWDS valid only for data frames");
  824. goto free;
  825. }
  826. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  827. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  828. "Invalid nbuf length");
  829. goto free;
  830. }
  831. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  832. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  833. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  834. "PDEV %s", !pdev ? "not found" : "down");
  835. goto free;
  836. }
  837. if (pdev->filter_neighbour_peers) {
  838. /* Next Hop scenario not yet handle */
  839. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  840. if (vdev) {
  841. dp_rx_mon_deliver(soc, pdev->pdev_id,
  842. pdev->invalid_peer_head_msdu,
  843. pdev->invalid_peer_tail_msdu);
  844. pdev->invalid_peer_head_msdu = NULL;
  845. pdev->invalid_peer_tail_msdu = NULL;
  846. return 0;
  847. }
  848. }
  849. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  850. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  851. QDF_MAC_ADDR_SIZE) == 0) {
  852. goto out;
  853. }
  854. }
  855. if (!vdev) {
  856. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  857. "VDEV not found");
  858. goto free;
  859. }
  860. out:
  861. msg.wh = wh;
  862. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  863. msg.nbuf = mpdu;
  864. msg.vdev_id = vdev->vdev_id;
  865. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  866. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  867. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  868. pdev->pdev_id, &msg);
  869. free:
  870. /* Drop and free packet */
  871. curr_nbuf = mpdu;
  872. while (curr_nbuf) {
  873. next_nbuf = qdf_nbuf_next(curr_nbuf);
  874. qdf_nbuf_free(curr_nbuf);
  875. curr_nbuf = next_nbuf;
  876. }
  877. return 0;
  878. }
  879. /**
  880. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  881. * @soc: DP SOC handle
  882. * @mpdu: mpdu for which peer is invalid
  883. * @mpdu_done: if an mpdu is completed
  884. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  885. * pool_id has same mapping)
  886. *
  887. * return: integer type
  888. */
  889. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  890. qdf_nbuf_t mpdu, bool mpdu_done,
  891. uint8_t mac_id)
  892. {
  893. /* Only trigger the process when mpdu is completed */
  894. if (mpdu_done)
  895. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  896. }
  897. #else
  898. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  899. uint8_t mac_id)
  900. {
  901. qdf_nbuf_t curr_nbuf, next_nbuf;
  902. struct dp_pdev *pdev;
  903. struct dp_vdev *vdev = NULL;
  904. struct ieee80211_frame *wh;
  905. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  906. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  907. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  908. if (!DP_FRAME_IS_DATA(wh)) {
  909. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  910. "only for data frames");
  911. goto free;
  912. }
  913. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  914. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  915. "Invalid nbuf length");
  916. goto free;
  917. }
  918. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  919. if (!pdev) {
  920. QDF_TRACE(QDF_MODULE_ID_DP,
  921. QDF_TRACE_LEVEL_ERROR,
  922. "PDEV not found");
  923. goto free;
  924. }
  925. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  926. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  927. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  928. QDF_MAC_ADDR_SIZE) == 0) {
  929. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  930. goto out;
  931. }
  932. }
  933. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  934. if (!vdev) {
  935. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  936. "VDEV not found");
  937. goto free;
  938. }
  939. out:
  940. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  941. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  942. free:
  943. /* reset the head and tail pointers */
  944. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  945. if (pdev) {
  946. pdev->invalid_peer_head_msdu = NULL;
  947. pdev->invalid_peer_tail_msdu = NULL;
  948. }
  949. /* Drop and free packet */
  950. curr_nbuf = mpdu;
  951. while (curr_nbuf) {
  952. next_nbuf = qdf_nbuf_next(curr_nbuf);
  953. qdf_nbuf_free(curr_nbuf);
  954. curr_nbuf = next_nbuf;
  955. }
  956. /* Reset the head and tail pointers */
  957. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  958. if (pdev) {
  959. pdev->invalid_peer_head_msdu = NULL;
  960. pdev->invalid_peer_tail_msdu = NULL;
  961. }
  962. return 0;
  963. }
  964. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  965. qdf_nbuf_t mpdu, bool mpdu_done,
  966. uint8_t mac_id)
  967. {
  968. /* Process the nbuf */
  969. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  970. }
  971. #endif
  972. #ifdef RECEIVE_OFFLOAD
  973. /**
  974. * dp_rx_print_offload_info() - Print offload info from RX TLV
  975. * @soc: dp soc handle
  976. * @rx_tlv: RX TLV for which offload information is to be printed
  977. *
  978. * Return: None
  979. */
  980. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  981. {
  982. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  983. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  984. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  985. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  986. rx_tlv));
  987. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  988. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  989. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  990. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  991. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  992. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  993. dp_verbose_debug("---------------------------------------------------------");
  994. }
  995. /**
  996. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  997. * @soc: DP SOC handle
  998. * @rx_tlv: RX TLV received for the msdu
  999. * @msdu: msdu for which GRO info needs to be filled
  1000. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  1001. *
  1002. * Return: None
  1003. */
  1004. static
  1005. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1006. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1007. {
  1008. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1009. return;
  1010. /* Filling up RX offload info only for TCP packets */
  1011. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  1012. return;
  1013. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1014. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  1015. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  1016. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  1017. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  1018. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1019. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1020. rx_tlv);
  1021. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  1022. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  1023. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  1024. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  1025. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  1026. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  1027. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  1028. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  1029. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  1030. HAL_RX_TLV_GET_IPV6(rx_tlv);
  1031. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  1032. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  1033. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  1034. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  1035. dp_rx_print_offload_info(soc, rx_tlv);
  1036. }
  1037. #else
  1038. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1039. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1040. {
  1041. }
  1042. #endif /* RECEIVE_OFFLOAD */
  1043. /**
  1044. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1045. *
  1046. * @nbuf: pointer to msdu.
  1047. * @mpdu_len: mpdu length
  1048. *
  1049. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1050. */
  1051. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1052. {
  1053. bool last_nbuf;
  1054. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1055. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1056. last_nbuf = false;
  1057. } else {
  1058. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1059. last_nbuf = true;
  1060. }
  1061. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1062. return last_nbuf;
  1063. }
  1064. /**
  1065. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1066. * multiple nbufs.
  1067. * @nbuf: pointer to the first msdu of an amsdu.
  1068. *
  1069. * This function implements the creation of RX frag_list for cases
  1070. * where an MSDU is spread across multiple nbufs.
  1071. *
  1072. * Return: returns the head nbuf which contains complete frag_list.
  1073. */
  1074. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  1075. {
  1076. qdf_nbuf_t parent, frag_list, next = NULL;
  1077. uint16_t frag_list_len = 0;
  1078. uint16_t mpdu_len;
  1079. bool last_nbuf;
  1080. /*
  1081. * Use msdu len got from REO entry descriptor instead since
  1082. * there is case the RX PKT TLV is corrupted while msdu_len
  1083. * from REO descriptor is right for non-raw RX scatter msdu.
  1084. */
  1085. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1086. /*
  1087. * this is a case where the complete msdu fits in one single nbuf.
  1088. * in this case HW sets both start and end bit and we only need to
  1089. * reset these bits for RAW mode simulator to decap the pkt
  1090. */
  1091. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1092. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1093. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1094. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1095. return nbuf;
  1096. }
  1097. /*
  1098. * This is a case where we have multiple msdus (A-MSDU) spread across
  1099. * multiple nbufs. here we create a fraglist out of these nbufs.
