hal_srng.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. /*
  2. * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions are
  6. * met:
  7. * * Redistributions of source code must retain the above copyright
  8. * notice, this list of conditions and the following disclaimer.
  9. * * Redistributions in binary form must reproduce the above
  10. * copyright notice, this list of conditions and the following
  11. * disclaimer in the documentation and/or other materials provided
  12. * with the distribution.
  13. * * Neither the name of The Linux Foundation nor the names of its
  14. * contributors may be used to endorse or promote products derived
  15. * from this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
  18. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  19. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
  21. * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  24. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  25. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  26. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  27. * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include "hal_api.h"
  30. #include "wcss_version.h"
  31. /**
  32. * Common SRNG register access macros:
  33. * The SRNG registers are distributed accross various UMAC and LMAC HW blocks,
  34. * but the register group and format is exactly same for all rings, with some
  35. * difference between producer rings (these are 'producer rings' with respect
  36. * to HW and refered as 'destination rings' in SW) and consumer rings (these
  37. * are 'consumer rings' with respect to HW and refered as 'source rings' in SW).
  38. * The following macros provide uniform access to all SRNG rings.
  39. */
  40. /* SRNG registers are split among two groups R0 and R2 and following
  41. * definitions identify the group to which each register belongs to
  42. */
  43. #define R0_INDEX 0
  44. #define R2_INDEX 1
  45. #define HWREG_INDEX(_reg_group) _reg_group ## _ ## INDEX
  46. /* Registers in R0 group */
  47. #define BASE_LSB_GROUP R0
  48. #define BASE_MSB_GROUP R0
  49. #define ID_GROUP R0
  50. #define STATUS_GROUP R0
  51. #define MISC_GROUP R0
  52. #define HP_ADDR_LSB_GROUP R0
  53. #define HP_ADDR_MSB_GROUP R0
  54. #define PRODUCER_INT_SETUP_GROUP R0
  55. #define PRODUCER_INT_STATUS_GROUP R0
  56. #define PRODUCER_FULL_COUNTER_GROUP R0
  57. #define MSI1_BASE_LSB_GROUP R0
  58. #define MSI1_BASE_MSB_GROUP R0
  59. #define MSI1_DATA_GROUP R0
  60. #define HP_TP_SW_OFFSET_GROUP R0
  61. #define TP_ADDR_LSB_GROUP R0
  62. #define TP_ADDR_MSB_GROUP R0
  63. #define CONSUMER_INT_SETUP_IX0_GROUP R0
  64. #define CONSUMER_INT_SETUP_IX1_GROUP R0
  65. #define CONSUMER_INT_STATUS_GROUP R0
  66. #define CONSUMER_EMPTY_COUNTER_GROUP R0
  67. #define CONSUMER_PREFETCH_TIMER_GROUP R0
  68. #define CONSUMER_PREFETCH_STATUS_GROUP R0
  69. /* Registers in R2 group */
  70. #define HP_GROUP R2
  71. #define TP_GROUP R2
  72. /**
  73. * Register definitions for all SRNG based rings are same, except few
  74. * differences between source (HW consumer) and destination (HW producer)
  75. * registers. Following macros definitions provide generic access to all
  76. * SRNG based rings.
  77. * For source rings, we will use the register/field definitions of SW2TCL1
  78. * ring defined in the HW header file mac_tcl_reg_seq_hwioreg.h. To setup
  79. * individual fields, SRNG_SM macros should be used with fields specified
  80. * using SRNG_SRC_FLD(<register>, <field>), Register writes should be done
  81. * using SRNG_SRC_REG_WRITE(<hal_srng>, <register>, <value>).
  82. * Similarly for destination rings we will use definitions of REO2SW1 ring
  83. * defined in the register reo_destination_ring.h. To setup individual
  84. * fields SRNG_SM macros should be used with fields specified using
  85. * SRNG_DST_FLD(<register>, <field>). Register writes should be done using
  86. * SRNG_DST_REG_WRITE(<hal_srng>, <register>, <value>).
