Files
android_kernel_samsung_sm86…/target_if/spectral/target_if_spectral_phyerr.c
Edayilliam Jayadev 7f60898cfc qcacmn: Fill "blanking status" field of SAMP message
Extract the blanking status from Spectral reports and upload
it to user space via SAMP message.

CRs-Fixed: 3413925
Change-Id: Ib033b88190be6bca3dff903cf279a9883821fb10
2023-03-02 14:50:16 -08:00

4147 行
123 KiB
C

/*
* Copyright (c) 2011,2017-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <osdep.h>
#include <qdf_types.h>
#include <qdf_module.h>
#include <wlan_tgt_def_config.h>
#include <hif.h>
#include <hif_hw_version.h>
#include <wmi_unified_api.h>
#include <target_if_spectral.h>
#include <wlan_lmac_if_def.h>
#include <wlan_osif_priv.h>
#include <reg_services_public_struct.h>
#include <target_if.h>
#ifdef DIRECT_BUF_RX_ENABLE
#include <target_if_direct_buf_rx_api.h>
#endif
extern int spectral_debug_level;
#ifdef WLAN_CONV_SPECTRAL_ENABLE
#define SPECTRAL_HEXDUMP_OCTET_PRINT_SIZE (3)
#define SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE (16)
#define SPECTRAL_HEXDUMP_EXTRA_BUFFER_PER_LINE (16)
/*
* Provision for the expected hexdump line size as follows:
*
* Size per octet multiplied by number of octets per line
* +
* ASCII representation which is equivalent in print size to number of octets
* per line
* +
* Some extra buffer
*/
#define SPECTRAL_HEXDUMP_LINESIZE \
((SPECTRAL_HEXDUMP_OCTET_PRINT_SIZE * \
SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE) + \
SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE + \
SPECTRAL_HEXDUMP_EXTRA_BUFFER_PER_LINE)
/**
* target_if_spectral_hexdump() - Print hexdump of the given buffer
* @_buf: Pointer to buffer
* @_len: Length of the buffer
*
* Print the hexdump of buffer upto given length. Print upto
* SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE per line, followed by the ASCII
* representation of these octets.
*/
static inline void target_if_spectral_hexdump(unsigned char *_buf, int _len)
{
int i, mod;
unsigned char ascii[SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE + 1];
unsigned char *pc = (_buf);
char hexdump_line[SPECTRAL_HEXDUMP_LINESIZE + 1];
int loc = 0;
qdf_mem_zero(hexdump_line, sizeof(hexdump_line));
if (_len <= 0) {
spectral_err("buffer len is %d, too short", _len);
return;
}
for (i = 0; i < _len; i++) {
mod = i % SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE;
if (!mod) {
if (i) {
qdf_assert_always(loc < sizeof(hexdump_line));
loc += snprintf(&hexdump_line[loc],
sizeof(hexdump_line) - loc,
" %s", ascii);
spectral_debug("%s", hexdump_line);
qdf_mem_zero(hexdump_line,
sizeof(hexdump_line));
loc = 0;
}
}
qdf_assert_always(loc < sizeof(hexdump_line));
loc += snprintf(&hexdump_line[loc], sizeof(hexdump_line) - loc,
" %02x", pc[i]);
if ((pc[i] < 0x20) || (pc[i] > 0x7e))
ascii[mod] = '.';
else
ascii[mod] = pc[i];
ascii[(mod) + 1] = '\0';
}
while ((i % SPECTRAL_HEXDUMP_NUM_OCTETS_PER_LINE) != 0) {
qdf_assert_always(loc < sizeof(hexdump_line));
loc += snprintf(&hexdump_line[loc], sizeof(hexdump_line) - loc,
" ");
i++;
}
qdf_assert_always(loc < sizeof(hexdump_line));
snprintf(&hexdump_line[loc], sizeof(hexdump_line) - loc, " %s", ascii);
spectral_debug("%s", hexdump_line);
}
/**
* target_if_print_buf() - Prints given buffer for given length
* @pbuf: Pointer to buffer
* @len: length
*
* Prints given buffer for given length
*
* Return: void
*/
static void
target_if_print_buf(uint8_t *pbuf, int len)
{
int i = 0;
for (i = 0; i < len; i++) {
spectral_debug("%02X ", pbuf[i]);
if (i % 32 == 31)
spectral_debug("\n");
}
}
int
target_if_spectral_dump_fft(uint8_t *pfft, int fftlen)
{
int i = 0;
/*
* TODO : Do not delete the following print
* The scripts used to validate Spectral depend on this Print
*/
spectral_debug("SPECTRAL : FFT Length is 0x%x (%d)", fftlen, fftlen);
spectral_debug("fft_data # ");
for (i = 0; i < fftlen; i++)
spectral_debug("%d ", pfft[i]);
spectral_debug("\n");
return 0;
}
QDF_STATUS target_if_spectral_fw_hang(struct target_if_spectral *spectral)
{
struct crash_inject param;
struct wlan_objmgr_pdev *pdev;
struct wlan_objmgr_psoc *psoc;
struct target_if_psoc_spectral *psoc_spectral;
if (!spectral) {
spectral_err("Spectral LMAC object is null");
return QDF_STATUS_E_INVAL;
}
pdev = spectral->pdev_obj;
if (!pdev) {
spectral_err("pdev is null");
return QDF_STATUS_E_FAILURE;
}
psoc = wlan_pdev_get_psoc(pdev);
if (!psoc) {
spectral_err("psoc is null");
return QDF_STATUS_E_FAILURE;
}
psoc_spectral = get_target_if_spectral_handle_from_psoc(psoc);
if (!psoc_spectral) {
spectral_err("spectral psoc object is null");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_set(&param, sizeof(param), 0);
param.type = 1; //RECOVERY_SIM_ASSERT
return psoc_spectral->wmi_ops.wmi_spectral_crash_inject(
GET_WMI_HDL_FROM_PDEV(spectral->pdev_obj), &param);
}
#ifdef OPTIMIZED_SAMP_MESSAGE
void
target_if_dbg_print_samp_msg(struct spectral_samp_msg *ss_msg)
{
int span, det;
struct samp_detector_info *det_info;
struct samp_freq_span_info *span_info;
spectral_dbg_line();
spectral_debug("Spectral Message");
spectral_dbg_line();
spectral_debug("Signature : 0x%x", ss_msg->signature);
spectral_debug("Freq : %u", ss_msg->pri20_freq);
spectral_debug("sscan width : %d", ss_msg->sscan_bw);
spectral_debug("sscan cfreq1 : %u", ss_msg->sscan_cfreq1);
spectral_debug("sscan cfreq2 : %u", ss_msg->sscan_cfreq2);
spectral_debug("bin power count : %d", ss_msg->bin_pwr_count);
spectral_debug("Number of spans : %d", ss_msg->num_freq_spans);
spectral_dbg_line();
for (span = 0; span < ss_msg->num_freq_spans; span++) {
span_info = &ss_msg->freq_span_info[span];
spectral_debug("-------- Span ID : %d --------", span);
spectral_debug("Number of detectors : %d",
span_info->num_detectors);
spectral_dbg_line();
for (det = 0; det < span_info->num_detectors; det++) {
det_info = &span_info->detector_info[det];
spectral_debug("------ Detector ID : %d ------", det);
spectral_dbg_line();
spectral_debug("RSSI : %d", det_info->rssi);
spectral_debug("Timestamp : %u",
det_info->timestamp);
spectral_debug("Start bin index : %d",
det_info->start_bin_idx);
spectral_debug("End bin index : %d",
det_info->end_bin_idx);
spectral_debug("Start frequency : %d",
det_info->start_frequency);
spectral_debug("End frequency : %d",
det_info->end_frequency);
spectral_dbg_line();
}
}
}
#else
void
target_if_dbg_print_samp_param(struct target_if_samp_msg_params *p)
{
spectral_debug("\nSAMP Packet : -------------------- START --------------------");
spectral_debug("Freq = %d", p->freq);
spectral_debug("RSSI = %d", p->rssi);
spectral_debug("Bin Count = %d", p->pwr_count);
spectral_debug("Timestamp = %d", p->tstamp);
spectral_debug("SAMP Packet : -------------------- END -----------------------");
}
void
target_if_dbg_print_samp_msg(struct spectral_samp_msg *ss_msg)
{
int i = 0;
struct spectral_samp_data *p = &ss_msg->samp_data;
struct spectral_classifier_params *pc = &p->classifier_params;
struct interf_src_rsp *pi = &p->interf_list;
spectral_dbg_line();
spectral_debug("Spectral Message");
spectral_dbg_line();
spectral_debug("Signature : 0x%x", ss_msg->signature);
spectral_debug("Freq : %d", ss_msg->freq);
spectral_debug("Freq load : %d", ss_msg->freq_loading);
spectral_debug("Intfnc type : %d", ss_msg->int_type);
spectral_dbg_line();
spectral_debug("Spectral Data info");
spectral_dbg_line();
spectral_debug("data length : %d", p->spectral_data_len);
spectral_debug("rssi : %d", p->spectral_rssi);
spectral_debug("combined rssi : %d", p->spectral_combined_rssi);
spectral_debug("upper rssi : %d", p->spectral_upper_rssi);
spectral_debug("lower rssi : %d", p->spectral_lower_rssi);
spectral_debug("bw info : %d", p->spectral_bwinfo);
spectral_debug("timestamp : %d", p->spectral_tstamp);
spectral_debug("max index : %d", p->spectral_max_index);
spectral_debug("max exp : %d", p->spectral_max_exp);
spectral_debug("max mag : %d", p->spectral_max_mag);
spectral_debug("last timstamp : %d", p->spectral_last_tstamp);
spectral_debug("upper max idx : %d", p->spectral_upper_max_index);
spectral_debug("lower max idx : %d", p->spectral_lower_max_index);
spectral_debug("bin power count : %d", p->bin_pwr_count);
spectral_dbg_line();
spectral_debug("Classifier info");
spectral_dbg_line();
spectral_debug("20/40 Mode : %d", pc->spectral_20_40_mode);
spectral_debug("dc index : %d", pc->spectral_dc_index);
spectral_debug("dc in MHz : %d", pc->spectral_dc_in_mhz);
spectral_debug("upper channel : %d", pc->upper_chan_in_mhz);
spectral_debug("lower channel : %d", pc->lower_chan_in_mhz);
spectral_dbg_line();
spectral_debug("Interference info");
spectral_dbg_line();
spectral_debug("inter count : %d", pi->count);
for (i = 0; i < pi->count; i++) {
spectral_debug("inter type : %d",
pi->interf[i].interf_type);
spectral_debug("min freq : %d",
pi->interf[i].interf_min_freq);
spectral_debug("max freq : %d",
pi->interf[i].interf_max_freq);
}
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
uint32_t
target_if_get_offset_swar_sec80(uint32_t channel_width)
{
uint32_t offset = 0;
switch (channel_width) {
case CH_WIDTH_20MHZ:
offset = OFFSET_CH_WIDTH_20;
break;
case CH_WIDTH_40MHZ:
offset = OFFSET_CH_WIDTH_40;
break;
case CH_WIDTH_80MHZ:
offset = OFFSET_CH_WIDTH_80;
break;
case CH_WIDTH_160MHZ:
case CH_WIDTH_80P80MHZ:
offset = OFFSET_CH_WIDTH_160;
break;
default:
offset = OFFSET_CH_WIDTH_80;
break;
}
return offset;
}
/**
* target_if_dump_summary_report_gen2() - Dump Spectral Summary Report for gen2
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
* @is_160_format: Indicates whether information provided by HW is in altered
* format for 802.11ac 160/80+80 MHz support (QCA9984 onwards)
*
* Dump Spectral Summary Report for gen2
*
* Return: Success/Failure
*/
static int
target_if_dump_summary_report_gen2(struct spectral_phyerr_tlv_gen2 *ptlv,
int tlvlen, bool is_160_format)
{
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparison between MDK team and OS team, the MDK script
* variable names have been used
*/
uint32_t agc_mb_gain;
uint32_t sscan_gidx;
uint32_t agc_total_gain;
uint32_t recent_rfsat;
uint32_t ob_flag;
uint32_t nb_mask;
uint32_t peak_mag;
int16_t peak_inx;
uint32_t ss_summary_A = 0;
uint32_t ss_summary_B = 0;
uint32_t ss_summary_C = 0;
uint32_t ss_summary_D = 0;
uint32_t ss_summary_E = 0;
struct spectral_phyerr_hdr_gen2 *phdr =
(struct spectral_phyerr_hdr_gen2 *)(
(uint8_t *)ptlv +
sizeof(struct spectral_phyerr_tlv_gen2));
spectral_debug("SPECTRAL : SPECTRAL SUMMARY REPORT");
if (is_160_format) {
if (tlvlen != 20) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&ss_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&ss_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
qdf_mem_copy(&ss_summary_C,
(uint8_t *)((uint8_t *)phdr + 2 * sizeof(int)),
sizeof(int));
qdf_mem_copy(&ss_summary_D,
(uint8_t *)((uint8_t *)phdr + 3 * sizeof(int)),
sizeof(int));
qdf_mem_copy(&ss_summary_E,
(uint8_t *)((uint8_t *)phdr + 4 * sizeof(int)),
sizeof(int));
/*
* The following is adapted from MDK scripts for
* easier comparability
*/
recent_rfsat = ((ss_summary_A >> 8) & 0x1);
sscan_gidx = (ss_summary_A & 0xff);
spectral_debug("sscan_gidx=%d, is_recent_rfsat=%d",
sscan_gidx, recent_rfsat);
/* First segment */
agc_mb_gain = ((ss_summary_B >> 10) & 0x7f);
agc_total_gain = (ss_summary_B & 0x3ff);
nb_mask = ((ss_summary_C >> 22) & 0xff);
ob_flag = ((ss_summary_B >> 17) & 0x1);
peak_inx = (ss_summary_C & 0xfff);
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
peak_mag = ((ss_summary_C >> 12) & 0x3ff);
spectral_debug("agc_total_gain_segid0 = 0x%.2x, agc_mb_gain_segid0=%d",
agc_total_gain, agc_mb_gain);
spectral_debug("nb_mask_segid0 = 0x%.2x, ob_flag_segid0=%d, peak_index_segid0=%d, peak_mag_segid0=%d",
nb_mask, ob_flag, peak_inx, peak_mag);
/* Second segment */
agc_mb_gain = ((ss_summary_D >> 10) & 0x7f);
agc_total_gain = (ss_summary_D & 0x3ff);
nb_mask = ((ss_summary_E >> 22) & 0xff);
ob_flag = ((ss_summary_D >> 17) & 0x1);
peak_inx = (ss_summary_E & 0xfff);
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
peak_mag = ((ss_summary_E >> 12) & 0x3ff);
spectral_debug("agc_total_gain_segid1 = 0x%.2x, agc_mb_gain_segid1=%d",
agc_total_gain, agc_mb_gain);
spectral_debug("nb_mask_segid1 = 0x%.2x, ob_flag_segid1=%d, peak_index_segid1=%d, peak_mag_segid1=%d",
nb_mask, ob_flag, peak_inx, peak_mag);
} else {
if (tlvlen != 8) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&ss_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&ss_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
nb_mask = ((ss_summary_B >> 22) & 0xff);
ob_flag = ((ss_summary_B >> 30) & 0x1);
peak_inx = (ss_summary_B & 0xfff);
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
peak_mag = ((ss_summary_B >> 12) & 0x3ff);
agc_mb_gain = ((ss_summary_A >> 24) & 0x7f);
agc_total_gain = (ss_summary_A & 0x3ff);
sscan_gidx = ((ss_summary_A >> 16) & 0xff);
recent_rfsat = ((ss_summary_B >> 31) & 0x1);
spectral_debug("nb_mask = 0x%.2x, ob_flag=%d, peak_index=%d, peak_mag=%d, agc_mb_gain=%d, agc_total_gain=%d, sscan_gidx=%d, recent_rfsat=%d",
nb_mask, ob_flag, peak_inx, peak_mag,
agc_mb_gain, agc_total_gain, sscan_gidx,
recent_rfsat);
}
return 0;
}
/**
* target_if_process_sfft_report_gen2() - Process Search FFT Report
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
* @p_fft_info: Pointer to search fft info
*
* Dump Spectral Summary Report for gen2
*
* Return: Success/Failure
*/
static int
target_if_process_sfft_report_gen2(
struct spectral_phyerr_tlv_gen2 *ptlv,
int tlvlen,
struct spectral_search_fft_info_gen2 *p_fft_info)
{
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparison between MDK team and OS team, the MDK script
* variable names have been used
*/
uint32_t relpwr_db;
uint32_t num_str_bins_ib;
uint32_t base_pwr;
uint32_t total_gain_info;
uint32_t fft_chn_idx;
int16_t peak_inx;
uint32_t avgpwr_db;
uint32_t peak_mag;
uint32_t fft_summary_A = 0;
uint32_t fft_summary_B = 0;
uint8_t *tmp = (uint8_t *)ptlv;
struct spectral_phyerr_hdr_gen2 *phdr =
(struct spectral_phyerr_hdr_gen2 *)(
tmp +
sizeof(struct spectral_phyerr_tlv_gen2));
/* Relook this */
if (tlvlen < 8) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&fft_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&fft_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
relpwr_db = ((fft_summary_B >> 26) & 0x3f);
num_str_bins_ib = fft_summary_B & 0xff;
base_pwr = ((fft_summary_A >> 14) & 0x1ff);
total_gain_info = ((fft_summary_A >> 23) & 0x1ff);
fft_chn_idx = ((fft_summary_A >> 12) & 0x3);
peak_inx = fft_summary_A & 0xfff;
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
avgpwr_db = ((fft_summary_B >> 18) & 0xff);
peak_mag = ((fft_summary_B >> 8) & 0x3ff);
/* Populate the Search FFT Info */
if (p_fft_info) {
p_fft_info->relpwr_db = relpwr_db;
