hal_srng.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "hal_reo.h"
  21. #include "target_type.h"
  22. #include "qdf_module.h"
  23. #include "wcss_version.h"
  24. #ifdef QCA_WIFI_QCA8074
  25. void hal_qca6290_attach(struct hal_soc *hal);
  26. #endif
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca8074_attach(struct hal_soc *hal);
  29. #endif
  30. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  31. defined(QCA_WIFI_QCA9574)
  32. void hal_qca8074v2_attach(struct hal_soc *hal);
  33. #endif
  34. #ifdef QCA_WIFI_QCA6390
  35. void hal_qca6390_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6490
  38. void hal_qca6490_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCN9000
  41. void hal_qcn9000_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN6122
  44. void hal_qcn6122_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCA6750
  47. void hal_qca6750_attach(struct hal_soc *hal);
  48. #endif
  49. #ifdef QCA_WIFI_QCA5018
  50. void hal_qca5018_attach(struct hal_soc *hal);
  51. #endif
  52. #ifdef QCA_WIFI_WCN7850
  53. void hal_wcn7850_attach(struct hal_soc *hal);
  54. #endif
  55. #ifdef ENABLE_VERBOSE_DEBUG
  56. bool is_hal_verbose_debug_enabled;
  57. #endif
  58. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  59. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  60. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  61. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  62. #ifdef ENABLE_HAL_REG_WR_HISTORY
  63. struct hal_reg_write_fail_history hal_reg_wr_hist;
  64. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  65. uint32_t offset,
  66. uint32_t wr_val, uint32_t rd_val)
  67. {
  68. struct hal_reg_write_fail_entry *record;
  69. int idx;
  70. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  71. HAL_REG_WRITE_HIST_SIZE);
  72. record = &hal_soc->reg_wr_fail_hist->record[idx];
  73. record->timestamp = qdf_get_log_timestamp();
  74. record->reg_offset = offset;
  75. record->write_val = wr_val;
  76. record->read_val = rd_val;
  77. }
  78. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  79. {
  80. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  81. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  82. }
  83. #else
  84. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  85. {
  86. }
  87. #endif
  88. /**
  89. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  90. * @hal: hal_soc data structure
  91. * @ring_type: type enum describing the ring
  92. * @ring_num: which ring of the ring type
  93. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  94. *
  95. * Return: the ring id or -EINVAL if the ring does not exist.
  96. */
  97. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  98. int ring_num, int mac_id)
  99. {
  100. struct hal_hw_srng_config *ring_config =
  101. HAL_SRNG_CONFIG(hal, ring_type);
  102. int ring_id;
  103. if (ring_num >= ring_config->max_rings) {
  104. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  105. "%s: ring_num exceeded maximum no. of supported rings",
  106. __func__);
  107. /* TODO: This is a programming error. Assert if this happens */
  108. return -EINVAL;
  109. }
  110. if (ring_config->lmac_ring) {
  111. ring_id = ring_config->start_ring_id + ring_num +
  112. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  113. } else {
  114. ring_id = ring_config->start_ring_id + ring_num;
  115. }
  116. return ring_id;
  117. }
  118. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  119. {
  120. /* TODO: Should we allocate srng structures dynamically? */
  121. return &(hal->srng_list[ring_id]);
  122. }
  123. #define HP_OFFSET_IN_REG_START 1
  124. #define OFFSET_FROM_HP_TO_TP 4
  125. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  126. int shadow_config_index,
  127. int ring_type,
  128. int ring_num)
  129. {
  130. struct hal_srng *srng;
  131. int ring_id;
  132. struct hal_hw_srng_config *ring_config =
  133. HAL_SRNG_CONFIG(hal_soc, ring_type);
  134. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  135. if (ring_id < 0)
  136. return;
  137. srng = hal_get_srng(hal_soc, ring_id);
  138. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  139. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  140. + hal_soc->dev_base_addr;
  141. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  142. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  143. shadow_config_index);
  144. } else {
  145. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  146. + hal_soc->dev_base_addr;
  147. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  148. srng->u.src_ring.hp_addr,
  149. hal_soc->dev_base_addr, shadow_config_index);
  150. }
  151. }
  152. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  153. void hal_set_one_target_reg_config(struct hal_soc *hal,
  154. uint32_t target_reg_offset,
  155. int list_index)
  156. {
  157. int i = list_index;
  158. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  159. hal->list_shadow_reg_config[i].target_register =
  160. target_reg_offset;
  161. hal->num_generic_shadow_regs_configured++;
  162. }
  163. qdf_export_symbol(hal_set_one_target_reg_config);
  164. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  165. #define MAX_REO_REMAP_SHADOW_REGS 4
  166. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  167. {
  168. uint32_t target_reg_offset;
  169. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  170. int i;
  171. struct hal_hw_srng_config *srng_config =
  172. &hal->hw_srng_table[WBM2SW_RELEASE];
  173. uint32_t reo_reg_base;
  174. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  175. target_reg_offset =
  176. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  177. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  178. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  179. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  180. }
  181. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  182. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  183. * HAL_IPA_TX_COMP_RING_IDX);
  184. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  185. return QDF_STATUS_SUCCESS;
  186. }
  187. qdf_export_symbol(hal_set_shadow_regs);
  188. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  189. {
  190. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  191. int shadow_config_index = hal->num_shadow_registers_configured;
  192. int i;
  193. int num_regs = hal->num_generic_shadow_regs_configured;
  194. for (i = 0; i < num_regs; i++) {
  195. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  196. hal->shadow_config[shadow_config_index].addr =
  197. hal->list_shadow_reg_config[i].target_register;
  198. hal->list_shadow_reg_config[i].shadow_config_index =
  199. shadow_config_index;
  200. hal->list_shadow_reg_config[i].va =
  201. SHADOW_REGISTER(shadow_config_index) +
  202. (uintptr_t)hal->dev_base_addr;
  203. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  204. hal->shadow_config[shadow_config_index].addr,
  205. SHADOW_REGISTER(shadow_config_index),
  206. shadow_config_index);
  207. shadow_config_index++;
  208. hal->num_shadow_registers_configured++;
  209. }
  210. return QDF_STATUS_SUCCESS;
  211. }
  212. qdf_export_symbol(hal_construct_shadow_regs);
  213. #endif
  214. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  215. int ring_type,
  216. int ring_num)
  217. {
  218. uint32_t target_register;
  219. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  220. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  221. int shadow_config_index = hal->num_shadow_registers_configured;
  222. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  223. QDF_ASSERT(0);
  224. return QDF_STATUS_E_RESOURCES;
  225. }
  226. hal->num_shadow_registers_configured++;
  227. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  228. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  229. *ring_num);
  230. /* if the ring is a dst ring, we need to shadow the tail pointer */
  231. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  232. target_register += OFFSET_FROM_HP_TO_TP;
  233. hal->shadow_config[shadow_config_index].addr = target_register;
  234. /* update hp/tp addr in the hal_soc structure*/
  235. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  236. ring_num);
  237. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  238. target_register,
  239. SHADOW_REGISTER(shadow_config_index),
  240. shadow_config_index,
  241. ring_type, ring_num);
  242. return QDF_STATUS_SUCCESS;
  243. }
  244. qdf_export_symbol(hal_set_one_shadow_config);
  245. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  246. {
  247. int ring_type, ring_num;
  248. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  249. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  250. struct hal_hw_srng_config *srng_config =
  251. &hal->hw_srng_table[ring_type];
  252. if (ring_type == CE_SRC ||
  253. ring_type == CE_DST ||
  254. ring_type == CE_DST_STATUS)
  255. continue;
  256. if (srng_config->lmac_ring)
