dp_rx.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #ifdef ATH_RX_PRI_SAVE
  35. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  36. (qdf_nbuf_set_priority(_nbuf, _tid))
  37. #else
  38. #define DP_RX_TID_SAVE(_nbuf, _tid)
  39. #endif
  40. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  41. static inline
  42. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  43. {
  44. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  45. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  46. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  47. return false;
  48. }
  49. return true;
  50. }
  51. #else
  52. static inline
  53. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  54. {
  55. return true;
  56. }
  57. #endif
  58. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  59. {
  60. return vdev->ap_bridge_enabled;
  61. }
  62. #ifdef DUP_RX_DESC_WAR
  63. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  64. hal_ring_handle_t hal_ring,
  65. hal_ring_desc_t ring_desc,
  66. struct dp_rx_desc *rx_desc)
  67. {
  68. void *hal_soc = soc->hal_soc;
  69. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  70. dp_rx_desc_dump(rx_desc);
  71. }
  72. #else
  73. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  74. hal_ring_handle_t hal_ring_hdl,
  75. hal_ring_desc_t ring_desc,
  76. struct dp_rx_desc *rx_desc)
  77. {
  78. hal_soc_handle_t hal_soc = soc->hal_soc;
  79. dp_rx_desc_dump(rx_desc);
  80. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  81. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  82. qdf_assert_always(0);
  83. }
  84. #endif
  85. /*
  86. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  87. * called during dp rx initialization
  88. * and at the end of dp_rx_process.
  89. *
  90. * @soc: core txrx main context
  91. * @mac_id: mac_id which is one of 3 mac_ids
  92. * @dp_rxdma_srng: dp rxdma circular ring
  93. * @rx_desc_pool: Pointer to free Rx descriptor pool
  94. * @num_req_buffers: number of buffer to be replenished
  95. * @desc_list: list of descs if called from dp_rx_process
  96. * or NULL during dp rx initialization or out of buffer
  97. * interrupt.
  98. * @tail: tail of descs list
  99. * Return: return success or failure
  100. */
  101. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  102. struct dp_srng *dp_rxdma_srng,
  103. struct rx_desc_pool *rx_desc_pool,
  104. uint32_t num_req_buffers,
  105. union dp_rx_desc_list_elem_t **desc_list,
  106. union dp_rx_desc_list_elem_t **tail)
  107. {
  108. uint32_t num_alloc_desc;
  109. uint16_t num_desc_to_free = 0;
  110. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  111. uint32_t num_entries_avail;
  112. uint32_t count;
  113. int sync_hw_ptr = 1;
  114. qdf_dma_addr_t paddr;
  115. qdf_nbuf_t rx_netbuf;
  116. void *rxdma_ring_entry;
  117. union dp_rx_desc_list_elem_t *next;
  118. QDF_STATUS ret;
  119. void *rxdma_srng;
  120. rxdma_srng = dp_rxdma_srng->hal_srng;
  121. if (!rxdma_srng) {
  122. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  123. "rxdma srng not initialized");
  124. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  125. return QDF_STATUS_E_FAILURE;
  126. }
  127. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  128. "requested %d buffers for replenish", num_req_buffers);
  129. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  130. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  131. rxdma_srng,
  132. sync_hw_ptr);
  133. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  134. "no of available entries in rxdma ring: %d",
  135. num_entries_avail);
  136. if (!(*desc_list) && (num_entries_avail >
  137. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  138. num_req_buffers = num_entries_avail;
  139. } else if (num_entries_avail < num_req_buffers) {
  140. num_desc_to_free = num_req_buffers - num_entries_avail;
  141. num_req_buffers = num_entries_avail;
  142. }
  143. if (qdf_unlikely(!num_req_buffers)) {
  144. num_desc_to_free = num_req_buffers;
  145. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  146. goto free_descs;
  147. }
  148. /*
  149. * if desc_list is NULL, allocate the descs from freelist
  150. */
  151. if (!(*desc_list)) {
  152. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  153. rx_desc_pool,
  154. num_req_buffers,
  155. desc_list,
  156. tail);
  157. if (!num_alloc_desc) {
  158. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  159. "no free rx_descs in freelist");
  160. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  161. num_req_buffers);
  162. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  163. return QDF_STATUS_E_NOMEM;
  164. }
  165. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  166. "%d rx desc allocated", num_alloc_desc);
  167. num_req_buffers = num_alloc_desc;
  168. }
  169. count = 0;
  170. while (count < num_req_buffers) {
  171. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  172. RX_BUFFER_SIZE,
  173. RX_BUFFER_RESERVATION,
  174. RX_BUFFER_ALIGNMENT,
  175. FALSE);
  176. if (qdf_unlikely(!rx_netbuf)) {
  177. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  178. break;
  179. }
  180. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  181. QDF_DMA_FROM_DEVICE);
  182. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  183. qdf_nbuf_free(rx_netbuf);
  184. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  185. continue;
  186. }
  187. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  188. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  189. /*
  190. * check if the physical address of nbuf->data is
  191. * less then 0x50000000 then free the nbuf and try
  192. * allocating new nbuf. We can try for 100 times.
  193. * this is a temp WAR till we fix it properly.
  194. */
  195. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  196. if (ret == QDF_STATUS_E_FAILURE) {
  197. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  198. break;
  199. }
  200. count++;
  201. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  202. rxdma_srng);
  203. qdf_assert_always(rxdma_ring_entry);
  204. next = (*desc_list)->next;
  205. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  206. /* rx_desc.in_use should be zero at this time*/
  207. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  208. (*desc_list)->rx_desc.in_use = 1;
  209. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  210. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  211. (unsigned long long)paddr,
  212. (*desc_list)->rx_desc.cookie);
  213. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  214. (*desc_list)->rx_desc.cookie,
  215. rx_desc_pool->owner);
  216. *desc_list = next;
  217. }
  218. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  219. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  220. count, num_desc_to_free);
  221. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count,
  222. (RX_BUFFER_SIZE * count));
  223. free_descs:
  224. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  225. /*
  226. * add any available free desc back to the free list
  227. */
  228. if (*desc_list)
  229. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  230. mac_id, rx_desc_pool);
  231. return QDF_STATUS_SUCCESS;
  232. }
  233. /*
  234. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  235. * pkts to RAW mode simulation to
  236. * decapsulate the pkt.
  237. *
  238. * @vdev: vdev on which RAW mode is enabled
  239. * @nbuf_list: list of RAW pkts to process
  240. * @peer: peer object from which the pkt is rx
  241. *
  242. * Return: void
  243. */
  244. void
  245. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  246. struct dp_peer *peer)
  247. {
  248. qdf_nbuf_t deliver_list_head = NULL;
  249. qdf_nbuf_t deliver_list_tail = NULL;
  250. qdf_nbuf_t nbuf;
  251. nbuf = nbuf_list;
  252. while (nbuf) {
  253. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  254. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  255. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  256. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  257. /*
  258. * reset the chfrag_start and chfrag_end bits in nbuf cb
  259. * as this is a non-amsdu pkt and RAW mode simulation expects
  260. * these bit s to be 0 for non-amsdu pkt.
  261. */
  262. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  263. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  264. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  265. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  266. }
  267. nbuf = next;
  268. }
  269. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  270. &deliver_list_tail, peer->mac_addr.raw);
  271. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  272. }
  273. #ifdef DP_LFR
  274. /*
  275. * In case of LFR, data of a new peer might be sent up
  276. * even before peer is added.
  277. */
  278. static inline struct dp_vdev *
  279. dp_get_vdev_from_peer(struct dp_soc *soc,
  280. uint16_t peer_id,
  281. struct dp_peer *peer,
  282. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  283. {
  284. struct dp_vdev *vdev;
  285. uint8_t vdev_id;
  286. if (unlikely(!peer)) {
  287. if (peer_id != HTT_INVALID_PEER) {
  288. vdev_id = DP_PEER_METADATA_VDEV_ID_GET(
  289. mpdu_desc_info.peer_meta_data);
  290. QDF_TRACE(QDF_MODULE_ID_DP,
  291. QDF_TRACE_LEVEL_DEBUG,
  292. FL("PeerID %d not found use vdevID %d"),
  293. peer_id, vdev_id);
  294. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  295. vdev_id);
  296. } else {
  297. QDF_TRACE(QDF_MODULE_ID_DP,
  298. QDF_TRACE_LEVEL_DEBUG,
  299. FL("Invalid PeerID %d"),
  300. peer_id);
  301. return NULL;
  302. }
  303. } else {
  304. vdev = peer->vdev;
  305. }
  306. return vdev;
  307. }
  308. #else
  309. static inline struct dp_vdev *
  310. dp_get_vdev_from_peer(struct dp_soc *soc,
  311. uint16_t peer_id,
  312. struct dp_peer *peer,
  313. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  314. {
  315. if (unlikely(!peer)) {
  316. QDF_TRACE(QDF_MODULE_ID_DP,
  317. QDF_TRACE_LEVEL_DEBUG,
  318. FL("Peer not found for peerID %d"),
  319. peer_id);
  320. return NULL;
  321. } else {
  322. return peer->vdev;
  323. }
  324. }
  325. #endif
  326. #ifndef FEATURE_WDS
  327. static void
  328. dp_rx_da_learn(struct dp_soc *soc,
  329. uint8_t *rx_tlv_hdr,
  330. struct dp_peer *ta_peer,
  331. qdf_nbuf_t nbuf)
  332. {
  333. }
  334. #endif
  335. /*
  336. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  337. *
  338. * @soc: core txrx main context
  339. * @ta_peer : source peer entry
  340. * @rx_tlv_hdr : start address of rx tlvs
  341. * @nbuf : nbuf that has to be intrabss forwarded
  342. *
  343. * Return: bool: true if it is forwarded else false
  344. */
  345. static bool
  346. dp_rx_intrabss_fwd(struct dp_soc *soc,
  347. struct dp_peer *ta_peer,
  348. uint8_t *rx_tlv_hdr,
  349. qdf_nbuf_t nbuf)
  350. {
  351. uint16_t da_idx;
  352. uint16_t len;
  353. uint8_t is_frag;
  354. struct dp_peer *da_peer;
  355. struct dp_ast_entry *ast_entry;
  356. qdf_nbuf_t nbuf_copy;
  357. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  358. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  359. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  360. tid_stats.tid_rx_stats[ring_id][tid];
  361. /* check if the destination peer is available in peer table
  362. * and also check if the source peer and destination peer
  363. * belong to the same vap and destination peer is not bss peer.