p_fft_info->num_str_bins_ib = num_str_bins_ib;
p_fft_info->base_pwr = base_pwr;
p_fft_info->total_gain_info = total_gain_info;
p_fft_info->fft_chn_idx = fft_chn_idx;
p_fft_info->peak_inx = peak_inx;
p_fft_info->avgpwr_db = avgpwr_db;
p_fft_info->peak_mag = peak_mag;
}
return 0;
}
/**
* target_if_dump_adc_report_gen2() - Dump ADC Reports for gen2
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
*
* Dump ADC Reports for gen2
*
* Return: Success/Failure
*/
static int
target_if_dump_adc_report_gen2(
struct spectral_phyerr_tlv_gen2 *ptlv, int tlvlen)
{
int i;
uint32_t *pdata;
uint32_t data;
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
uint32_t samp_fmt;
uint32_t chn_idx;
uint32_t recent_rfsat;
uint32_t agc_mb_gain;
uint32_t agc_total_gain;
uint32_t adc_summary = 0;
uint8_t *ptmp = (uint8_t *)ptlv;
spectral_debug("SPECTRAL : ADC REPORT");
/* Relook this */
if (tlvlen < 4) {
spectral_err("Unexpected TLV length %d for ADC Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
qdf_mem_copy(&adc_summary, (uint8_t *)(ptlv + 4), sizeof(int));
samp_fmt = ((adc_summary >> 28) & 0x1);
chn_idx = ((adc_summary >> 24) & 0x3);
recent_rfsat = ((adc_summary >> 23) & 0x1);
agc_mb_gain = ((adc_summary >> 16) & 0x7f);
agc_total_gain = adc_summary & 0x3ff;
spectral_debug("samp_fmt= %u, chn_idx= %u, recent_rfsat= %u, agc_mb_gain=%u agc_total_gain=%u",
samp_fmt, chn_idx, recent_rfsat, agc_mb_gain,
agc_total_gain);
for (i = 0; i < (tlvlen / 4); i++) {
pdata = (uint32_t *)(ptmp + 4 + i * 4);
data = *pdata;
/* Interpreting capture format 1 */
if (1) {
uint8_t i1;
uint8_t q1;
uint8_t i2;
uint8_t q2;
int8_t si1;
int8_t sq1;
int8_t si2;
int8_t sq2;
i1 = data & 0xff;
q1 = (data >> 8) & 0xff;
i2 = (data >> 16) & 0xff;
q2 = (data >> 24) & 0xff;
if (i1 > 127)
si1 = i1 - 256;
else
si1 = i1;
if (q1 > 127)
sq1 = q1 - 256;
else
sq1 = q1;
if (i2 > 127)
si2 = i2 - 256;
else
si2 = i2;
if (q2 > 127)
sq2 = q2 - 256;
else
sq2 = q2;
spectral_debug("SPECTRAL ADC : Interpreting capture format 1");
spectral_debug("adc_data_format_1 # %d %d %d",
2 * i, si1, sq1);
spectral_debug("adc_data_format_1 # %d %d %d",
2 * i + 1, si2, sq2);
}
/* Interpreting capture format 0 */
if (1) {
uint16_t i1;
uint16_t q1;
int16_t si1;
int16_t sq1;
i1 = data & 0xffff;
q1 = (data >> 16) & 0xffff;
if (i1 > 32767)
si1 = i1 - 65536;
else
si1 = i1;
if (q1 > 32767)
sq1 = q1 - 65536;
else
sq1 = q1;
spectral_debug("SPECTRAL ADC : Interpreting capture format 0");
spectral_debug("adc_data_format_2 # %d %d %d",
i, si1, sq1);
}
}
spectral_debug("\n");
return 0;
}
/**
* target_if_dump_sfft_report_gen2() - Process Search FFT Report for gen2
* @ptlv: Pointer to Spectral Phyerr TLV
* @tlvlen: length
* @is_160_format: Indicates 160 format
*
* Process Search FFT Report for gen2
*
* Return: Success/Failure
*/
static int
target_if_dump_sfft_report_gen2(struct spectral_phyerr_tlv_gen2 *ptlv,
int tlvlen, bool is_160_format)
{
int i;
uint32_t fft_mag;
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparison between MDK team and OS team, the MDK script
* variable names have been used
*/
uint32_t relpwr_db;
uint32_t num_str_bins_ib;
uint32_t base_pwr;
uint32_t total_gain_info;
uint32_t fft_chn_idx;
int16_t peak_inx;
uint32_t avgpwr_db;
uint32_t peak_mag;
uint8_t segid;
uint32_t fft_summary_A = 0;
uint32_t fft_summary_B = 0;
uint32_t fft_summary_C = 0;
uint8_t *tmp = (uint8_t *)ptlv;
struct spectral_phyerr_hdr_gen2 *phdr =
(struct spectral_phyerr_hdr_gen2 *)(
tmp +
sizeof(struct spectral_phyerr_tlv_gen2));
uint32_t segid_skiplen = 0;
if (is_160_format)
segid_skiplen = sizeof(SPECTRAL_SEGID_INFO);
spectral_debug("SPECTRAL : SEARCH FFT REPORT");
/* Relook this */
if (tlvlen < (8 + segid_skiplen)) {
spectral_err("Unexpected TLV length %d for Spectral Summary Report! Hexdump follows",
tlvlen);
target_if_print_buf((uint8_t *)ptlv, tlvlen + 4);
return -EPERM;
}
/* Doing copy as the contents may not be aligned */
qdf_mem_copy(&fft_summary_A, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&fft_summary_B,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
if (is_160_format)
qdf_mem_copy(&fft_summary_C,
(uint8_t *)((uint8_t *)phdr + 2 * sizeof(int)),
sizeof(int));
relpwr_db = ((fft_summary_B >> 26) & 0x3f);
num_str_bins_ib = fft_summary_B & 0xff;
base_pwr = ((fft_summary_A >> 14) & 0x1ff);
total_gain_info = ((fft_summary_A >> 23) & 0x1ff);
fft_chn_idx = ((fft_summary_A >> 12) & 0x3);
peak_inx = fft_summary_A & 0xfff;
if (peak_inx > 2047)
peak_inx = peak_inx - 4096;
avgpwr_db = ((fft_summary_B >> 18) & 0xff);
peak_mag = ((fft_summary_B >> 8) & 0x3ff);
spectral_debug("Header A = 0x%x Header B = 0x%x",
phdr->hdr_a, phdr->hdr_b);
spectral_debug("Base Power= 0x%x, Total Gain= %d, relpwr_db=%d, num_str_bins_ib=%d fft_chn_idx=%d peak_inx=%d avgpwr_db=%d peak_mag=%d",
base_pwr, total_gain_info, relpwr_db, num_str_bins_ib,
fft_chn_idx, peak_inx, avgpwr_db, peak_mag);
if (is_160_format) {
segid = fft_summary_C & 0x1;
spectral_debug("Segment ID: %hhu", segid);
}
spectral_debug("FFT bins:");
for (i = 0; i < (tlvlen - 8 - segid_skiplen); i++) {
fft_mag = ((uint8_t *)ptlv)[12 + segid_skiplen + i];
spectral_debug("%d %d, ", i, fft_mag);
}
spectral_debug("\n");
return 0;
}
#ifndef OPTIMIZED_SAMP_MESSAGE
#ifdef SPECTRAL_DEBUG_SAMP_MSG
/**
* target_if_spectral_log_SAMP_param() - Log SAMP parameters
* @params: Reference to target_if_samp_msg_params
*
* API to log spectral SAMP message parameters
*
* Return: None
*/
static void
target_if_spectral_log_SAMP_param(struct target_if_samp_msg_params *params)
{
target_if_dbg_print_samp_param(params);
}
#else
static void
target_if_spectral_log_SAMP_param(struct target_if_samp_msg_params *params)
{
}
#endif
#endif /* OPTIMIZED_SAMP_MESSAGE */
#ifdef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_spectral_unify_cfreq_format() - Unify the cfreq representations.
* @spectral: Pointer to target_if spectral internal structure
* @cfreq1: cfreq1 value received in the Spectral report
* @cfreq2: cfreq2 value received in the Spectral report
* @pri20_freq: Primary 20MHz frequency of operation
* @ch_width: channel width. If the center frequencies are of operating channel,
* pass the operating channel width, else pass the sscan channel width.
* @smode: Spectral scan mode
*
* This API converts the cfreq1 and cfreq2 representations as follows.
* For a contiguous channel, cfreq1 will represent the center of the entire
* span and cfreq2 will be 0. For a discontiguous channel like 80p80, cfreq1
* will represent the center of primary segment whereas cfreq2 will
* represent the center of secondary segment.
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_spectral_unify_cfreq_format(struct target_if_spectral *spectral,
uint32_t *cfreq1, uint32_t *cfreq2,
uint32_t pri20_freq,
enum phy_ch_width ch_width,
enum spectral_scan_mode smode)
{
uint32_t reported_cfreq1, reported_cfreq2;
struct wlan_objmgr_psoc *psoc;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!spectral->pdev_obj) {
spectral_err_rl("Spectral PDEV is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc = wlan_pdev_get_psoc(spectral->pdev_obj);
if (!psoc) {
spectral_err_rl("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
reported_cfreq1 = *cfreq1;
reported_cfreq2 = *cfreq2;
if (ch_width == CH_WIDTH_160MHZ &&
spectral->rparams.fragmentation_160[smode]) {
/* cfreq should be 0 for 160MHz as it is contiguous */
*cfreq2 = 0;
/**
* For gen3 chipsets that use fragmentation, cfreq1 is center of
* pri80, and cfreq2 is center of sec80. Averaging them gives
* the center of the 160MHz span.
* Whereas gen2 chipsets report the center of the 160MHz span in
* cfreq2 itself.
*/
if (spectral->spectral_gen == SPECTRAL_GEN3)
*cfreq1 = (reported_cfreq1 + reported_cfreq2) >> 1;
else
*cfreq1 = reported_cfreq2;
} else if (ch_width == CH_WIDTH_80P80MHZ &&
wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
/* In restricted 80p80 case */
const struct bonded_channel_freq
*bonded_chan_ptr = NULL;
enum channel_state state;
/* Get the 80MHz channel containing the pri20 freq */
state =
wlan_reg_get_5g_bonded_channel_and_state_for_pwrmode
(spectral->pdev_obj, pri20_freq, CH_WIDTH_80MHZ,
&bonded_chan_ptr, REG_CURRENT_PWR_MODE,
NO_SCHANS_PUNC);
if (state == CHANNEL_STATE_DISABLE ||
state == CHANNEL_STATE_INVALID) {
spectral_err_rl("Channel state is disable or invalid");
return QDF_STATUS_E_FAILURE;
}
if (!bonded_chan_ptr) {
spectral_err_rl("Bonded channel is not found");
return QDF_STATUS_E_FAILURE;
}
/* cfreq1 is the center of the pri80 segment */
*cfreq1 = (bonded_chan_ptr->start_freq +
bonded_chan_ptr->end_freq) >> 1;
/**
* cfreq2 is 85MHz away from cfreq1. Whether it is
* higher or lower depends on pri20_freq's relationship
* with the reported center frequency.
*/
if (pri20_freq < reported_cfreq1)
*cfreq2 = *cfreq1 + FREQ_OFFSET_85MHZ;
else
*cfreq2 = *cfreq1 - FREQ_OFFSET_85MHZ;
} else {
/* All other cases are reporting the cfreq properly */
*cfreq1 = reported_cfreq1;
*cfreq2 = reported_cfreq2;
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_populate_det_start_end_freqs() - Populate the start and end
* frequencies, on per-detector level.
* @spectral: Pointer to target_if spectral internal structure
* @smode: Spectral scan mode
*
* Populate the start and end frequencies, on per-detector level.
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_populate_det_start_end_freqs(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct per_session_report_info *rpt_info;
struct per_session_det_map *det_map;
struct per_session_dest_det_info *dest_det_info;
enum phy_ch_width ch_width;
struct sscan_detector_list *detector_list;
bool is_fragmentation_160;
uint8_t det;
uint32_t cfreq;
uint32_t start_end_freq_arr[2];
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral mode");
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
ch_width = spectral->report_info[smode].sscan_bw;
is_fragmentation_160 = spectral->rparams.fragmentation_160[smode];
rpt_info = &spectral->report_info[smode];
qdf_spin_lock_bh(&spectral->detector_list_lock);
detector_list = &spectral->detector_list[smode][ch_width];
for (det = 0; det < detector_list->num_detectors; det++) {
qdf_spin_lock_bh(&spectral->session_det_map_lock);
det_map = &spectral->det_map
[detector_list->detectors[det]];
dest_det_info = &det_map->dest_det_info[0];
switch (det) {
case 0:
if (ch_width == CH_WIDTH_160MHZ &&
is_fragmentation_160) {
if (rpt_info->pri20_freq <
rpt_info->sscan_cfreq1)
cfreq = rpt_info->sscan_cfreq1 -
FREQ_OFFSET_40MHZ;
else
cfreq = rpt_info->sscan_cfreq1 +
FREQ_OFFSET_40MHZ;
} else
cfreq = rpt_info->sscan_cfreq1;
break;
case 1:
if (ch_width == CH_WIDTH_160MHZ &&
is_fragmentation_160) {
if (rpt_info->pri20_freq <
rpt_info->sscan_cfreq1)
cfreq = rpt_info->sscan_cfreq1 +
FREQ_OFFSET_40MHZ;
else
cfreq = rpt_info->sscan_cfreq1 -
FREQ_OFFSET_40MHZ;
} else
cfreq = rpt_info->sscan_cfreq2;
break;
default:
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
qdf_spin_unlock_bh(&spectral->detector_list_lock);
qdf_spin_unlock_bh(
&spectral->session_report_info_lock);
return QDF_STATUS_E_FAILURE;
}
/* Set start and end frequencies */
target_if_spectral_set_start_end_freq(cfreq,
ch_width,
is_fragmentation_160,
start_end_freq_arr);
dest_det_info->start_freq = start_end_freq_arr[0];
dest_det_info->end_freq = start_end_freq_arr[1];
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
}
qdf_spin_unlock_bh(&spectral->detector_list_lock);
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
return QDF_STATUS_SUCCESS;
}
QDF_STATUS
target_if_populate_fft_bins_info(struct target_if_spectral *spectral,
enum spectral_scan_mode smode)
{
struct per_session_det_map *det_map;
struct per_session_dest_det_info *dest_det_info;
enum phy_ch_width ch_width;
struct sscan_detector_list *detector_list;
bool is_fragmentation_160;
uint8_t spectral_fft_size;
uint8_t rpt_mode;
uint32_t num_fft_bins;
uint16_t start_bin;
uint8_t det;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral mode");
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
ch_width = spectral->report_info[smode].sscan_bw;
is_fragmentation_160 = spectral->rparams.fragmentation_160[smode];
spectral_fft_size = spectral->params[smode].ss_fft_size;
rpt_mode = spectral->params[smode].ss_rpt_mode;
num_fft_bins =
target_if_spectral_get_num_fft_bins(spectral_fft_size,
rpt_mode);
if (num_fft_bins < 0) {
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
spectral_err_rl("Invalid number of FFT bins %d",
num_fft_bins);
return QDF_STATUS_E_FAILURE;
}
qdf_spin_lock_bh(&spectral->detector_list_lock);
detector_list = &spectral->detector_list[smode][ch_width];
for (det = 0; det < detector_list->num_detectors; det++) {
uint16_t lb_extrabins_offset = 0;
qdf_spin_lock_bh(&spectral->session_det_map_lock);
det_map = &spectral->det_map
[detector_list->detectors[det]];
dest_det_info = &det_map->dest_det_info[0];
dest_det_info->lb_extrabins_num = spectral->lb_edge_extrabins;
dest_det_info->rb_extrabins_num = spectral->rb_edge_extrabins;
switch (det) {
case 0:
if (ch_width == CH_WIDTH_160MHZ &&
is_fragmentation_160 &&
spectral->report_info[smode].pri20_freq >
spectral->report_info[smode].sscan_cfreq1) {
start_bin = num_fft_bins;
lb_extrabins_offset =
dest_det_info->lb_extrabins_num +
dest_det_info->rb_extrabins_num;
} else {
start_bin = 0;
}
break;
case 1:
if (ch_width == CH_WIDTH_160MHZ &&
is_fragmentation_160 &&
spectral->report_info[smode].pri20_freq >
spectral->report_info[smode].sscan_cfreq1)
start_bin = 0;
else {
start_bin = num_fft_bins;
lb_extrabins_offset =
dest_det_info->lb_extrabins_num +
dest_det_info->rb_extrabins_num;
}
break;
default:
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
qdf_spin_unlock_bh(&spectral->detector_list_lock);
qdf_spin_unlock_bh(
&spectral->session_report_info_lock);
return QDF_STATUS_E_FAILURE;
}
dest_det_info->dest_start_bin_idx = start_bin;
dest_det_info->dest_end_bin_idx =
dest_det_info->dest_start_bin_idx;
if (num_fft_bins > 0)
dest_det_info->dest_end_bin_idx += (num_fft_bins - 1);
if (dest_det_info->lb_extrabins_num) {
if (is_ch_width_160_or_80p80(ch_width)) {
dest_det_info->lb_extrabins_start_idx =
2 * num_fft_bins +
lb_extrabins_offset;
} else {
dest_det_info->lb_extrabins_start_idx =
num_fft_bins;
}
}
if (dest_det_info->rb_extrabins_num)
dest_det_info->rb_extrabins_start_idx =
dest_det_info->lb_extrabins_start_idx +
dest_det_info->lb_extrabins_num;
dest_det_info->src_start_bin_idx = 0;
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
}
qdf_spin_unlock_bh(&spectral->detector_list_lock);
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_update_session_info_from_report_ctx() - Update per-session
* information from the consume report context. This includes populating start
* and end bin indices, and set the start and end frequency per-detector.