  257. continue;
  258. for (ring_num = 0; ring_num < srng_config->max_rings;
  259. ring_num++)
  260. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  261. }
  262. return QDF_STATUS_SUCCESS;
  263. }
  264. qdf_export_symbol(hal_construct_srng_shadow_regs);
  265. void hal_get_shadow_config(void *hal_soc,
  266. struct pld_shadow_reg_v2_cfg **shadow_config,
  267. int *num_shadow_registers_configured)
  268. {
  269. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  270. *shadow_config = hal->shadow_config;
  271. *num_shadow_registers_configured =
  272. hal->num_shadow_registers_configured;
  273. }
  274. qdf_export_symbol(hal_get_shadow_config);
  275. static bool hal_validate_shadow_register(struct hal_soc *hal,
  276. uint32_t *destination,
  277. uint32_t *shadow_address)
  278. {
  279. unsigned int index;
  280. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  281. int destination_ba_offset =
  282. ((char *)destination) - (char *)hal->dev_base_addr;
  283. index = shadow_address - shadow_0_offset;
  284. if (index >= MAX_SHADOW_REGISTERS) {
  285. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  286. "%s: index %x out of bounds", __func__, index);
  287. goto error;
  288. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  289. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  290. "%s: sanity check failure, expected %x, found %x",
  291. __func__, destination_ba_offset,
  292. hal->shadow_config[index].addr);
  293. goto error;
  294. }
  295. return true;
  296. error:
  297. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  298. hal->dev_base_addr, destination, shadow_address,
  299. shadow_0_offset, index);
  300. QDF_BUG(0);
  301. return false;
  302. }
  303. static void hal_target_based_configure(struct hal_soc *hal)
  304. {
  305. /**
  306. * Indicate Initialization of srngs to avoid force wake
  307. * as umac power collapse is not enabled yet
  308. */
  309. hal->init_phase = true;
  310. switch (hal->target_type) {
  311. #ifdef QCA_WIFI_QCA6290
  312. case TARGET_TYPE_QCA6290:
  313. hal->use_register_windowing = true;
  314. hal_qca6290_attach(hal);
  315. break;
  316. #endif
  317. #ifdef QCA_WIFI_QCA6390
  318. case TARGET_TYPE_QCA6390:
  319. hal->use_register_windowing = true;
  320. hal_qca6390_attach(hal);
  321. break;
  322. #endif
  323. #ifdef QCA_WIFI_QCA6490
  324. case TARGET_TYPE_QCA6490:
  325. hal->use_register_windowing = true;
  326. hal_qca6490_attach(hal);
  327. break;
  328. #endif
  329. #ifdef QCA_WIFI_QCA6750
  330. case TARGET_TYPE_QCA6750:
  331. hal->use_register_windowing = true;
  332. hal->static_window_map = true;
  333. hal_qca6750_attach(hal);
  334. break;
  335. #endif
  336. #ifdef QCA_WIFI_WCN7850
  337. case TARGET_TYPE_WCN7850:
  338. hal->use_register_windowing = true;
  339. hal_wcn7850_attach(hal);
  340. hal->init_phase = false;
  341. break;
  342. #endif
  343. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  344. case TARGET_TYPE_QCA8074:
  345. hal_qca8074_attach(hal);
  346. break;
  347. #endif
  348. #if defined(QCA_WIFI_QCA8074V2)
  349. case TARGET_TYPE_QCA8074V2:
  350. hal_qca8074v2_attach(hal);
  351. break;
  352. #endif
  353. #if defined(QCA_WIFI_QCA6018)
  354. case TARGET_TYPE_QCA6018:
  355. hal_qca8074v2_attach(hal);
  356. break;
  357. #endif
  358. #if defined(QCA_WIFI_QCA9574)
  359. case TARGET_TYPE_QCA9574:
  360. hal_qca8074v2_attach(hal);
  361. break;
  362. #endif
  363. #if defined(QCA_WIFI_QCN6122)
  364. case TARGET_TYPE_QCN6122:
  365. hal->use_register_windowing = true;
  366. /*
  367. * Static window map is enabled for qcn9000 to use 2mb bar
  368. * size and use multiple windows to write into registers.
  369. */
  370. hal->static_window_map = true;
  371. hal_qcn6122_attach(hal);
  372. break;
  373. #endif
  374. #ifdef QCA_WIFI_QCN9000
  375. case TARGET_TYPE_QCN9000:
  376. hal->use_register_windowing = true;
  377. /*
  378. * Static window map is enabled for qcn9000 to use 2mb bar
  379. * size and use multiple windows to write into registers.
  380. */
  381. hal->static_window_map = true;
  382. hal_qcn9000_attach(hal);
  383. break;
  384. #endif
  385. #ifdef QCA_WIFI_QCA5018
  386. case TARGET_TYPE_QCA5018:
  387. hal->use_register_windowing = true;
  388. hal->static_window_map = true;
  389. hal_qca5018_attach(hal);
  390. break;
  391. #endif
  392. default:
  393. break;
  394. }
  395. }
  396. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  397. {
  398. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  399. struct hif_target_info *tgt_info =
  400. hif_get_target_info_handle(hal_soc->hif_handle);
  401. return tgt_info->target_type;
  402. }
  403. qdf_export_symbol(hal_get_target_type);
  404. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  405. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  406. /**
  407. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  408. * @hal: hal_soc pointer
  409. *
  410. * Return: true if throughput is high, else false.
  411. */
  412. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  413. {
  414. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  415. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  416. }
  417. static inline
  418. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  419. char *buf, qdf_size_t size)
  420. {
  421. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  422. srng->wstats.enqueues, srng->wstats.dequeues,
  423. srng->wstats.coalesces, srng->wstats.direct);
  424. return buf;
  425. }
  426. /* bytes for local buffer */
  427. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  428. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  429. {
  430. struct hal_srng *srng;
  431. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  432. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  433. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  434. hal_debug("SW2TCL1: %s",
  435. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  436. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  437. hal_debug("WBM2SW0: %s",
  438. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  439. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  440. hal_debug("REO2SW1: %s",
  441. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  442. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  443. hal_debug("REO2SW2: %s",
  444. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  445. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  446. hal_debug("REO2SW3: %s",
  447. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  448. }
  449. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  450. /**
  451. * hal_dump_tcl_stats() - dump the TCL reg write stats
  452. * @hal: hal_soc pointer
  453. *
  454. * Return: None
  455. */
  456. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  457. {
  458. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  459. uint32_t *hist = hal->tcl_stats.sched_delay;
  460. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  461. hal_debug("TCL: %s sched-delay hist %u %u %u %u",
  462. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
  463. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  464. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  465. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  466. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  467. hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
  468. hal->tcl_stats.wq_delayed,
  469. hal->tcl_stats.wq_direct,
  470. hal->tcl_stats.timer_enq,
  471. hal->tcl_stats.timer_direct,
  472. hal->tcl_stats.enq_timer_set,
  473. hal->tcl_stats.direct_timer_set,
  474. hal->tcl_stats.timer_reset);
  475. }
  476. #else
  477. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  478. {
  479. }
  480. #endif
  481. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  482. {
  483. uint32_t *hist;
  484. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  485. hist = hal->stats.wstats.sched_delay;
  486. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  487. qdf_atomic_read(&hal->stats.wstats.enqueues),
  488. hal->stats.wstats.dequeues,
  489. qdf_atomic_read(&hal->stats.wstats.coalesces),
  490. qdf_atomic_read(&hal->stats.wstats.direct),
  491. qdf_atomic_read(&hal->stats.wstats.q_depth),
  492. hal->stats.wstats.max_q_depth,
  493. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  494. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  495. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  496. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  497. hal_dump_tcl_stats(hal);
  498. }
  499. int hal_get_reg_write_pending_work(void *hal_soc)
  500. {
  501. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  502. return qdf_atomic_read(&hal->active_work_cnt);
  503. }
  504. #endif
  505. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  506. #ifdef MEMORY_DEBUG
  507. /*
  508. * Length of the queue(array) used to hold delayed register writes.