  364. */
  365. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  366. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  367. ast_entry = soc->ast_table[da_idx];
  368. if (!ast_entry)
  369. return false;
  370. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  371. ast_entry->is_active = TRUE;
  372. return false;
  373. }
  374. da_peer = ast_entry->peer;
  375. if (!da_peer)
  376. return false;
  377. /* TA peer cannot be same as peer(DA) on which AST is present
  378. * this indicates a change in topology and that AST entries
  379. * are yet to be updated.
  380. */
  381. if (da_peer == ta_peer)
  382. return false;
  383. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  384. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  385. is_frag = qdf_nbuf_is_frag(nbuf);
  386. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  387. /* linearize the nbuf just before we send to
  388. * dp_tx_send()
  389. */
  390. if (qdf_unlikely(is_frag)) {
  391. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  392. return false;
  393. nbuf = qdf_nbuf_unshare(nbuf);
  394. if (!nbuf) {
  395. DP_STATS_INC_PKT(ta_peer,
  396. rx.intra_bss.fail,
  397. 1,
  398. len);
  399. /* return true even though the pkt is
  400. * not forwarded. Basically skb_unshare
  401. * failed and we want to continue with
  402. * next nbuf.
  403. */
  404. tid_stats->fail_cnt[INTRABSS_DROP]++;
  405. return true;
  406. }
  407. }
  408. if (!dp_tx_send((struct cdp_soc_t *)soc,
  409. ta_peer->vdev->vdev_id, nbuf)) {
  410. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  411. len);
  412. return true;
  413. } else {
  414. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  415. len);
  416. tid_stats->fail_cnt[INTRABSS_DROP]++;
  417. return false;
  418. }
  419. }
  420. }
  421. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  422. * source, then clone the pkt and send the cloned pkt for
  423. * intra BSS forwarding and original pkt up the network stack
  424. * Note: how do we handle multicast pkts. do we forward
  425. * all multicast pkts as is or let a higher layer module
  426. * like igmpsnoop decide whether to forward or not with
  427. * Mcast enhancement.
  428. */
  429. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  430. !ta_peer->bss_peer))) {
  431. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  432. goto end;
  433. nbuf_copy = qdf_nbuf_copy(nbuf);
  434. if (!nbuf_copy)
  435. goto end;
  436. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  437. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  438. /* Set cb->ftype to intrabss FWD */
  439. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  440. if (dp_tx_send((struct cdp_soc_t *)soc,
  441. ta_peer->vdev->vdev_id, nbuf_copy)) {
  442. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  443. tid_stats->fail_cnt[INTRABSS_DROP]++;
  444. qdf_nbuf_free(nbuf_copy);
  445. } else {
  446. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  447. tid_stats->intrabss_cnt++;
  448. }
  449. }
  450. end:
  451. /* return false as we have to still send the original pkt
  452. * up the stack
  453. */
  454. return false;
  455. }
  456. #ifdef MESH_MODE_SUPPORT
  457. /**
  458. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  459. *
  460. * @vdev: DP Virtual device handle
  461. * @nbuf: Buffer pointer
  462. * @rx_tlv_hdr: start of rx tlv header
  463. * @peer: pointer to peer
  464. *
  465. * This function allocated memory for mesh receive stats and fill the
  466. * required stats. Stores the memory address in skb cb.
  467. *
  468. * Return: void
  469. */
  470. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  471. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  472. {
  473. struct mesh_recv_hdr_s *rx_info = NULL;
  474. uint32_t pkt_type;
  475. uint32_t nss;
  476. uint32_t rate_mcs;
  477. uint32_t bw;
  478. /* fill recv mesh stats */
  479. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  480. /* upper layers are resposible to free this memory */
  481. if (!rx_info) {
  482. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  483. "Memory allocation failed for mesh rx stats");
  484. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  485. return;
  486. }
  487. rx_info->rs_flags = MESH_RXHDR_VER1;
  488. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  489. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  490. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  491. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  492. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  493. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  494. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  495. if (vdev->osif_get_key)
  496. vdev->osif_get_key(vdev->osif_vdev,
  497. &rx_info->rs_decryptkey[0],
  498. &peer->mac_addr.raw[0],
  499. rx_info->rs_keyix);
  500. }
  501. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  502. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  503. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  504. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  505. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  506. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  507. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  508. (bw << 24);
  509. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  510. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  511. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  512. rx_info->rs_flags,
  513. rx_info->rs_rssi,
  514. rx_info->rs_channel,
  515. rx_info->rs_ratephy1,
  516. rx_info->rs_keyix);
  517. }
  518. /**
  519. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  520. *
  521. * @vdev: DP Virtual device handle
  522. * @nbuf: Buffer pointer
  523. * @rx_tlv_hdr: start of rx tlv header
  524. *
  525. * This checks if the received packet is matching any filter out
  526. * catogery and and drop the packet if it matches.