* @spectral: Pointer to target_if spectral internal structure
* @fft_bin_size: Size of 1 FFT bin (in bytes)
* @cfreq1: Center frequency of Detector 1
* @cfreq2: Center frequency of Detector 2
* @smode: Spectral scan mode
*
* Update per-session information from the consume report context.
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_update_session_info_from_report_ctx(
struct target_if_spectral *spectral,
uint8_t fft_bin_size,
uint32_t cfreq1, uint32_t cfreq2,
enum spectral_scan_mode smode)
{
struct target_if_spectral_ops *p_sops;
struct per_session_report_info *rpt_info;
struct per_session_det_map *det_map;
struct per_session_dest_det_info *dest_det_info;
enum phy_ch_width ch_width;
struct wlan_objmgr_psoc *psoc;
bool is_fragmentation_160;
uint32_t start_end_freq_arr[2];
QDF_STATUS ret;
bool is_session_info_expected;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
ret = spectral_is_session_info_expected_from_target(
spectral->pdev_obj,
&is_session_info_expected);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to check if session info is expected");
return ret;
}
/* If FW sends this information, use it, no need to get it from here */
if (is_session_info_expected)
return QDF_STATUS_SUCCESS;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral mode");
return QDF_STATUS_E_FAILURE;
}
if (!spectral->pdev_obj) {
spectral_err_rl("Spectral PDEV is null");
return QDF_STATUS_E_NULL_VALUE;
}
psoc = wlan_pdev_get_psoc(spectral->pdev_obj);
if (!psoc) {
spectral_err_rl("psoc is null");
return QDF_STATUS_E_NULL_VALUE;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
qdf_spin_lock_bh(&spectral->session_report_info_lock);
rpt_info = &spectral->report_info[smode];
ch_width = rpt_info->sscan_bw;
is_fragmentation_160 = spectral->rparams.fragmentation_160[smode];
rpt_info->pri20_freq = p_sops->get_current_channel(spectral, smode);
rpt_info->cfreq1 = cfreq1;
rpt_info->cfreq2 = cfreq2;
if (spectral_debug_level & DEBUG_SPECTRAL4)
spectral_debug("Before conversion: cfreq1: %u cfreq2: %u",
rpt_info->cfreq1, rpt_info->cfreq2);
ret = target_if_spectral_unify_cfreq_format(
spectral, &rpt_info->cfreq1, &rpt_info->cfreq2,
rpt_info->pri20_freq, rpt_info->operating_bw, smode);
if (QDF_IS_STATUS_ERROR(ret)) {
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
spectral_err_rl("Unable to unify cfreq1/cfreq2");
return QDF_STATUS_E_FAILURE;
}
if (spectral_debug_level & DEBUG_SPECTRAL4)
spectral_debug("After conversion: cfreq1: %d cfreq2: %d",
rpt_info->cfreq1, rpt_info->cfreq2);
/* For Agile mode, sscan_cfreq1 and sscan_cfreq2 are populated
* during Spectral start scan
*/
if (smode == SPECTRAL_SCAN_MODE_NORMAL) {
rpt_info->sscan_cfreq1 = rpt_info->cfreq1;
rpt_info->sscan_cfreq2 = rpt_info->cfreq2;
}
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
if (ch_width == CH_WIDTH_80P80MHZ && wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
/* Restricted 80p80 */
struct spectral_fft_bin_markers_160_165mhz *marker;
struct sscan_detector_list *detector_list;
marker = &spectral->rparams.marker[smode];
if (!marker->is_valid)
return QDF_STATUS_E_FAILURE;
/**
* Restricted 80p80 on Pine has only 1 detector for
* normal/agile spectral scan. So, detector_list will
* have only one detector
*/
qdf_spin_lock_bh(&spectral->detector_list_lock);
detector_list = &spectral->detector_list[smode][ch_width];
qdf_spin_lock_bh(&spectral->session_det_map_lock);
det_map = &spectral->det_map[detector_list->detectors[0]];
dest_det_info = &det_map->dest_det_info[0];
dest_det_info->dest_start_bin_idx = marker->start_pri80;
dest_det_info->dest_end_bin_idx =
dest_det_info->dest_start_bin_idx +
marker->num_pri80 - 1;
dest_det_info->src_start_bin_idx = marker->start_pri80 *
fft_bin_size;
/* Set start and end frequencies */
qdf_spin_lock_bh(&spectral->session_report_info_lock);
target_if_spectral_set_start_end_freq(rpt_info->sscan_cfreq1,
ch_width,
is_fragmentation_160,
start_end_freq_arr);
dest_det_info->start_freq = start_end_freq_arr[0];
dest_det_info->end_freq = start_end_freq_arr[1];
dest_det_info = &det_map->dest_det_info[1];
dest_det_info->dest_start_bin_idx = marker->start_sec80;
dest_det_info->dest_end_bin_idx =
dest_det_info->dest_start_bin_idx +
marker->num_sec80 - 1;
dest_det_info->src_start_bin_idx = marker->start_sec80 *
fft_bin_size;
/* Set start and end frequencies */
target_if_spectral_set_start_end_freq(rpt_info->sscan_cfreq2,
ch_width,
is_fragmentation_160,
start_end_freq_arr);
dest_det_info->start_freq = start_end_freq_arr[0];
dest_det_info->end_freq = start_end_freq_arr[1];
dest_det_info = &det_map->dest_det_info[2];
dest_det_info->dest_start_bin_idx = marker->start_5mhz;
dest_det_info->dest_end_bin_idx =
dest_det_info->dest_start_bin_idx +
marker->num_5mhz - 1;
dest_det_info->src_start_bin_idx = marker->start_5mhz *
fft_bin_size;
/* Set start and end frequencies */
dest_det_info->start_freq =
min(det_map->dest_det_info[0].end_freq,
det_map->dest_det_info[1].end_freq);
dest_det_info->end_freq =
max(det_map->dest_det_info[0].start_freq,
det_map->dest_det_info[1].start_freq);
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
qdf_spin_unlock_bh(&spectral->session_det_map_lock);
qdf_spin_unlock_bh(&spectral->detector_list_lock);
} else {
ret = target_if_populate_fft_bins_info(spectral, smode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Error in populating fft bins info");
return QDF_STATUS_E_FAILURE;
}
ret = target_if_populate_det_start_end_freqs(spectral, smode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to populate start/end freqs");
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
#ifdef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_spectral_populate_samp_params_gen2() - Populate the SAMP params
* for gen2. SAMP params are to be used for populating SAMP msg.
* @spectral: Pointer to spectral object
* @phyerr_info: Pointer to processed phyerr info
* @params: Pointer to Spectral SAMP message fields to be populated
*
* Populate the SAMP params for gen2, which will be used to populate SAMP msg.
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_spectral_populate_samp_params_gen2(
struct target_if_spectral *spectral,
struct spectral_process_phyerr_info_gen2 *phyerr_info,
struct target_if_samp_msg_params *params)
{
uint8_t chn_idx_highest_enabled;
uint8_t chn_idx_lowest_enabled;
int8_t control_rssi;
int8_t extension_rssi;
struct target_if_spectral_rfqual_info *p_rfqual;
struct spectral_search_fft_info_gen2 *p_sfft;
struct spectral_phyerr_fft_gen2 *pfft;
struct target_if_spectral_acs_stats *acs_stats;
enum phy_ch_width ch_width;
enum spectral_scan_mode smode = SPECTRAL_SCAN_MODE_NORMAL;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!phyerr_info) {
spectral_err_rl("Pointer to phyerr info is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!params) {
spectral_err_rl("SAMP msg params structure is null");
return QDF_STATUS_E_NULL_VALUE;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
ch_width = spectral->report_info[smode].sscan_bw;
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
acs_stats = phyerr_info->acs_stats;
pfft = phyerr_info->pfft;
p_sfft = phyerr_info->p_sfft;
p_rfqual = phyerr_info->p_rfqual;
params->hw_detector_id = phyerr_info->seg_id;
params->rssi = p_rfqual->rssi_comb;
if (spectral->is_sec80_rssi_war_required && phyerr_info->seg_id == 1)
params->rssi = target_if_get_combrssi_sec80_seg_gen2(spectral,
p_sfft);
chn_idx_highest_enabled =
((spectral->params[smode].ss_chn_mask & 0x8) ? 3 :
(spectral->params[smode].ss_chn_mask & 0x4) ? 2 :
(spectral->params[smode].ss_chn_mask & 0x2) ? 1 : 0);
chn_idx_lowest_enabled =
((spectral->params[smode].ss_chn_mask & 0x1) ? 0 :
(spectral->params[smode].ss_chn_mask & 0x2) ? 1 :
(spectral->params[smode].ss_chn_mask & 0x4) ? 2 : 3);
control_rssi =
p_rfqual->pc_rssi_info[chn_idx_highest_enabled].rssi_pri20;
extension_rssi =
p_rfqual->pc_rssi_info[chn_idx_highest_enabled].rssi_sec20;
if (spectral->upper_is_control)
params->upper_rssi = control_rssi;
else
params->upper_rssi = extension_rssi;
if (spectral->lower_is_control)
params->lower_rssi = control_rssi;
else
params->lower_rssi = extension_rssi;
if (spectral->sc_spectral_noise_pwr_cal) {
int idx;
for (idx = 0; idx < HOST_MAX_ANTENNA; idx++) {
params->chain_ctl_rssi[idx] =
p_rfqual->pc_rssi_info[idx].rssi_pri20;
params->chain_ext_rssi[idx] =
p_rfqual->pc_rssi_info[idx].rssi_sec20;
}
}
params->timestamp = (phyerr_info->tsf64 & SPECTRAL_TSMASK);
params->max_mag = p_sfft->peak_mag;
params->max_index = p_sfft->peak_inx;
/*
* For VHT80_80/VHT160, the noise floor for primary
* 80MHz segment is populated with the lowest enabled
* antenna chain and the noise floor for secondary 80MHz segment
* is populated with the highest enabled antenna chain.
* For modes upto VHT80, the noise floor is populated with the
* one corresponding to the highest enabled antenna chain.
*/
if (is_ch_width_160_or_80p80(ch_width) && phyerr_info->seg_id == 0)
params->noise_floor =
p_rfqual->noise_floor[chn_idx_lowest_enabled];
else
params->noise_floor =
p_rfqual->noise_floor[chn_idx_highest_enabled];
acs_stats->ctrl_nf = params->noise_floor;
acs_stats->ext_nf = params->noise_floor;
acs_stats->nfc_ctl_rssi = control_rssi;
acs_stats->nfc_ext_rssi = extension_rssi;
params->bin_pwr_data = (uint8_t *)pfft;
return QDF_STATUS_SUCCESS;
}
int
target_if_process_phyerr_gen2(struct target_if_spectral *spectral,
uint8_t *data,
uint32_t datalen,
struct target_if_spectral_rfqual_info *p_rfqual,
struct target_if_spectral_chan_info *p_chaninfo,
uint64_t tsf64,
struct target_if_spectral_acs_stats *acs_stats)
{
/*
* XXX : The classifier do not use all the members of the SAMP
* message data format.
* The classifier only depends upon the following parameters
*
* 1. Frequency
* 2. Spectral RSSI
* 3. Bin Power Count
* 4. Bin Power values
* 5. Spectral Timestamp
* 6. MAC Address
*
* This function prepares the params structure and populates it
* with relevant values, this is in turn passed to
* spectral_fill_samp_msg()
* to prepare fully formatted Spectral SAMP message
*
* XXX : Need to verify
* 1. Order of FFT bin values
*
*/
struct target_if_samp_msg_params params;
struct spectral_search_fft_info_gen2 search_fft_info;
struct spectral_search_fft_info_gen2 *p_sfft = &search_fft_info;
struct spectral_search_fft_info_gen2 search_fft_info_sec80;
struct spectral_search_fft_info_gen2 *p_sfft_sec80 =
&search_fft_info_sec80;
uint32_t segid_skiplen = 0;
struct spectral_phyerr_tlv_gen2 *ptlv = NULL;
struct spectral_phyerr_tlv_gen2 *ptlv_sec80 = NULL;
struct spectral_phyerr_fft_gen2 *pfft = NULL;
struct spectral_phyerr_fft_gen2 *pfft_sec80 = NULL;
struct spectral_process_phyerr_info_gen2 process_phyerr_fields;
struct spectral_process_phyerr_info_gen2 *phyerr_info =
&process_phyerr_fields;
uint8_t segid = 0;
uint8_t segid_sec80;
enum phy_ch_width ch_width;
QDF_STATUS ret;
struct target_if_spectral_ops *p_sops;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return -EPERM;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
/* Drop the sample if Spectral is not active */
if (!p_sops->is_spectral_active(spectral,
SPECTRAL_SCAN_MODE_NORMAL)) {
spectral_info_rl("Spectral scan is not active");
goto fail_no_print;
}
if (!data) {
spectral_err_rl("Phyerror event buffer is null");
goto fail;
}
if (!p_rfqual) {
spectral_err_rl("RF quality information is null");
goto fail;
}
if (!p_chaninfo) {
spectral_err_rl("Channel information is null");
goto fail;
}
if (!acs_stats) {
spectral_err_rl("ACS stats pointer is null");
goto fail;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
ch_width = spectral->report_info[SPECTRAL_SCAN_MODE_NORMAL].sscan_bw;
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
ptlv = (struct spectral_phyerr_tlv_gen2 *)data;
if (spectral->is_160_format)
segid_skiplen = sizeof(SPECTRAL_SEGID_INFO);
pfft = (struct spectral_phyerr_fft_gen2 *)(
data +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2) +
segid_skiplen);
/*
* XXX Extend SPECTRAL_DPRINTK() to use spectral_debug_level,
* and use this facility inside spectral_dump_phyerr_data()
* and supporting functions.
*/
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4))
target_if_spectral_dump_phyerr_data_gen2(
data, datalen,
spectral->is_160_format);
if (ptlv->signature != SPECTRAL_PHYERR_SIGNATURE_GEN2) {
/*
* EV# 118023: We tentatively disable the below print
* and provide stats instead.
*/
spectral->diag_stats.spectral_mismatch++;
goto fail;
}
qdf_mem_zero(&params, sizeof(params));
if (ptlv->tag == TLV_TAG_SEARCH_FFT_REPORT_GEN2) {
if (spectral->is_160_format) {
segid = *((SPECTRAL_SEGID_INFO *)(
(uint8_t *)ptlv +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2)));
if (segid != 0) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_vhtseg1id_mismatch++;
goto fail;
}
}
target_if_process_sfft_report_gen2(ptlv, ptlv->length,
p_sfft);
ret = target_if_update_session_info_from_report_ctx(
spectral, FFT_BIN_SIZE_1BYTE,
p_chaninfo->center_freq1,
p_chaninfo->center_freq2,
SPECTRAL_SCAN_MODE_NORMAL);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to update per-session info");
goto fail;
}
phyerr_info->p_rfqual = p_rfqual;
phyerr_info->p_sfft = p_sfft;
phyerr_info->pfft = pfft;
phyerr_info->acs_stats = acs_stats;
phyerr_info->tsf64 = tsf64;
phyerr_info->seg_id = segid;
ret = target_if_spectral_populate_samp_params_gen2(spectral,
phyerr_info,
&params);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to populate SAMP params");
goto fail;
}
ret = target_if_spectral_fill_samp_msg(spectral, &params);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to fill the SAMP msg");
goto fail;
}
if (spectral->is_160_format &&
is_ch_width_160_or_80p80(ch_width)) {
/*
* We expect to see one more Search FFT report, and it
* should be equal in size to the current one.