  1100. *
  1101. * the moment we encounter a nbuf with continuation bit set we
  1102. * know for sure we have an MSDU which is spread across multiple
  1103. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1104. */
  1105. parent = nbuf;
  1106. frag_list = nbuf->next;
  1107. nbuf = nbuf->next;
  1108. /*
  1109. * set the start bit in the first nbuf we encounter with continuation
  1110. * bit set. This has the proper mpdu length set as it is the first
  1111. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1112. * nbufs will form the frag_list of the parent nbuf.
  1113. */
  1114. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1115. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1116. /*
  1117. * this is where we set the length of the fragments which are
  1118. * associated to the parent nbuf. We iterate through the frag_list
  1119. * till we hit the last_nbuf of the list.
  1120. */
  1121. do {
  1122. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1123. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1124. frag_list_len += qdf_nbuf_len(nbuf);
  1125. if (last_nbuf) {
  1126. next = nbuf->next;
  1127. nbuf->next = NULL;
  1128. break;
  1129. }
  1130. nbuf = nbuf->next;
  1131. } while (!last_nbuf);
  1132. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1133. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1134. parent->next = next;
  1135. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1136. return parent;
  1137. }
  1138. #ifdef QCA_PEER_EXT_STATS
  1139. /*
  1140. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1141. * @peer: DP soc context
  1142. * @nbuf: NBuffer
  1143. *
  1144. * Return: Void
  1145. */
  1146. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1147. qdf_nbuf_t nbuf)
  1148. {
  1149. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1150. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1151. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1152. }
  1153. #endif /* QCA_PEER_EXT_STATS */
  1154. /**
  1155. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1156. * to pass in correct fields
  1157. *
  1158. * @vdev: pdev handle
  1159. * @tx_desc: tx descriptor
  1160. * @tid: tid value
  1161. * Return: none
  1162. */
  1163. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1164. {
  1165. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1166. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1167. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1168. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1169. uint32_t interframe_delay =
  1170. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1171. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1172. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1173. /*
  1174. * Update interframe delay stats calculated at deliver_data_ol point.
  1175. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1176. * interframe delay will not be calculate correctly for 1st frame.
  1177. * On the other side, this will help in avoiding extra per packet check
  1178. * of vdev->prev_rx_deliver_tstamp.
  1179. */
  1180. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1181. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1182. vdev->prev_rx_deliver_tstamp = current_ts;
  1183. }
  1184. /**
  1185. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1186. * @pdev: dp pdev reference
  1187. * @buf_list: buffer list to be dropepd
  1188. *
  1189. * Return: int (number of bufs dropped)
  1190. */
  1191. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1192. qdf_nbuf_t buf_list)
  1193. {
  1194. struct cdp_tid_rx_stats *stats = NULL;
  1195. uint8_t tid = 0, ring_id = 0;
  1196. int num_dropped = 0;
  1197. qdf_nbuf_t buf, next_buf;
  1198. buf = buf_list;
  1199. while (buf) {
  1200. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1201. next_buf = qdf_nbuf_queue_next(buf);
  1202. tid = qdf_nbuf_get_tid_val(buf);
  1203. if (qdf_likely(pdev)) {
  1204. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1205. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1206. stats->delivered_to_stack--;
  1207. }
  1208. qdf_nbuf_free(buf);
  1209. buf = next_buf;
  1210. num_dropped++;
  1211. }
  1212. return num_dropped;
  1213. }
  1214. #ifdef PEER_CACHE_RX_PKTS
  1215. /**
  1216. * dp_rx_flush_rx_cached() - flush cached rx frames
  1217. * @peer: peer
  1218. * @drop: flag to drop frames or forward to net stack
  1219. *
  1220. * Return: None
  1221. */
  1222. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1223. {
  1224. struct dp_peer_cached_bufq *bufqi;
  1225. struct dp_rx_cached_buf *cache_buf = NULL;
  1226. ol_txrx_rx_fp data_rx = NULL;
  1227. int num_buff_elem;
  1228. QDF_STATUS status;
  1229. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1230. qdf_atomic_dec(&peer->flush_in_progress);
  1231. return;
  1232. }
  1233. qdf_spin_lock_bh(&peer->peer_info_lock);
  1234. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1235. data_rx = peer->vdev->osif_rx;
  1236. else
  1237. drop = true;
  1238. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1239. bufqi = &peer->bufq_info;
  1240. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1241. qdf_list_remove_front(&bufqi->cached_bufq,
  1242. (qdf_list_node_t **)&cache_buf);
  1243. while (cache_buf) {
  1244. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1245. cache_buf->buf);
  1246. bufqi->entries -= num_buff_elem;
  1247. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1248. if (drop) {
  1249. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1250. cache_buf->buf);
  1251. } else {
  1252. /* Flush the cached frames to OSIF DEV */
  1253. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1254. if (status != QDF_STATUS_SUCCESS)
  1255. bufqi->dropped = dp_rx_drop_nbuf_list(
  1256. peer->vdev->pdev,
  1257. cache_buf->buf);
  1258. }
  1259. qdf_mem_free(cache_buf);
  1260. cache_buf = NULL;
  1261. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1262. qdf_list_remove_front(&bufqi->cached_bufq,
  1263. (qdf_list_node_t **)&cache_buf);
  1264. }
  1265. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1266. qdf_atomic_dec(&peer->flush_in_progress);
  1267. }
  1268. /**
  1269. * dp_rx_enqueue_rx() - cache rx frames
  1270. * @peer: peer
  1271. * @rx_buf_list: cache buffer list
  1272. *
  1273. * Return: None
  1274. */
  1275. static QDF_STATUS
  1276. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1277. {
  1278. struct dp_rx_cached_buf *cache_buf;
  1279. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1280. int num_buff_elem;
  1281. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1282. bufqi->dropped);
  1283. if (!peer->valid) {
  1284. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1285. rx_buf_list);
  1286. return QDF_STATUS_E_INVAL;
  1287. }
  1288. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1289. if (bufqi->entries >= bufqi->thresh) {
  1290. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1291. rx_buf_list);
  1292. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1293. return QDF_STATUS_E_RESOURCES;
  1294. }
  1295. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1296. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1297. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1298. if (!cache_buf) {
  1299. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1300. "Failed to allocate buf to cache rx frames");
  1301. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1302. rx_buf_list);
  1303. return QDF_STATUS_E_NOMEM;
  1304. }
  1305. cache_buf->buf = rx_buf_list;
  1306. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1307. qdf_list_insert_back(&bufqi->cached_bufq,
  1308. &cache_buf->node);
  1309. bufqi->entries += num_buff_elem;
  1310. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1311. return QDF_STATUS_SUCCESS;
  1312. }
  1313. static inline
  1314. bool dp_rx_is_peer_cache_bufq_supported(void)
  1315. {
  1316. return true;
  1317. }
  1318. #else
  1319. static inline
  1320. bool dp_rx_is_peer_cache_bufq_supported(void)
  1321. {
  1322. return false;
  1323. }
  1324. static inline QDF_STATUS
  1325. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1326. {
  1327. return QDF_STATUS_SUCCESS;
  1328. }
  1329. #endif
  1330. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1331. /**
  1332. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1333. * using the appropriate call back functions.
  1334. * @soc: soc
  1335. * @vdev: vdev
  1336. * @peer: peer
  1337. * @nbuf_head: skb list head
  1338. * @nbuf_tail: skb list tail
  1339. *
  1340. * Return: None
  1341. */
  1342. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1343. struct dp_vdev *vdev,
  1344. struct dp_peer *peer,
  1345. qdf_nbuf_t nbuf_head)
  1346. {
  1347. /* Function pointer initialized only when FISA is enabled */
  1348. if (vdev->osif_fisa_rx)
  1349. /* on failure send it via regular path */
  1350. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1351. else
  1352. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1353. }
  1354. #else
  1355. /**
  1356. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1357. * using the appropriate call back functions.