  509. * Must be a multiple of 2.
  510. */
  511. #define HAL_REG_WRITE_QUEUE_LEN 128
  512. #else
  513. #define HAL_REG_WRITE_QUEUE_LEN 32
  514. #endif
  515. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  516. /**
  517. * hal_process_reg_write_q_elem() - process a regiter write queue element
  518. * @hal: hal_soc pointer
  519. * @q_elem: pointer to hal regiter write queue element
  520. *
  521. * Return: The value which was written to the address
  522. */
  523. static uint32_t
  524. hal_process_reg_write_q_elem(struct hal_soc *hal,
  525. struct hal_reg_write_q_elem *q_elem)
  526. {
  527. struct hal_srng *srng = q_elem->srng;
  528. uint32_t write_val;
  529. SRNG_LOCK(&srng->lock);
  530. srng->reg_write_in_progress = false;
  531. srng->wstats.dequeues++;
  532. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  533. write_val = srng->u.src_ring.hp;
  534. q_elem->dequeue_val = write_val;
  535. q_elem->valid = 0;
  536. SRNG_UNLOCK(&srng->lock);
  537. hal_write_address_32_mb(hal,
  538. srng->u.src_ring.hp_addr,
  539. write_val, false);
  540. } else {
  541. write_val = srng->u.dst_ring.tp;
  542. q_elem->dequeue_val = write_val;
  543. q_elem->valid = 0;
  544. SRNG_UNLOCK(&srng->lock);
  545. hal_write_address_32_mb(hal,
  546. srng->u.dst_ring.tp_addr,
  547. write_val, false);
  548. }
  549. return write_val;
  550. }
  551. #else
  552. /**
  553. * hal_process_reg_write_q_elem() - process a regiter write queue element
  554. * @hal: hal_soc pointer
  555. * @q_elem: pointer to hal regiter write queue element
  556. *
  557. * Return: The value which was written to the address
  558. */
  559. static uint32_t
  560. hal_process_reg_write_q_elem(struct hal_soc *hal,
  561. struct hal_reg_write_q_elem *q_elem)
  562. {
  563. struct hal_srng *srng = q_elem->srng;
  564. uint32_t write_val;
  565. SRNG_LOCK(&srng->lock);
  566. srng->reg_write_in_progress = false;
  567. srng->wstats.dequeues++;
  568. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  569. q_elem->dequeue_val = srng->u.src_ring.hp;
  570. hal_write_address_32_mb(hal,
  571. srng->u.src_ring.hp_addr,
  572. srng->u.src_ring.hp, false);
  573. write_val = srng->u.src_ring.hp;
  574. } else {
  575. q_elem->dequeue_val = srng->u.dst_ring.tp;
  576. hal_write_address_32_mb(hal,
  577. srng->u.dst_ring.tp_addr,
  578. srng->u.dst_ring.tp, false);
  579. write_val = srng->u.dst_ring.tp;
  580. }
  581. q_elem->valid = 0;
  582. srng->last_dequeue_time = q_elem->dequeue_time;
  583. SRNG_UNLOCK(&srng->lock);
  584. return write_val;
  585. }
  586. #endif
  587. /**
  588. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  589. * @hal: hal_soc pointer
  590. * @delay: delay in us
  591. *
  592. * Return: None
  593. */
  594. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  595. uint64_t delay_us)
  596. {
  597. uint32_t *hist;
  598. hist = hal->stats.wstats.sched_delay;
  599. if (delay_us < 100)
  600. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  601. else if (delay_us < 1000)
  602. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  603. else if (delay_us < 5000)
  604. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  605. else
  606. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  607. }
  608. #ifdef SHADOW_WRITE_DELAY
  609. #define SHADOW_WRITE_MIN_DELTA_US 5
  610. #define SHADOW_WRITE_DELAY_US 50
  611. /*
  612. * Never add those srngs which are performance relate.
  613. * The delay itself will hit performance heavily.
  614. */
  615. #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \
  616. (s)->ring_id == HAL_SRNG_CE_1_DST)
  617. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  618. {
  619. struct hal_srng *srng = elem->srng;
  620. struct hal_soc *hal = srng->hal_soc;
  621. qdf_time_t now;
  622. qdf_iomem_t real_addr;
  623. /* Check if it is target srng, and valid shadow reg */
  624. if (qdf_likely(!IS_SRNG_MATCH(srng)))
  625. return false;
  626. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  627. real_addr = SRNG_SRC_ADDR(srng, HP);
  628. else
  629. real_addr = SRNG_DST_ADDR(srng, TP);
  630. if (!hal_validate_shadow_register(hal, real_addr, elem->addr))
  631. return false;
  632. /* Check the time delta from last write of same srng */
  633. now = qdf_get_log_timestamp();
  634. if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) >
  635. SHADOW_WRITE_MIN_DELTA_US)
  636. return false;
  637. /* Delay dequeue, and record */
  638. qdf_udelay(SHADOW_WRITE_DELAY_US);
  639. srng->wstats.dequeue_delay++;
  640. hal->stats.wstats.dequeue_delay++;
  641. return true;
  642. }
  643. #else
  644. static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem)
  645. {
  646. return false;
  647. }
  648. #endif
  649. /**
  650. * hal_reg_write_work() - Worker to process delayed writes
  651. * @arg: hal_soc pointer
  652. *
  653. * Return: None
  654. */
  655. static void hal_reg_write_work(void *arg)
  656. {
  657. int32_t q_depth, write_val;
  658. struct hal_soc *hal = arg;
  659. struct hal_reg_write_q_elem *q_elem;
  660. uint64_t delta_us;
  661. uint8_t ring_id;
  662. uint32_t *addr;
  663. uint32_t num_processed = 0;
  664. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  665. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  666. /* Make sure q_elem consistent in the memory for multi-cores */
  667. qdf_rmb();
  668. if (!q_elem->valid)
  669. return;
  670. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  671. if (q_depth > hal->stats.wstats.max_q_depth)
  672. hal->stats.wstats.max_q_depth = q_depth;
  673. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  674. hal->stats.wstats.prevent_l1_fails++;
  675. return;
  676. }
  677. while (true) {
  678. qdf_rmb();
  679. if (!q_elem->valid)
  680. break;
  681. if (hal_reg_write_need_delay(q_elem))
  682. hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK",
  683. q_elem->srng->ring_id, q_elem->addr);
  684. q_elem->dequeue_time = qdf_get_log_timestamp();
  685. ring_id = q_elem->srng->ring_id;
  686. addr = q_elem->addr;
  687. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  688. q_elem->enqueue_time);
  689. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  690. hal->stats.wstats.dequeues++;
  691. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  692. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  693. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  694. hal->read_idx, ring_id, addr, write_val, delta_us);
  695. num_processed++;
  696. hal->read_idx = (hal->read_idx + 1) &
  697. (HAL_REG_WRITE_QUEUE_LEN - 1);
  698. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  699. }
  700. hif_allow_link_low_power_states(hal->hif_handle);
  701. /*
  702. * Decrement active_work_cnt by the number of elements dequeued after
  703. * hif_allow_link_low_power_states.