*/
if (datalen < (
2 * (sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length))) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_sec80_sfft_insufflen++;
goto fail;
}
ptlv_sec80 = (struct spectral_phyerr_tlv_gen2 *)(
data +
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length);
if (ptlv_sec80->signature !=
SPECTRAL_PHYERR_SIGNATURE_GEN2) {
spectral->diag_stats.spectral_mismatch++;
goto fail;
}
if (ptlv_sec80->tag != TLV_TAG_SEARCH_FFT_REPORT_GEN2) {
spectral->diag_stats.spectral_no_sec80_sfft++;
goto fail;
}
segid_sec80 = *((SPECTRAL_SEGID_INFO *)(
(uint8_t *)ptlv_sec80 +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2)));
if (segid_sec80 != 1) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_vhtseg2id_mismatch++;
goto fail;
}
target_if_process_sfft_report_gen2(ptlv_sec80,
ptlv_sec80->length,
p_sfft_sec80);
pfft_sec80 = (struct spectral_phyerr_fft_gen2 *)(
((uint8_t *)ptlv_sec80) +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2) +
segid_skiplen);
qdf_mem_zero(&params, sizeof(params));
phyerr_info->p_rfqual = p_rfqual;
phyerr_info->p_sfft = p_sfft_sec80;
phyerr_info->pfft = pfft_sec80;
phyerr_info->acs_stats = acs_stats;
phyerr_info->tsf64 = tsf64;
phyerr_info->seg_id = segid_sec80;
ret = target_if_spectral_populate_samp_params_gen2(
spectral, phyerr_info,
&params);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to populate SAMP params");
goto fail;
}
ret = target_if_spectral_fill_samp_msg(spectral,
&params);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to fill the SAMP msg");
goto fail;
}
}
}
if (spectral_debug_level & DEBUG_SPECTRAL4)
spectral_debug_level = DEBUG_SPECTRAL;
return 0;
fail:
spectral_err_rl("Error while processing Spectral report");
fail_no_print:
if (spectral_debug_level & DEBUG_SPECTRAL4)
spectral_debug_level = DEBUG_SPECTRAL;
free_samp_msg_skb(spectral, SPECTRAL_SCAN_MODE_NORMAL);
return -EPERM;
}
#else
int
target_if_process_phyerr_gen2(struct target_if_spectral *spectral,
uint8_t *data,
uint32_t datalen,
struct target_if_spectral_rfqual_info *p_rfqual,
struct target_if_spectral_chan_info *p_chaninfo,
uint64_t tsf64,
struct target_if_spectral_acs_stats *acs_stats)
{
/*
* XXX : The classifier do not use all the members of the SAMP
* message data format.
* The classifier only depends upon the following parameters
*
* 1. Frequency (freq, msg->freq)
* 2. Spectral RSSI (spectral_rssi,
* msg->samp_data.spectral_rssi)
* 3. Bin Power Count (bin_pwr_count,
* msg->samp_data.bin_pwr_count)
* 4. Bin Power values (bin_pwr, msg->samp_data.bin_pwr[0]
* 5. Spectral Timestamp (spectral_tstamp,
* msg->samp_data.spectral_tstamp)
* 6. MAC Address (macaddr, msg->macaddr)
*
* This function prepares the params structure and populates it
* with
* relevant values, this is in turn passed to
* spectral_create_samp_msg()
* to prepare fully formatted Spectral SAMP message
*
* XXX : Need to verify
* 1. Order of FFT bin values
*
*/
struct target_if_samp_msg_params params;
struct spectral_search_fft_info_gen2 search_fft_info;
struct spectral_search_fft_info_gen2 *p_sfft = &search_fft_info;
struct spectral_search_fft_info_gen2 search_fft_info_sec80;
struct spectral_search_fft_info_gen2 *p_sfft_sec80 =
&search_fft_info_sec80;
uint32_t segid_skiplen = 0;
int8_t rssi_up = 0;
int8_t rssi_low = 0;
int8_t chn_idx_highest_enabled = 0;
int8_t chn_idx_lowest_enabled = 0;
uint8_t control_rssi = 0;
uint8_t extension_rssi = 0;
uint8_t combined_rssi = 0;
uint32_t tstamp = 0;
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
struct spectral_phyerr_tlv_gen2 *ptlv =
(struct spectral_phyerr_tlv_gen2 *)data;
struct spectral_phyerr_tlv_gen2 *ptlv_sec80 = NULL;
struct spectral_phyerr_fft_gen2 *pfft = NULL;
struct spectral_phyerr_fft_gen2 *pfft_sec80 = NULL;
uint8_t segid = 0;
uint8_t segid_sec80 = 0;
enum phy_ch_width ch_width =
spectral->ch_width[SPECTRAL_SCAN_MODE_NORMAL];
if (spectral->is_160_format)
segid_skiplen = sizeof(SPECTRAL_SEGID_INFO);
pfft = (struct spectral_phyerr_fft_gen2 *)(
data +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2) +
segid_skiplen);
/*
* XXX Extend SPECTRAL_DPRINTK() to use spectral_debug_level,
* and use this facility inside spectral_dump_phyerr_data()
* and supporting functions.
*/
if (spectral_debug_level & DEBUG_SPECTRAL2)
target_if_spectral_dump_phyerr_data_gen2(
data, datalen,
spectral->is_160_format);
if (spectral_debug_level & DEBUG_SPECTRAL4) {
target_if_spectral_dump_phyerr_data_gen2(
data, datalen,
spectral->is_160_format);
spectral_debug_level = DEBUG_SPECTRAL;
}
if (ptlv->signature != SPECTRAL_PHYERR_SIGNATURE_GEN2) {
/*
* EV# 118023: We tentatively disable the below print
* and provide stats instead.
*/
spectral->diag_stats.spectral_mismatch++;
return -EPERM;
}
OS_MEMZERO(&params, sizeof(params));
/* Gen 2 only supports normal Spectral scan currently */
params.smode = SPECTRAL_SCAN_MODE_NORMAL;
if (ptlv->tag == TLV_TAG_SEARCH_FFT_REPORT_GEN2) {
if (spectral->is_160_format) {
segid = *((SPECTRAL_SEGID_INFO *)(
(uint8_t *)ptlv +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2)));
if (segid != 0) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_vhtseg1id_mismatch++;
return -EPERM;
}
}
target_if_process_sfft_report_gen2(ptlv, ptlv->length,
&search_fft_info);
tstamp = p_sops->get_tsf64(spectral) & SPECTRAL_TSMASK;
combined_rssi = p_rfqual->rssi_comb;
if (spectral->upper_is_control)
rssi_up = control_rssi;
else
rssi_up = extension_rssi;
if (spectral->lower_is_control)
rssi_low = control_rssi;
else
rssi_low = extension_rssi;
params.rssi = p_rfqual->rssi_comb;
params.lower_rssi = rssi_low;
params.upper_rssi = rssi_up;
if (spectral->sc_spectral_noise_pwr_cal) {
params.chain_ctl_rssi[0] =
p_rfqual->pc_rssi_info[0].rssi_pri20;
params.chain_ctl_rssi[1] =
p_rfqual->pc_rssi_info[1].rssi_pri20;
params.chain_ctl_rssi[2] =
p_rfqual->pc_rssi_info[2].rssi_pri20;
params.chain_ext_rssi[0] =
p_rfqual->pc_rssi_info[0].rssi_sec20;
params.chain_ext_rssi[1] =
p_rfqual->pc_rssi_info[1].rssi_sec20;
params.chain_ext_rssi[2] =
p_rfqual->pc_rssi_info[2].rssi_sec20;
}
/*
* XXX : This actually depends on the programmed chain mask
* This value decides the per-chain enable mask to select
* the input ADC for search FTT.
* For modes upto VHT80, if more than one chain is
* enabled, the max valid chain
* is used. LSB corresponds to chain zero.
* For VHT80_80 and VHT160, the lowest enabled chain is
* used for primary
* detection and highest enabled chain is used for
* secondary detection.
*
* XXX : The current algorithm do not use these control and
* extension channel
* Instead, it just relies on the combined RSSI values
* only.
* For fool-proof detection algorithm, we should take
* these RSSI values in to account.
* This is marked for future enhancements.
*/
chn_idx_highest_enabled =
((spectral->params[params.smode].ss_chn_mask & 0x8) ? 3 :
(spectral->params[params.smode].ss_chn_mask & 0x4) ? 2 :
(spectral->params[params.smode].ss_chn_mask & 0x2) ? 1 : 0);
chn_idx_lowest_enabled =
((spectral->params[params.smode].ss_chn_mask & 0x1) ? 0 :
(spectral->params[params.smode].ss_chn_mask & 0x2) ? 1 :
(spectral->params[params.smode].ss_chn_mask & 0x4) ? 2 : 3);
control_rssi = (uint8_t)
p_rfqual->pc_rssi_info[chn_idx_highest_enabled].rssi_pri20;
extension_rssi = (uint8_t)
p_rfqual->pc_rssi_info[chn_idx_highest_enabled].rssi_sec20;
params.bwinfo = 0;
params.tstamp = 0;
params.max_mag = p_sfft->peak_mag;
params.max_index = p_sfft->peak_inx;
params.max_exp = 0;
params.peak = 0;
params.bin_pwr_data = (uint8_t *)pfft;
params.freq = p_sops->get_current_channel(spectral,
params.smode);
params.freq_loading = 0;
params.interf_list.count = 0;
params.max_lower_index = 0;
params.max_upper_index = 0;
params.nb_lower = 0;
params.nb_upper = 0;
/*
* For modes upto VHT80, the noise floor is populated with the
* one corresponding
* to the highest enabled antenna chain
*/
params.noise_floor =
p_rfqual->noise_floor[chn_idx_highest_enabled];
params.datalen = ptlv->length;
params.pwr_count = ptlv->length -
sizeof(struct spectral_phyerr_hdr_gen2) - segid_skiplen;
params.tstamp = (tsf64 & SPECTRAL_TSMASK);
acs_stats->ctrl_nf = params.noise_floor;
acs_stats->ext_nf = params.noise_floor;
acs_stats->nfc_ctl_rssi = control_rssi;
acs_stats->nfc_ext_rssi = extension_rssi;
if (spectral->is_160_format &&
is_ch_width_160_or_80p80(ch_width)) {
/*
* We expect to see one more Search FFT report, and it
* should be equal in size to the current one.
*/
if (datalen < (
2 * (
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length))) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_sec80_sfft_insufflen++;
return -EPERM;
}
ptlv_sec80 = (struct spectral_phyerr_tlv_gen2 *)(
data +
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length);
if (ptlv_sec80->signature !=
SPECTRAL_PHYERR_SIGNATURE_GEN2) {
spectral->diag_stats.spectral_mismatch++;
return -EPERM;
}
if (ptlv_sec80->tag != TLV_TAG_SEARCH_FFT_REPORT_GEN2) {
spectral->diag_stats.spectral_no_sec80_sfft++;
return -EPERM;
}
segid_sec80 = *((SPECTRAL_SEGID_INFO *)(
(uint8_t *)ptlv_sec80 +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2)));
if (segid_sec80 != 1) {
struct spectral_diag_stats *p_diag_stats =
&spectral->diag_stats;
p_diag_stats->spectral_vhtseg2id_mismatch++;
return -EPERM;
}
params.vhtop_ch_freq_seg1 = p_chaninfo->center_freq1;
params.vhtop_ch_freq_seg2 = p_chaninfo->center_freq2;
target_if_process_sfft_report_gen2(
ptlv_sec80,
ptlv_sec80->length,
&search_fft_info_sec80);
pfft_sec80 = (struct spectral_phyerr_fft_gen2 *)(
((uint8_t *)ptlv_sec80) +
sizeof(struct spectral_phyerr_tlv_gen2) +
sizeof(struct spectral_phyerr_hdr_gen2) +
segid_skiplen);
/* XXX: Confirm. TBD at SoD. */
params.rssi_sec80 = p_rfqual->rssi_comb;
if (spectral->is_sec80_rssi_war_required)
params.rssi_sec80 =
target_if_get_combrssi_sec80_seg_gen2
(spectral, &search_fft_info_sec80);
/* XXX: Determine dynamically. TBD at SoD. */
/*
* For VHT80_80/VHT160, the noise floor for primary
* 80MHz segment is populated with the
* lowest enabled antenna chain and the noise floor for
* secondary 80MHz segment is populated
* with the highest enabled antenna chain
*/
params.noise_floor_sec80 =
p_rfqual->noise_floor[chn_idx_highest_enabled];
params.noise_floor =
p_rfqual->noise_floor[chn_idx_lowest_enabled];
params.max_mag_sec80 = p_sfft_sec80->peak_mag;
params.max_index_sec80 = p_sfft_sec80->peak_inx;
/* XXX Does this definition of datalen *still hold? */
params.datalen_sec80 = ptlv_sec80->length;
params.pwr_count_sec80 =
ptlv_sec80->length -
sizeof(struct spectral_phyerr_hdr_gen2) -
segid_skiplen;
params.bin_pwr_data_sec80 = (uint8_t *)pfft_sec80;
}
qdf_mem_copy(&params.classifier_params,
&spectral->classifier_params,
sizeof(struct spectral_classifier_params));
target_if_spectral_log_SAMP_param(&params);
target_if_spectral_create_samp_msg(spectral, &params);
}
return 0;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
int
target_if_spectral_dump_hdr_gen2(struct spectral_phyerr_hdr_gen2 *phdr)
{
uint32_t a = 0;
uint32_t b = 0;
qdf_mem_copy(&a, (uint8_t *)phdr, sizeof(int));
qdf_mem_copy(&b,
(uint8_t *)((uint8_t *)phdr + sizeof(int)),
sizeof(int));
spectral_debug("SPECTRAL : HEADER A 0x%x (%d)", a, a);
spectral_debug("SPECTRAL : HEADER B 0x%x (%d)", b, b);
return 0;
}
int8_t
target_if_get_combrssi_sec80_seg_gen2(
struct target_if_spectral *spectral,
struct spectral_search_fft_info_gen2 *p_sfft_sec80)
{
uint32_t avgpwr_db = 0;
uint32_t total_gain_db = 0;
uint32_t offset = 0;
int8_t comb_rssi = 0;
/* Obtain required parameters for algorithm from search FFT report */
avgpwr_db = p_sfft_sec80->avgpwr_db;
total_gain_db = p_sfft_sec80->total_gain_info;
/* Calculate offset */
offset = target_if_get_offset_swar_sec80(
spectral->ch_width[SPECTRAL_SCAN_MODE_NORMAL]);
/* Calculate RSSI */
comb_rssi = ((avgpwr_db - total_gain_db) + offset);
return comb_rssi;
}
int
target_if_spectral_dump_tlv_gen2(
struct spectral_phyerr_tlv_gen2 *ptlv, bool is_160_format)
{
int ret = 0;
/*
* TODO : Do not delete the following print
* The scripts used to validate Spectral depend on this Print
*/
spectral_debug("SPECTRAL : TLV Length is 0x%x (%d)",
ptlv->length, ptlv->length);
switch (ptlv->tag) {
case TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN2:
ret =
target_if_dump_summary_report_gen2(
ptlv, ptlv->length, is_160_format);
break;
case TLV_TAG_SEARCH_FFT_REPORT_GEN2:
ret =
target_if_dump_sfft_report_gen2(ptlv, ptlv->length,
is_160_format);
break;
case TLV_TAG_ADC_REPORT_GEN2:
ret = target_if_dump_adc_report_gen2(ptlv, ptlv->length);
break;
default:
spectral_warn("INVALID TLV");
ret = -1;
break;
}
return ret;
}
int
target_if_spectral_dump_phyerr_data_gen2(uint8_t *data, uint32_t datalen,
bool is_160_format)
{
struct spectral_phyerr_tlv_gen2 *ptlv = NULL;
uint32_t bytes_processed = 0;
uint32_t bytes_remaining = datalen;
uint32_t curr_tlv_complete_size = 0;
if (datalen < sizeof(struct spectral_phyerr_tlv_gen2)) {
spectral_err("Total PHY error data length %u too short to contain any TLVs",
datalen);
return -EPERM;
}
while (bytes_processed < datalen) {
if (bytes_remaining < sizeof(struct spectral_phyerr_tlv_gen2)) {
spectral_err("Remaining PHY error data length %u too short to contain a TLV",
bytes_remaining);
return -EPERM;
}
ptlv = (struct spectral_phyerr_tlv_gen2 *)(data +
bytes_processed);
if (ptlv->signature != SPECTRAL_PHYERR_SIGNATURE_GEN2) {
spectral_err("Invalid signature 0x%x!",
ptlv->signature);
return -EPERM;
}
curr_tlv_complete_size =
sizeof(struct spectral_phyerr_tlv_gen2) +
ptlv->length;
if (curr_tlv_complete_size > bytes_remaining) {
spectral_err("TLV size %d greater than number of bytes remaining %d",
curr_tlv_complete_size, bytes_remaining);
return -EPERM;
}
if (target_if_spectral_dump_tlv_gen2(ptlv, is_160_format) == -1)
return -EPERM;
bytes_processed += curr_tlv_complete_size;
bytes_remaining = datalen - bytes_processed;
}
return 0;
}
QDF_STATUS
target_if_spectral_copy_fft_bins(struct target_if_spectral *spectral,
const void *src_fft_buf,
void *dest_fft_buf,
uint32_t fft_bin_count,
uint32_t *bytes_copied,
uint16_t pwr_format)
{
uint16_t idx, dword_idx, fft_bin_idx;
uint8_t num_bins_per_dword, hw_fft_bin_width_bits;
uint32_t num_dwords;
uint16_t fft_bin_val;
struct spectral_report_params *rparams;
const uint32_t *dword_ptr;
uint32_t dword;
uint8_t *fft_bin_buf;
*bytes_copied = 0;
if (!spectral) {
spectral_err("spectral lmac object is NULL");
return QDF_STATUS_E_NULL_VALUE;
}
if (!src_fft_buf) {
spectral_err("source fft bin buffer is NULL");
return QDF_STATUS_E_NULL_VALUE;
}
if (!dest_fft_buf) {
spectral_err("destination fft bin buffer is NULL");
return QDF_STATUS_E_NULL_VALUE;
}
rparams = &spectral->rparams;
num_bins_per_dword = SPECTRAL_DWORD_SIZE / rparams->hw_fft_bin_width;
num_dwords = fft_bin_count / num_bins_per_dword;
hw_fft_bin_width_bits = rparams->hw_fft_bin_width * QDF_CHAR_BIT;
fft_bin_idx = 0;
dword_ptr = src_fft_buf;
fft_bin_buf = dest_fft_buf;
for (dword_idx = 0; dword_idx < num_dwords; dword_idx++) {
dword = *dword_ptr++; /* Read a DWORD */
for (idx = 0; idx < num_bins_per_dword; idx++) {
/**
* If we use QDF_GET_BITS, when hw_fft_bin_width_bits is
* 32, on certain platforms, we could end up doing a
* 32-bit left shift operation on 32-bit constant
* integer '1'. As per C standard, result of shifting an
* operand by a count greater than or equal to width
* (in bits) of the operand is undefined.