  87. */
  88. #define SRNG_DST_REG_OFFSET(_reg, _reg_group) \
  89. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg##_ADDR(0)
  90. #define SRNG_SRC_REG_OFFSET(_reg, _reg_group) \
  91. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg ## _ADDR(0)
  92. #define _SRNG_DST_FLD(_reg_group, _reg_fld) \
  93. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg_fld
  94. #define _SRNG_SRC_FLD(_reg_group, _reg_fld) \
  95. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg_fld
  96. #define _SRNG_FLD(_reg_group, _reg_fld, _dir) \
  97. _SRNG_ ## _dir ## _FLD(_reg_group, _reg_fld)
  98. #define SRNG_DST_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, DST)
  99. #define SRNG_SRC_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, SRC)
  100. #define SRNG_SRC_R0_START_OFFSET SRNG_SRC_REG_OFFSET(BASE_LSB, R0)
  101. #define SRNG_DST_R0_START_OFFSET SRNG_DST_REG_OFFSET(BASE_LSB, R0)
  102. #define SRNG_SRC_R2_START_OFFSET SRNG_SRC_REG_OFFSET(HP, R2)
  103. #define SRNG_DST_R2_START_OFFSET SRNG_DST_REG_OFFSET(HP, R2)
  104. #define SRNG_SRC_START_OFFSET(_reg_group) \
  105. SRNG_SRC_ ## _reg_group ## _START_OFFSET
  106. #define SRNG_DST_START_OFFSET(_reg_group) \
  107. SRNG_DST_ ## _reg_group ## _START_OFFSET
  108. #define SRNG_REG_ADDR(_srng, _reg, _reg_group, _dir) \
  109. ((_srng)->hwreg_base[HWREG_INDEX(_reg_group)] + \
  110. SRNG_ ## _dir ## _REG_OFFSET(_reg, _reg_group) - \
  111. SRNG_ ## _dir ## _START_OFFSET(_reg_group))
  112. #define SRNG_DST_ADDR(_srng, _reg) \
  113. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, DST)
  114. #define SRNG_SRC_ADDR(_srng, _reg) \
  115. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, SRC)
  116. #define SRNG_REG_WRITE(_srng, _reg, _value, _dir) \
  117. hif_write32_mb(SRNG_ ## _dir ## _ADDR(_srng, _reg), (_value))
  118. #define SRNG_REG_READ(_srng, _reg, _dir) \
  119. hif_read32_mb(SRNG_ ## _dir ## _ADDR(_srng, _reg))
  120. #define SRNG_SRC_REG_WRITE(_srng, _reg, _value) \
  121. SRNG_REG_WRITE(_srng, _reg, _value, SRC)
  122. #define SRNG_DST_REG_WRITE(_srng, _reg, _value) \
  123. SRNG_REG_WRITE(_srng, _reg, _value, DST)
  124. #define SRNG_SRC_REG_READ(_srng, _reg) \
  125. SRNG_REG_READ(_srng, _reg, SRC)
  126. #define _SRNG_FM(_reg_fld) _reg_fld ## _BMSK
  127. #define _SRNG_FS(_reg_fld) _reg_fld ## _SHFT
  128. #define SRNG_SM(_reg_fld, _val) \
  129. (((_val) << _SRNG_FS(_reg_fld)) & _SRNG_FM(_reg_fld))
  130. #define SRNG_MS(_reg_fld, _val) \
  131. (((_val) & _SRNG_FM(_reg_fld)) >> _SRNG_FS(_reg_fld))
  132. /**
  133. * HW ring configuration table to identify hardware ring attributes like
  134. * register addresses, number of rings, ring entry size etc., for each type
  135. * of SRNG ring.