  527. *
  528. * Return: status(0 indicates drop, 1 indicate to no drop)
  529. */
  530. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  531. uint8_t *rx_tlv_hdr)
  532. {
  533. union dp_align_mac_addr mac_addr;
  534. struct dp_soc *soc = vdev->pdev->soc;
  535. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  536. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  537. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  538. rx_tlv_hdr))
  539. return QDF_STATUS_SUCCESS;
  540. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  541. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  542. rx_tlv_hdr))
  543. return QDF_STATUS_SUCCESS;
  544. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  545. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  546. rx_tlv_hdr) &&
  547. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  548. rx_tlv_hdr))
  549. return QDF_STATUS_SUCCESS;
  550. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  551. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  552. rx_tlv_hdr,
  553. &mac_addr.raw[0]))
  554. return QDF_STATUS_E_FAILURE;
  555. if (!qdf_mem_cmp(&mac_addr.raw[0],
  556. &vdev->mac_addr.raw[0],
  557. QDF_MAC_ADDR_SIZE))
  558. return QDF_STATUS_SUCCESS;
  559. }
  560. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  561. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  562. rx_tlv_hdr,
  563. &mac_addr.raw[0]))
  564. return QDF_STATUS_E_FAILURE;
  565. if (!qdf_mem_cmp(&mac_addr.raw[0],
  566. &vdev->mac_addr.raw[0],
  567. QDF_MAC_ADDR_SIZE))
  568. return QDF_STATUS_SUCCESS;
  569. }
  570. }
  571. return QDF_STATUS_E_FAILURE;
  572. }
  573. #else
  574. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  575. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  576. {
  577. }
  578. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  579. uint8_t *rx_tlv_hdr)
  580. {
  581. return QDF_STATUS_E_FAILURE;
  582. }
  583. #endif
  584. #ifdef FEATURE_NAC_RSSI
  585. /**
  586. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  587. * clients
  588. * @pdev: DP pdev handle
  589. * @rx_pkt_hdr: Rx packet Header
  590. *
  591. * return: dp_vdev*
  592. */
  593. static
  594. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  595. uint8_t *rx_pkt_hdr)
  596. {
  597. struct ieee80211_frame *wh;
  598. struct dp_neighbour_peer *peer = NULL;
  599. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  600. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  601. return NULL;
  602. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  603. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  604. neighbour_peer_list_elem) {
  605. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  606. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  607. QDF_TRACE(
  608. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  609. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  610. peer->neighbour_peers_macaddr.raw[0],
  611. peer->neighbour_peers_macaddr.raw[1],
  612. peer->neighbour_peers_macaddr.raw[2],
  613. peer->neighbour_peers_macaddr.raw[3],
  614. peer->neighbour_peers_macaddr.raw[4],
  615. peer->neighbour_peers_macaddr.raw[5]);
  616. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  617. return pdev->monitor_vdev;
  618. }
  619. }
  620. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  621. return NULL;
  622. }
  623. /**
  624. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  625. * @soc: DP SOC handle
  626. * @mpdu: mpdu for which peer is invalid
  627. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  628. * pool_id has same mapping)
  629. *
  630. * return: integer type
  631. */
  632. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  633. uint8_t mac_id)
  634. {
  635. struct dp_invalid_peer_msg msg;
  636. struct dp_vdev *vdev = NULL;
  637. struct dp_pdev *pdev = NULL;
  638. struct ieee80211_frame *wh;
  639. qdf_nbuf_t curr_nbuf, next_nbuf;
  640. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  641. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  642. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  643. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  644. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  645. "Drop decapped frames");
  646. goto free;
  647. }
  648. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  649. if (!DP_FRAME_IS_DATA(wh)) {
  650. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  651. "NAWDS valid only for data frames");
  652. goto free;
  653. }
  654. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  655. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  656. "Invalid nbuf length");
  657. goto free;
  658. }
  659. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  660. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  661. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  662. "PDEV %s", !pdev ? "not found" : "down");
  663. goto free;
  664. }
  665. if (pdev->filter_neighbour_peers) {
  666. /* Next Hop scenario not yet handle */
  667. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  668. if (vdev) {
  669. dp_rx_mon_deliver(soc, pdev->pdev_id,
  670. pdev->invalid_peer_head_msdu,
  671. pdev->invalid_peer_tail_msdu);
  672. pdev->invalid_peer_head_msdu = NULL;
  673. pdev->invalid_peer_tail_msdu = NULL;
  674. return 0;
  675. }
  676. }
  677. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  678. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  679. QDF_MAC_ADDR_SIZE) == 0) {
  680. goto out;
  681. }
  682. }
  683. if (!vdev) {
  684. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  685. "VDEV not found");
  686. goto free;
  687. }
  688. out:
  689. msg.wh = wh;
  690. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  691. msg.nbuf = mpdu;
  692. msg.vdev_id = vdev->vdev_id;
  693. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  694. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  695. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  696. pdev->pdev_id, &msg);
  697. free:
  698. /* Drop and free packet */
  699. curr_nbuf = mpdu;
  700. while (curr_nbuf) {
  701. next_nbuf = qdf_nbuf_next(curr_nbuf);
  702. qdf_nbuf_free(curr_nbuf);
  703. curr_nbuf = next_nbuf;
  704. }
  705. return 0;
  706. }
  707. /**
  708. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  709. * @soc: DP SOC handle
  710. * @mpdu: mpdu for which peer is invalid
  711. * @mpdu_done: if an mpdu is completed
  712. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  713. * pool_id has same mapping)
  714. *
  715. * return: integer type
  716. */
  717. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  718. qdf_nbuf_t mpdu, bool mpdu_done,
  719. uint8_t mac_id)
  720. {
  721. /* Only trigger the process when mpdu is completed */
  722. if (mpdu_done)
  723. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  724. }
  725. #else
  726. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  727. uint8_t mac_id)
  728. {
  729. qdf_nbuf_t curr_nbuf, next_nbuf;
  730. struct dp_pdev *pdev;
  731. struct dp_vdev *vdev = NULL;
  732. struct ieee80211_frame *wh;
  733. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  734. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  735. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  736. if (!DP_FRAME_IS_DATA(wh)) {
  737. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  738. "only for data frames");
  739. goto free;
  740. }
  741. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  742. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  743. "Invalid nbuf length");
  744. goto free;
  745. }
  746. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  747. if (!pdev) {
  748. QDF_TRACE(QDF_MODULE_ID_DP,
  749. QDF_TRACE_LEVEL_ERROR,
  750. "PDEV not found");
  751. goto free;
  752. }
  753. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  754. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  755. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  756. QDF_MAC_ADDR_SIZE) == 0) {
  757. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  758. goto out;
  759. }
  760. }
  761. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  762. if (!vdev) {
  763. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  764. "VDEV not found");
  765. goto free;
  766. }
  767. out:
  768. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  769. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  770. free:
  771. /* reset the head and tail pointers */
  772. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  773. if (pdev) {
  774. pdev->invalid_peer_head_msdu = NULL;
  775. pdev->invalid_peer_tail_msdu = NULL;
  776. }
  777. /* Drop and free packet */
  778. curr_nbuf = mpdu;
  779. while (curr_nbuf) {
  780. next_nbuf = qdf_nbuf_next(curr_nbuf);
  781. qdf_nbuf_free(curr_nbuf);
  782. curr_nbuf = next_nbuf;
  783. }
  784. /* Reset the head and tail pointers */
  785. pdev = dp_get_pdev_for_mac_id(soc, mac_id);
  786. if (pdev) {
  787. pdev->invalid_peer_head_msdu = NULL;
  788. pdev->invalid_peer_tail_msdu = NULL;
  789. }
  790. return 0;
  791. }
  792. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  793. qdf_nbuf_t mpdu, bool mpdu_done,
  794. uint8_t mac_id)
  795. {
  796. /* Process the nbuf */
  797. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  798. }
  799. #endif
  800. #ifdef RECEIVE_OFFLOAD
  801. /**
  802. * dp_rx_print_offload_info() - Print offload info from RX TLV
  803. * @soc: dp soc handle
  804. * @rx_tlv: RX TLV for which offload information is to be printed
  805. *
  806. * Return: None
  807. */
  808. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  809. {
  810. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  811. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  812. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  813. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  814. rx_tlv));
  815. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  816. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  817. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  818. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  819. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  820. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  821. dp_verbose_debug("---------------------------------------------------------");
  822. }
  823. /**
  824. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  825. * @soc: DP SOC handle
  826. * @rx_tlv: RX TLV received for the msdu
  827. * @msdu: msdu for which GRO info needs to be filled
  828. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  829. *
  830. * Return: None
  831. */
  832. static
  833. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  834. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  835. {
  836. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  837. return;
  838. /* Filling up RX offload info only for TCP packets */
  839. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  840. return;
  841. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  842. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  843. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  844. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  845. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  846. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  847. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  848. rx_tlv);
  849. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  850. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  851. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  852. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  853. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  854. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  855. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  856. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  857. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  858. HAL_RX_TLV_GET_IPV6(rx_tlv);
  859. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  860. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  861. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  862. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  863. dp_rx_print_offload_info(soc, rx_tlv);
  864. }
  865. #else
  866. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  867. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  868. {
  869. }
  870. #endif /* RECEIVE_OFFLOAD */
  871. /**
  872. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  873. *
  874. * @nbuf: pointer to msdu.
  875. * @mpdu_len: mpdu length
  876. *
  877. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  878. */
  879. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  880. {
  881. bool last_nbuf;
  882. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  883. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  884. last_nbuf = false;
  885. } else {
  886. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  887. last_nbuf = true;
  888. }
  889. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  890. return last_nbuf;
  891. }
  892. /**
  893. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  894. * multiple nbufs.
  895. * @nbuf: pointer to the first msdu of an amsdu.
  896. *
  897. * This function implements the creation of RX frag_list for cases
  898. * where an MSDU is spread across multiple nbufs.
  899. *
  900. * Return: returns the head nbuf which contains complete frag_list.
  901. */
  902. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf)
  903. {
  904. qdf_nbuf_t parent, frag_list, next = NULL;
  905. uint16_t frag_list_len = 0;
  906. uint16_t mpdu_len;
  907. bool last_nbuf;
  908. /*
  909. * Use msdu len got from REO entry descriptor instead since
  910. * there is case the RX PKT TLV is corrupted while msdu_len
  911. * from REO descriptor is right for non-raw RX scatter msdu.
  912. */
  913. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  914. /*
  915. * this is a case where the complete msdu fits in one single nbuf.
  916. * in this case HW sets both start and end bit and we only need to
  917. * reset these bits for RAW mode simulator to decap the pkt
  918. */
  919. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  920. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  921. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  922. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  923. return nbuf;
  924. }
  925. /*
  926. * This is a case where we have multiple msdus (A-MSDU) spread across
  927. * multiple nbufs. here we create a fraglist out of these nbufs.
  928. *
  929. * the moment we encounter a nbuf with continuation bit set we
  930. * know for sure we have an MSDU which is spread across multiple
  931. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  932. */
  933. parent = nbuf;
  934. frag_list = nbuf->next;
  935. nbuf = nbuf->next;
  936. /*
  937. * set the start bit in the first nbuf we encounter with continuation
  938. * bit set. This has the proper mpdu length set as it is the first
  939. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  940. * nbufs will form the frag_list of the parent nbuf.
  941. */
  942. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  943. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  944. /*
  945. * this is where we set the length of the fragments which are
  946. * associated to the parent nbuf. We iterate through the frag_list
  947. * till we hit the last_nbuf of the list.