* If we use QDF_GET_BITS_64, we can avoid that.
*/
fft_bin_val = (uint16_t)QDF_GET_BITS64(
dword,
idx * hw_fft_bin_width_bits,
hw_fft_bin_width_bits);
fft_bin_buf[fft_bin_idx++] =
clamp_fft_bin_value(fft_bin_val, pwr_format);
}
}
*bytes_copied = num_dwords * SPECTRAL_DWORD_SIZE;
return QDF_STATUS_SUCCESS;
}
#ifdef DIRECT_BUF_RX_ENABLE
/**
* target_if_get_spectral_mode() - Get Spectral scan mode corresponding to a
* detector id
* @detector_id: detector id in the Spectral report
* @rparams: pointer to report params object
*
* Helper API to get Spectral scan mode from the detector ID. This mapping is
* target specific.
*
* Return: Spectral scan mode
*/
static enum spectral_scan_mode
target_if_get_spectral_mode(enum spectral_detector_id detector_id,
struct spectral_report_params *rparams)
{
if (detector_id >= SPECTRAL_DETECTOR_ID_MAX) {
spectral_err_rl("Invalid detector id %d", detector_id);
return SPECTRAL_SCAN_MODE_INVALID;
}
return rparams->detid_mode_table[detector_id];
}
/**
* target_if_spectral_get_bin_count_after_len_adj() - Get number of FFT bins in
* Spectral FFT report
* @fft_bin_len: FFT bin length reported by target
* @rpt_mode: Spectral report mode
* @swar: Spectral FFT bin length adjustments SWAR parameters
* @fft_bin_size: Size of one FFT bin in bytes
*
* Get actual number of FFT bins in the FFT report after adjusting the length
* by applying the SWARs for getting correct length.
*
* Return: FFT bin count
*/
static size_t
target_if_spectral_get_bin_count_after_len_adj(
size_t fft_bin_len, uint8_t rpt_mode,
struct spectral_fft_bin_len_adj_swar *swar,
size_t *fft_bin_size)
{
size_t fft_bin_count = fft_bin_len;
if (rpt_mode == 1 && swar->null_fftbin_adj) {
/*
* No FFT bins are expected. Explicitly set FFT bin
* count to 0.
*/
fft_bin_count = 0;
*fft_bin_size = 0;
} else {
/*
* Divide fft bin length by appropriate factor depending
* on the value of fftbin_size_war.
*/
switch (swar->fftbin_size_war) {
case SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE:
fft_bin_count >>= 2;
*fft_bin_size = 4;
break;
case SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE:
fft_bin_count >>= 1;
*fft_bin_size = 2;
/* Ideally we should be dividing fft bin length
* by 2. Due to a HW bug, actual length is two
* times the expected length.
*/
if (swar->packmode_fftbin_size_adj)
fft_bin_count >>= 1;
break;
case SPECTRAL_FFTBIN_SIZE_NO_WAR:
*fft_bin_size = 1;
/* No length adjustment */
break;
default:
qdf_assert_always(0);
}
if (rpt_mode == 2 && swar->inband_fftbin_size_adj)
fft_bin_count >>= 1;
}
return fft_bin_count;
}
#ifndef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_process_sfft_report_gen3() - Process Search FFT Report for gen3
* @p_fft_report: Pointer to fft report
* @p_sfft: Pointer to search fft report
* @rparams: pointer to report params object
*
* Process Search FFT Report for gen3
*
* Return: Success/Failure
*/
static int
target_if_process_sfft_report_gen3(
struct spectral_phyerr_fft_report_gen3 *p_fft_report,
struct spectral_search_fft_info_gen3 *p_sfft,
struct spectral_report_params *rparams)
{
int32_t peak_sidx = 0;
int32_t peak_mag;
qdf_assert_always(p_fft_report);
qdf_assert_always(p_sfft);
qdf_assert_always(rparams);
/*
* For simplicity, everything is defined as uint32_t (except one).
* Proper code will later use the right sizes.
*/
/*
* For easy comparison between MDK team and OS team, the MDK script
* variable names have been used
*/
/* Populate the Search FFT Info */
p_sfft->timestamp = p_fft_report->fft_timestamp;
p_sfft->fft_detector_id = get_bitfield(p_fft_report->hdr_a,
2, 0);
p_sfft->fft_num = get_bitfield(p_fft_report->hdr_a, 3, 2);
switch (rparams->version) {
case SPECTRAL_REPORT_FORMAT_VERSION_1:
p_sfft->fft_radar_check = get_bitfield(p_fft_report->hdr_a,
12, 5);
peak_sidx = get_bitfield(p_fft_report->hdr_a, 11, 17);
p_sfft->fft_chn_idx = get_bitfield(p_fft_report->hdr_a, 3, 28);
p_sfft->fft_base_pwr_db = get_bitfield(p_fft_report->hdr_b,
9, 0);
p_sfft->fft_total_gain_db = get_bitfield(p_fft_report->hdr_b,
8, 9);
break;
case SPECTRAL_REPORT_FORMAT_VERSION_2:
p_sfft->fft_radar_check = get_bitfield(p_fft_report->hdr_a,
14, 5);
peak_sidx = get_bitfield(p_fft_report->hdr_a, 11, 19);
p_sfft->fft_chn_idx = get_bitfield(p_fft_report->hdr_b, 3, 0);
p_sfft->fft_base_pwr_db = get_bitfield(p_fft_report->hdr_b,
9, 3);
p_sfft->fft_total_gain_db = get_bitfield(p_fft_report->hdr_b,
8, 12);
break;
default:
qdf_assert_always(0);
}
p_sfft->fft_peak_sidx = unsigned_to_signed(peak_sidx, 11);
p_sfft->fft_num_str_bins_ib = get_bitfield(p_fft_report->hdr_c,
8, 0);
peak_mag = get_bitfield(p_fft_report->hdr_c, 10, 8);
p_sfft->fft_peak_mag = unsigned_to_signed(peak_mag, 10);
p_sfft->fft_avgpwr_db = get_bitfield(p_fft_report->hdr_c,
7, 18);
p_sfft->fft_relpwr_db = get_bitfield(p_fft_report->hdr_c,
7, 25);
return 0;
}
#endif
/**
* target_if_dump_fft_report_gen3() - Dump FFT Report for gen3
* @spectral: Pointer to Spectral object
* @smode: Spectral scan mode
* @p_fft_report: Pointer to fft report
* @p_sfft: Pointer to search fft report
*
* Dump FFT Report for gen3
*
* Return: void
*/
static void
target_if_dump_fft_report_gen3(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
struct spectral_phyerr_fft_report_gen3 *p_fft_report,
struct spectral_search_fft_info_gen3 *p_sfft)
{
size_t fft_hdr_length;
size_t report_len;
size_t fft_bin_len;
size_t fft_bin_count;
size_t fft_bin_size;
size_t fft_bin_len_inband_tfer = 0;
uint8_t tag, signature;
qdf_assert_always(spectral);
/* There won't be FFT report/bins in report mode 0, so return */
if (!spectral->params[smode].ss_rpt_mode)
return;
fft_hdr_length = get_bitfield(
p_fft_report->fft_hdr_lts,
SPECTRAL_REPORT_LTS_HDR_LENGTH_SIZE_GEN3,
SPECTRAL_REPORT_LTS_HDR_LENGTH_POS_GEN3) * 4;
tag = get_bitfield(p_fft_report->fft_hdr_lts,
SPECTRAL_REPORT_LTS_TAG_SIZE_GEN3,
SPECTRAL_REPORT_LTS_TAG_POS_GEN3);
signature = get_bitfield(p_fft_report->fft_hdr_lts,
SPECTRAL_REPORT_LTS_SIGNATURE_SIZE_GEN3,
SPECTRAL_REPORT_LTS_SIGNATURE_POS_GEN3);
report_len = (fft_hdr_length + 8);
fft_bin_len = fft_hdr_length - spectral->rparams.fft_report_hdr_len;
fft_bin_count = target_if_spectral_get_bin_count_after_len_adj(
fft_bin_len,
spectral->params[smode].ss_rpt_mode,
&spectral->len_adj_swar, &fft_bin_size);
if ((spectral->params[smode].ss_rpt_mode == 2) &&
spectral->len_adj_swar.inband_fftbin_size_adj)
fft_bin_len_inband_tfer = fft_bin_len >> 1;
spectral_debug("Spectral FFT Report");
spectral_debug("fft_timestamp = 0x%x", p_fft_report->fft_timestamp);
spectral_debug("fft_hdr_length = %zu(32 bit words)",
fft_hdr_length >> 2);
spectral_debug("fft_hdr_tag = 0x%x", tag);
spectral_debug("fft_hdr_sig = 0x%x", signature);
spectral_debug("Length field in search fft report is %zu(0x%zx) bytes",
fft_hdr_length, fft_hdr_length);
spectral_debug("Total length of search fft report is %zu(0x%zx) bytes",
report_len, report_len);
spectral_debug("Target reported fftbins in report is %zu(0x%zx)",
fft_bin_len, fft_bin_len);
if ((spectral->params[smode].ss_rpt_mode == 1) &&
spectral->len_adj_swar.null_fftbin_adj)
spectral_debug("WAR: Considering number of FFT bins as 0");
else if ((spectral->params[smode].ss_rpt_mode == 2) &&
spectral->len_adj_swar.inband_fftbin_size_adj) {
spectral_debug("FW fftbins actually transferred (in-band report mode) %zu(0x%zx)",
fft_bin_len_inband_tfer,
fft_bin_len_inband_tfer);
}
spectral_debug("Actual number of fftbins in report is %zu(0x%zx)",
fft_bin_count, fft_bin_count);
spectral_debug("fft_detector_id = %u", p_sfft->fft_detector_id);
spectral_debug("fft_num = %u", p_sfft->fft_num);
spectral_debug("fft_radar_check = %u", p_sfft->fft_radar_check);
spectral_debug("fft_peak_sidx = %d", p_sfft->fft_peak_sidx);
spectral_debug("fft_chn_idx = %u", p_sfft->fft_chn_idx);
spectral_debug("fft_base_pwr_db = %u", p_sfft->fft_base_pwr_db);
spectral_debug("fft_total_gain_db = %u", p_sfft->fft_total_gain_db);
spectral_debug("fft_num_str_bins_ib = %u", p_sfft->fft_num_str_bins_ib);
spectral_debug("fft_peak_mag = %d", p_sfft->fft_peak_mag);
spectral_debug("fft_avgpwr_db = %u", p_sfft->fft_avgpwr_db);
spectral_debug("fft_relpwr_db = %u", p_sfft->fft_relpwr_db);
if (fft_bin_count > 0) {
uint8_t *fft_bin_buf;
uint32_t bytes_copied;
QDF_STATUS status;
fft_bin_buf = qdf_mem_malloc(fft_bin_count);
if (!fft_bin_buf) {
spectral_err_rl("memory allocation failed");
return;
}
status = target_if_spectral_copy_fft_bins(
spectral, &p_fft_report->buf,
fft_bin_buf, fft_bin_count, &bytes_copied,
spectral->params[smode].ss_pwr_format);
if (QDF_IS_STATUS_ERROR(status)) {
spectral_err_rl("Unable to populate FFT bins");
qdf_mem_free(fft_bin_buf);
return;
}
spectral_debug("FFT bin buffer size = %zu", fft_bin_count);
spectral_debug("FFT bins:");
target_if_spectral_hexdump(fft_bin_buf, fft_bin_count);
qdf_mem_free(fft_bin_buf);
}
}
#endif
#ifdef OPTIMIZED_SAMP_MESSAGE
QDF_STATUS
target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
uint8_t detector_id) {
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral mode %d", smode);
return QDF_STATUS_E_INVAL;
}
if (!is_ch_width_160_or_80p80(spectral->report_info[smode].sscan_bw)) {
spectral_err_rl("Scan BW %d is not 160/80p80 for mode %d",
spectral->report_info[smode].sscan_bw, smode);
return QDF_STATUS_E_FAILURE;
}
switch (spectral->state_160mhz_delivery[smode]) {
case SPECTRAL_REPORT_WAIT_PRIMARY80:
if (detector_id == SPECTRAL_DETECTOR_ID_0)
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_WAIT_SECONDARY80;
else {
status = QDF_STATUS_E_FAILURE;
spectral->diag_stats.spectral_vhtseg1id_mismatch++;
}
break;
case SPECTRAL_REPORT_WAIT_SECONDARY80:
if (detector_id == SPECTRAL_DETECTOR_ID_1)
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_WAIT_PRIMARY80;
else {
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_WAIT_PRIMARY80;
status = QDF_STATUS_E_FAILURE;
spectral->diag_stats.spectral_vhtseg2id_mismatch++;
}
break;
default:
break;
}
return status;
}
#else
QDF_STATUS
target_if_160mhz_delivery_state_change(struct target_if_spectral *spectral,
enum spectral_scan_mode smode,
uint8_t detector_id) {
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (smode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("Invalid Spectral mode %d", smode);
return QDF_STATUS_E_INVAL;
}
if (!is_ch_width_160_or_80p80(spectral->ch_width[smode])) {
spectral_err_rl("Scan BW %d is not 160/80p80 for mode %d",
spectral->ch_width[smode], smode);
return QDF_STATUS_E_FAILURE;
}
switch (spectral->state_160mhz_delivery[smode]) {
case SPECTRAL_REPORT_WAIT_PRIMARY80:
if (detector_id == SPECTRAL_DETECTOR_ID_0)
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_RX_PRIMARY80;
else {
status = QDF_STATUS_E_FAILURE;
spectral->diag_stats.spectral_vhtseg1id_mismatch++;
}
break;
case SPECTRAL_REPORT_WAIT_SECONDARY80:
if (detector_id == SPECTRAL_DETECTOR_ID_1)
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_RX_SECONDARY80;
else {
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_WAIT_PRIMARY80;
status = QDF_STATUS_E_FAILURE;
spectral->diag_stats.spectral_vhtseg2id_mismatch++;
}
break;
case SPECTRAL_REPORT_RX_SECONDARY80:
/* We don't care about detector id in this state. */
reset_160mhz_delivery_state_machine(spectral, smode);
break;
case SPECTRAL_REPORT_RX_PRIMARY80:
/* We don't care about detector id in this state */
spectral->state_160mhz_delivery[smode] =
SPECTRAL_REPORT_WAIT_SECONDARY80;
break;
default:
break;
}
return status;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
#ifdef DIRECT_BUF_RX_ENABLE
/**
* target_if_get_detector_id_sscan_summary_report_gen3() - Get Spectral detector
* ID from Spectral summary report
* @data: Pointer to Spectral summary report
*
* Return: Detector ID
*/
static uint8_t
target_if_get_detector_id_sscan_summary_report_gen3(uint8_t *data) {
struct spectral_sscan_summary_report_gen3 *psscan_summary_report;
uint8_t detector_id;
qdf_assert_always(data);
psscan_summary_report =
(struct spectral_sscan_summary_report_gen3 *)data;
detector_id = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_DETECTOR_ID_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_DETECTOR_ID_POS_GEN3);
return detector_id;
}
#ifndef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_consume_sscan_summary_report_gen3() - Consume Spectral summary
* report
* @data: Pointer to Spectral summary report
* @fields: Pointer to structure to be populated with extracted fields
* @rparams: Pointer to structure with Spectral report params
*
* Consume Spectral summary report for gen3
*
* Return: void
*/
static void
target_if_consume_sscan_summary_report_gen3(
uint8_t *data,
struct sscan_report_fields_gen3 *fields,
struct spectral_report_params *rparams) {
struct spectral_sscan_summary_report_gen3 *psscan_summary_report;
qdf_assert_always(data);
qdf_assert_always(fields);
qdf_assert_always(rparams);
psscan_summary_report =
(struct spectral_sscan_summary_report_gen3 *)data;
fields->sscan_agc_total_gain = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_POS_GEN3);
fields->inband_pwr_db = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_POS_GEN3);
fields->sscan_pri80 = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_PRI80_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_PRI80_POS_GEN3);
switch (rparams->version) {
case SPECTRAL_REPORT_FORMAT_VERSION_1:
fields->sscan_gainchange = get_bitfield(
psscan_summary_report->hdr_b,
SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_SIZE_GEN3_V1,
SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_POS_GEN3_V1);
break;
case SPECTRAL_REPORT_FORMAT_VERSION_2:
fields->sscan_gainchange = get_bitfield(
psscan_summary_report->hdr_c,
SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_SIZE_GEN3_V2,
SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_POS_GEN3_V2);
break;
default:
qdf_assert_always(0);
}
}
#endif
/**