  136. *
  137. * Currently there is just one HW ring table, but there could be multiple
  138. * configurations in future based on HW variants from the same wifi3.0 family
  139. * and hence need to be attached with hal_soc based on HW type
  140. */
  141. #define HAL_SRNG_CONFIG(_hal_soc, _ring_type) (&hw_srng_table[_ring_type])
  142. static struct hal_hw_srng_config hw_srng_table[] = {
  143. /* TODO: max_rings can populated by querying HW capabilities */
  144. { /* REO_DST */
  145. .start_ring_id = HAL_SRNG_REO2SW1,
  146. .max_rings = 4,
  147. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  148. .lmac_ring = FALSE,
  149. .ring_dir = HAL_SRNG_DST_RING,
  150. .reg_start = {
  151. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(
  152. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  153. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(
  154. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  155. },
  156. .reg_size = {
  157. HWIO_REO_R0_REO2SW2_RING_BASE_LSB_ADDR(0) -
  158. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(0),
  159. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(0) -
  160. HWIO_REO_R2_REO2SW2_RING_HP_ADDR(0),
  161. },
  162. },
  163. { /* REO_EXCEPTION */
  164. /* Designating REO2TCL ring as exception ring. This ring is
  165. * similar to other REO2SW rings though it is named as REO2TCL.
  166. * Any of theREO2SW rings can be used as exception ring.
  167. */
  168. .start_ring_id = HAL_SRNG_REO2TCL,
  169. .max_rings = 1,
  170. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  171. .lmac_ring = FALSE,
  172. .ring_dir = HAL_SRNG_DST_RING,
  173. .reg_start = {
  174. HWIO_REO_R0_REO2TCL_RING_BASE_LSB_ADDR(
  175. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  176. HWIO_REO_R2_REO2TCL_RING_HP_ADDR(
  177. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  178. },
  179. /* Single ring - provide ring size if multiple rings of this
  180. * type are supported */
  181. .reg_size = {},
  182. },
  183. { /* REO_REINJECT */
  184. .start_ring_id = HAL_SRNG_SW2REO,
  185. .max_rings = 1,
  186. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  187. .lmac_ring = FALSE,
  188. .ring_dir = HAL_SRNG_SRC_RING,
  189. .reg_start = {
  190. HWIO_REO_R0_SW2REO_RING_BASE_LSB_ADDR(
  191. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  192. HWIO_REO_R2_SW2REO_RING_HP_ADDR(
  193. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  194. },
  195. /* Single ring - provide ring size if multiple rings of this
  196. * type are supported */
  197. .reg_size = {},
  198. },
  199. { /* REO_CMD */
  200. .start_ring_id = HAL_SRNG_REO_CMD,
  201. .max_rings = 1,
  202. .entry_size = (sizeof(struct tlv_32_hdr) +
  203. sizeof(struct reo_get_queue_stats)) >> 2,
  204. .lmac_ring = FALSE,
  205. .ring_dir = HAL_SRNG_SRC_RING,
  206. .reg_start = {
  207. HWIO_REO_R0_REO_CMD_RING_BASE_LSB_ADDR(
  208. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  209. HWIO_REO_R2_REO_CMD_RING_HP_ADDR(
  210. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  211. },
  212. /* Single ring - provide ring size if multiple rings of this
  213. * type are supported */
  214. .reg_size = {},
  215. },
  216. { /* REO_STATUS */
  217. .start_ring_id = HAL_SRNG_REO_STATUS,
  218. .max_rings = 1,
  219. .entry_size = (sizeof(struct tlv_32_hdr) +
  220. sizeof(struct reo_get_queue_stats_status)) >> 2,
  221. .lmac_ring = FALSE,
  222. .ring_dir = HAL_SRNG_DST_RING,
  223. .reg_start = {
  224. HWIO_REO_R0_REO_STATUS_RING_BASE_LSB_ADDR(
  225. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  226. HWIO_REO_R2_REO_STATUS_RING_HP_ADDR(
  227. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  228. },
  229. /* Single ring - provide ring size if multiple rings of this
  230. * type are supported */
  231. .reg_size = {},
  232. },
  233. { /* TCL_DATA */
  234. .start_ring_id = HAL_SRNG_SW2TCL1,
  235. .max_rings = 3,
  236. .entry_size = (sizeof(struct tlv_32_hdr) +
  237. sizeof(struct tcl_data_cmd)) >> 2,
  238. .lmac_ring = FALSE,
  239. .ring_dir = HAL_SRNG_SRC_RING,
  240. .reg_start = {