  1358. * @soc: soc
  1359. * @vdev: vdev
  1360. * @peer: peer
  1361. * @nbuf_head: skb list head
  1362. * @nbuf_tail: skb list tail
  1363. *
  1364. * Check the return status of the call back function and drop
  1365. * the packets if the return status indicates a failure.
  1366. *
  1367. * Return: None
  1368. */
  1369. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1370. struct dp_vdev *vdev,
  1371. struct dp_peer *peer,
  1372. qdf_nbuf_t nbuf_head)
  1373. {
  1374. int num_nbuf = 0;
  1375. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1376. /* Function pointer initialized only when FISA is enabled */
  1377. if (vdev->osif_fisa_rx)
  1378. /* on failure send it via regular path */
  1379. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1380. else if (vdev->osif_rx)
  1381. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1382. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1383. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1384. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1385. if (peer)
  1386. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1387. }
  1388. }
  1389. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1390. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1391. struct dp_vdev *vdev,
  1392. struct dp_peer *peer,
  1393. qdf_nbuf_t nbuf_head,
  1394. qdf_nbuf_t nbuf_tail)
  1395. {
  1396. int num_nbuf = 0;
  1397. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1398. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1399. /*
  1400. * This is a special case where vdev is invalid,
  1401. * so we cannot know the pdev to which this packet
  1402. * belonged. Hence we update the soc rx error stats.
  1403. */
  1404. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1405. return;
  1406. }
  1407. /*
  1408. * highly unlikely to have a vdev without a registered rx
  1409. * callback function. if so let us free the nbuf_list.
  1410. */
  1411. if (qdf_unlikely(!vdev->osif_rx)) {
  1412. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1413. dp_rx_enqueue_rx(peer, nbuf_head);
  1414. } else {
  1415. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1416. nbuf_head);
  1417. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1418. }
  1419. return;
  1420. }
  1421. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1422. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1423. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1424. &nbuf_tail, peer->mac_addr.raw);
  1425. }
  1426. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1427. }
  1428. /**
  1429. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1430. * @nbuf: pointer to the first msdu of an amsdu.
  1431. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1432. *
  1433. * The ipsumed field of the skb is set based on whether HW validated the
  1434. * IP/TCP/UDP checksum.
  1435. *
  1436. * Return: void
  1437. */
  1438. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1439. qdf_nbuf_t nbuf,
  1440. uint8_t *rx_tlv_hdr)
  1441. {
  1442. qdf_nbuf_rx_cksum_t cksum = {0};
  1443. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1444. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1445. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1446. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1447. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1448. } else {
  1449. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1450. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1451. }
  1452. }
  1453. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1454. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1455. { \
  1456. qdf_nbuf_t nbuf_local; \
  1457. struct dp_peer *peer_local; \
  1458. struct dp_vdev *vdev_local = vdev_hdl; \
  1459. do { \
  1460. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1461. break; \
  1462. nbuf_local = nbuf; \
  1463. peer_local = peer; \
  1464. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1465. break; \
  1466. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1467. break; \
  1468. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1469. (nbuf_local), \
  1470. (peer_local), 0, 1); \
  1471. } while (0); \
  1472. }
  1473. #else
  1474. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1475. #endif
  1476. /**
  1477. * dp_rx_msdu_stats_update() - update per msdu stats.
  1478. * @soc: core txrx main context
  1479. * @nbuf: pointer to the first msdu of an amsdu.
  1480. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1481. * @peer: pointer to the peer object.
  1482. * @ring_id: reo dest ring number on which pkt is reaped.
  1483. * @tid_stats: per tid rx stats.
  1484. *
  1485. * update all the per msdu stats for that nbuf.
  1486. * Return: void
  1487. */
  1488. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1489. qdf_nbuf_t nbuf,
  1490. uint8_t *rx_tlv_hdr,
  1491. struct dp_peer *peer,
  1492. uint8_t ring_id,
  1493. struct cdp_tid_rx_stats *tid_stats)
  1494. {
  1495. bool is_ampdu, is_not_amsdu;
  1496. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1497. struct dp_vdev *vdev = peer->vdev;
  1498. qdf_ether_header_t *eh;
  1499. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1500. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1501. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1502. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1503. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1504. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1505. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1506. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1507. tid_stats->msdu_cnt++;
  1508. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1509. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1510. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1511. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1512. tid_stats->mcast_msdu_cnt++;
  1513. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1514. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1515. tid_stats->bcast_msdu_cnt++;
  1516. }
  1517. }
  1518. /*
  1519. * currently we can return from here as we have similar stats
  1520. * updated at per ppdu level instead of msdu level
  1521. */
  1522. if (!soc->process_rx_status)
  1523. return;
  1524. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1525. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1526. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1527. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1528. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1529. tid = qdf_nbuf_get_tid_val(nbuf);
  1530. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1531. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1532. rx_tlv_hdr);
  1533. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1534. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1535. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1536. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1537. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1538. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1539. DP_STATS_INC(peer, rx.bw[bw], 1);
  1540. /*
  1541. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1542. * then increase index [nss - 1] in array counter.
  1543. */
  1544. if (nss > 0 && (pkt_type == DOT11_N ||
  1545. pkt_type == DOT11_AC ||
  1546. pkt_type == DOT11_AX))
  1547. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1548. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1549. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1550. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1551. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1552. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1553. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1554. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1555. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1556. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1557. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1558. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1559. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1560. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1561. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1562. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1563. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1564. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1565. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1566. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1567. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1568. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1569. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1570. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1571. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1572. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1573. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1574. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1575. if ((soc->process_rx_status) &&
  1576. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1577. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1578. if (!vdev->pdev)
  1579. return;
  1580. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1581. &peer->stats, peer->peer_id,
  1582. UPDATE_PEER_STATS,
  1583. vdev->pdev->pdev_id);
  1584. #endif
  1585. }
  1586. }
  1587. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1588. uint8_t *rx_tlv_hdr,
  1589. qdf_nbuf_t nbuf,
  1590. struct hal_rx_msdu_metadata msdu_info)
  1591. {
  1592. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1593. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1594. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1595. qdf_nbuf_is_da_valid(nbuf) &&
  1596. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1597. return false;
  1598. return true;
  1599. }
  1600. #ifndef WDS_VENDOR_EXTENSION
  1601. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1602. struct dp_vdev *vdev,
  1603. struct dp_peer *peer)
  1604. {
  1605. return 1;
  1606. }
  1607. #endif
  1608. #ifdef RX_DESC_DEBUG_CHECK
  1609. /**
  1610. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1611. * corruption
  1612. *
  1613. * @ring_desc: REO ring descriptor
  1614. * @rx_desc: Rx descriptor
  1615. *
  1616. * Return: NONE
  1617. */
  1618. static inline
  1619. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1620. struct dp_rx_desc *rx_desc)
  1621. {
  1622. struct hal_buf_info hbi;
  1623. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1624. /* Sanity check for possible buffer paddr corruption */
  1625. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1626. return QDF_STATUS_SUCCESS;
  1627. return QDF_STATUS_E_FAILURE;
  1628. }
  1629. #else
  1630. static inline
  1631. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1632. struct dp_rx_desc *rx_desc)
  1633. {
  1634. return QDF_STATUS_SUCCESS;
  1635. }
  1636. #endif
  1637. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1638. static inline
  1639. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1640. {
  1641. bool limit_hit = false;
  1642. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1643. limit_hit =
  1644. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1645. if (limit_hit)
  1646. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1647. return limit_hit;
  1648. }
  1649. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1650. {
  1651. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1652. }
  1653. #else
  1654. static inline
  1655. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1656. {
  1657. return false;
  1658. }
  1659. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1660. {
  1661. return false;
  1662. }
  1663. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1664. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1665. /**
  1666. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1667. * no corresbonding peer found
  1668. * @soc: core txrx main context
  1669. * @nbuf: pkt skb pointer
  1670. *
  1671. * This function will try to deliver some RX special frames to stack
  1672. * even there is no peer matched found. for instance, LFR case, some
  1673. * eapol data will be sent to host before peer_map done.