* target_if_verify_sig_and_tag_gen3() - Verify tag and signature
* of spectral report
* @spectral: Pointer to spectral object
* @data: Pointer to spectral summary report
* @exp_tag: iexpected tag value
*
* Process fft report for gen3
*
* Return: SUCCESS/FAILURE
*/
static int
target_if_verify_sig_and_tag_gen3(struct target_if_spectral *spectral,
uint8_t *data, uint8_t exp_tag)
{
uint8_t tag = 0;
uint8_t signature = 0;
uint32_t lts;
lts = *((uint32_t *)(data + SPECTRAL_PHYERR_HDR_LTS_POS));
/* Peek into the data to figure out whether
* 1) Signature matches the expected value
* 2) What is inside the package (TAG ID is used for finding this)
*/
tag = get_bitfield(lts,
SPECTRAL_REPORT_LTS_TAG_SIZE_GEN3,
SPECTRAL_REPORT_LTS_TAG_POS_GEN3);
signature = get_bitfield(lts,
SPECTRAL_REPORT_LTS_SIGNATURE_SIZE_GEN3,
SPECTRAL_REPORT_LTS_SIGNATURE_POS_GEN3);
if (signature != SPECTRAL_PHYERR_SIGNATURE_GEN3) {
spectral->diag_stats.spectral_mismatch++;
return -EINVAL;
}
if (tag != exp_tag) {
spectral->diag_stats.spectral_mismatch++;
return -EINVAL;
}
return 0;
}
static uint8_t
target_if_spectral_get_lowest_chn_idx(uint8_t chainmask)
{
uint8_t idx;
for (idx = 0; idx < DBR_MAX_CHAINS; idx++) {
if (chainmask & 0x1)
break;
chainmask >>= 1;
}
return idx;
}
#ifdef DIRECT_BUF_RX_DEBUG
static void target_if_spectral_check_buffer_poisoning(
struct target_if_spectral *spectral,
struct spectral_report *report,
int num_fft_bins, enum spectral_scan_mode smode)
{
uint32_t *data;
size_t len;
size_t words_to_check =
sizeof(struct spectral_sscan_summary_report_gen3) >> 2;
bool poisoned_words_found = false;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return;
}
if (!spectral->dbr_buff_debug)
return;
if (!report) {
spectral_err_rl("Spectral report is null");
return;
}
/* Add search FFT report */
if (spectral->params[smode].ss_rpt_mode > 0)
words_to_check +=
sizeof(struct spectral_phyerr_fft_report_gen3) >> 2;
/* Now add the number of FFT bins */
if (spectral->params[smode].ss_rpt_mode > 1) {
/* Caller should take care to pass correct number of FFT bins */
if (spectral->len_adj_swar.fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_4BYTE_TO_1BYTE)
words_to_check += num_fft_bins;
else if (spectral->len_adj_swar.fftbin_size_war ==
SPECTRAL_FFTBIN_SIZE_WAR_2BYTE_TO_1BYTE)
words_to_check += (num_fft_bins >> 1);
}
data = (uint32_t *)report->data;
for (len = 0; len < words_to_check; ++len) {
if (*data == MEM_POISON_SIGNATURE) {
spectral_err("Pattern(%x) found in Spectral search FFT report at position %zu in the buffer %pK",
MEM_POISON_SIGNATURE,
(len << 2), report->data);
poisoned_words_found = true;
break;
}
++data;
}
/* Crash the FW even if one word is poisoned */
if (poisoned_words_found) {
spectral_err("Pattern(%x) found in Spectral report, Hex dump of the sfft follows",
MEM_POISON_SIGNATURE);
target_if_spectral_hexdump((unsigned char *)report->data,
words_to_check << 2);
spectral_err("Asserting the FW");
target_if_spectral_fw_hang(spectral);
}
}
#ifdef OPTIMIZED_SAMP_MESSAGE
static void target_if_spectral_verify_ts(struct target_if_spectral *spectral,
uint8_t *buf, uint32_t current_ts,
uint8_t detector_id)
{
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return;
}
if (detector_id >= MAX_DETECTORS_PER_PDEV) {
spectral_err_rl("Spectral detector_id %d exceeds range",
detector_id);
return;
}
if (!spectral->dbr_buff_debug)
return;
if (spectral->prev_tstamp[detector_id]) {
if (current_ts == spectral->prev_tstamp[detector_id]) {
spectral_err("Spectral timestamp(%u) in the current buffer(%pK) is equal to the previous timestamp, same report DMAed twice? Asserting the FW",
current_ts, buf);
target_if_spectral_fw_hang(spectral);
}
}
spectral->prev_tstamp[detector_id] = current_ts;
}
#else
static void target_if_spectral_verify_ts(struct target_if_spectral *spectral,
uint8_t *buf, uint32_t current_ts)
{
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return;
}
if (!spectral->dbr_buff_debug)
return;
if (spectral->prev_tstamp) {
if (current_ts == spectral->prev_tstamp) {
spectral_err("Spectral timestamp(%u) in the current buffer(%pK) is equal to the previous timestamp, same report DMAed twice? Asserting the FW",
current_ts, buf);
target_if_spectral_fw_hang(spectral);
}
}
spectral->prev_tstamp = current_ts;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
#else
static void target_if_spectral_check_buffer_poisoning(
struct target_if_spectral *spectral,
struct spectral_report *report,
int num_fft_bins, enum spectral_scan_mode smode)
{
}
#ifdef OPTIMIZED_SAMP_MESSAGE
static void target_if_spectral_verify_ts(struct target_if_spectral *spectral,
uint8_t *buf, uint32_t current_ts,
uint8_t detector_id)
{
}
#else
static void target_if_spectral_verify_ts(struct target_if_spectral *spectral,
uint8_t *buf, uint32_t current_ts)
{
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
#endif
/**
* target_if_spectral_get_adjusted_timestamp() - Adjust Spectral time
* stamp to account for reset in time stamp due to target reset
* @twar: Spectral time stamp WAR related information
* @raw_timestamp: Spectral time stamp reported by target
* @reset_delay: Reset delay at target
* @smode: Spectral scan mode
*
* Correct time stamp to account for reset in time stamp due to target reset
*
* Return: Adjusted time stamp
*/
static uint32_t
target_if_spectral_get_adjusted_timestamp(struct spectral_timestamp_war *twar,
uint32_t raw_timestamp,
uint32_t reset_delay,
enum spectral_scan_mode smode) {
qdf_assert_always(smode < SPECTRAL_SCAN_MODE_MAX);
if (reset_delay) {
enum spectral_scan_mode m =
SPECTRAL_SCAN_MODE_NORMAL;
/* Adjust the offset for all the Spectral modes.
* Target will be sending the non zero reset delay for
* the first Spectral report after reset. This delay is
* common for all the Spectral modes.
*/
for (; m < SPECTRAL_SCAN_MODE_MAX; m++)
twar->timestamp_war_offset[m] += (reset_delay +
twar->last_fft_timestamp[m]);
twar->target_reset_count++;
}
twar->last_fft_timestamp[smode] = raw_timestamp;
return raw_timestamp + twar->timestamp_war_offset[smode];
}
#ifdef BIG_ENDIAN_HOST
QDF_STATUS target_if_byte_swap_spectral_headers_gen3(
struct target_if_spectral *spectral,
void *data)
{
int i;
uint32_t *ptr32;
size_t words32;
qdf_assert_always(data);
qdf_assert_always(spectral);
ptr32 = (uint32_t *)data;
/* Summary Report */
words32 = sizeof(struct spectral_sscan_summary_report_gen3) >> 2;
for (i = 0; i < words32; ++i) {
*ptr32 = qdf_le32_to_cpu(*ptr32);
++ptr32;
}
/* No need to swap the padding bytes */
ptr32 += (spectral->rparams.ssummary_padding_bytes >> 2);
/* Search FFT Report */
words32 = sizeof(struct spectral_phyerr_fft_report_gen3) >> 2;
for (i = 0; i < words32; ++i) {
*ptr32 = qdf_le32_to_cpu(*ptr32);
++ptr32;
}
return QDF_STATUS_SUCCESS;
}
QDF_STATUS target_if_byte_swap_spectral_fft_bins_gen3(
const struct spectral_report_params *rparams,
void *bin_pwr_data, size_t num_fftbins)
{
uint16_t dword_idx, num_dwords;
uint8_t num_bins_per_dword;
uint32_t *dword_ptr;
qdf_assert_always(bin_pwr_data);
qdf_assert_always(rparams);
num_bins_per_dword = SPECTRAL_DWORD_SIZE / rparams->hw_fft_bin_width;
num_dwords = num_fftbins / num_bins_per_dword;
dword_ptr = (uint32_t *)bin_pwr_data;
for (dword_idx = 0; dword_idx < num_dwords; dword_idx++) {
/* Read a DWORD, byteswap it, and copy it back */
*dword_ptr = qdf_le32_to_cpu(*dword_ptr);
++dword_ptr;
}
return QDF_STATUS_SUCCESS;
}
#endif /* BIG_ENDIAN_HOST */
#ifdef OPTIMIZED_SAMP_MESSAGE
/**
* target_if_consume_sscan_summary_report_gen3() - Consume Spectral summary
* report
* @data: Pointer to Spectral summary report
* @fields: Pointer to structure to be populated with extracted fields
* @spectral: Pointer to spectral object
*
* Consume Spectral summary report for gen3
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_consume_sscan_summary_report_gen3(
uint8_t **data,
struct sscan_report_fields_gen3 *fields,
struct target_if_spectral *spectral)
{
struct spectral_sscan_summary_report_gen3 *psscan_summary_report;
struct spectral_sscan_summary_report_padding_gen3_v2 *padding;
bool scan_radio_blanking;
if (!data) {
spectral_err_rl("Summary report buffer is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!fields) {
spectral_err_rl("Invalid pointer to Summary report fields");
return QDF_STATUS_E_NULL_VALUE;
}
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
/* Validate Spectral scan summary report */
if (target_if_verify_sig_and_tag_gen3(
spectral, *data,
TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN3) != 0) {
spectral_err_rl("Wrong tag/sig in sscan summary");
return QDF_STATUS_E_FAILURE;
}
fields->sscan_detector_id =
target_if_get_detector_id_sscan_summary_report_gen3(*data);
if (fields->sscan_detector_id >=
spectral->rparams.num_spectral_detectors) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err_rl("Invalid detector id %u, expected is 0 to %u",
fields->sscan_detector_id,
spectral->rparams.num_spectral_detectors);
return QDF_STATUS_E_FAILURE;
}
psscan_summary_report =
(struct spectral_sscan_summary_report_gen3 *)*data;
fields->sscan_agc_total_gain = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_AGC_TOTAL_GAIN_POS_GEN3);
fields->inband_pwr_db = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_INBAND_PWR_DB_POS_GEN3);
fields->sscan_pri80 = get_bitfield(
psscan_summary_report->hdr_a,
SSCAN_SUMMARY_REPORT_HDR_A_PRI80_SIZE_GEN3,
SSCAN_SUMMARY_REPORT_HDR_A_PRI80_POS_GEN3);
switch (spectral->rparams.version) {
case SPECTRAL_REPORT_FORMAT_VERSION_1:
fields->sscan_gainchange = get_bitfield(
psscan_summary_report->hdr_b,
SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_SIZE_GEN3_V1,
SSCAN_SUMMARY_REPORT_HDR_B_GAINCHANGE_POS_GEN3_V1);
break;
case SPECTRAL_REPORT_FORMAT_VERSION_2:
fields->sscan_gainchange = get_bitfield(
psscan_summary_report->hdr_c,
SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_SIZE_GEN3_V2,
SSCAN_SUMMARY_REPORT_HDR_C_GAINCHANGE_POS_GEN3_V2);
break;
default:
qdf_assert_always(0);
}
/* Advance buf pointer to the search fft report */
*data += sizeof(struct spectral_sscan_summary_report_gen3);
if (!spectral->rparams.ssummary_padding_bytes)
return QDF_STATUS_SUCCESS;
scan_radio_blanking =
wlan_pdev_nif_feat_ext_cap_get(spectral->pdev_obj,
WLAN_PDEV_FEXT_SCAN_BLANKING_EN);
padding = (struct spectral_sscan_summary_report_padding_gen3_v2 *)*data;
if (scan_radio_blanking) {
uint32_t blanking_tag;
uint8_t blanking_tag_size;
uint8_t blanking_tag_pos;
blanking_tag_size =
SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_SIZE_GEN3_V2;
blanking_tag_pos =
SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_POS_GEN3_V2;
blanking_tag = get_bitfield(padding->hdr_a, blanking_tag_size,
blanking_tag_pos);
if (blanking_tag ==
SSCAN_SUMMARY_REPORT_PAD_HDR_A_BLANKING_TAG_GEN3_V2)
fields->blanking_status = 1;
else
fields->blanking_status = 0;
}
*data += sizeof(struct spectral_sscan_summary_report_padding_gen3_v2);
return QDF_STATUS_SUCCESS;
}
/**
* target_if_process_sfft_report_gen3() - Validate and Process Search
* FFT Report for gen3
* @data: Pointer to Spectral FFT report
* @p_sfft: Pointer to search fft report
* @spectral: Pointer to spectral object
* @sscan_detector_id: Spectral detector id extracted from Summary report
* @reset_delay: Time taken for warm reset in usec
*
* Validate and Process Search FFT Report for gen3
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_process_sfft_report_gen3(
uint8_t *data,
struct spectral_search_fft_info_gen3 *p_sfft,
struct target_if_spectral *spectral,
enum spectral_detector_id sscan_detector_id,
uint32_t reset_delay)
{
struct spectral_phyerr_fft_report_gen3 *p_fft_report;
int32_t peak_sidx = 0;
int32_t peak_mag;
int fft_hdr_length = 0;
struct target_if_spectral_ops *p_sops;
enum spectral_scan_mode spectral_mode;
QDF_STATUS ret;
if (!data) {
spectral_err_rl("FFT report buffer is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!p_sfft) {
spectral_err_rl("Invalid pointer to Search FFT report info");
return QDF_STATUS_E_NULL_VALUE;
}
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
/*
* For easy comparison between MDK team and OS team, the MDK script
* variable names have been used
*/
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
/* Validate Spectral search FFT report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data, TLV_TAG_SEARCH_FFT_REPORT_GEN3) != 0) {
spectral_err_rl("Unexpected tag/sig in sfft, detid= %u",
sscan_detector_id);
return QDF_STATUS_E_FAILURE;
}
p_fft_report = (struct spectral_phyerr_fft_report_gen3 *)data;
fft_hdr_length = get_bitfield(
p_fft_report->fft_hdr_lts,
SPECTRAL_REPORT_LTS_HDR_LENGTH_SIZE_GEN3,
SPECTRAL_REPORT_LTS_HDR_LENGTH_POS_GEN3) * 4;
if (fft_hdr_length < 16) {
spectral_err("Wrong TLV length %u, detector id = %d",
fft_hdr_length, sscan_detector_id);
return QDF_STATUS_E_FAILURE;
}
p_sfft->fft_detector_id = get_bitfield(
p_fft_report->hdr_a,
FFT_REPORT_HDR_A_DETECTOR_ID_SIZE_GEN3,
FFT_REPORT_HDR_A_DETECTOR_ID_POS_GEN3);
/* It is expected to have same detector id for
* summary and fft report
*/
if (sscan_detector_id != p_sfft->fft_detector_id) {
spectral_err_rl("Different detid in ssummary(%u) and sfft(%u)",
sscan_detector_id, p_sfft->fft_detector_id);
return QDF_STATUS_E_FAILURE;
}
if (p_sfft->fft_detector_id >
spectral->rparams.num_spectral_detectors) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 0 to %u",
p_sfft->fft_detector_id,
spectral->rparams.num_spectral_detectors);
return QDF_STATUS_E_FAILURE;
}
spectral_mode = target_if_get_spectral_mode(p_sfft->fft_detector_id,
&spectral->rparams);
if (spectral_mode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("No valid Spectral mode for detector id %u",
p_sfft->fft_detector_id);
return QDF_STATUS_E_FAILURE;
}
/* Populate the Search FFT Info */
p_sfft->timestamp = p_fft_report->fft_timestamp;
p_sfft->last_raw_timestamp = spectral->timestamp_war.