  241. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(
  242. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  243. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(
  244. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  245. },
  246. .reg_size = {
  247. HWIO_TCL_R0_SW2TCL2_RING_BASE_LSB_ADDR(0) -
  248. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(0),
  249. HWIO_TCL_R2_SW2TCL2_RING_HP_ADDR(0) -
  250. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(0),
  251. },
  252. },
  253. { /* TCL_CMD */
  254. .start_ring_id = HAL_SRNG_SW2TCL_CMD,
  255. .max_rings = 1,
  256. .entry_size = (sizeof(struct tlv_32_hdr) +
  257. sizeof(struct tcl_gse_cmd)) >> 2,
  258. .lmac_ring = FALSE,
  259. .ring_dir = HAL_SRNG_SRC_RING,
  260. .reg_start = {
  261. HWIO_TCL_R0_SW2TCL_CMD_RING_BASE_LSB_ADDR(
  262. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  263. HWIO_TCL_R2_SW2TCL_CMD_RING_HP_ADDR(
  264. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  265. },
  266. /* Single ring - provide ring size if multiple rings of this
  267. * type are supported */
  268. .reg_size = {},
  269. },
  270. { /* TCL_STATUS */
  271. .start_ring_id = HAL_SRNG_TCL_STATUS,
  272. .max_rings = 1,
  273. .entry_size = (sizeof(struct tlv_32_hdr) +
  274. sizeof(struct tcl_status_ring)) >> 2,
  275. .lmac_ring = FALSE,
  276. .ring_dir = HAL_SRNG_DST_RING,
  277. .reg_start = {
  278. HWIO_TCL_R0_TCL_STATUS1_RING_BASE_LSB_ADDR(
  279. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  280. HWIO_TCL_R2_TCL_STATUS1_RING_HP_ADDR(
  281. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  282. },
  283. /* Single ring - provide ring size if multiple rings of this
  284. * type are supported */
  285. .reg_size = {},
  286. },
  287. { /* CE_SRC */
  288. .start_ring_id = HAL_SRNG_CE_0_SRC,
  289. .max_rings = 12,
  290. .entry_size = sizeof(struct ce_src_desc) >> 2,
  291. .lmac_ring = FALSE,
  292. .ring_dir = HAL_SRNG_SRC_RING,
  293. .reg_start = {
  294. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  295. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  296. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  297. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  298. },
  299. .reg_size = {
  300. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  301. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  302. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  303. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  304. },
  305. },
  306. { /* CE_DST */
  307. .start_ring_id = HAL_SRNG_CE_0_DST,
  308. .max_rings = 12,
  309. .entry_size = 8 >> 2,
  310. /*TODO: entry_size above should actually be
  311. * sizeof(struct ce_dst_desc) >> 2, but couldn't find definition
  312. * of struct ce_dst_desc in HW header files
  313. */
  314. .lmac_ring = FALSE,
  315. .ring_dir = HAL_SRNG_SRC_RING,
  316. .reg_start = {
  317. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  318. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  319. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  320. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  321. },
  322. .reg_size = {
  323. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  324. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  325. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  326. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  327. },
  328. },
  329. { /* CE_DST_STATUS */
  330. .start_ring_id = HAL_SRNG_CE_0_DST_STATUS,
  331. .max_rings = 12,
  332. .entry_size = sizeof(struct ce_stat_desc) >> 2,
  333. .lmac_ring = FALSE,
  334. .ring_dir = HAL_SRNG_DST_RING,
  335. .reg_start = {
  336. HWIO_WFSS_CE_CHANNEL_DST_R0_STATUS_RING_BASE_LSB_ADDR(
  337. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  338. HWIO_WFSS_CE_CHANNEL_DST_R2_STATUS_RING_HP_ADDR(
  339. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  340. },
  341. /* TODO: check destination status ring registers */
  342. .reg_size = {
  343. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  344. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  345. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  346. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  347. },