  948. */
  949. do {
  950. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  951. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  952. frag_list_len += qdf_nbuf_len(nbuf);
  953. if (last_nbuf) {
  954. next = nbuf->next;
  955. nbuf->next = NULL;
  956. break;
  957. }
  958. nbuf = nbuf->next;
  959. } while (!last_nbuf);
  960. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  961. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  962. parent->next = next;
  963. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  964. return parent;
  965. }
  966. /**
  967. * dp_rx_compute_delay() - Compute and fill in all timestamps
  968. * to pass in correct fields
  969. *
  970. * @vdev: pdev handle
  971. * @tx_desc: tx descriptor
  972. * @tid: tid value
  973. * Return: none
  974. */
  975. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  976. {
  977. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  978. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  979. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  980. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  981. uint32_t interframe_delay =
  982. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  983. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  984. CDP_DELAY_STATS_REAP_STACK, ring_id);
  985. /*
  986. * Update interframe delay stats calculated at deliver_data_ol point.
  987. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  988. * interframe delay will not be calculate correctly for 1st frame.
  989. * On the other side, this will help in avoiding extra per packet check
  990. * of vdev->prev_rx_deliver_tstamp.
  991. */
  992. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  993. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  994. vdev->prev_rx_deliver_tstamp = current_ts;
  995. }
  996. /**
  997. * dp_rx_drop_nbuf_list() - drop an nbuf list
  998. * @pdev: dp pdev reference
  999. * @buf_list: buffer list to be dropepd
  1000. *
  1001. * Return: int (number of bufs dropped)
  1002. */
  1003. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1004. qdf_nbuf_t buf_list)
  1005. {
  1006. struct cdp_tid_rx_stats *stats = NULL;
  1007. uint8_t tid = 0, ring_id = 0;
  1008. int num_dropped = 0;
  1009. qdf_nbuf_t buf, next_buf;
  1010. buf = buf_list;
  1011. while (buf) {
  1012. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1013. next_buf = qdf_nbuf_queue_next(buf);
  1014. tid = qdf_nbuf_get_tid_val(buf);
  1015. if (qdf_likely(pdev)) {
  1016. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1017. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1018. stats->delivered_to_stack--;
  1019. }
  1020. qdf_nbuf_free(buf);
  1021. buf = next_buf;
  1022. num_dropped++;
  1023. }
  1024. return num_dropped;
  1025. }
  1026. #ifdef PEER_CACHE_RX_PKTS
  1027. /**
  1028. * dp_rx_flush_rx_cached() - flush cached rx frames
  1029. * @peer: peer
  1030. * @drop: flag to drop frames or forward to net stack
  1031. *
  1032. * Return: None
  1033. */
  1034. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1035. {
  1036. struct dp_peer_cached_bufq *bufqi;
  1037. struct dp_rx_cached_buf *cache_buf = NULL;
  1038. ol_txrx_rx_fp data_rx = NULL;
  1039. int num_buff_elem;
  1040. QDF_STATUS status;
  1041. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1042. qdf_atomic_dec(&peer->flush_in_progress);
  1043. return;
  1044. }
  1045. qdf_spin_lock_bh(&peer->peer_info_lock);
  1046. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1047. data_rx = peer->vdev->osif_rx;
  1048. else
  1049. drop = true;
  1050. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1051. bufqi = &peer->bufq_info;
  1052. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1053. qdf_list_remove_front(&bufqi->cached_bufq,
  1054. (qdf_list_node_t **)&cache_buf);
  1055. while (cache_buf) {
  1056. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1057. cache_buf->buf);
  1058. bufqi->entries -= num_buff_elem;
  1059. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1060. if (drop) {
  1061. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1062. cache_buf->buf);
  1063. } else {
  1064. /* Flush the cached frames to OSIF DEV */
  1065. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1066. if (status != QDF_STATUS_SUCCESS)
  1067. bufqi->dropped = dp_rx_drop_nbuf_list(
  1068. peer->vdev->pdev,
  1069. cache_buf->buf);
  1070. }
  1071. qdf_mem_free(cache_buf);
  1072. cache_buf = NULL;
  1073. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1074. qdf_list_remove_front(&bufqi->cached_bufq,
  1075. (qdf_list_node_t **)&cache_buf);
  1076. }
  1077. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1078. qdf_atomic_dec(&peer->flush_in_progress);
  1079. }
  1080. /**
  1081. * dp_rx_enqueue_rx() - cache rx frames
  1082. * @peer: peer
  1083. * @rx_buf_list: cache buffer list
  1084. *
  1085. * Return: None
  1086. */
  1087. static QDF_STATUS
  1088. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1089. {
  1090. struct dp_rx_cached_buf *cache_buf;
  1091. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1092. int num_buff_elem;
  1093. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d",
  1094. bufqi->entries, bufqi->dropped);
  1095. if (!peer->valid) {
  1096. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1097. rx_buf_list);
  1098. return QDF_STATUS_E_INVAL;
  1099. }
  1100. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1101. if (bufqi->entries >= bufqi->thresh) {
  1102. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1103. rx_buf_list);
  1104. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1105. return QDF_STATUS_E_RESOURCES;
  1106. }
  1107. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1108. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1109. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1110. if (!cache_buf) {
  1111. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1112. "Failed to allocate buf to cache rx frames");
  1113. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1114. rx_buf_list);
  1115. return QDF_STATUS_E_NOMEM;
  1116. }
  1117. cache_buf->buf = rx_buf_list;
  1118. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1119. qdf_list_insert_back(&bufqi->cached_bufq,
  1120. &cache_buf->node);
  1121. bufqi->entries += num_buff_elem;
  1122. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1123. return QDF_STATUS_SUCCESS;
  1124. }
  1125. static inline
  1126. bool dp_rx_is_peer_cache_bufq_supported(void)
  1127. {
  1128. return true;
  1129. }
  1130. #else
  1131. static inline
  1132. bool dp_rx_is_peer_cache_bufq_supported(void)
  1133. {
  1134. return false;
  1135. }
  1136. static inline QDF_STATUS
  1137. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1138. {
  1139. return QDF_STATUS_SUCCESS;
  1140. }
  1141. #endif
  1142. static inline void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1143. struct dp_vdev *vdev,
  1144. struct dp_peer *peer,
  1145. qdf_nbuf_t nbuf_head,
  1146. qdf_nbuf_t nbuf_tail)
  1147. {
  1148. int num_nbuf = 0;
  1149. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1150. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1151. /*
  1152. * This is a special case where vdev is invalid,
  1153. * so we cannot know the pdev to which this packet
  1154. * belonged. Hence we update the soc rx error stats.
  1155. */
  1156. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1157. return;
  1158. }
  1159. /*
  1160. * highly unlikely to have a vdev without a registered rx
  1161. * callback function. if so let us free the nbuf_list.
  1162. */
  1163. if (qdf_unlikely(!vdev->osif_rx)) {
  1164. if (dp_rx_is_peer_cache_bufq_supported())
  1165. dp_rx_enqueue_rx(peer, nbuf_head);
  1166. else
  1167. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1168. return;
  1169. }
  1170. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1171. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1172. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1173. &nbuf_tail, peer->mac_addr.raw);
  1174. }
  1175. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1176. }
  1177. /**
  1178. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1179. * @nbuf: pointer to the first msdu of an amsdu.
  1180. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1181. *
  1182. * The ipsumed field of the skb is set based on whether HW validated the
  1183. * IP/TCP/UDP checksum.
  1184. *
  1185. * Return: void
  1186. */
  1187. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1188. qdf_nbuf_t nbuf,
  1189. uint8_t *rx_tlv_hdr)
  1190. {
  1191. qdf_nbuf_rx_cksum_t cksum = {0};
  1192. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1193. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1194. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1195. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1196. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1197. } else {
  1198. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1199. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1200. }
  1201. }
  1202. /**
  1203. * dp_rx_msdu_stats_update() - update per msdu stats.
  1204. * @soc: core txrx main context
  1205. * @nbuf: pointer to the first msdu of an amsdu.
  1206. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1207. * @peer: pointer to the peer object.
  1208. * @ring_id: reo dest ring number on which pkt is reaped.
  1209. * @tid_stats: per tid rx stats.
  1210. *
  1211. * update all the per msdu stats for that nbuf.
  1212. * Return: void
  1213. */
  1214. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1215. qdf_nbuf_t nbuf,
  1216. uint8_t *rx_tlv_hdr,
  1217. struct dp_peer *peer,
  1218. uint8_t ring_id,
  1219. struct cdp_tid_rx_stats *tid_stats)
  1220. {
  1221. bool is_ampdu, is_not_amsdu;
  1222. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1223. struct dp_vdev *vdev = peer->vdev;
  1224. qdf_ether_header_t *eh;
  1225. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1226. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1227. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1228. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1229. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1230. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1231. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1232. tid_stats->msdu_cnt++;
  1233. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1234. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1235. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1236. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1237. tid_stats->mcast_msdu_cnt++;
  1238. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1239. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1240. tid_stats->bcast_msdu_cnt++;
  1241. }
  1242. }
  1243. /*
  1244. * currently we can return from here as we have similar stats
  1245. * updated at per ppdu level instead of msdu level
  1246. */
  1247. if (!soc->process_rx_status)
  1248. return;
  1249. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1250. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1251. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1252. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1253. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1254. tid = qdf_nbuf_get_tid_val(nbuf);
  1255. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1256. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1257. rx_tlv_hdr);
  1258. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1259. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1260. DP_STATS_INC(peer, rx.bw[bw], 1);
  1261. /*
  1262. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1263. * then increase index [nss - 1] in array counter.