  704. * This makes sure that hif_try_complete_tasks will wait till we make
  705. * the bus access in hif_allow_link_low_power_states. This will avoid
  706. * race condition between delayed register worker and bus suspend
  707. * (system suspend or runtime suspend).
  708. *
  709. * The following decrement should be done at the end!
  710. */
  711. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  712. }
  713. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  714. {
  715. qdf_cancel_work(&hal->reg_write_work);
  716. }
  717. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  718. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  719. }
  720. /**
  721. * hal_reg_write_enqueue() - enqueue register writes into kworker
  722. * @hal_soc: hal_soc pointer
  723. * @srng: srng pointer
  724. * @addr: iomem address of regiter
  725. * @value: value to be written to iomem address
  726. *
  727. * This function executes from within the SRNG LOCK
  728. *
  729. * Return: None
  730. */
  731. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  732. struct hal_srng *srng,
  733. void __iomem *addr,
  734. uint32_t value)
  735. {
  736. struct hal_reg_write_q_elem *q_elem;
  737. uint32_t write_idx;
  738. if (srng->reg_write_in_progress) {
  739. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  740. srng->ring_id, addr, value);
  741. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  742. srng->wstats.coalesces++;
  743. return;
  744. }
  745. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  746. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  747. q_elem = &hal_soc->reg_write_queue[write_idx];
  748. if (q_elem->valid) {
  749. hal_err("queue full");
  750. QDF_BUG(0);
  751. return;
  752. }
  753. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  754. srng->wstats.enqueues++;
  755. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  756. q_elem->srng = srng;
  757. q_elem->addr = addr;
  758. q_elem->enqueue_val = value;
  759. q_elem->enqueue_time = qdf_get_log_timestamp();
  760. /*
  761. * Before the valid flag is set to true, all the other
  762. * fields in the q_elem needs to be updated in memory.
  763. * Else there is a chance that the dequeuing worker thread
  764. * might read stale entries and process incorrect srng.
  765. */
  766. qdf_wmb();
  767. q_elem->valid = true;
  768. /*
  769. * After all other fields in the q_elem has been updated
  770. * in memory successfully, the valid flag needs to be updated
  771. * in memory in time too.
  772. * Else there is a chance that the dequeuing worker thread
  773. * might read stale valid flag and the work will be bypassed
  774. * for this round. And if there is no other work scheduled
  775. * later, this hal register writing won't be updated any more.
  776. */
  777. qdf_wmb();
  778. srng->reg_write_in_progress = true;
  779. qdf_atomic_inc(&hal_soc->active_work_cnt);
  780. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  781. write_idx, srng->ring_id, addr, value);
  782. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  783. &hal_soc->reg_write_work);
  784. }
  785. /**
  786. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  787. * @hal_soc: hal_soc pointer
  788. *
  789. * Initialize main data structures to process register writes in a delayed
  790. * workqueue.
  791. *
  792. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  793. */
  794. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  795. {
  796. hal->reg_write_wq =
  797. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  798. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  799. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  800. sizeof(*hal->reg_write_queue));
  801. if (!hal->reg_write_queue) {
  802. hal_err("unable to allocate memory");
  803. QDF_BUG(0);
  804. return QDF_STATUS_E_NOMEM;
  805. }
  806. /* Initial value of indices */
  807. hal->read_idx = 0;
  808. qdf_atomic_set(&hal->write_idx, -1);
  809. return QDF_STATUS_SUCCESS;
  810. }
  811. /**
  812. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  813. * @hal_soc: hal_soc pointer
  814. *
  815. * De-initialize main data structures to process register writes in a delayed
  816. * workqueue.
  817. *
  818. * Return: None
  819. */
  820. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  821. {
  822. __hal_flush_reg_write_work(hal);
  823. qdf_flush_workqueue(0, hal->reg_write_wq);
  824. qdf_destroy_workqueue(0, hal->reg_write_wq);
  825. qdf_mem_free(hal->reg_write_queue);
  826. }
  827. #else
  828. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  829. {
  830. return QDF_STATUS_SUCCESS;
  831. }
  832. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  833. {
  834. }
  835. #endif
  836. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  837. #ifdef MEMORY_DEBUG
  838. /**
  839. * hal_reg_write_get_timestamp() - Function to get the timestamp
  840. *
  841. * Return: return present simestamp
  842. */
  843. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  844. {
  845. return qdf_get_log_timestamp();
  846. }
  847. /**
  848. * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
  849. * @ts: timestamp value to be converted
  850. *
  851. * Return: return the timestamp in micro secs
  852. */
  853. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  854. {
  855. return qdf_log_timestamp_to_usecs(ts);
  856. }
  857. /**
  858. * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
  859. * @hal: hal_soc pointer
  860. * @delay: delay in us
  861. *
  862. * Return: None
  863. */
  864. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  865. {
  866. uint32_t *hist;
  867. uint32_t delay_us;
  868. hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
  869. delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
  870. hal->tcl_stats.enq_time);
  871. hist = hal->tcl_stats.sched_delay;
  872. if (delay_us < 100)
  873. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  874. else if (delay_us < 1000)
  875. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  876. else if (delay_us < 5000)
  877. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  878. else
  879. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  880. }
  881. #else
  882. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  883. {
  884. return 0;
  885. }
  886. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  887. {
  888. return 0;
  889. }
  890. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  891. {
  892. }
  893. #endif
  894. /**
  895. * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
  896. * @arg: hal_soc pointer
  897. *
  898. * Return: None
  899. */
  900. static void hal_tcl_reg_write_work(void *arg)
  901. {
  902. struct hal_soc *hal = arg;
  903. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  904. SRNG_LOCK(&srng->lock);
  905. srng->wstats.dequeues++;
  906. hal_tcl_write_fill_sched_delay_hist(hal);
  907. /*
  908. * During the tranition of low to high tput scenario, reg write moves
  909. * from delayed to direct write context, there is a little chance that
  910. * worker thread gets scheduled later than direct context write which
  911. * already wrote the latest HP value. This check can catch that case
  912. * and avoid the repetitive writing of the same HP value.
  913. */
  914. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  915. srng->last_reg_wr_val = srng->u.src_ring.hp;
  916. if (hal->tcl_direct) {
  917. /*
  918. * TCL reg writes have been moved to direct context and
  919. * the assumption is that PCIe bus stays in Active state
  920. * during high tput, hence its fine to write the HP
  921. * while the SRNG_LOCK is being held.