  1674. *
  1675. * Return: None
  1676. */
  1677. static
  1678. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1679. {
  1680. uint16_t peer_id;
  1681. uint8_t vdev_id;
  1682. struct dp_vdev *vdev;
  1683. uint32_t l2_hdr_offset = 0;
  1684. uint16_t msdu_len = 0;
  1685. uint32_t pkt_len = 0;
  1686. uint8_t *rx_tlv_hdr;
  1687. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1688. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1689. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1690. if (peer_id > soc->max_peers)
  1691. goto deliver_fail;
  1692. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1693. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1694. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1695. goto deliver_fail;
  1696. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1697. goto deliver_fail;
  1698. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1699. l2_hdr_offset =
  1700. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1701. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1702. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1703. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1704. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1705. qdf_nbuf_pull_head(nbuf,
  1706. RX_PKT_TLVS_LEN +
  1707. l2_hdr_offset);
  1708. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1709. qdf_nbuf_set_exc_frame(nbuf, 1);
  1710. if (QDF_STATUS_SUCCESS !=
  1711. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1712. goto deliver_fail;
  1713. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1714. return;
  1715. }
  1716. deliver_fail:
  1717. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1718. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1719. qdf_nbuf_free(nbuf);
  1720. }
  1721. #else
  1722. static inline
  1723. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1724. {
  1725. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1726. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1727. qdf_nbuf_free(nbuf);
  1728. }
  1729. #endif
  1730. /**
  1731. * dp_rx_srng_get_num_pending() - get number of pending entries
  1732. * @hal_soc: hal soc opaque pointer
  1733. * @hal_ring: opaque pointer to the HAL Rx Ring
  1734. * @num_entries: number of entries in the hal_ring.
  1735. * @near_full: pointer to a boolean. This is set if ring is near full.
  1736. *
  1737. * The function returns the number of entries in a destination ring which are
  1738. * yet to be reaped. The function also checks if the ring is near full.
  1739. * If more than half of the ring needs to be reaped, the ring is considered
  1740. * approaching full.
  1741. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1742. * entries. It should not be called within a SRNG lock. HW pointer value is
  1743. * synced into cached_hp.
  1744. *
  1745. * Return: Number of pending entries if any
  1746. */
  1747. static
  1748. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1749. hal_ring_handle_t hal_ring_hdl,
  1750. uint32_t num_entries,
  1751. bool *near_full)
  1752. {
  1753. uint32_t num_pending = 0;
  1754. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1755. hal_ring_hdl,
  1756. true);
  1757. if (num_entries && (num_pending >= num_entries >> 1))
  1758. *near_full = true;
  1759. else
  1760. *near_full = false;
  1761. return num_pending;
  1762. }
  1763. #ifdef WLAN_SUPPORT_RX_FISA
  1764. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1765. {
  1766. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1767. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1768. }
  1769. /**
  1770. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1771. * @nbuf: pkt skb pointer
  1772. * @l3_padding: l3 padding
  1773. *
  1774. * Return: None
  1775. */
  1776. static inline
  1777. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1778. {
  1779. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1780. }
  1781. #else
  1782. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1783. {
  1784. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1785. }
  1786. static inline
  1787. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1788. {
  1789. }
  1790. #endif
  1791. #ifdef DP_RX_DROP_RAW_FRM
  1792. /**
  1793. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1794. * @nbuf: pkt skb pointer
  1795. *
  1796. * Return: true - raw frame, dropped
  1797. * false - not raw frame, do nothing
  1798. */
  1799. static inline
  1800. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1801. {
  1802. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1803. qdf_nbuf_free(nbuf);
  1804. return true;
  1805. }
  1806. return false;
  1807. }
  1808. #else
  1809. static inline
  1810. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1811. {
  1812. return false;
  1813. }
  1814. #endif
  1815. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1816. /**
  1817. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1818. * @soc: Datapath soc structure
  1819. * @ring_num: REO ring number
  1820. * @ring_desc: REO ring descriptor
  1821. *
  1822. * Returns: None
  1823. */
  1824. static inline void
  1825. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1826. hal_ring_desc_t ring_desc)
  1827. {
  1828. struct dp_buf_info_record *record;
  1829. uint8_t rbm;
  1830. struct hal_buf_info hbi;
  1831. uint32_t idx;
  1832. if (qdf_unlikely(!&soc->rx_ring_history[ring_num]))
  1833. return;
  1834. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1835. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1836. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1837. DP_RX_HIST_MAX);
  1838. /* No NULL check needed for record since its an array */
  1839. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1840. record->timestamp = qdf_get_log_timestamp();
  1841. record->hbi.paddr = hbi.paddr;
  1842. record->hbi.sw_cookie = hbi.sw_cookie;
  1843. record->hbi.rbm = rbm;
  1844. }
  1845. #else
  1846. static inline void
  1847. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1848. hal_ring_desc_t ring_desc)
  1849. {
  1850. }
  1851. #endif
  1852. /**
  1853. * dp_rx_process() - Brain of the Rx processing functionality
  1854. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1855. * @int_ctx: per interrupt context
  1856. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1857. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1858. * @quota: No. of units (packets) that can be serviced in one shot.
  1859. *
  1860. * This function implements the core of Rx functionality. This is
  1861. * expected to handle only non-error frames.