last_fft_timestamp[spectral_mode];
p_sfft->adjusted_timestamp = target_if_spectral_get_adjusted_timestamp(
&spectral->timestamp_war,
p_sfft->timestamp,
reset_delay,
spectral_mode);
/* Timestamp verification */
target_if_spectral_verify_ts(spectral, data,
p_sfft->adjusted_timestamp,
p_sfft->fft_detector_id);
p_sfft->fft_num = get_bitfield(p_fft_report->hdr_a,
FFT_REPORT_HDR_A_FFT_NUM_SIZE_GEN3,
FFT_REPORT_HDR_A_FFT_NUM_POS_GEN3);
switch (spectral->rparams.version) {
case SPECTRAL_REPORT_FORMAT_VERSION_1:
p_sfft->fft_radar_check = get_bitfield(p_fft_report->hdr_a,
FFT_REPORT_HDR_A_RADAR_CHECK_SIZE_GEN3_V1,
FFT_REPORT_HDR_A_RADAR_CHECK_POS_GEN3_V1);
peak_sidx = get_bitfield(
p_fft_report->hdr_a,
FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V1,
FFT_REPORT_HDR_A_PEAK_INDEX_POS_GEN3_V1);
p_sfft->fft_chn_idx = get_bitfield(p_fft_report->hdr_a,
FFT_REPORT_HDR_A_CHAIN_INDEX_SIZE_GEN3_V1,
FFT_REPORT_HDR_A_CHAIN_INDEX_POS_GEN3_V1);
p_sfft->fft_base_pwr_db = get_bitfield(p_fft_report->hdr_b,
FFT_REPORT_HDR_B_BASE_PWR_SIZE_GEN3_V1,
FFT_REPORT_HDR_B_BASE_PWR_POS_GEN3_V1);
p_sfft->fft_total_gain_db = get_bitfield(p_fft_report->hdr_b,
FFT_REPORT_HDR_B_TOTAL_GAIN_SIZE_GEN3_V1,
FFT_REPORT_HDR_B_TOTAL_GAIN_POS_GEN3_V1);
break;
case SPECTRAL_REPORT_FORMAT_VERSION_2:
p_sfft->fft_radar_check = get_bitfield(p_fft_report->hdr_a,
FFT_REPORT_HDR_A_RADAR_CHECK_SIZE_GEN3_V2,
FFT_REPORT_HDR_A_RADAR_CHECK_POS_GEN3_V2);
peak_sidx = get_bitfield(
p_fft_report->hdr_a,
FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V2,
FFT_REPORT_HDR_A_PEAK_INDEX_POS_GEN3_V2);
p_sfft->fft_chn_idx = get_bitfield(p_fft_report->hdr_b,
FFT_REPORT_HDR_B_CHAIN_INDEX_SIZE_GEN3_V2,
FFT_REPORT_HDR_B_CHAIN_INDEX_POS_GEN3_V2);
p_sfft->fft_base_pwr_db = get_bitfield(p_fft_report->hdr_b,
FFT_REPORT_HDR_B_BASE_PWR_SIZE_GEN3_V2,
FFT_REPORT_HDR_B_BASE_PWR_POS_GEN3_V2);
p_sfft->fft_total_gain_db = get_bitfield(p_fft_report->hdr_b,
FFT_REPORT_HDR_B_TOTAL_GAIN_SIZE_GEN3_V2,
FFT_REPORT_HDR_B_TOTAL_GAIN_POS_GEN3_V2);
break;
default:
qdf_assert_always(0);
}
p_sfft->fft_peak_sidx = unsigned_to_signed(peak_sidx,
FFT_REPORT_HDR_A_PEAK_INDEX_SIZE_GEN3_V1);
p_sfft->fft_num_str_bins_ib = get_bitfield(p_fft_report->hdr_c,
FFT_REPORT_HDR_C_NUM_STRONG_BINS_SIZE_GEN3,
FFT_REPORT_HDR_C_NUM_STRONG_BINS_POS_GEN3);
peak_mag = get_bitfield(p_fft_report->hdr_c,
FFT_REPORT_HDR_C_PEAK_MAGNITUDE_SIZE_GEN3,
FFT_REPORT_HDR_C_PEAK_MAGNITUDE_POS_GEN3);
p_sfft->fft_peak_mag = unsigned_to_signed(peak_mag,
FFT_REPORT_HDR_C_PEAK_MAGNITUDE_SIZE_GEN3);
p_sfft->fft_avgpwr_db = get_bitfield(p_fft_report->hdr_c,
FFT_REPORT_HDR_C_AVG_PWR_SIZE_GEN3,
FFT_REPORT_HDR_C_AVG_PWR_POS_GEN3);
p_sfft->fft_relpwr_db = get_bitfield(p_fft_report->hdr_c,
FFT_REPORT_HDR_C_RELATIVE_PWR_SIZE_GEN3,
FFT_REPORT_HDR_C_RELATIVE_PWR_POS_GEN3);
p_sfft->fft_bin_count =
target_if_spectral_get_bin_count_after_len_adj(
fft_hdr_length - spectral->rparams.fft_report_hdr_len,
spectral->params[spectral_mode].ss_rpt_mode,
&spectral->len_adj_swar,
(size_t *)&p_sfft->fft_bin_size);
p_sfft->bin_pwr_data = (uint8_t *)p_fft_report + SPECTRAL_FFT_BINS_POS;
/* Apply byte-swap on the FFT bins.
* NOTE: Until this point, bytes of the FFT bins could be in
* reverse order on a big-endian machine. If the consumers
* of FFT bins expects bytes in the correct order,
* they should use them only after this point.
*/
if (p_sops->byte_swap_fft_bins) {
ret = p_sops->byte_swap_fft_bins(&spectral->rparams,
&p_sfft->bin_pwr_data,
p_sfft->fft_bin_count);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Byte-swap on the FFT bins failed");
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
/**
* target_if_spectral_populate_samp_params_gen3() - Populate the SAMP params
* for gen3. SAMP params are to be used for populating SAMP msg.
* @spectral: Pointer to spectral object
* @p_sfft: Fields extracted from FFT report
* @sscan_fields: Fields extracted from Summary report
* @report: Pointer to spectral report
* @params: Pointer to Spectral SAMP message fields to be populated
*
* Populate the SAMP params for gen3, which will be used to populate SAMP msg.
*
* Return: Success/Failure
*/
static QDF_STATUS
target_if_spectral_populate_samp_params_gen3(
struct target_if_spectral *spectral,
struct spectral_search_fft_info_gen3 *p_sfft,
struct sscan_report_fields_gen3 *sscan_fields,
struct spectral_report *report,
struct target_if_samp_msg_params *params)
{
enum spectral_scan_mode spectral_mode;
uint8_t chn_idx_lowest_enabled;
struct wlan_objmgr_vdev *vdev;
uint8_t vdev_rxchainmask;
if (!p_sfft) {
spectral_err_rl("Invalid pointer to Search FFT report info");
return QDF_STATUS_E_NULL_VALUE;
}
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!sscan_fields) {
spectral_err_rl("Invalid pointer to Summary report fields");
return QDF_STATUS_E_NULL_VALUE;
}
if (!report) {
spectral_err_rl("Spectral report is null");
return QDF_STATUS_E_NULL_VALUE;
}
if (!params) {
spectral_err_rl("SAMP msg params structure is null");
return QDF_STATUS_E_NULL_VALUE;
}
/* RSSI is in 1/2 dBm steps, Convert it to dBm scale */
params->rssi = (sscan_fields->inband_pwr_db) >> 1;
params->hw_detector_id = p_sfft->fft_detector_id;
params->raw_timestamp = p_sfft->timestamp;
params->last_raw_timestamp = p_sfft->last_raw_timestamp;
params->timestamp = p_sfft->adjusted_timestamp;
params->reset_delay = report->reset_delay;
params->max_mag = p_sfft->fft_peak_mag;
spectral_mode = target_if_get_spectral_mode(params->hw_detector_id,
&spectral->rparams);
vdev = target_if_spectral_get_vdev(spectral, spectral_mode);
if (!vdev) {
spectral_debug("First vdev is NULL");
return QDF_STATUS_E_FAILURE;
}
vdev_rxchainmask = wlan_vdev_mlme_get_rxchainmask(vdev);
QDF_ASSERT(vdev_rxchainmask != 0);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
chn_idx_lowest_enabled =
target_if_spectral_get_lowest_chn_idx(vdev_rxchainmask);
if (chn_idx_lowest_enabled >= DBR_MAX_CHAINS) {
spectral_err("Invalid chain index, detector id = %u",
params->hw_detector_id);
return QDF_STATUS_E_FAILURE;
}
params->noise_floor = report->noisefloor[chn_idx_lowest_enabled];
params->agc_total_gain = sscan_fields->sscan_agc_total_gain;
params->gainchange = sscan_fields->sscan_gainchange;
params->blanking_status = sscan_fields->blanking_status;
params->pri80ind = sscan_fields->sscan_pri80;
params->bin_pwr_data = p_sfft->bin_pwr_data;
return QDF_STATUS_SUCCESS;
}
int
target_if_consume_spectral_report_gen3(
struct target_if_spectral *spectral,
struct spectral_report *report)
{
/*
* XXX : The classifier do not use all the members of the SAMP
* message data format.
* The classifier only depends upon the following parameters
*
* 1. Frequency
* 2. Spectral RSSI
* 3. Bin Power Count
* 4. Bin Power values
* 5. Spectral Timestamp
* 6. MAC Address
*
* This function processes the Spectral summary and FFT reports
* and passes the processed information
* target_if_spectral_fill_samp_msg()
* to prepare fully formatted Spectral SAMP message
*
* XXX : Need to verify
* 1. Order of FFT bin values
*
*/
struct target_if_samp_msg_params params = {0};
struct spectral_search_fft_info_gen3 search_fft_info;
struct spectral_search_fft_info_gen3 *p_sfft = &search_fft_info;
struct target_if_spectral_ops *p_sops;
struct spectral_phyerr_fft_report_gen3 *p_fft_report;
uint8_t *data;
struct sscan_report_fields_gen3 sscan_report_fields = {0};
QDF_STATUS ret;
enum spectral_scan_mode spectral_mode = SPECTRAL_SCAN_MODE_INVALID;
bool finite_scan = false;
int det = 0;
struct sscan_detector_list *det_list;
struct spectral_data_stats *spectral_dp_stats;
bool print_fail_msg = true;
if (!spectral) {
spectral_err_rl("Spectral LMAC object is null");
print_fail_msg = false;
goto fail;
}
qdf_spin_lock_bh(&spectral->spectral_lock);
spectral_dp_stats = &spectral->data_stats;
spectral_dp_stats->consume_spectral_calls++;
if (!report) {
spectral_err_rl("Spectral report is null");
print_fail_msg = false;
goto fail_unlock;
}
p_sops = GET_TARGET_IF_SPECTRAL_OPS(spectral);
data = report->data;
/* Apply byte-swap on the headers */
if (p_sops->byte_swap_headers) {
ret = p_sops->byte_swap_headers(spectral, data);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Byte-swap on Spectral headers failed");
goto fail_unlock;
}
}
/* Validate and Process Spectral scan summary report */
ret = target_if_consume_sscan_summary_report_gen3(&data,
&sscan_report_fields,
spectral);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to process Spectral summary report");
goto fail_unlock;
}
spectral_mode = target_if_get_spectral_mode(
sscan_report_fields.sscan_detector_id,
&spectral->rparams);
if (spectral_mode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("No valid Spectral mode for detector id %u",
sscan_report_fields.sscan_detector_id);
goto fail_unlock;
}
/* Drop the sample if Spectral is not active for the current mode */
if (!p_sops->is_spectral_active(spectral, spectral_mode)) {
spectral_info_rl("Spectral scan is not active");
print_fail_msg = false;
goto fail_unlock;
}
/* Validate and Process the search FFT report */
ret = target_if_process_sfft_report_gen3(
data, p_sfft,
spectral,
sscan_report_fields.sscan_detector_id,
report->reset_delay);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to process search FFT report");
goto fail_unlock;
}
qdf_spin_lock_bh(&spectral->detector_list_lock);
det_list = &spectral->detector_list[spectral_mode]
[spectral->report_info[spectral_mode].sscan_bw];
for (det = 0; det < det_list->num_detectors; det++) {
if (p_sfft->fft_detector_id == det_list->detectors[det])
break;
if (det == det_list->num_detectors - 1) {
qdf_spin_unlock_bh(&spectral->detector_list_lock);
spectral_info("Incorrect det id %d for given scan mode and channel width",
p_sfft->fft_detector_id);
print_fail_msg = false;
goto fail_unlock;
}
}
qdf_spin_unlock_bh(&spectral->detector_list_lock);
ret = target_if_update_session_info_from_report_ctx(
spectral,
p_sfft->fft_bin_size,
report->cfreq1, report->cfreq2,
spectral_mode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to update per-session info");
goto fail_unlock;
}
qdf_spin_lock_bh(&spectral->session_report_info_lock);
/* Check FFT report are in order for 160 MHz and 80p80 */
if (is_ch_width_160_or_80p80(
spectral->report_info[spectral_mode].sscan_bw) &&
spectral->rparams.fragmentation_160[spectral_mode]) {
ret = target_if_160mhz_delivery_state_change(
spectral, spectral_mode,
p_sfft->fft_detector_id);
if (ret != QDF_STATUS_SUCCESS) {
qdf_spin_unlock_bh(
&spectral->session_report_info_lock);
goto fail_unlock;
}
}
qdf_spin_unlock_bh(&spectral->session_report_info_lock);
p_fft_report = (struct spectral_phyerr_fft_report_gen3 *)data;
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4))
target_if_dump_fft_report_gen3(spectral, spectral_mode,
p_fft_report, p_sfft);
target_if_spectral_check_buffer_poisoning(spectral, report,
p_sfft->fft_bin_count,
spectral_mode);
/* Populate SAMP params */
ret = target_if_spectral_populate_samp_params_gen3(
spectral, p_sfft,
&sscan_report_fields,
report, &params);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to populate SAMP params");
goto fail_unlock;
}
/* Fill SAMP message */
ret = target_if_spectral_fill_samp_msg(spectral, &params);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to fill the SAMP msg");
goto fail_unlock;
}
qdf_spin_unlock_bh(&spectral->spectral_lock);
ret = target_if_spectral_is_finite_scan(spectral, spectral_mode,
&finite_scan);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to check scan is finite");
goto fail;
}
if (finite_scan) {
ret = target_if_spectral_finite_scan_update(spectral,
spectral_mode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to update scan count");
goto fail;
}
}
return 0;
fail_unlock:
qdf_spin_unlock_bh(&spectral->spectral_lock);
fail:
if (print_fail_msg)
spectral_err_rl("Error while processing Spectral report");
if (spectral_mode != SPECTRAL_SCAN_MODE_INVALID)
reset_160mhz_delivery_state_machine(spectral, spectral_mode);
return -EPERM;
}
#else
int
target_if_consume_spectral_report_gen3(
struct target_if_spectral *spectral,
struct spectral_report *report)
{
/*
* XXX : The classifier do not use all the members of the SAMP
* message data format.