  1264. */
  1265. if (nss > 0 && (pkt_type == DOT11_N ||
  1266. pkt_type == DOT11_AC ||
  1267. pkt_type == DOT11_AX))
  1268. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1269. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1270. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1271. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1272. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1273. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1274. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1275. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1276. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1277. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1278. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1279. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1280. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1281. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1282. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1283. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1284. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1285. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1286. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1287. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1288. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1289. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1290. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1291. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1292. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1293. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1294. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1295. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1296. if ((soc->process_rx_status) &&
  1297. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1298. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1299. if (!vdev->pdev)
  1300. return;
  1301. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1302. &peer->stats, peer->peer_ids[0],
  1303. UPDATE_PEER_STATS,
  1304. vdev->pdev->pdev_id);
  1305. #endif
  1306. }
  1307. }
  1308. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1309. uint8_t *rx_tlv_hdr,
  1310. qdf_nbuf_t nbuf)
  1311. {
  1312. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1313. (hal_rx_msdu_end_sa_idx_get(soc->hal_soc, rx_tlv_hdr) >
  1314. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1315. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1316. qdf_nbuf_is_da_valid(nbuf) &&
  1317. (hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr) >
  1318. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1319. return false;
  1320. return true;
  1321. }
  1322. #ifndef WDS_VENDOR_EXTENSION
  1323. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1324. struct dp_vdev *vdev,
  1325. struct dp_peer *peer)
  1326. {
  1327. return 1;
  1328. }
  1329. #endif
  1330. #ifdef RX_DESC_DEBUG_CHECK
  1331. /**
  1332. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1333. * corruption
  1334. *
  1335. * @ring_desc: REO ring descriptor
  1336. * @rx_desc: Rx descriptor
  1337. *
  1338. * Return: NONE
  1339. */
  1340. static inline
  1341. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1342. struct dp_rx_desc *rx_desc)
  1343. {
  1344. struct hal_buf_info hbi;
  1345. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1346. /* Sanity check for possible buffer paddr corruption */
  1347. qdf_assert_always((&hbi)->paddr ==
  1348. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1349. }
  1350. #else
  1351. static inline
  1352. void dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1353. struct dp_rx_desc *rx_desc)
  1354. {
  1355. }
  1356. #endif
  1357. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1358. static inline
  1359. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1360. {
  1361. bool limit_hit = false;
  1362. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1363. limit_hit =
  1364. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1365. if (limit_hit)
  1366. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1367. return limit_hit;
  1368. }
  1369. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1370. {
  1371. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1372. }
  1373. #else
  1374. static inline
  1375. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1376. {
  1377. return false;
  1378. }
  1379. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1380. {
  1381. return false;
  1382. }
  1383. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1384. /**
  1385. * dp_is_special_data() - check is the pkt special like eapol, dhcp, etc
  1386. *
  1387. * @nbuf: pkt skb pointer
  1388. *
  1389. * Return: true if matched, false if not
  1390. */
  1391. static inline
  1392. bool dp_is_special_data(qdf_nbuf_t nbuf)
  1393. {
  1394. if (qdf_nbuf_is_ipv4_arp_pkt(nbuf) ||
  1395. qdf_nbuf_is_ipv4_dhcp_pkt(nbuf) ||
  1396. qdf_nbuf_is_ipv4_eapol_pkt(nbuf) ||
  1397. qdf_nbuf_is_ipv6_dhcp_pkt(nbuf))
  1398. return true;
  1399. else
  1400. return false;
  1401. }
  1402. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1403. /**
  1404. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1405. * no corresbonding peer found
  1406. * @soc: core txrx main context
  1407. * @nbuf: pkt skb pointer
  1408. *
  1409. * This function will try to deliver some RX special frames to stack
  1410. * even there is no peer matched found. for instance, LFR case, some
  1411. * eapol data will be sent to host before peer_map done.
  1412. *
  1413. * Return: None
  1414. */
  1415. static inline
  1416. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1417. {
  1418. uint16_t peer_id;
  1419. uint8_t vdev_id;
  1420. struct dp_vdev *vdev;
  1421. uint32_t l2_hdr_offset = 0;
  1422. uint16_t msdu_len = 0;
  1423. uint32_t pkt_len = 0;
  1424. uint8_t *rx_tlv_hdr;
  1425. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1426. if (peer_id > soc->max_peers)
  1427. goto deliver_fail;
  1428. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1429. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
  1430. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1431. goto deliver_fail;
  1432. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1433. l2_hdr_offset =
  1434. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1435. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1436. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1437. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1438. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1439. } else {
  1440. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1441. qdf_nbuf_pull_head(nbuf,
  1442. RX_PKT_TLVS_LEN +
  1443. l2_hdr_offset);
  1444. }
  1445. /* only allow special frames */
  1446. if (!dp_is_special_data(nbuf))
  1447. goto deliver_fail;
  1448. vdev->osif_rx(vdev->osif_vdev, nbuf);
  1449. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1450. return;
  1451. deliver_fail:
  1452. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1453. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1454. qdf_nbuf_free(nbuf);
  1455. }
  1456. #else
  1457. static inline
  1458. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1459. {
  1460. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1461. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1462. qdf_nbuf_free(nbuf);
  1463. }
  1464. #endif
  1465. /**
  1466. * dp_rx_srng_get_num_pending() - get number of pending entries
  1467. * @hal_soc: hal soc opaque pointer
  1468. * @hal_ring: opaque pointer to the HAL Rx Ring
  1469. * @num_entries: number of entries in the hal_ring.
  1470. * @near_full: pointer to a boolean. This is set if ring is near full.
  1471. *
  1472. * The function returns the number of entries in a destination ring which are
  1473. * yet to be reaped. The function also checks if the ring is near full.
  1474. * If more than half of the ring needs to be reaped, the ring is considered
  1475. * approaching full.
  1476. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1477. * entries. It should not be called within a SRNG lock. HW pointer value is
  1478. * synced into cached_hp.
  1479. *
  1480. * Return: Number of pending entries if any
  1481. */
  1482. static
  1483. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1484. hal_ring_handle_t hal_ring_hdl,
  1485. uint32_t num_entries,
  1486. bool *near_full)
  1487. {
  1488. uint32_t num_pending = 0;
  1489. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1490. hal_ring_hdl,
  1491. true);
  1492. if (num_entries && (num_pending >= num_entries >> 1))
  1493. *near_full = true;
  1494. else
  1495. *near_full = false;
  1496. return num_pending;
  1497. }
  1498. /**
  1499. * dp_rx_process() - Brain of the Rx processing functionality
  1500. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1501. * @int_ctx: per interrupt context
  1502. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1503. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1504. * @quota: No. of units (packets) that can be serviced in one shot.
  1505. *
  1506. * This function implements the core of Rx functionality. This is
  1507. * expected to handle only non-error frames.