  1862. *
  1863. * Return: uint32_t: No. of elements processed
  1864. */
  1865. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1866. uint8_t reo_ring_num, uint32_t quota)
  1867. {
  1868. hal_ring_desc_t ring_desc;
  1869. hal_soc_handle_t hal_soc;
  1870. struct dp_rx_desc *rx_desc = NULL;
  1871. qdf_nbuf_t nbuf, next;
  1872. bool near_full;
  1873. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1874. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1875. uint32_t num_pending;
  1876. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1877. uint16_t msdu_len = 0;
  1878. uint16_t peer_id;
  1879. uint8_t vdev_id;
  1880. struct dp_peer *peer;
  1881. struct dp_vdev *vdev;
  1882. uint32_t pkt_len = 0;
  1883. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1884. struct hal_rx_msdu_desc_info msdu_desc_info;
  1885. enum hal_reo_error_status error;
  1886. uint32_t peer_mdata;
  1887. uint8_t *rx_tlv_hdr;
  1888. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1889. uint8_t mac_id = 0;
  1890. struct dp_pdev *rx_pdev;
  1891. struct dp_srng *dp_rxdma_srng;
  1892. struct rx_desc_pool *rx_desc_pool;
  1893. struct dp_soc *soc = int_ctx->soc;
  1894. uint8_t ring_id = 0;
  1895. uint8_t core_id = 0;
  1896. struct cdp_tid_rx_stats *tid_stats;
  1897. qdf_nbuf_t nbuf_head;
  1898. qdf_nbuf_t nbuf_tail;
  1899. qdf_nbuf_t deliver_list_head;
  1900. qdf_nbuf_t deliver_list_tail;
  1901. uint32_t num_rx_bufs_reaped = 0;
  1902. uint32_t intr_id;
  1903. struct hif_opaque_softc *scn;
  1904. int32_t tid = 0;
  1905. bool is_prev_msdu_last = true;
  1906. uint32_t num_entries_avail = 0;
  1907. uint32_t rx_ol_pkt_cnt = 0;
  1908. uint32_t num_entries = 0;
  1909. struct hal_rx_msdu_metadata msdu_metadata;
  1910. QDF_STATUS status;
  1911. qdf_nbuf_t ebuf_head;
  1912. qdf_nbuf_t ebuf_tail;
  1913. DP_HIST_INIT();
  1914. qdf_assert_always(soc && hal_ring_hdl);
  1915. hal_soc = soc->hal_soc;
  1916. qdf_assert_always(hal_soc);
  1917. scn = soc->hif_handle;
  1918. hif_pm_runtime_mark_dp_rx_busy(scn);
  1919. intr_id = int_ctx->dp_intr_id;
  1920. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1921. more_data:
  1922. /* reset local variables here to be re-used in the function */
  1923. nbuf_head = NULL;
  1924. nbuf_tail = NULL;
  1925. deliver_list_head = NULL;
  1926. deliver_list_tail = NULL;
  1927. peer = NULL;
  1928. vdev = NULL;
  1929. num_rx_bufs_reaped = 0;
  1930. ebuf_head = NULL;
  1931. ebuf_tail = NULL;
  1932. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1933. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1934. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1935. qdf_mem_zero(head, sizeof(head));
  1936. qdf_mem_zero(tail, sizeof(tail));
  1937. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1938. /*
  1939. * Need API to convert from hal_ring pointer to
  1940. * Ring Type / Ring Id combo
  1941. */
  1942. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1943. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1944. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1945. goto done;
  1946. }
  1947. /*
  1948. * start reaping the buffers from reo ring and queue
  1949. * them in per vdev queue.
  1950. * Process the received pkts in a different per vdev loop.
  1951. */
  1952. while (qdf_likely(quota &&
  1953. (ring_desc = hal_srng_dst_peek(hal_soc,
  1954. hal_ring_hdl)))) {
  1955. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1956. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1957. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1958. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1959. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1960. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1961. /* Don't know how to deal with this -- assert */
  1962. qdf_assert(0);
  1963. }
  1964. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  1965. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1966. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  1967. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  1968. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  1969. break;
  1970. }
  1971. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1972. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  1973. ring_desc, rx_desc);
  1974. if (QDF_IS_STATUS_ERROR(status)) {
  1975. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  1976. qdf_assert_always(rx_desc->unmapped);
  1977. dp_ipa_handle_rx_buf_smmu_mapping(
  1978. soc,
  1979. rx_desc->nbuf,
  1980. RX_DATA_BUFFER_SIZE,
  1981. false);
  1982. qdf_nbuf_unmap_nbytes_single(
  1983. soc->osdev,
  1984. rx_desc->nbuf,
  1985. QDF_DMA_FROM_DEVICE,
  1986. RX_DATA_BUFFER_SIZE);
  1987. rx_desc->unmapped = 1;
  1988. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  1989. rx_desc->pool_id);
  1990. dp_rx_add_to_free_desc_list(
  1991. &head[rx_desc->pool_id],
  1992. &tail[rx_desc->pool_id],
  1993. rx_desc);
  1994. }
  1995. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1996. continue;
  1997. }
  1998. /*
  1999. * this is a unlikely scenario where the host is reaping
  2000. * a descriptor which it already reaped just a while ago
  2001. * but is yet to replenish it back to HW.
  2002. * In this case host will dump the last 128 descriptors
  2003. * including the software descriptor rx_desc and assert.
  2004. */
  2005. if (qdf_unlikely(!rx_desc->in_use)) {
  2006. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2007. dp_info_rl("Reaping rx_desc not in use!");
  2008. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2009. ring_desc, rx_desc);
  2010. /* ignore duplicate RX desc and continue to process */
  2011. /* Pop out the descriptor */
  2012. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2013. continue;
  2014. }
  2015. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2016. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2017. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2018. rx_desc->in_err_state = 1;
  2019. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2020. continue;
  2021. }
  2022. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2023. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2024. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2025. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2026. ring_desc, rx_desc);
  2027. }
  2028. /* Get MPDU DESC info */
  2029. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2030. /* Get MSDU DESC info */
  2031. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2032. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2033. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2034. /* previous msdu has end bit set, so current one is
  2035. * the new MPDU
  2036. */
  2037. if (is_prev_msdu_last) {
  2038. /* Get number of entries available in HW ring */
  2039. num_entries_avail =
  2040. hal_srng_dst_num_valid(hal_soc,
  2041. hal_ring_hdl, 1);
  2042. /* For new MPDU check if we can read complete
  2043. * MPDU by comparing the number of buffers
  2044. * available and number of buffers needed to
  2045. * reap this MPDU
  2046. */
  2047. if (((msdu_desc_info.msdu_len /
  2048. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2049. 1)) > num_entries_avail) {
  2050. DP_STATS_INC(
  2051. soc,
  2052. rx.msdu_scatter_wait_break,
  2053. 1);
  2054. break;
  2055. }
  2056. is_prev_msdu_last = false;
  2057. }
  2058. }
  2059. core_id = smp_processor_id();
  2060. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2061. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2062. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2063. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2064. HAL_MPDU_F_RAW_AMPDU))
  2065. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2066. if (!is_prev_msdu_last &&
  2067. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2068. is_prev_msdu_last = true;
  2069. /* Pop out the descriptor*/
  2070. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2071. rx_bufs_reaped[rx_desc->pool_id]++;
  2072. peer_mdata = mpdu_desc_info.peer_meta_data;
  2073. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2074. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2075. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2076. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2077. /*
  2078. * save msdu flags first, last and continuation msdu in
  2079. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2080. * length to nbuf->cb. This ensures the info required for
  2081. * per pkt processing is always in the same cache line.
  2082. * This helps in improving throughput for smaller pkt
  2083. * sizes.
  2084. */
  2085. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2086. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2087. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2088. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2089. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2090. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2091. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2092. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2093. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2094. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2095. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2096. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2097. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2098. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2099. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2100. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2101. /*
  2102. * move unmap after scattered msdu waiting break logic
  2103. * in case double skb unmap happened.
  2104. */
  2105. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2106. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2107. rx_desc_pool->buf_size,
  2108. false);
  2109. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2110. QDF_DMA_FROM_DEVICE,
  2111. rx_desc_pool->buf_size);
  2112. rx_desc->unmapped = 1;
  2113. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2114. ebuf_tail, rx_desc);
  2115. /*
  2116. * if continuation bit is set then we have MSDU spread
  2117. * across multiple buffers, let us not decrement quota
  2118. * till we reap all buffers of that MSDU.
  2119. */
  2120. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2121. quota -= 1;
  2122. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2123. &tail[rx_desc->pool_id],
  2124. rx_desc);
  2125. num_rx_bufs_reaped++;
  2126. /*
  2127. * only if complete msdu is received for scatter case,
  2128. * then allow break.
  2129. */
  2130. if (is_prev_msdu_last &&
  2131. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2132. break;
  2133. }
  2134. done:
  2135. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2136. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2137. /*
  2138. * continue with next mac_id if no pkts were reaped
  2139. * from that pool
  2140. */
  2141. if (!rx_bufs_reaped[mac_id])
  2142. continue;
  2143. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2144. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2145. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2146. rx_desc_pool, rx_bufs_reaped[mac_id],
  2147. &head[mac_id], &tail[mac_id]);
  2148. }
  2149. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2150. /* Peer can be NULL is case of LFR */
  2151. if (qdf_likely(peer))
  2152. vdev = NULL;
  2153. /*
  2154. * BIG loop where each nbuf is dequeued from global queue,
  2155. * processed and queued back on a per vdev basis. These nbufs
  2156. * are sent to stack as and when we run out of nbufs
  2157. * or a new nbuf dequeued from global queue has a different
  2158. * vdev when compared to previous nbuf.