  922. */
  923. hal->tcl_stats.wq_direct++;
  924. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  925. srng->last_reg_wr_val, false);
  926. srng->reg_write_in_progress = false;
  927. SRNG_UNLOCK(&srng->lock);
  928. } else {
  929. /*
  930. * TCL reg write to happen in delayed context,
  931. * write operation might take time due to possibility of
  932. * PCIe bus stays in low power state during low tput,
  933. * Hence release the SRNG_LOCK before writing.
  934. */
  935. hal->tcl_stats.wq_delayed++;
  936. srng->reg_write_in_progress = false;
  937. SRNG_UNLOCK(&srng->lock);
  938. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  939. srng->last_reg_wr_val, false);
  940. }
  941. } else {
  942. srng->reg_write_in_progress = false;
  943. SRNG_UNLOCK(&srng->lock);
  944. }
  945. /*
  946. * Decrement active_work_cnt to make sure that hif_try_complete_tasks
  947. * will wait. This will avoid race condition between delayed register
  948. * worker and bus suspend (system suspend or runtime suspend).
  949. *
  950. * The following decrement should be done at the end!
  951. */
  952. qdf_atomic_dec(&hal->active_work_cnt);
  953. qdf_atomic_set(&hal->tcl_work_active, false);
  954. }
  955. static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
  956. {
  957. qdf_cancel_work(&hal->tcl_reg_write_work);
  958. }
  959. /**
  960. * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
  961. * @hal_soc: hal_soc pointer
  962. * @srng: srng pointer
  963. * @addr: iomem address of regiter
  964. * @value: value to be written to iomem address
  965. *
  966. * This function executes from within the SRNG LOCK
  967. *
  968. * Return: None
  969. */
  970. static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
  971. struct hal_srng *srng,
  972. void __iomem *addr,
  973. uint32_t value)
  974. {
  975. hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
  976. if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
  977. &hal_soc->tcl_reg_write_work)) {
  978. srng->reg_write_in_progress = true;
  979. qdf_atomic_inc(&hal_soc->active_work_cnt);
  980. qdf_atomic_set(&hal_soc->tcl_work_active, true);
  981. srng->wstats.enqueues++;
  982. } else {
  983. hal_soc->tcl_stats.enq_timer_set++;
  984. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  985. }
  986. }
  987. /**
  988. * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
  989. * @arg: srng handle
  990. *
  991. * This function handles the pending TCL reg writes missed due to the previous
  992. * scheduled worker running.
  993. *
  994. * Return: None
  995. */
  996. static void hal_tcl_reg_write_timer(void *arg)
  997. {
  998. hal_ring_handle_t srng_hdl = arg;
  999. struct hal_srng *srng;
  1000. struct hal_soc *hal;
  1001. srng = (struct hal_srng *)srng_hdl;
  1002. hal = srng->hal_soc;
  1003. if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
  1004. true)) {
  1005. hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
  1006. hal_srng_inc_flush_cnt(srng_hdl);
  1007. goto fail;
  1008. }
  1009. SRNG_LOCK(&srng->lock);
  1010. if (hal->tcl_direct) {
  1011. /*
  1012. * Due to the previous scheduled worker still running,
  1013. * direct reg write cannot be performed, so posted the
  1014. * pending writes to timer context.
  1015. */
  1016. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  1017. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1018. srng->wstats.direct++;
  1019. hal->tcl_stats.timer_direct++;
  1020. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  1021. srng->last_reg_wr_val, false);
  1022. }
  1023. } else {
  1024. /*
  1025. * Due to the previous scheduled worker still running,
  1026. * queue_work from delayed context would fail,
  1027. * so retry from timer context.
  1028. */
  1029. if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
  1030. &hal->tcl_reg_write_work)) {
  1031. srng->reg_write_in_progress = true;
  1032. qdf_atomic_inc(&hal->active_work_cnt);
  1033. qdf_atomic_set(&hal->tcl_work_active, true);
  1034. srng->wstats.enqueues++;
  1035. hal->tcl_stats.timer_enq++;
  1036. } else {
  1037. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  1038. hal->tcl_stats.timer_reset++;
  1039. qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
  1040. }
  1041. }
  1042. }
  1043. SRNG_UNLOCK(&srng->lock);
  1044. hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
  1045. fail:
  1046. return;
  1047. }
  1048. /**
  1049. * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
  1050. * @hal_soc: hal_soc pointer
  1051. *
  1052. * Initialize main data structures to process TCL register writes in a delayed
  1053. * workqueue.
  1054. *
  1055. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  1056. */
  1057. static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1058. {
  1059. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  1060. QDF_STATUS status;
  1061. hal->tcl_reg_write_wq =
  1062. qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
  1063. if (!hal->tcl_reg_write_wq) {
  1064. hal_err("hal_tcl_reg_write_wq alloc failed");
  1065. return QDF_STATUS_E_NOMEM;
  1066. }
  1067. status = qdf_create_work(0, &hal->tcl_reg_write_work,
  1068. hal_tcl_reg_write_work, hal);
  1069. if (status != QDF_STATUS_SUCCESS) {
  1070. hal_err("tcl_reg_write_work create failed");
  1071. goto fail;
  1072. }
  1073. status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
  1074. hal_tcl_reg_write_timer, (void *)srng,
  1075. QDF_TIMER_TYPE_WAKE_APPS);
  1076. if (status != QDF_STATUS_SUCCESS) {
  1077. hal_err("tcl_reg_write_timer init failed");
  1078. goto fail;
  1079. }
  1080. qdf_atomic_init(&hal->tcl_work_active);
  1081. return QDF_STATUS_SUCCESS;
  1082. fail:
  1083. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1084. return status;
  1085. }
  1086. /**
  1087. * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
  1088. * @hal_soc: hal_soc pointer
  1089. *
  1090. * De-initialize main data structures to process TCL register writes in a
  1091. * delayed workqueue.
  1092. *
  1093. * Return: None
  1094. */
  1095. static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1096. {
  1097. qdf_timer_stop(&hal->tcl_reg_write_timer);
  1098. qdf_timer_free(&hal->tcl_reg_write_timer);
  1099. __hal_flush_tcl_reg_write_work(hal);
  1100. qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
  1101. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1102. }
  1103. #else
  1104. static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1105. {
  1106. return QDF_STATUS_SUCCESS;
  1107. }
  1108. static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1109. {
  1110. }
  1111. #endif
  1112. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  1113. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1114. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1115. struct hal_srng *srng,
  1116. void __iomem *addr,
  1117. uint32_t value)
  1118. {
  1119. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1120. }
  1121. #else
  1122. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1123. struct hal_srng *srng,
  1124. void __iomem *addr,
  1125. uint32_t value)
  1126. {
  1127. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1128. srng->wstats.direct++;
  1129. hal_write_address_32_mb(hal_soc, addr, value, false);
  1130. }
  1131. #endif
  1132. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1133. struct hal_srng *srng,
  1134. void __iomem *addr,
  1135. uint32_t value)
  1136. {
  1137. switch (srng->ring_type) {
  1138. case TCL_DATA:
  1139. if (hal_is_reg_write_tput_level_high(hal_soc)) {
  1140. hal_soc->tcl_direct = true;
  1141. if (srng->reg_write_in_progress ||
  1142. !qdf_atomic_read(&hal_soc->tcl_work_active)) {
  1143. /*
  1144. * Now the delayed work have either completed
  1145. * the writing or not even scheduled and would
  1146. * be blocked by SRNG_LOCK, hence it is fine to
  1147. * do direct write here.