* The classifier only depends upon the following parameters
*
* 1. Frequency (freq, msg->freq)
* 2. Spectral RSSI (spectral_rssi,
* msg->samp_data.spectral_rssi)
* 3. Bin Power Count (bin_pwr_count,
* msg->samp_data.bin_pwr_count)
* 4. Bin Power values (bin_pwr, msg->samp_data.bin_pwr[0]
* 5. Spectral Timestamp (spectral_tstamp,
* msg->samp_data.spectral_tstamp)
* 6. MAC Address (macaddr, msg->macaddr)
*
* This function prepares the params structure and populates it
* with
* relevant values, this is in turn passed to
* spectral_create_samp_msg()
* to prepare fully formatted Spectral SAMP message
*
* XXX : Need to verify
* 1. Order of FFT bin values
*
*/
struct target_if_samp_msg_params params = {0};
struct spectral_search_fft_info_gen3 search_fft_info;
struct spectral_search_fft_info_gen3 *p_sfft = &search_fft_info;
int8_t chn_idx_lowest_enabled = 0;
int fft_hdr_length = 0;
int report_len = 0;
size_t fft_bin_count;
size_t fft_bin_size;
struct target_if_spectral_ops *p_sops =
GET_TARGET_IF_SPECTRAL_OPS(spectral);
struct spectral_phyerr_fft_report_gen3 *p_fft_report;
int8_t rssi;
uint8_t *data = report->data;
struct wlan_objmgr_vdev *vdev;
uint8_t vdev_rxchainmask;
struct sscan_report_fields_gen3 sscan_report_fields = {0};
enum spectral_detector_id detector_id;
QDF_STATUS ret;
enum spectral_scan_mode spectral_mode = SPECTRAL_SCAN_MODE_INVALID;
uint8_t *temp;
bool finite_scan = false;
/* Apply byte-swap on the headers */
if (p_sops->byte_swap_headers) {
ret = p_sops->byte_swap_headers(spectral, data);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Byte-swap on Spectral headers failed");
goto fail;
}
}
/* Process Spectral scan summary report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data,
TLV_TAG_SPECTRAL_SUMMARY_REPORT_GEN3) != 0) {
spectral_err_rl("Wrong tag/sig in sscan summary");
goto fail;
}
detector_id = target_if_get_detector_id_sscan_summary_report_gen3(data);
if (detector_id >= spectral->rparams.num_spectral_detectors) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 0/1/2",
detector_id);
goto fail;
}
spectral_mode = target_if_get_spectral_mode(detector_id,
&spectral->rparams);
if (spectral_mode >= SPECTRAL_SCAN_MODE_MAX) {
spectral_err_rl("No valid Spectral mode for detector id %u",
detector_id);
goto fail;
}
/* Drop the sample if Spectral is not active for the current mode */
if (!p_sops->is_spectral_active(spectral, spectral_mode)) {
spectral_info_rl("Spectral scan is not active");
goto fail_no_print;
}
ret = target_if_spectral_is_finite_scan(spectral, spectral_mode,
&finite_scan);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to check scan is finite");
goto fail;
}
if (finite_scan) {
ret = target_if_spectral_finite_scan_update(spectral,
spectral_mode);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Failed to update scan count");
goto fail;
}
}
target_if_consume_sscan_summary_report_gen3(data, &sscan_report_fields,
&spectral->rparams);
/* Advance buf pointer to the search fft report */
data += sizeof(struct spectral_sscan_summary_report_gen3);
data += spectral->rparams.ssummary_padding_bytes;
params.vhtop_ch_freq_seg1 = report->cfreq1;
params.vhtop_ch_freq_seg2 = report->cfreq2;
if (is_primaryseg_expected(spectral, spectral_mode)) {
/* RSSI is in 1/2 dBm steps, Convert it to dBm scale */
rssi = (sscan_report_fields.inband_pwr_db) >> 1;
params.agc_total_gain =
sscan_report_fields.sscan_agc_total_gain;
params.gainchange = sscan_report_fields.sscan_gainchange;
params.pri80ind = sscan_report_fields.sscan_pri80;
/* Process Spectral search FFT report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data,
TLV_TAG_SEARCH_FFT_REPORT_GEN3) != 0) {
spectral_err_rl("Unexpected tag/sig in sfft, detid= %u",
detector_id);
goto fail;
}
p_fft_report = (struct spectral_phyerr_fft_report_gen3 *)data;
fft_hdr_length = get_bitfield(
p_fft_report->fft_hdr_lts,
SPECTRAL_REPORT_LTS_HDR_LENGTH_SIZE_GEN3,
SPECTRAL_REPORT_LTS_HDR_LENGTH_POS_GEN3) * 4;
if (fft_hdr_length < 16) {
spectral_err("Wrong TLV length %u, detector id = %d",
fft_hdr_length, detector_id);
goto fail;
}
report_len = (fft_hdr_length + 8);
target_if_process_sfft_report_gen3(p_fft_report, p_sfft,
&spectral->rparams);
/* It is expected to have same detector id for
* summary and fft report
*/
if (detector_id != p_sfft->fft_detector_id) {
spectral_err_rl
("Different detid in ssummary(%u) and sfft(%u)",
detector_id, p_sfft->fft_detector_id);
goto fail;
}
if (detector_id > spectral->rparams.num_spectral_detectors) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 0/2",
detector_id);
goto fail;
}
params.smode = spectral_mode;
fft_bin_count = target_if_spectral_get_bin_count_after_len_adj(
fft_hdr_length - spectral->rparams.fft_report_hdr_len,
spectral->params[spectral_mode].ss_rpt_mode,
&spectral->len_adj_swar, &fft_bin_size);
params.last_raw_timestamp = spectral->timestamp_war.
last_fft_timestamp[spectral_mode];
params.reset_delay = report->reset_delay;
params.raw_timestamp = p_sfft->timestamp;
params.tstamp = target_if_spectral_get_adjusted_timestamp(
&spectral->timestamp_war,
p_sfft->timestamp, report->reset_delay,
spectral_mode);
params.timestamp_war_offset = spectral->timestamp_war.
timestamp_war_offset[spectral_mode];
params.target_reset_count = spectral->timestamp_war.
target_reset_count;
/* Take care of state transitions for 160 MHz and 80p80 */
if (is_ch_width_160_or_80p80(spectral->ch_width
[spectral_mode]) && spectral->rparams.
fragmentation_160[spectral_mode]) {
ret = target_if_160mhz_delivery_state_change(
spectral, spectral_mode,
detector_id);
if (ret != QDF_STATUS_SUCCESS)
goto fail;
}
params.rssi = rssi;
vdev = target_if_spectral_get_vdev(spectral, spectral_mode);
if (!vdev) {
spectral_debug("First vdev is NULL");
reset_160mhz_delivery_state_machine(
spectral, spectral_mode);
return -EPERM;
}
vdev_rxchainmask = wlan_vdev_mlme_get_rxchainmask(vdev);
QDF_ASSERT(vdev_rxchainmask != 0);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
chn_idx_lowest_enabled =
target_if_spectral_get_lowest_chn_idx(vdev_rxchainmask);
if (chn_idx_lowest_enabled >= DBR_MAX_CHAINS) {
spectral_err("Invalid chain index, detector id = %u",
detector_id);
goto fail;
}
params.max_mag = p_sfft->fft_peak_mag;
params.freq = p_sops->get_current_channel(spectral,
spectral_mode);
params.agile_freq1 = spectral->params[SPECTRAL_SCAN_MODE_AGILE].
ss_frequency.cfreq1;
params.agile_freq2 = spectral->params[SPECTRAL_SCAN_MODE_AGILE].
ss_frequency.cfreq2;
params.noise_floor =
report->noisefloor[chn_idx_lowest_enabled];
temp = (uint8_t *)p_fft_report + SPECTRAL_FFT_BINS_POS;
if (is_ch_width_160_or_80p80(spectral->ch_width
[spectral_mode]) && !spectral->rparams.
fragmentation_160[spectral_mode]) {
struct wlan_objmgr_psoc *psoc;
struct spectral_fft_bin_markers_160_165mhz *marker;
qdf_assert_always(spectral->pdev_obj);
psoc = wlan_pdev_get_psoc(spectral->pdev_obj);
qdf_assert_always(psoc);
params.agc_total_gain_sec80 =
sscan_report_fields.sscan_agc_total_gain;
params.gainchange_sec80 =
sscan_report_fields.sscan_gainchange;
params.raw_timestamp_sec80 = p_sfft->timestamp;
params.rssi_sec80 = rssi;
params.noise_floor_sec80 =
report->noisefloor[chn_idx_lowest_enabled];
params.max_mag_sec80 = p_sfft->fft_peak_mag;
params.datalen = fft_hdr_length * 2;
params.datalen_sec80 = fft_hdr_length * 2;
marker = &spectral->rparams.marker[spectral_mode];
if (!marker->is_valid) {
/* update stats */
goto fail_no_print;
}
params.bin_pwr_data = temp +
marker->start_pri80 * fft_bin_size;
params.pwr_count = marker->num_pri80;
params.bin_pwr_data_sec80 = temp +
marker->start_sec80 * fft_bin_size;
params.pwr_count_sec80 = marker->num_sec80;
if (spectral->ch_width[spectral_mode] ==
CH_WIDTH_80P80MHZ && wlan_psoc_nif_fw_ext_cap_get(
psoc, WLAN_SOC_RESTRICTED_80P80_SUPPORT)) {
params.bin_pwr_data_5mhz = temp +
marker->start_5mhz * fft_bin_size;
params.pwr_count_5mhz = marker->num_5mhz;
}
} else {
params.bin_pwr_data = temp;
params.pwr_count = fft_bin_count;
params.datalen = (fft_hdr_length * 4);
}
/* Apply byte-swap on the FFT bins.
* NOTE: Until this point, bytes of the FFT bins could be in
* reverse order on a big-endian machine. If the consumers
* of FFT bins expects bytes in the correct order,
* they should use them only after this point.
*/
if (p_sops->byte_swap_fft_bins) {
ret = p_sops->byte_swap_fft_bins(
&spectral->rparams,
temp, fft_bin_count);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Byte-swap on the FFT bins failed");
goto fail;
}
}
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4))
target_if_dump_fft_report_gen3(spectral, spectral_mode,
p_fft_report, p_sfft);
target_if_spectral_verify_ts(spectral, report->data,
params.tstamp);
} else if (is_secondaryseg_expected(spectral, spectral_mode)) {
/* RSSI is in 1/2 dBm steps, Convert it to dBm scale */
rssi = (sscan_report_fields.inband_pwr_db) >> 1;
params.agc_total_gain_sec80 =
sscan_report_fields.sscan_agc_total_gain;
params.gainchange_sec80 = sscan_report_fields.sscan_gainchange;
params.pri80ind_sec80 = sscan_report_fields.sscan_pri80;
/* Process Spectral search FFT report */
if (target_if_verify_sig_and_tag_gen3(
spectral, data,
TLV_TAG_SEARCH_FFT_REPORT_GEN3) != 0) {
spectral_err_rl("Unexpected tag/sig in sfft, detid= %u",
detector_id);
goto fail;
}
p_fft_report = (struct spectral_phyerr_fft_report_gen3 *)data;
fft_hdr_length = get_bitfield(
p_fft_report->fft_hdr_lts,
SPECTRAL_REPORT_LTS_HDR_LENGTH_SIZE_GEN3,
SPECTRAL_REPORT_LTS_HDR_LENGTH_POS_GEN3) * 4;
if (fft_hdr_length < 16) {
spectral_err("Wrong TLV length %u, detector id = %u",
fft_hdr_length, detector_id);
goto fail;
}
report_len = (fft_hdr_length + 8);
target_if_process_sfft_report_gen3(p_fft_report, p_sfft,
&spectral->rparams);
/* It is expected to have same detector id for
* summary and fft report
*/
if (detector_id != p_sfft->fft_detector_id) {
spectral_err_rl
("Different detid in ssummary(%u) and sfft(%u)",
detector_id, p_sfft->fft_detector_id);
goto fail;
}
if (detector_id > spectral->rparams.num_spectral_detectors) {
spectral->diag_stats.spectral_invalid_detector_id++;
spectral_err("Invalid detector id %u, expected is 1",
detector_id);
goto fail;
}
params.smode = spectral_mode;
fft_bin_count = target_if_spectral_get_bin_count_after_len_adj(
fft_hdr_length - spectral->rparams.fft_report_hdr_len,
spectral->params[spectral_mode].ss_rpt_mode,
&spectral->len_adj_swar, &fft_bin_size);
params.raw_timestamp_sec80 = p_sfft->timestamp;
/* Take care of state transitions for 160 MHz and 80p80 */
if (is_ch_width_160_or_80p80(spectral->ch_width
[spectral_mode]) && spectral->rparams.
fragmentation_160[spectral_mode]) {
ret = target_if_160mhz_delivery_state_change(
spectral, spectral_mode,
detector_id);
if (ret != QDF_STATUS_SUCCESS)
goto fail;
}
params.rssi_sec80 = rssi;
vdev = target_if_spectral_get_vdev(spectral, spectral_mode);
if (!vdev) {
spectral_info("First vdev is NULL");
reset_160mhz_delivery_state_machine
(spectral, spectral_mode);
return -EPERM;
}
vdev_rxchainmask = wlan_vdev_mlme_get_rxchainmask(vdev);
QDF_ASSERT(vdev_rxchainmask != 0);
wlan_objmgr_vdev_release_ref(vdev, WLAN_SPECTRAL_ID);
chn_idx_lowest_enabled =
target_if_spectral_get_lowest_chn_idx(vdev_rxchainmask);
if (chn_idx_lowest_enabled >= DBR_MAX_CHAINS) {
spectral_err("Invalid chain index");
goto fail;
}
/* Need to change this as per FW team's inputs */
params.noise_floor_sec80 =
report->noisefloor[chn_idx_lowest_enabled];
params.max_mag_sec80 = p_sfft->fft_peak_mag;
/* params.max_index_sec80 = p_sfft->peak_inx; */
/* XXX Does this definition of datalen *still hold? */
params.datalen_sec80 = fft_hdr_length * 4;
params.pwr_count_sec80 = fft_bin_count;
params.bin_pwr_data_sec80 =
(uint8_t *)((uint8_t *)p_fft_report +
SPECTRAL_FFT_BINS_POS);
/* Apply byte-swap on the FFT bins.
* NOTE: Until this point, bytes of the FFT bins could be in
* reverse order on a big-endian machine. If the consumers
* of FFT bins expects bytes in the correct order,
* they should use them only after this point.
*/
if (p_sops->byte_swap_fft_bins) {
ret = p_sops->byte_swap_fft_bins(
&spectral->rparams,
params.bin_pwr_data_sec80,
fft_bin_count);
if (QDF_IS_STATUS_ERROR(ret)) {
spectral_err_rl("Byte-swap on the FFT bins failed");
goto fail;
}
}
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4))
target_if_dump_fft_report_gen3(spectral, spectral_mode,
p_fft_report, p_sfft);
} else {
spectral_err("Spectral state machine in undefined state");
goto fail;
}
target_if_spectral_check_buffer_poisoning(spectral, report,
fft_bin_count, spectral_mode);
qdf_mem_copy(&params.classifier_params,
&spectral->classifier_params,
sizeof(struct spectral_classifier_params));
target_if_spectral_log_SAMP_param(&params);
target_if_spectral_create_samp_msg(spectral, &params);
return 0;
fail:
spectral_err_rl("Error while processing Spectral report");
fail_no_print:
if (spectral_mode != SPECTRAL_SCAN_MODE_INVALID)
reset_160mhz_delivery_state_machine(spectral, spectral_mode);
return -EPERM;
}
#endif /* OPTIMIZED_SAMP_MESSAGE */
int target_if_spectral_process_report_gen3(
struct wlan_objmgr_pdev *pdev,
void *buf)
{
int ret = 0;
struct direct_buf_rx_data *payload = buf;
struct target_if_spectral *spectral;
struct spectral_report report = {0};
int samp_msg_index;
struct spectral_data_stats *spectral_dp_stats;
spectral = get_target_if_spectral_handle_from_pdev(pdev);
if (!spectral) {
spectral_err("Spectral target object is null");
return -EINVAL;
}
spectral_dp_stats = &spectral->data_stats;
spectral_dp_stats->spectral_rx_events++;
report.data = payload->vaddr;
if (payload->meta_data_valid) {
qdf_mem_copy(report.noisefloor, payload->meta_data.noisefloor,
qdf_min(sizeof(report.noisefloor),
sizeof(payload->meta_data.noisefloor)));
report.reset_delay = payload->meta_data.reset_delay;
report.cfreq1 = payload->meta_data.cfreq1;
report.cfreq2 = payload->meta_data.cfreq2;
report.ch_width = payload->meta_data.ch_width;
}
if (spectral_debug_level & (DEBUG_SPECTRAL2 | DEBUG_SPECTRAL4)) {
spectral_debug("Printing the spectral phyerr buffer for debug");
spectral_debug("Datalength of buffer = 0x%zx(%zd) bufptr = 0x%pK",
payload->dbr_len,
payload->dbr_len,
payload->vaddr);
target_if_spectral_hexdump((unsigned char *)payload->vaddr,
1024);
}
samp_msg_index = spectral->spectral_sent_msg;
ret = target_if_consume_spectral_report_gen3(spectral, &report);
/* Reset debug level when SAMP msg is sent successfully or on error */
if ((spectral_debug_level & DEBUG_SPECTRAL4) &&
(ret != 0 || spectral->spectral_sent_msg == samp_msg_index + 1))
spectral_debug_level = DEBUG_SPECTRAL;
return ret;
}
#else
int target_if_spectral_process_report_gen3(
struct wlan_objmgr_pdev *pdev,
void *buf)
{
spectral_err("Direct dma support is not enabled");
return -EINVAL;
}
#endif
qdf_export_symbol(target_if_spectral_process_report_gen3);
/* END of spectral GEN III HW specific functions */
#endif /* WLAN_CONV_SPECTRAL_ENABLE */