  2159. */
  2160. nbuf = nbuf_head;
  2161. while (nbuf) {
  2162. next = nbuf->next;
  2163. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2164. nbuf = next;
  2165. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2166. continue;
  2167. }
  2168. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2169. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2170. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  2171. dp_rx_deliver_to_stack(soc, vdev, peer,
  2172. deliver_list_head,
  2173. deliver_list_tail);
  2174. deliver_list_head = NULL;
  2175. deliver_list_tail = NULL;
  2176. }
  2177. /* Get TID from struct cb->tid_val, save to tid */
  2178. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2179. tid = qdf_nbuf_get_tid_val(nbuf);
  2180. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2181. if (qdf_unlikely(!peer)) {
  2182. peer = dp_peer_find_by_id(soc, peer_id);
  2183. } else if (peer && peer->peer_id != peer_id) {
  2184. dp_peer_unref_delete(peer);
  2185. peer = dp_peer_find_by_id(soc, peer_id);
  2186. }
  2187. if (peer) {
  2188. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2189. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2190. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2191. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2192. QDF_NBUF_RX_PKT_DATA_TRACK;
  2193. }
  2194. rx_bufs_used++;
  2195. if (qdf_likely(peer)) {
  2196. vdev = peer->vdev;
  2197. } else {
  2198. nbuf->next = NULL;
  2199. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2200. nbuf = next;
  2201. continue;
  2202. }
  2203. if (qdf_unlikely(!vdev)) {
  2204. qdf_nbuf_free(nbuf);
  2205. nbuf = next;
  2206. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2207. continue;
  2208. }
  2209. rx_pdev = vdev->pdev;
  2210. DP_RX_TID_SAVE(nbuf, tid);
  2211. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2212. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2213. soc->wlan_cfg_ctx)))
  2214. qdf_nbuf_set_timestamp(nbuf);
  2215. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2216. tid_stats =
  2217. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2218. /*
  2219. * Check if DMA completed -- msdu_done is the last bit
  2220. * to be written
  2221. */
  2222. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2223. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2224. dp_err("MSDU DONE failure");
  2225. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2226. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2227. QDF_TRACE_LEVEL_INFO);
  2228. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2229. qdf_nbuf_free(nbuf);
  2230. qdf_assert(0);
  2231. nbuf = next;
  2232. continue;
  2233. }
  2234. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2235. /*
  2236. * First IF condition:
  2237. * 802.11 Fragmented pkts are reinjected to REO
  2238. * HW block as SG pkts and for these pkts we only
  2239. * need to pull the RX TLVS header length.
  2240. * Second IF condition:
  2241. * The below condition happens when an MSDU is spread
  2242. * across multiple buffers. This can happen in two cases
  2243. * 1. The nbuf size is smaller then the received msdu.
  2244. * ex: we have set the nbuf size to 2048 during
  2245. * nbuf_alloc. but we received an msdu which is
  2246. * 2304 bytes in size then this msdu is spread
  2247. * across 2 nbufs.
  2248. *
  2249. * 2. AMSDUs when RAW mode is enabled.
  2250. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2251. * across 1st nbuf and 2nd nbuf and last MSDU is
  2252. * spread across 2nd nbuf and 3rd nbuf.
  2253. *
  2254. * for these scenarios let us create a skb frag_list and
  2255. * append these buffers till the last MSDU of the AMSDU
  2256. * Third condition:
  2257. * This is the most likely case, we receive 802.3 pkts
  2258. * decapsulated by HW, here we need to set the pkt length.
  2259. */
  2260. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2261. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2262. bool is_mcbc, is_sa_vld, is_da_vld;
  2263. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2264. rx_tlv_hdr);
  2265. is_sa_vld =
  2266. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2267. rx_tlv_hdr);
  2268. is_da_vld =
  2269. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2270. rx_tlv_hdr);
  2271. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2272. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2273. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2274. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2275. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2276. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2277. nbuf = dp_rx_sg_create(nbuf);
  2278. next = nbuf->next;
  2279. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2280. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2281. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2282. } else {
  2283. qdf_nbuf_free(nbuf);
  2284. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2285. dp_info_rl("scatter msdu len %d, dropped",
  2286. msdu_len);
  2287. nbuf = next;
  2288. continue;
  2289. }
  2290. } else {
  2291. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2292. pkt_len = msdu_len +
  2293. msdu_metadata.l3_hdr_pad +
  2294. RX_PKT_TLVS_LEN;
  2295. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2296. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2297. }
  2298. /*
  2299. * process frame for mulitpass phrase processing
  2300. */
  2301. if (qdf_unlikely(vdev->multipass_en)) {
  2302. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2303. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2304. qdf_nbuf_free(nbuf);
  2305. nbuf = next;
  2306. continue;
  2307. }
  2308. }
  2309. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2310. QDF_TRACE(QDF_MODULE_ID_DP,
  2311. QDF_TRACE_LEVEL_ERROR,
  2312. FL("Policy Check Drop pkt"));
  2313. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2314. /* Drop & free packet */
  2315. qdf_nbuf_free(nbuf);
  2316. /* Statistics */
  2317. nbuf = next;
  2318. continue;
  2319. }
  2320. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2321. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2322. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2323. rx_tlv_hdr) ==
  2324. false))) {
  2325. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2326. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2327. qdf_nbuf_free(nbuf);
  2328. nbuf = next;
  2329. continue;
  2330. }
  2331. if (soc->process_rx_status)
  2332. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2333. /* Update the protocol tag in SKB based on CCE metadata */
  2334. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2335. reo_ring_num, false, true);
  2336. /* Update the flow tag in SKB based on FSE metadata */
  2337. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2338. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2339. ring_id, tid_stats);
  2340. if (qdf_unlikely(vdev->mesh_vdev)) {
  2341. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2342. == QDF_STATUS_SUCCESS) {
  2343. QDF_TRACE(QDF_MODULE_ID_DP,
  2344. QDF_TRACE_LEVEL_INFO_MED,
  2345. FL("mesh pkt filtered"));
  2346. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2347. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2348. 1);
  2349. qdf_nbuf_free(nbuf);
  2350. nbuf = next;
  2351. continue;
  2352. }
  2353. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2354. }
  2355. if (qdf_likely(vdev->rx_decap_type ==
  2356. htt_cmn_pkt_type_ethernet) &&
  2357. qdf_likely(!vdev->mesh_vdev)) {
  2358. /* WDS Destination Address Learning */
  2359. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2360. /* Due to HW issue, sometimes we see that the sa_idx
  2361. * and da_idx are invalid with sa_valid and da_valid
  2362. * bits set
  2363. *
  2364. * in this case we also see that value of
  2365. * sa_sw_peer_id is set as 0