  1148. */
  1149. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1150. srng->wstats.direct++;
  1151. hal_write_address_32_mb(hal_soc, addr,
  1152. srng->last_reg_wr_val,
  1153. false);
  1154. } else {
  1155. hal_soc->tcl_stats.direct_timer_set++;
  1156. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  1157. }
  1158. } else {
  1159. hal_soc->tcl_direct = false;
  1160. if (srng->reg_write_in_progress) {
  1161. srng->wstats.coalesces++;
  1162. } else {
  1163. hal_tcl_reg_write_enqueue(hal_soc, srng,
  1164. addr, value);
  1165. }
  1166. }
  1167. break;
  1168. case CE_SRC:
  1169. case CE_DST:
  1170. case CE_DST_STATUS:
  1171. hal_reg_write_enqueue_v2(hal_soc, srng, addr, value);
  1172. break;
  1173. default:
  1174. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1175. srng->wstats.direct++;
  1176. hal_write_address_32_mb(hal_soc, addr, value, false);
  1177. break;
  1178. }
  1179. }
  1180. #else
  1181. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1182. #ifdef QCA_WIFI_QCA6750
  1183. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1184. struct hal_srng *srng,
  1185. void __iomem *addr,
  1186. uint32_t value)
  1187. {
  1188. uint8_t vote_access;
  1189. switch (srng->ring_type) {
  1190. case CE_SRC:
  1191. case CE_DST:
  1192. case CE_DST_STATUS:
  1193. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  1194. HIF_EP_VOTE_NONDP_ACCESS);
  1195. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  1196. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  1197. PLD_MHI_STATE_L0 ==
  1198. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  1199. hal_write_address_32_mb(hal_soc, addr, value, false);
  1200. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1201. srng->wstats.direct++;
  1202. } else {
  1203. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1204. }
  1205. break;
  1206. default:
  1207. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  1208. HIF_EP_VOTE_DP_ACCESS) ==
  1209. HIF_EP_VOTE_ACCESS_DISABLE ||
  1210. hal_is_reg_write_tput_level_high(hal_soc) ||
  1211. PLD_MHI_STATE_L0 ==
  1212. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  1213. hal_write_address_32_mb(hal_soc, addr, value, false);
  1214. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1215. srng->wstats.direct++;
  1216. } else {
  1217. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1218. }
  1219. break;
  1220. }
  1221. }
  1222. #else
  1223. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1224. struct hal_srng *srng,
  1225. void __iomem *addr,
  1226. uint32_t value)
  1227. {
  1228. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  1229. hal_is_reg_write_tput_level_high(hal_soc)) {
  1230. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1231. srng->wstats.direct++;
  1232. hal_write_address_32_mb(hal_soc, addr, value, false);
  1233. } else {
  1234. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1235. }
  1236. }
  1237. #endif
  1238. #endif
  1239. #endif
  1240. /**
  1241. * hal_attach - Initialize HAL layer
  1242. * @hif_handle: Opaque HIF handle
  1243. * @qdf_dev: QDF device
  1244. *
  1245. * Return: Opaque HAL SOC handle
  1246. * NULL on failure (if given ring is not available)
  1247. *
  1248. * This function should be called as part of HIF initialization (for accessing
  1249. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1250. *
  1251. */
  1252. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1253. {
  1254. struct hal_soc *hal;
  1255. int i;
  1256. hal = qdf_mem_malloc(sizeof(*hal));
  1257. if (!hal) {
  1258. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1259. "%s: hal_soc allocation failed", __func__);
  1260. goto fail0;
  1261. }
  1262. hal->hif_handle = hif_handle;
  1263. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1264. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1265. hal->qdf_dev = qdf_dev;
  1266. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1267. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1268. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1269. if (!hal->shadow_rdptr_mem_paddr) {
  1270. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1271. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1272. __func__);
  1273. goto fail1;
  1274. }
  1275. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1276. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1277. hal->shadow_wrptr_mem_vaddr =
  1278. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1279. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1280. &(hal->shadow_wrptr_mem_paddr));
  1281. if (!hal->shadow_wrptr_mem_vaddr) {
  1282. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1283. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1284. __func__);
  1285. goto fail2;
  1286. }
  1287. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1288. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1289. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1290. hal->srng_list[i].initialized = 0;
  1291. hal->srng_list[i].ring_id = i;
  1292. }
  1293. qdf_spinlock_create(&hal->register_access_lock);
  1294. hal->register_window = 0;
  1295. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1296. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  1297. if (!hal->ops) {
  1298. hal_err("unable to allocable memory for HAL ops");
  1299. goto fail3;
  1300. }
  1301. hal_target_based_configure(hal);
  1302. hal_reg_write_fail_history_init(hal);
  1303. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1304. qdf_atomic_init(&hal->active_work_cnt);
  1305. hal_delayed_reg_write_init(hal);
  1306. hal_delayed_tcl_reg_write_init(hal);
  1307. return (void *)hal;
  1308. fail3:
  1309. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1310. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1311. HAL_MAX_LMAC_RINGS,
  1312. hal->shadow_wrptr_mem_vaddr,
  1313. hal->shadow_wrptr_mem_paddr, 0);
  1314. fail2:
  1315. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1316. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1317. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1318. fail1:
  1319. qdf_mem_free(hal);
  1320. fail0:
  1321. return NULL;
  1322. }
  1323. qdf_export_symbol(hal_attach);
  1324. /**
  1325. * hal_mem_info - Retrieve hal memory base address
  1326. *
  1327. * @hal_soc: Opaque HAL SOC handle
  1328. * @mem: pointer to structure to be updated with hal mem info
  1329. */
  1330. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1331. {
  1332. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1333. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1334. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1335. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1336. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1337. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1338. hif_read_phy_mem_base((void *)hal->hif_handle,
  1339. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1340. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1341. return;
  1342. }
  1343. qdf_export_symbol(hal_get_meminfo);
  1344. /**
  1345. * hal_detach - Detach HAL layer
  1346. * @hal_soc: HAL SOC handle
  1347. *
  1348. * Return: Opaque HAL SOC handle
  1349. * NULL on failure (if given ring is not available)
  1350. *
  1351. * This function should be called as part of HIF initialization (for accessing
  1352. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1353. *
  1354. */
  1355. extern void hal_detach(void *hal_soc)
  1356. {
  1357. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1358. hal_delayed_reg_write_deinit(hal);
  1359. hal_delayed_tcl_reg_write_deinit(hal);
  1360. qdf_mem_free(hal->ops);
  1361. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1362. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1363. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1364. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1365. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1366. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1367. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1368. qdf_mem_free(hal);
  1369. return;
  1370. }
  1371. qdf_export_symbol(hal_detach);
  1372. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1373. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1374. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1375. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1376. /**
  1377. * hal_ce_dst_setup - Initialize CE destination ring registers
  1378. * @hal_soc: HAL SOC handle
  1379. * @srng: SRNG ring pointer
  1380. */
  1381. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1382. int ring_num)
  1383. {
  1384. uint32_t reg_val = 0;
  1385. uint32_t reg_addr;
  1386. struct hal_hw_srng_config *ring_config =
  1387. HAL_SRNG_CONFIG(hal, CE_DST);
  1388. /* set DEST_MAX_LENGTH according to ce assignment */
  1389. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1390. ring_config->reg_start[R0_INDEX] +
  1391. (ring_num * ring_config->reg_size[R0_INDEX]));
  1392. reg_val = HAL_REG_READ(hal, reg_addr);
  1393. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1394. reg_val |= srng->u.dst_ring.max_buffer_length &
  1395. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1396. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1397. if (srng->prefetch_timer) {
  1398. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1399. ring_config->reg_start[R0_INDEX] +