  1508. *
  1509. * Return: uint32_t: No. of elements processed
  1510. */
  1511. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1512. uint8_t reo_ring_num, uint32_t quota)
  1513. {
  1514. hal_ring_desc_t ring_desc;
  1515. hal_soc_handle_t hal_soc;
  1516. struct dp_rx_desc *rx_desc = NULL;
  1517. qdf_nbuf_t nbuf, next;
  1518. bool near_full;
  1519. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1520. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  1521. uint32_t num_pending;
  1522. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1523. uint32_t l2_hdr_offset = 0;
  1524. uint16_t msdu_len = 0;
  1525. uint16_t peer_id;
  1526. uint8_t vdev_id;
  1527. struct dp_peer *peer;
  1528. struct dp_vdev *vdev;
  1529. uint32_t pkt_len = 0;
  1530. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  1531. struct hal_rx_msdu_desc_info msdu_desc_info;
  1532. enum hal_reo_error_status error;
  1533. uint32_t peer_mdata;
  1534. uint8_t *rx_tlv_hdr;
  1535. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  1536. uint8_t mac_id = 0;
  1537. struct dp_pdev *rx_pdev;
  1538. struct dp_srng *dp_rxdma_srng;
  1539. struct rx_desc_pool *rx_desc_pool;
  1540. struct dp_soc *soc = int_ctx->soc;
  1541. uint8_t ring_id = 0;
  1542. uint8_t core_id = 0;
  1543. struct cdp_tid_rx_stats *tid_stats;
  1544. qdf_nbuf_t nbuf_head;
  1545. qdf_nbuf_t nbuf_tail;
  1546. qdf_nbuf_t deliver_list_head;
  1547. qdf_nbuf_t deliver_list_tail;
  1548. uint32_t num_rx_bufs_reaped = 0;
  1549. uint32_t intr_id;
  1550. struct hif_opaque_softc *scn;
  1551. int32_t tid = 0;
  1552. bool is_prev_msdu_last = true;
  1553. uint32_t num_entries_avail = 0;
  1554. uint32_t rx_ol_pkt_cnt = 0;
  1555. uint32_t num_entries = 0;
  1556. DP_HIST_INIT();
  1557. qdf_assert_always(soc && hal_ring_hdl);
  1558. hal_soc = soc->hal_soc;
  1559. qdf_assert_always(hal_soc);
  1560. scn = soc->hif_handle;
  1561. hif_pm_runtime_mark_dp_rx_busy(scn);
  1562. intr_id = int_ctx->dp_intr_id;
  1563. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  1564. more_data:
  1565. /* reset local variables here to be re-used in the function */
  1566. nbuf_head = NULL;
  1567. nbuf_tail = NULL;
  1568. deliver_list_head = NULL;
  1569. deliver_list_tail = NULL;
  1570. peer = NULL;
  1571. vdev = NULL;
  1572. num_rx_bufs_reaped = 0;
  1573. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  1574. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  1575. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  1576. qdf_mem_zero(head, sizeof(head));
  1577. qdf_mem_zero(tail, sizeof(tail));
  1578. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  1579. /*
  1580. * Need API to convert from hal_ring pointer to
  1581. * Ring Type / Ring Id combo
  1582. */
  1583. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1584. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1585. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  1586. goto done;
  1587. }
  1588. /*
  1589. * start reaping the buffers from reo ring and queue
  1590. * them in per vdev queue.
  1591. * Process the received pkts in a different per vdev loop.
  1592. */
  1593. while (qdf_likely(quota &&
  1594. (ring_desc = hal_srng_dst_peek(hal_soc,
  1595. hal_ring_hdl)))) {
  1596. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1597. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  1598. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1599. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1600. FL("HAL RING 0x%pK:error %d"), hal_ring_hdl, error);
  1601. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1602. /* Don't know how to deal with this -- assert */
  1603. qdf_assert(0);
  1604. }
  1605. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1606. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1607. qdf_assert(rx_desc);
  1608. /*
  1609. * this is a unlikely scenario where the host is reaping
  1610. * a descriptor which it already reaped just a while ago
  1611. * but is yet to replenish it back to HW.
  1612. * In this case host will dump the last 128 descriptors
  1613. * including the software descriptor rx_desc and assert.
  1614. */
  1615. if (qdf_unlikely(!rx_desc->in_use)) {
  1616. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1617. dp_info_rl("Reaping rx_desc not in use!");
  1618. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1619. ring_desc, rx_desc);
  1620. /* ignore duplicate RX desc and continue to process */
  1621. /* Pop out the descriptor */
  1622. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1623. continue;
  1624. }
  1625. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1626. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1627. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1628. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  1629. ring_desc, rx_desc);
  1630. }
  1631. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1632. /* TODO */
  1633. /*
  1634. * Need a separate API for unmapping based on
  1635. * phyiscal address
  1636. */
  1637. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1638. QDF_DMA_FROM_DEVICE);
  1639. rx_desc->unmapped = 1;
  1640. core_id = smp_processor_id();
  1641. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1642. /* Get MPDU DESC info */
  1643. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1644. /* Get MSDU DESC info */
  1645. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1646. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  1647. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  1648. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  1649. HAL_MSDU_F_MSDU_CONTINUATION)) {
  1650. /* previous msdu has end bit set, so current one is
  1651. * the new MPDU
  1652. */
  1653. if (is_prev_msdu_last) {
  1654. /* Get number of entries available in HW ring */
  1655. num_entries_avail =
  1656. hal_srng_dst_num_valid(hal_soc,
  1657. hal_ring_hdl, 1);
  1658. /* For new MPDU check if we can read complete
  1659. * MPDU by comparing the number of buffers
  1660. * available and number of buffers needed to
  1661. * reap this MPDU
  1662. */
  1663. if (((msdu_desc_info.msdu_len /
  1664. (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN) + 1)) >
  1665. num_entries_avail) {
  1666. DP_STATS_INC(
  1667. soc,
  1668. rx.msdu_scatter_wait_break,
  1669. 1);
  1670. break;
  1671. }
  1672. is_prev_msdu_last = false;
  1673. }
  1674. }
  1675. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  1676. HAL_MPDU_F_RAW_AMPDU))
  1677. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  1678. if (!is_prev_msdu_last &&
  1679. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1680. is_prev_msdu_last = true;
  1681. /* Pop out the descriptor*/
  1682. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  1683. rx_bufs_reaped[rx_desc->pool_id]++;
  1684. peer_mdata = mpdu_desc_info.peer_meta_data;
  1685. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  1686. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1687. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  1688. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  1689. /*
  1690. * save msdu flags first, last and continuation msdu in
  1691. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  1692. * length to nbuf->cb. This ensures the info required for
  1693. * per pkt processing is always in the same cache line.
  1694. * This helps in improving throughput for smaller pkt
  1695. * sizes.
  1696. */
  1697. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1698. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1699. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1700. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1701. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1702. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1703. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  1704. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  1705. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  1706. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  1707. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  1708. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  1709. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  1710. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  1711. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  1712. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1713. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1714. /*
  1715. * if continuation bit is set then we have MSDU spread
  1716. * across multiple buffers, let us not decrement quota
  1717. * till we reap all buffers of that MSDU.
  1718. */
  1719. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1720. quota -= 1;
  1721. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1722. &tail[rx_desc->pool_id],
  1723. rx_desc);
  1724. num_rx_bufs_reaped++;
  1725. if (dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  1726. break;
  1727. }
  1728. done:
  1729. dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
  1730. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1731. /*
  1732. * continue with next mac_id if no pkts were reaped
  1733. * from that pool
  1734. */
  1735. if (!rx_bufs_reaped[mac_id])
  1736. continue;
  1737. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  1738. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1739. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1740. rx_desc_pool, rx_bufs_reaped[mac_id],
  1741. &head[mac_id], &tail[mac_id]);
  1742. }
  1743. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  1744. /* Peer can be NULL is case of LFR */
  1745. if (qdf_likely(peer))
  1746. vdev = NULL;
  1747. /*
  1748. * BIG loop where each nbuf is dequeued from global queue,
  1749. * processed and queued back on a per vdev basis. These nbufs
  1750. * are sent to stack as and when we run out of nbufs
  1751. * or a new nbuf dequeued from global queue has a different
  1752. * vdev when compared to previous nbuf.
  1753. */
  1754. nbuf = nbuf_head;
  1755. while (nbuf) {
  1756. next = nbuf->next;
  1757. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1758. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1759. if (deliver_list_head && vdev && (vdev->vdev_id != vdev_id)) {
  1760. dp_rx_deliver_to_stack(soc, vdev, peer,
  1761. deliver_list_head,
  1762. deliver_list_tail);
  1763. deliver_list_head = NULL;
  1764. deliver_list_tail = NULL;
  1765. }
  1766. /* Get TID from struct cb->tid_val, save to tid */
  1767. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1768. tid = qdf_nbuf_get_tid_val(nbuf);
  1769. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1770. peer = dp_peer_find_by_id(soc, peer_id);
  1771. if (peer) {
  1772. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1773. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1774. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1775. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1776. QDF_NBUF_RX_PKT_DATA_TRACK;
  1777. }
  1778. rx_bufs_used++;
  1779. if (qdf_likely(peer)) {
  1780. vdev = peer->vdev;
  1781. } else {
  1782. nbuf->next = NULL;
  1783. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  1784. nbuf = next;
  1785. continue;
  1786. }
  1787. if (qdf_unlikely(!vdev)) {
  1788. qdf_nbuf_free(nbuf);
  1789. nbuf = next;
  1790. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1791. dp_peer_unref_del_find_by_id(peer);
  1792. continue;
  1793. }
  1794. rx_pdev = vdev->pdev;
  1795. DP_RX_TID_SAVE(nbuf, tid);
  1796. if (qdf_unlikely(rx_pdev->delay_stats_flag))
  1797. qdf_nbuf_set_timestamp(nbuf);
  1798. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1799. tid_stats =
  1800. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1801. /*
  1802. * Check if DMA completed -- msdu_done is the last bit
  1803. * to be written
  1804. */
  1805. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  1806. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1807. dp_err("MSDU DONE failure");
  1808. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1809. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1810. QDF_TRACE_LEVEL_INFO);
  1811. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1812. qdf_nbuf_free(nbuf);
  1813. qdf_assert(0);
  1814. nbuf = next;
  1815. continue;
  1816. }
  1817. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1818. /*
  1819. * First IF condition:
  1820. * 802.11 Fragmented pkts are reinjected to REO
  1821. * HW block as SG pkts and for these pkts we only
  1822. * need to pull the RX TLVS header length.