  2366. *
  2367. * Drop the packet if sa_idx and da_idx OOB or
  2368. * sa_sw_peerid is 0
  2369. */
  2370. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2371. msdu_metadata)) {
  2372. qdf_nbuf_free(nbuf);
  2373. nbuf = next;
  2374. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2375. continue;
  2376. }
  2377. /* WDS Source Port Learning */
  2378. if (qdf_likely(vdev->wds_enabled))
  2379. dp_rx_wds_srcport_learn(soc,
  2380. rx_tlv_hdr,
  2381. peer,
  2382. nbuf,
  2383. msdu_metadata);
  2384. /* Intrabss-fwd */
  2385. if (dp_rx_check_ap_bridge(vdev))
  2386. if (dp_rx_intrabss_fwd(soc,
  2387. peer,
  2388. rx_tlv_hdr,
  2389. nbuf,
  2390. msdu_metadata)) {
  2391. nbuf = next;
  2392. tid_stats->intrabss_cnt++;
  2393. continue; /* Get next desc */
  2394. }
  2395. }
  2396. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2397. DP_RX_LIST_APPEND(deliver_list_head,
  2398. deliver_list_tail,
  2399. nbuf);
  2400. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2401. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2402. if (qdf_unlikely(peer->in_twt))
  2403. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2404. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2405. tid_stats->delivered_to_stack++;
  2406. nbuf = next;
  2407. }
  2408. if (qdf_likely(deliver_list_head)) {
  2409. if (qdf_likely(peer))
  2410. dp_rx_deliver_to_stack(soc, vdev, peer,
  2411. deliver_list_head,
  2412. deliver_list_tail);
  2413. else {
  2414. nbuf = deliver_list_head;
  2415. while (nbuf) {
  2416. next = nbuf->next;
  2417. nbuf->next = NULL;
  2418. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2419. nbuf = next;
  2420. }
  2421. }
  2422. }
  2423. if (qdf_likely(peer))
  2424. dp_peer_unref_delete(peer);
  2425. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2426. if (quota) {
  2427. num_pending =
  2428. dp_rx_srng_get_num_pending(hal_soc,
  2429. hal_ring_hdl,
  2430. num_entries,
  2431. &near_full);
  2432. if (num_pending) {
  2433. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2434. if (!hif_exec_should_yield(scn, intr_id))
  2435. goto more_data;
  2436. if (qdf_unlikely(near_full)) {
  2437. DP_STATS_INC(soc, rx.near_full, 1);
  2438. goto more_data;
  2439. }
  2440. }
  2441. }
  2442. if (vdev && vdev->osif_fisa_flush)
  2443. vdev->osif_fisa_flush(soc, reo_ring_num);
  2444. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2445. vdev->osif_gro_flush(vdev->osif_vdev,
  2446. reo_ring_num);
  2447. }
  2448. }
  2449. /* Update histogram statistics by looping through pdev's */
  2450. DP_RX_HIST_STATS_PER_PDEV();
  2451. return rx_bufs_used; /* Assume no scale factor for now */
  2452. }
  2453. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2454. {
  2455. QDF_STATUS ret;
  2456. if (vdev->osif_rx_flush) {
  2457. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2458. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2459. dp_err("Failed to flush rx pkts for vdev %d\n",
  2460. vdev->vdev_id);
  2461. return ret;
  2462. }
  2463. }
  2464. return QDF_STATUS_SUCCESS;
  2465. }
  2466. static QDF_STATUS
  2467. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2468. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2469. struct dp_pdev *dp_pdev,
  2470. struct rx_desc_pool *rx_desc_pool)
  2471. {
  2472. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2473. (nbuf_frag_info_t->virt_addr).nbuf =
  2474. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2475. RX_BUFFER_RESERVATION,
  2476. rx_desc_pool->buf_alignment, FALSE);
  2477. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2478. dp_err("nbuf alloc failed");
  2479. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2480. return ret;
  2481. }
  2482. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2483. (nbuf_frag_info_t->virt_addr).nbuf,
  2484. QDF_DMA_FROM_DEVICE,
  2485. rx_desc_pool->buf_size);
  2486. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2487. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2488. dp_err("nbuf map failed");
  2489. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2490. return ret;
  2491. }
  2492. nbuf_frag_info_t->paddr =
  2493. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2494. ret = check_x86_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2495. &nbuf_frag_info_t->paddr,
  2496. rx_desc_pool);
  2497. if (ret == QDF_STATUS_E_FAILURE) {
  2498. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev,
  2499. (nbuf_frag_info_t->virt_addr).nbuf,
  2500. QDF_DMA_FROM_DEVICE,
  2501. rx_desc_pool->buf_size);
  2502. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2503. dp_err("nbuf check x86 failed");
  2504. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2505. return ret;
  2506. }
  2507. return QDF_STATUS_SUCCESS;
  2508. }
  2509. QDF_STATUS
  2510. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2511. struct dp_srng *dp_rxdma_srng,
  2512. struct rx_desc_pool *rx_desc_pool,
  2513. uint32_t num_req_buffers)
  2514. {
  2515. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2516. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2517. union dp_rx_desc_list_elem_t *next;
  2518. void *rxdma_ring_entry;
  2519. qdf_dma_addr_t paddr;
  2520. struct dp_rx_nbuf_frag_info *nf_info;
  2521. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2522. uint32_t buffer_index, nbuf_ptrs_per_page;
  2523. qdf_nbuf_t nbuf;
  2524. QDF_STATUS ret;
  2525. int page_idx, total_pages;
  2526. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2527. union dp_rx_desc_list_elem_t *tail = NULL;
  2528. int sync_hw_ptr = 1;
  2529. uint32_t num_entries_avail;
  2530. if (qdf_unlikely(!rxdma_srng)) {
  2531. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2532. return QDF_STATUS_E_FAILURE;
  2533. }
  2534. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2535. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2536. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2537. rxdma_srng,
  2538. sync_hw_ptr);
  2539. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2540. if (!num_entries_avail) {
  2541. dp_err("Num of available entries is zero, nothing to do");
  2542. return QDF_STATUS_E_NOMEM;
  2543. }
  2544. if (num_entries_avail < num_req_buffers)
  2545. num_req_buffers = num_entries_avail;
  2546. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2547. num_req_buffers, &desc_list, &tail);
  2548. if (!nr_descs) {
  2549. dp_err("no free rx_descs in freelist");
  2550. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2551. return QDF_STATUS_E_NOMEM;
  2552. }
  2553. dp_debug("got %u RX descs for driver attach", nr_descs);
  2554. /*
  2555. * Try to allocate pointers to the nbuf one page at a time.
  2556. * Take pointers that can fit in one page of memory and
  2557. * iterate through the total descriptors that need to be
  2558. * allocated in order of pages. Reuse the pointers that
  2559. * have been allocated to fit in one page across each
  2560. * iteration to index into the nbuf.
  2561. */
  2562. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2563. /*
  2564. * Add an extra page to store the remainder if any
  2565. */
  2566. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2567. total_pages++;
  2568. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2569. if (!nf_info) {
  2570. dp_err("failed to allocate nbuf array");
  2571. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2572. QDF_BUG(0);
  2573. return QDF_STATUS_E_NOMEM;
  2574. }
  2575. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2576. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2577. qdf_mem_zero(nf_info, PAGE_SIZE);
  2578. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2579. /*
  2580. * The last page of buffer pointers may not be required
  2581. * completely based on the number of descriptors. Below
  2582. * check will ensure we are allocating only the
  2583. * required number of descriptors.