  1400. (ring_num * ring_config->reg_size[R0_INDEX]));
  1401. reg_val = HAL_REG_READ(hal, reg_addr);
  1402. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1403. reg_val |= srng->prefetch_timer;
  1404. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1405. reg_val = HAL_REG_READ(hal, reg_addr);
  1406. }
  1407. }
  1408. /**
  1409. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1410. * @hal: HAL SOC handle
  1411. * @read: boolean value to indicate if read or write
  1412. * @ix0: pointer to store IX0 reg value
  1413. * @ix1: pointer to store IX1 reg value
  1414. * @ix2: pointer to store IX2 reg value
  1415. * @ix3: pointer to store IX3 reg value
  1416. */
  1417. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1418. uint32_t *ix0, uint32_t *ix1,
  1419. uint32_t *ix2, uint32_t *ix3)
  1420. {
  1421. uint32_t reg_offset;
  1422. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1423. uint32_t reo_reg_base;
  1424. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1425. if (read) {
  1426. if (ix0) {
  1427. reg_offset =
  1428. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1429. reo_reg_base);
  1430. *ix0 = HAL_REG_READ(hal, reg_offset);
  1431. }
  1432. if (ix1) {
  1433. reg_offset =
  1434. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1435. reo_reg_base);
  1436. *ix1 = HAL_REG_READ(hal, reg_offset);
  1437. }
  1438. if (ix2) {
  1439. reg_offset =
  1440. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1441. reo_reg_base);
  1442. *ix2 = HAL_REG_READ(hal, reg_offset);
  1443. }
  1444. if (ix3) {
  1445. reg_offset =
  1446. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1447. reo_reg_base);
  1448. *ix3 = HAL_REG_READ(hal, reg_offset);
  1449. }
  1450. } else {
  1451. if (ix0) {
  1452. reg_offset =
  1453. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1454. reo_reg_base);
  1455. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1456. *ix0, true);
  1457. }
  1458. if (ix1) {
  1459. reg_offset =
  1460. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1461. reo_reg_base);
  1462. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1463. *ix1, true);
  1464. }
  1465. if (ix2) {
  1466. reg_offset =
  1467. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1468. reo_reg_base);
  1469. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1470. *ix2, true);
  1471. }
  1472. if (ix3) {
  1473. reg_offset =
  1474. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1475. reo_reg_base);
  1476. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1477. *ix3, true);
  1478. }
  1479. }
  1480. }
  1481. /**
  1482. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1483. * pointer and confirm that write went through by reading back the value
  1484. * @srng: sring pointer
  1485. * @paddr: physical address
  1486. *
  1487. * Return: None
  1488. */
  1489. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1490. {
  1491. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1492. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1493. }
  1494. /**
  1495. * hal_srng_dst_init_hp() - Initialize destination ring head
  1496. * pointer
  1497. * @hal_soc: hal_soc handle
  1498. * @srng: sring pointer
  1499. * @vaddr: virtual address
  1500. */
  1501. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1502. struct hal_srng *srng,
  1503. uint32_t *vaddr)
  1504. {
  1505. uint32_t reg_offset;
  1506. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1507. if (!srng)
  1508. return;
  1509. srng->u.dst_ring.hp_addr = vaddr;
  1510. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1511. HAL_REG_WRITE_CONFIRM_RETRY(
  1512. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1513. if (vaddr) {
  1514. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1515. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1516. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1517. (void *)srng->u.dst_ring.hp_addr,
  1518. srng->u.dst_ring.cached_hp,
  1519. *srng->u.dst_ring.hp_addr);
  1520. }
  1521. }
  1522. /**
  1523. * hal_srng_hw_init - Private function to initialize SRNG HW
  1524. * @hal_soc: HAL SOC handle
  1525. * @srng: SRNG ring pointer
  1526. */
  1527. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1528. struct hal_srng *srng)
  1529. {
  1530. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1531. hal_srng_src_hw_init(hal, srng);
  1532. else
  1533. hal_srng_dst_hw_init(hal, srng);
  1534. }
  1535. #ifdef CONFIG_SHADOW_V2
  1536. #define ignore_shadow false
  1537. #define CHECK_SHADOW_REGISTERS true
  1538. #else
  1539. #define ignore_shadow true
  1540. #define CHECK_SHADOW_REGISTERS false
  1541. #endif
  1542. /**
  1543. * hal_srng_setup - Initialize HW SRNG ring.
  1544. * @hal_soc: Opaque HAL SOC handle
  1545. * @ring_type: one of the types from hal_ring_type
  1546. * @ring_num: Ring number if there are multiple rings of same type (staring
  1547. * from 0)
  1548. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1549. * @ring_params: SRNG ring params in hal_srng_params structure.
  1550. * Callers are expected to allocate contiguous ring memory of size
  1551. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1552. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1553. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1554. * and size of each ring entry should be queried using the API
  1555. * hal_srng_get_entrysize
  1556. *
  1557. * Return: Opaque pointer to ring on success
  1558. * NULL on failure (if given ring is not available)
  1559. */
  1560. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1561. int mac_id, struct hal_srng_params *ring_params)
  1562. {
  1563. int ring_id;
  1564. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1565. struct hal_srng *srng;
  1566. struct hal_hw_srng_config *ring_config =
  1567. HAL_SRNG_CONFIG(hal, ring_type);
  1568. void *dev_base_addr;
  1569. int i;
  1570. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1571. if (ring_id < 0)
  1572. return NULL;
  1573. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1574. srng = hal_get_srng(hal_soc, ring_id);
  1575. if (srng->initialized) {
  1576. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1577. return NULL;
  1578. }
  1579. dev_base_addr = hal->dev_base_addr;
  1580. srng->ring_id = ring_id;
  1581. srng->ring_type = ring_type;
  1582. srng->ring_dir = ring_config->ring_dir;
  1583. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1584. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1585. srng->entry_size = ring_config->entry_size;
  1586. srng->num_entries = ring_params->num_entries;
  1587. srng->ring_size = srng->num_entries * srng->entry_size;
  1588. srng->ring_size_mask = srng->ring_size - 1;
  1589. srng->msi_addr = ring_params->msi_addr;
  1590. srng->msi_data = ring_params->msi_data;
  1591. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1592. srng->intr_batch_cntr_thres_entries =
  1593. ring_params->intr_batch_cntr_thres_entries;
  1594. srng->prefetch_timer = ring_params->prefetch_timer;
  1595. srng->hal_soc = hal_soc;
  1596. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1597. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1598. + (ring_num * ring_config->reg_size[i]);
  1599. }
  1600. /* Zero out the entire ring memory */
  1601. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1602. srng->num_entries) << 2);
  1603. srng->flags = ring_params->flags;
  1604. #ifdef BIG_ENDIAN_HOST
  1605. /* TODO: See if we should we get these flags from caller */
  1606. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1607. srng->flags |= HAL_SRNG_MSI_SWAP;
  1608. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1609. #endif
  1610. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1611. srng->u.src_ring.hp = 0;
  1612. srng->u.src_ring.reap_hp = srng->ring_size -
  1613. srng->entry_size;
  1614. srng->u.src_ring.tp_addr =
  1615. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1616. srng->u.src_ring.low_threshold =
  1617. ring_params->low_threshold * srng->entry_size;
  1618. if (ring_config->lmac_ring) {
  1619. /* For LMAC rings, head pointer updates will be done
  1620. * through FW by writing to a shared memory location
  1621. */
  1622. srng->u.src_ring.hp_addr =
  1623. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1624. HAL_SRNG_LMAC1_ID_START]);
  1625. srng->flags |= HAL_SRNG_LMAC_RING;
  1626. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1627. srng->u.src_ring.hp_addr =
  1628. hal_get_window_address(hal,
  1629. SRNG_SRC_ADDR(srng, HP));
  1630. if (CHECK_SHADOW_REGISTERS) {
  1631. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1632. QDF_TRACE_LEVEL_ERROR,
  1633. "%s: Ring (%d, %d) missing shadow config",
  1634. __func__, ring_type, ring_num);
  1635. }
  1636. } else {
  1637. hal_validate_shadow_register(hal,
  1638. SRNG_SRC_ADDR(srng, HP),
  1639. srng->u.src_ring.hp_addr);
  1640. }
  1641. } else {
  1642. /* During initialization loop count in all the descriptors
  1643. * will be set to zero, and HW will set it to 1 on completing
  1644. * descriptor update in first loop, and increments it by 1 on
  1645. * subsequent loops (loop count wraps around after reaching
  1646. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1647. * loop count in descriptors updated by HW (to be processed
  1648. * by SW).