  1823. * Second IF condition:
  1824. * The below condition happens when an MSDU is spread
  1825. * across multiple buffers. This can happen in two cases
  1826. * 1. The nbuf size is smaller then the received msdu.
  1827. * ex: we have set the nbuf size to 2048 during
  1828. * nbuf_alloc. but we received an msdu which is
  1829. * 2304 bytes in size then this msdu is spread
  1830. * across 2 nbufs.
  1831. *
  1832. * 2. AMSDUs when RAW mode is enabled.
  1833. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1834. * across 1st nbuf and 2nd nbuf and last MSDU is
  1835. * spread across 2nd nbuf and 3rd nbuf.
  1836. *
  1837. * for these scenarios let us create a skb frag_list and
  1838. * append these buffers till the last MSDU of the AMSDU
  1839. * Third condition:
  1840. * This is the most likely case, we receive 802.3 pkts
  1841. * decapsulated by HW, here we need to set the pkt length.
  1842. */
  1843. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1844. bool is_mcbc, is_sa_vld, is_da_vld;
  1845. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  1846. rx_tlv_hdr);
  1847. is_sa_vld =
  1848. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  1849. rx_tlv_hdr);
  1850. is_da_vld =
  1851. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  1852. rx_tlv_hdr);
  1853. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  1854. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  1855. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  1856. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1857. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1858. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1859. nbuf = dp_rx_sg_create(nbuf);
  1860. next = nbuf->next;
  1861. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1862. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1863. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  1864. } else {
  1865. qdf_nbuf_free(nbuf);
  1866. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  1867. dp_info_rl("scatter msdu len %d, dropped",
  1868. msdu_len);
  1869. nbuf = next;
  1870. dp_peer_unref_del_find_by_id(peer);
  1871. continue;
  1872. }
  1873. } else {
  1874. l2_hdr_offset =
  1875. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc,
  1876. rx_tlv_hdr);
  1877. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1878. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1879. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1880. qdf_nbuf_pull_head(nbuf,
  1881. RX_PKT_TLVS_LEN +
  1882. l2_hdr_offset);
  1883. }
  1884. /*
  1885. * process frame for mulitpass phrase processing
  1886. */
  1887. if (qdf_unlikely(vdev->multipass_en)) {
  1888. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  1889. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  1890. qdf_nbuf_free(nbuf);
  1891. nbuf = next;
  1892. dp_peer_unref_del_find_by_id(peer);
  1893. continue;
  1894. }
  1895. }
  1896. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  1897. QDF_TRACE(QDF_MODULE_ID_DP,
  1898. QDF_TRACE_LEVEL_ERROR,
  1899. FL("Policy Check Drop pkt"));
  1900. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1901. /* Drop & free packet */
  1902. qdf_nbuf_free(nbuf);
  1903. /* Statistics */
  1904. nbuf = next;
  1905. dp_peer_unref_del_find_by_id(peer);
  1906. continue;
  1907. }
  1908. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  1909. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  1910. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  1911. rx_tlv_hdr) ==
  1912. false))) {
  1913. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1914. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1915. qdf_nbuf_free(nbuf);
  1916. nbuf = next;
  1917. dp_peer_unref_del_find_by_id(peer);
  1918. continue;
  1919. }
  1920. if (soc->process_rx_status)
  1921. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1922. /* Update the protocol tag in SKB based on CCE metadata */
  1923. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  1924. reo_ring_num, false, true);
  1925. /* Update the flow tag in SKB based on FSE metadata */
  1926. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  1927. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  1928. ring_id, tid_stats);
  1929. if (qdf_unlikely(vdev->mesh_vdev)) {
  1930. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1931. == QDF_STATUS_SUCCESS) {
  1932. QDF_TRACE(QDF_MODULE_ID_DP,
  1933. QDF_TRACE_LEVEL_INFO_MED,
  1934. FL("mesh pkt filtered"));
  1935. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1936. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1937. 1);
  1938. qdf_nbuf_free(nbuf);
  1939. nbuf = next;
  1940. dp_peer_unref_del_find_by_id(peer);
  1941. continue;
  1942. }
  1943. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1944. }
  1945. if (qdf_likely(vdev->rx_decap_type ==
  1946. htt_cmn_pkt_type_ethernet) &&
  1947. qdf_likely(!vdev->mesh_vdev)) {
  1948. /* WDS Destination Address Learning */
  1949. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1950. /* Due to HW issue, sometimes we see that the sa_idx
  1951. * and da_idx are invalid with sa_valid and da_valid
  1952. * bits set
  1953. *
  1954. * in this case we also see that value of
  1955. * sa_sw_peer_id is set as 0
  1956. *
  1957. * Drop the packet if sa_idx and da_idx OOB or
  1958. * sa_sw_peerid is 0
  1959. */
  1960. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf)) {
  1961. qdf_nbuf_free(nbuf);
  1962. nbuf = next;
  1963. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1964. dp_peer_unref_del_find_by_id(peer);
  1965. continue;
  1966. }
  1967. /* WDS Source Port Learning */
  1968. if (qdf_likely(vdev->wds_enabled))
  1969. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1970. peer, nbuf);
  1971. /* Intrabss-fwd */
  1972. if (dp_rx_check_ap_bridge(vdev))
  1973. if (dp_rx_intrabss_fwd(soc,
  1974. peer,
  1975. rx_tlv_hdr,
  1976. nbuf)) {
  1977. nbuf = next;
  1978. dp_peer_unref_del_find_by_id(peer);
  1979. tid_stats->intrabss_cnt++;
  1980. continue; /* Get next desc */
  1981. }
  1982. }
  1983. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  1984. DP_RX_LIST_APPEND(deliver_list_head,
  1985. deliver_list_tail,
  1986. nbuf);
  1987. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1988. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1989. tid_stats->delivered_to_stack++;
  1990. nbuf = next;
  1991. dp_peer_unref_del_find_by_id(peer);
  1992. }
  1993. if (qdf_likely(deliver_list_head)) {
  1994. if (qdf_likely(peer))
  1995. dp_rx_deliver_to_stack(soc, vdev, peer,
  1996. deliver_list_head,
  1997. deliver_list_tail);
  1998. else {
  1999. nbuf = deliver_list_head;
  2000. while (nbuf) {
  2001. next = nbuf->next;
  2002. nbuf->next = NULL;
  2003. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2004. nbuf = next;
  2005. }
  2006. }
  2007. }
  2008. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2009. if (quota) {
  2010. num_pending =
  2011. dp_rx_srng_get_num_pending(hal_soc,
  2012. hal_ring_hdl,
  2013. num_entries,
  2014. &near_full);
  2015. if (num_pending) {
  2016. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2017. if (!hif_exec_should_yield(scn, intr_id))
  2018. goto more_data;
  2019. if (qdf_unlikely(near_full)) {
  2020. DP_STATS_INC(soc, rx.near_full, 1);
  2021. goto more_data;
  2022. }
  2023. }
  2024. }
  2025. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2026. vdev->osif_gro_flush(vdev->osif_vdev,
  2027. reo_ring_num);
  2028. }
  2029. }
  2030. /* Update histogram statistics by looping through pdev's */
  2031. DP_RX_HIST_STATS_PER_PDEV();
  2032. return rx_bufs_used; /* Assume no scale factor for now */
  2033. }
  2034. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2035. {
  2036. QDF_STATUS ret;
  2037. if (vdev->osif_rx_flush) {
  2038. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2039. if (!ret) {
  2040. dp_err("Failed to flush rx pkts for vdev %d\n",
  2041. vdev->vdev_id);
  2042. return ret;
  2043. }
  2044. }
  2045. return QDF_STATUS_SUCCESS;
  2046. }
  2047. /**
  2048. * dp_rx_pdev_detach() - detach dp rx
  2049. * @pdev: core txrx pdev context
  2050. *
  2051. * This function will detach DP RX into main device context
  2052. * will free DP Rx resources.