  2584. */
  2585. if (nr_nbuf_total >= nr_descs)
  2586. break;
  2587. /* Flag is set while pdev rx_desc_pool initialization */
  2588. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2589. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2590. &nf_info[nr_nbuf], dp_pdev,
  2591. rx_desc_pool);
  2592. else
  2593. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2594. &nf_info[nr_nbuf], dp_pdev,
  2595. rx_desc_pool);
  2596. if (QDF_IS_STATUS_ERROR(ret))
  2597. break;
  2598. nr_nbuf_total++;
  2599. }
  2600. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2601. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2602. rxdma_ring_entry =
  2603. hal_srng_src_get_next(dp_soc->hal_soc,
  2604. rxdma_srng);
  2605. qdf_assert_always(rxdma_ring_entry);
  2606. next = desc_list->next;
  2607. paddr = nf_info[buffer_index].paddr;
  2608. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2609. /* Flag is set while pdev rx_desc_pool initialization */
  2610. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2611. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2612. &nf_info[buffer_index]);
  2613. else
  2614. dp_rx_desc_prep(&desc_list->rx_desc,
  2615. &nf_info[buffer_index]);
  2616. desc_list->rx_desc.in_use = 1;
  2617. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2618. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2619. __func__,
  2620. RX_DESC_REPLENISHED);
  2621. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2622. desc_list->rx_desc.cookie,
  2623. rx_desc_pool->owner);
  2624. dp_ipa_handle_rx_buf_smmu_mapping(
  2625. dp_soc, nbuf,
  2626. rx_desc_pool->buf_size,
  2627. true);
  2628. desc_list = next;
  2629. }
  2630. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2631. }
  2632. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2633. qdf_mem_free(nf_info);
  2634. if (!nr_nbuf_total) {
  2635. dp_err("No nbuf's allocated");
  2636. QDF_BUG(0);
  2637. return QDF_STATUS_E_RESOURCES;
  2638. }
  2639. /* No need to count the number of bytes received during replenish.
  2640. * Therefore set replenish.pkts.bytes as 0.
  2641. */
  2642. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2643. return QDF_STATUS_SUCCESS;
  2644. }
  2645. /**
  2646. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2647. * monitor destination ring via frag.
  2648. *
  2649. * Enable this flag only for monitor destination buffer processing
  2650. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2651. * If flag is set then frag based function will be called for alloc,
  2652. * map, prep desc and free ops for desc buffer else normal nbuf based
  2653. * function will be called.
  2654. *
  2655. * @rx_desc_pool: Rx desc pool
  2656. * @is_mon_dest_desc: Is it for monitor dest buffer
  2657. *
  2658. * Return: None
  2659. */
  2660. #ifdef DP_RX_MON_MEM_FRAG
  2661. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2662. bool is_mon_dest_desc)
  2663. {
  2664. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2665. }
  2666. #else
  2667. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2668. bool is_mon_dest_desc)
  2669. {
  2670. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2671. }
  2672. #endif
  2673. /*
  2674. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2675. * pool
  2676. *
  2677. * @pdev: core txrx pdev context
  2678. *
  2679. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2680. * QDF_STATUS_E_NOMEM
  2681. */
  2682. QDF_STATUS
  2683. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2684. {
  2685. struct dp_soc *soc = pdev->soc;
  2686. uint32_t rxdma_entries;
  2687. uint32_t rx_sw_desc_num;
  2688. struct dp_srng *dp_rxdma_srng;
  2689. struct rx_desc_pool *rx_desc_pool;
  2690. uint32_t status = QDF_STATUS_SUCCESS;
  2691. int mac_for_pdev;
  2692. mac_for_pdev = pdev->lmac_id;
  2693. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2694. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2695. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2696. return status;
  2697. }
  2698. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2699. rxdma_entries = dp_rxdma_srng->num_entries;
  2700. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2701. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2702. status = dp_rx_desc_pool_alloc(soc,
  2703. rx_sw_desc_num,
  2704. rx_desc_pool);
  2705. if (status != QDF_STATUS_SUCCESS)
  2706. return status;
  2707. return status;
  2708. }
  2709. /*
  2710. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2711. *
  2712. * @pdev: core txrx pdev context
  2713. */
  2714. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2715. {
  2716. int mac_for_pdev = pdev->lmac_id;
  2717. struct dp_soc *soc = pdev->soc;
  2718. struct rx_desc_pool *rx_desc_pool;
  2719. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2720. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2721. }
  2722. /*
  2723. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2724. *
  2725. * @pdev: core txrx pdev context
  2726. *
  2727. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2728. * QDF_STATUS_E_NOMEM
  2729. */
  2730. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2731. {
  2732. int mac_for_pdev = pdev->lmac_id;
  2733. struct dp_soc *soc = pdev->soc;
  2734. uint32_t rxdma_entries;
  2735. uint32_t rx_sw_desc_num;
  2736. struct dp_srng *dp_rxdma_srng;
  2737. struct rx_desc_pool *rx_desc_pool;
  2738. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2739. /**
  2740. * If NSS is enabled, rx_desc_pool is already filled.
  2741. * Hence, just disable desc_pool frag flag.
  2742. */
  2743. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2744. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2745. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2746. "nss-wifi<4> skip Rx refil %d", mac_for_pdev);
  2747. return QDF_STATUS_SUCCESS;
  2748. }
  2749. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2750. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2751. return QDF_STATUS_E_NOMEM;
  2752. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2753. rxdma_entries = dp_rxdma_srng->num_entries;
  2754. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2755. rx_sw_desc_num =
  2756. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2757. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2758. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2759. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2760. /* Disable monitor dest processing via frag */
  2761. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2762. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2763. rx_sw_desc_num, rx_desc_pool);
  2764. return QDF_STATUS_SUCCESS;
  2765. }
  2766. /*
  2767. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2768. * @pdev: core txrx pdev context
  2769. *
  2770. * This function resets the freelist of rx descriptors and destroys locks
  2771. * associated with this list of descriptors.
  2772. */
  2773. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2774. {
  2775. int mac_for_pdev = pdev->lmac_id;
  2776. struct dp_soc *soc = pdev->soc;
  2777. struct rx_desc_pool *rx_desc_pool;
  2778. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2779. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2780. }
  2781. /*
  2782. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2783. *
  2784. * @pdev: core txrx pdev context
  2785. *
  2786. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2787. * QDF_STATUS_E_NOMEM
  2788. */
  2789. QDF_STATUS
  2790. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2791. {
  2792. int mac_for_pdev = pdev->lmac_id;
  2793. struct dp_soc *soc = pdev->soc;
  2794. struct dp_srng *dp_rxdma_srng;
  2795. struct rx_desc_pool *rx_desc_pool;
  2796. uint32_t rxdma_entries;
  2797. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2798. rxdma_entries = dp_rxdma_srng->num_entries;
  2799. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2800. /* Initialize RX buffer pool which will be
  2801. * used during low memory conditions
  2802. */
  2803. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2804. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2805. rx_desc_pool, rxdma_entries - 1);
  2806. }
  2807. /*
  2808. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2809. *
  2810. * @pdev: core txrx pdev context
  2811. */
  2812. void
  2813. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2814. {
  2815. int mac_for_pdev = pdev->lmac_id;
  2816. struct dp_soc *soc = pdev->soc;
  2817. struct rx_desc_pool *rx_desc_pool;
  2818. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2819. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2820. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2821. }
  2822. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2823. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2824. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2825. uint8_t *rx_tlv_hdr)
  2826. {
  2827. uint32_t l2_hdr_offset = 0;
  2828. uint16_t msdu_len = 0;
  2829. uint32_t skip_len;
  2830. l2_hdr_offset =
  2831. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2832. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2833. skip_len = l2_hdr_offset;
  2834. } else {
  2835. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2836. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  2837. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2838. }
  2839. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2840. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2841. qdf_nbuf_pull_head(nbuf, skip_len);
  2842. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2843. qdf_nbuf_set_exc_frame(nbuf, 1);
  2844. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  2845. nbuf, NULL);
  2846. return true;
  2847. }
  2848. return false;
  2849. }
  2850. #endif