  1649. */
  1650. srng->u.dst_ring.loop_cnt = 1;
  1651. srng->u.dst_ring.tp = 0;
  1652. srng->u.dst_ring.hp_addr =
  1653. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1654. if (ring_config->lmac_ring) {
  1655. /* For LMAC rings, tail pointer updates will be done
  1656. * through FW by writing to a shared memory location
  1657. */
  1658. srng->u.dst_ring.tp_addr =
  1659. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1660. HAL_SRNG_LMAC1_ID_START]);
  1661. srng->flags |= HAL_SRNG_LMAC_RING;
  1662. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1663. srng->u.dst_ring.tp_addr =
  1664. hal_get_window_address(hal,
  1665. SRNG_DST_ADDR(srng, TP));
  1666. if (CHECK_SHADOW_REGISTERS) {
  1667. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1668. QDF_TRACE_LEVEL_ERROR,
  1669. "%s: Ring (%d, %d) missing shadow config",
  1670. __func__, ring_type, ring_num);
  1671. }
  1672. } else {
  1673. hal_validate_shadow_register(hal,
  1674. SRNG_DST_ADDR(srng, TP),
  1675. srng->u.dst_ring.tp_addr);
  1676. }
  1677. }
  1678. if (!(ring_config->lmac_ring)) {
  1679. hal_srng_hw_init(hal, srng);
  1680. if (ring_type == CE_DST) {
  1681. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1682. hal_ce_dst_setup(hal, srng, ring_num);
  1683. }
  1684. }
  1685. SRNG_LOCK_INIT(&srng->lock);
  1686. srng->srng_event = 0;
  1687. srng->initialized = true;
  1688. return (void *)srng;
  1689. }
  1690. qdf_export_symbol(hal_srng_setup);
  1691. /**
  1692. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1693. * @hal_soc: Opaque HAL SOC handle
  1694. * @hal_srng: Opaque HAL SRNG pointer
  1695. */
  1696. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1697. {
  1698. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1699. SRNG_LOCK_DESTROY(&srng->lock);
  1700. srng->initialized = 0;
  1701. }
  1702. qdf_export_symbol(hal_srng_cleanup);
  1703. /**
  1704. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1705. * @hal_soc: Opaque HAL SOC handle
  1706. * @ring_type: one of the types from hal_ring_type
  1707. *
  1708. */
  1709. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1710. {
  1711. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1712. struct hal_hw_srng_config *ring_config =
  1713. HAL_SRNG_CONFIG(hal, ring_type);
  1714. return ring_config->entry_size << 2;
  1715. }
  1716. qdf_export_symbol(hal_srng_get_entrysize);
  1717. /**
  1718. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1719. * @hal_soc: Opaque HAL SOC handle
  1720. * @ring_type: one of the types from hal_ring_type
  1721. *
  1722. * Return: Maximum number of entries for the given ring_type
  1723. */
  1724. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1725. {
  1726. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1727. struct hal_hw_srng_config *ring_config =
  1728. HAL_SRNG_CONFIG(hal, ring_type);
  1729. return ring_config->max_size / ring_config->entry_size;
  1730. }
  1731. qdf_export_symbol(hal_srng_max_entries);
  1732. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1733. {
  1734. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1735. struct hal_hw_srng_config *ring_config =
  1736. HAL_SRNG_CONFIG(hal, ring_type);
  1737. return ring_config->ring_dir;
  1738. }
  1739. /**
  1740. * hal_srng_dump - Dump ring status
  1741. * @srng: hal srng pointer
  1742. */
  1743. void hal_srng_dump(struct hal_srng *srng)
  1744. {
  1745. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1746. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1747. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1748. srng->u.src_ring.hp,
  1749. srng->u.src_ring.reap_hp,
  1750. *srng->u.src_ring.tp_addr,
  1751. srng->u.src_ring.cached_tp);
  1752. } else {
  1753. hal_debug("=== DST RING %d ===", srng->ring_id);
  1754. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1755. srng->u.dst_ring.tp,
  1756. *srng->u.dst_ring.hp_addr,
  1757. srng->u.dst_ring.cached_hp,
  1758. srng->u.dst_ring.loop_cnt);
  1759. }
  1760. }
  1761. /**
  1762. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1763. *
  1764. * @hal_soc: Opaque HAL SOC handle
  1765. * @hal_ring: Ring pointer (Source or Destination ring)
  1766. * @ring_params: SRNG parameters will be returned through this structure
  1767. */
  1768. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1769. hal_ring_handle_t hal_ring_hdl,
  1770. struct hal_srng_params *ring_params)
  1771. {
  1772. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1773. int i =0;
  1774. ring_params->ring_id = srng->ring_id;
  1775. ring_params->ring_dir = srng->ring_dir;
  1776. ring_params->entry_size = srng->entry_size;
  1777. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1778. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1779. ring_params->num_entries = srng->num_entries;
  1780. ring_params->msi_addr = srng->msi_addr;
  1781. ring_params->msi_data = srng->msi_data;
  1782. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1783. ring_params->intr_batch_cntr_thres_entries =
  1784. srng->intr_batch_cntr_thres_entries;
  1785. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1786. ring_params->flags = srng->flags;
  1787. ring_params->ring_id = srng->ring_id;
  1788. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1789. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1790. }
  1791. qdf_export_symbol(hal_get_srng_params);
  1792. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1793. uint32_t low_threshold)
  1794. {
  1795. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1796. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1797. }
  1798. qdf_export_symbol(hal_set_low_threshold);
  1799. #ifdef FORCE_WAKE
  1800. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1801. {
  1802. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1803. hal_soc->init_phase = init_phase;
  1804. }
  1805. #endif /* FORCE_WAKE */