  2053. *
  2054. * Return: void
  2055. */
  2056. void
  2057. dp_rx_pdev_detach(struct dp_pdev *pdev)
  2058. {
  2059. uint8_t mac_for_pdev = pdev->lmac_id;
  2060. struct dp_soc *soc = pdev->soc;
  2061. struct rx_desc_pool *rx_desc_pool;
  2062. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2063. if (rx_desc_pool->pool_size != 0) {
  2064. if (!dp_is_soc_reinit(soc))
  2065. dp_rx_desc_nbuf_and_pool_free(soc, mac_for_pdev,
  2066. rx_desc_pool);
  2067. else
  2068. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2069. }
  2070. return;
  2071. }
  2072. static QDF_STATUS
  2073. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc, qdf_nbuf_t *nbuf,
  2074. struct dp_pdev *dp_pdev)
  2075. {
  2076. qdf_dma_addr_t paddr;
  2077. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2078. *nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
  2079. RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT,
  2080. FALSE);
  2081. if (!(*nbuf)) {
  2082. dp_err("nbuf alloc failed");
  2083. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2084. return ret;
  2085. }
  2086. ret = qdf_nbuf_map_single(dp_soc->osdev, *nbuf,
  2087. QDF_DMA_FROM_DEVICE);
  2088. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2089. qdf_nbuf_free(*nbuf);
  2090. dp_err("nbuf map failed");
  2091. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2092. return ret;
  2093. }
  2094. paddr = qdf_nbuf_get_frag_paddr(*nbuf, 0);
  2095. ret = check_x86_paddr(dp_soc, nbuf, &paddr, dp_pdev);
  2096. if (ret == QDF_STATUS_E_FAILURE) {
  2097. qdf_nbuf_unmap_single(dp_soc->osdev, *nbuf,
  2098. QDF_DMA_FROM_DEVICE);
  2099. qdf_nbuf_free(*nbuf);
  2100. dp_err("nbuf check x86 failed");
  2101. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2102. return ret;
  2103. }
  2104. return QDF_STATUS_SUCCESS;
  2105. }
  2106. QDF_STATUS
  2107. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2108. struct dp_srng *dp_rxdma_srng,
  2109. struct rx_desc_pool *rx_desc_pool,
  2110. uint32_t num_req_buffers)
  2111. {
  2112. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2113. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2114. union dp_rx_desc_list_elem_t *next;
  2115. void *rxdma_ring_entry;
  2116. qdf_dma_addr_t paddr;
  2117. qdf_nbuf_t *rx_nbuf_arr;
  2118. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2119. uint32_t buffer_index, nbuf_ptrs_per_page;
  2120. qdf_nbuf_t nbuf;
  2121. QDF_STATUS ret;
  2122. int page_idx, total_pages;
  2123. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2124. union dp_rx_desc_list_elem_t *tail = NULL;
  2125. if (qdf_unlikely(!rxdma_srng)) {
  2126. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2127. return QDF_STATUS_E_FAILURE;
  2128. }
  2129. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2130. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2131. num_req_buffers, &desc_list, &tail);
  2132. if (!nr_descs) {
  2133. dp_err("no free rx_descs in freelist");
  2134. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2135. return QDF_STATUS_E_NOMEM;
  2136. }
  2137. dp_debug("got %u RX descs for driver attach", nr_descs);
  2138. /*
  2139. * Try to allocate pointers to the nbuf one page at a time.
  2140. * Take pointers that can fit in one page of memory and
  2141. * iterate through the total descriptors that need to be
  2142. * allocated in order of pages. Reuse the pointers that
  2143. * have been allocated to fit in one page across each
  2144. * iteration to index into the nbuf.
  2145. */
  2146. total_pages = (nr_descs * sizeof(*rx_nbuf_arr)) / PAGE_SIZE;
  2147. /*
  2148. * Add an extra page to store the remainder if any
  2149. */
  2150. if ((nr_descs * sizeof(*rx_nbuf_arr)) % PAGE_SIZE)
  2151. total_pages++;
  2152. rx_nbuf_arr = qdf_mem_malloc(PAGE_SIZE);
  2153. if (!rx_nbuf_arr) {
  2154. dp_err("failed to allocate nbuf array");
  2155. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2156. QDF_BUG(0);
  2157. return QDF_STATUS_E_NOMEM;
  2158. }
  2159. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*rx_nbuf_arr);
  2160. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2161. qdf_mem_zero(rx_nbuf_arr, PAGE_SIZE);
  2162. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2163. /*
  2164. * The last page of buffer pointers may not be required
  2165. * completely based on the number of descriptors. Below
  2166. * check will ensure we are allocating only the
  2167. * required number of descriptors.
  2168. */
  2169. if (nr_nbuf_total >= nr_descs)
  2170. break;
  2171. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2172. &rx_nbuf_arr[nr_nbuf],
  2173. dp_pdev);
  2174. if (QDF_IS_STATUS_ERROR(ret))
  2175. break;
  2176. nr_nbuf_total++;
  2177. }
  2178. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2179. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2180. rxdma_ring_entry =
  2181. hal_srng_src_get_next(dp_soc->hal_soc,
  2182. rxdma_srng);
  2183. qdf_assert_always(rxdma_ring_entry);
  2184. next = desc_list->next;
  2185. nbuf = rx_nbuf_arr[buffer_index];
  2186. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  2187. dp_rx_desc_prep(&desc_list->rx_desc, nbuf);
  2188. desc_list->rx_desc.in_use = 1;
  2189. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2190. desc_list->rx_desc.cookie,
  2191. rx_desc_pool->owner);
  2192. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  2193. desc_list = next;
  2194. }
  2195. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2196. }
  2197. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2198. qdf_mem_free(rx_nbuf_arr);
  2199. if (!nr_nbuf_total) {
  2200. dp_err("No nbuf's allocated");
  2201. QDF_BUG(0);
  2202. return QDF_STATUS_E_RESOURCES;
  2203. }
  2204. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf,
  2205. RX_BUFFER_SIZE * nr_nbuf_total);
  2206. return QDF_STATUS_SUCCESS;
  2207. }
  2208. /**
  2209. * dp_rx_attach() - attach DP RX
  2210. * @pdev: core txrx pdev context
  2211. *
  2212. * This function will attach a DP RX instance into the main
  2213. * device (SOC) context. Will allocate dp rx resource and
  2214. * initialize resources.
  2215. *
  2216. * Return: QDF_STATUS_SUCCESS: success
  2217. * QDF_STATUS_E_RESOURCES: Error return
  2218. */
  2219. QDF_STATUS
  2220. dp_rx_pdev_attach(struct dp_pdev *pdev)
  2221. {
  2222. uint8_t pdev_id = pdev->pdev_id;
  2223. struct dp_soc *soc = pdev->soc;
  2224. uint32_t rxdma_entries;
  2225. uint32_t rx_sw_desc_weight;
  2226. struct dp_srng *dp_rxdma_srng;
  2227. struct rx_desc_pool *rx_desc_pool;
  2228. QDF_STATUS ret_val;
  2229. int mac_for_pdev;
  2230. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2231. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2232. "nss-wifi<4> skip Rx refil %d", pdev_id);
  2233. return QDF_STATUS_SUCCESS;
  2234. }
  2235. pdev = soc->pdev_list[pdev_id];
  2236. mac_for_pdev = pdev->lmac_id;
  2237. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2238. rxdma_entries = dp_rxdma_srng->num_entries;
  2239. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2240. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2241. rx_sw_desc_weight = wlan_cfg_get_dp_soc_rx_sw_desc_weight(soc->wlan_cfg_ctx);
  2242. dp_rx_desc_pool_alloc(soc, mac_for_pdev,
  2243. rx_sw_desc_weight * rxdma_entries,
  2244. rx_desc_pool);
  2245. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2246. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  2247. ret_val = dp_rx_fst_attach(soc, pdev);
  2248. if ((ret_val != QDF_STATUS_SUCCESS) &&
  2249. (ret_val != QDF_STATUS_E_NOSUPPORT)) {
  2250. QDF_TRACE(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_ERROR,
  2251. "RX Flow Search Table attach failed: pdev %d err %d",
  2252. pdev_id, ret_val);
  2253. return ret_val;
  2254. }
  2255. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2256. rx_desc_pool, rxdma_entries - 1);
  2257. }
  2258. /*
  2259. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2260. * @soc: core txrx main context
  2261. * @pdev: core txrx pdev context
  2262. *
  2263. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2264. * until retry times reaches max threshold or succeeded.
  2265. *
  2266. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2267. */
  2268. qdf_nbuf_t
  2269. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2270. {
  2271. uint8_t *buf;
  2272. int32_t nbuf_retry_count;
  2273. QDF_STATUS ret;
  2274. qdf_nbuf_t nbuf = NULL;
  2275. for (nbuf_retry_count = 0; nbuf_retry_count <
  2276. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2277. nbuf_retry_count++) {
  2278. /* Allocate a new skb */
  2279. nbuf = qdf_nbuf_alloc(soc->osdev,
  2280. RX_BUFFER_SIZE,
  2281. RX_BUFFER_RESERVATION,
  2282. RX_BUFFER_ALIGNMENT,
  2283. FALSE);
  2284. if (!nbuf) {
  2285. DP_STATS_INC(pdev,
  2286. replenish.nbuf_alloc_fail, 1);
  2287. continue;
  2288. }
  2289. buf = qdf_nbuf_data(nbuf);
  2290. memset(buf, 0, RX_BUFFER_SIZE);
  2291. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  2292. QDF_DMA_FROM_DEVICE);
  2293. /* nbuf map failed */
  2294. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2295. qdf_nbuf_free(nbuf);
  2296. DP_STATS_INC(pdev, replenish.map_err, 1);
  2297. continue;
  2298. }
  2299. /* qdf_nbuf alloc and map succeeded */
  2300. break;
  2301. }
  2302. /* qdf_nbuf still alloc or map failed */
  2303. if (qdf_unlikely(nbuf_retry_count >=
  2304. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2305. return NULL;
  2306. return nbuf;
  2307. }