  348. },
  349. { /* WBM_IDLE_LINK */
  350. .start_ring_id = HAL_SRNG_WBM_IDLE_LINK,
  351. .max_rings = 1,
  352. .entry_size = sizeof(struct wbm_link_descriptor_ring) >> 2,
  353. .lmac_ring = FALSE,
  354. .ring_dir = HAL_SRNG_SRC_RING,
  355. .reg_start = {
  356. HWIO_WBM_R0_WBM_IDLE_LINK_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  357. HWIO_WBM_R2_WBM_IDLE_LINK_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  358. },
  359. /* Single ring - provide ring size if multiple rings of this
  360. * type are supported */
  361. .reg_size = {},
  362. },
  363. { /* SW2WBM_RELEASE */
  364. .start_ring_id = HAL_SRNG_WBM_SW_RELEASE,
  365. .max_rings = 1,
  366. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  367. .lmac_ring = FALSE,
  368. .ring_dir = HAL_SRNG_SRC_RING,
  369. .reg_start = {
  370. HWIO_WBM_R0_SW_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  371. HWIO_WBM_R2_SW_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  372. },
  373. /* Single ring - provide ring size if multiple rings of this
  374. * type are supported */
  375. .reg_size = {},
  376. },
  377. { /* WBM2SW_RELEASE */
  378. .start_ring_id = HAL_SRNG_WBM2SW0_RELEASE,
  379. .max_rings = 4,
  380. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  381. .lmac_ring = FALSE,
  382. .ring_dir = HAL_SRNG_DST_RING,
  383. .reg_start = {
  384. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  385. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  386. },
  387. .reg_size = {
  388. HWIO_WBM_R0_WBM2SW1_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  389. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  390. HWIO_WBM_R2_WBM2SW1_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  391. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  392. },
  393. },
  394. { /* RXDMA_BUF */
  395. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA0_BUF,
  396. .max_rings = 2,
  397. /* TODO: Check if the additional IPA buffer ring needs to be
  398. * setup here (in which case max_rings should be set to 2),
  399. * or it will be setup by IPA host driver
  400. */
  401. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  402. .lmac_ring = TRUE,
  403. .ring_dir = HAL_SRNG_SRC_RING,
  404. /* reg_start is not set because LMAC rings are not accessed
  405. * from host
  406. */
  407. .reg_start = {},
  408. .reg_size = {},
  409. },
  410. { /* RXDMA_DST */
  411. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW0,
  412. .max_rings = 1,
  413. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  414. .lmac_ring = TRUE,
  415. .ring_dir = HAL_SRNG_DST_RING,
  416. /* reg_start is not set because LMAC rings are not accessed
  417. * from host
  418. */
  419. .reg_start = {},
  420. .reg_size = {},
  421. },
  422. { /* RXDMA_MONITOR_BUF */
  423. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA2_BUF,
  424. .max_rings = 1,
  425. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  426. .lmac_ring = TRUE,
  427. .ring_dir = HAL_SRNG_SRC_RING,
  428. /* reg_start is not set because LMAC rings are not accessed
  429. * from host
  430. */
  431. .reg_start = {},
  432. .reg_size = {},
  433. },
  434. { /* RXDMA_MONITOR_STATUS */
  435. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA1_STATBUF,
  436. .max_rings = 1,
  437. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  438. .lmac_ring = TRUE,
  439. .ring_dir = HAL_SRNG_SRC_RING,
  440. /* reg_start is not set because LMAC rings are not accessed
  441. * from host
  442. */
  443. .reg_start = {},
  444. .reg_size = {},
  445. },
  446. { /* RXDMA_MONITOR_DST */
  447. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW1,
  448. .max_rings = 1,
  449. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  450. .lmac_ring = TRUE,
  451. .ring_dir = HAL_SRNG_DST_RING,
  452. /* reg_start is not set because LMAC rings are not accessed
  453. * from host
  454. */
  455. .reg_start = {},
  456. .reg_size = {},
  457. },
  458. };
  459. /**
  460. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  461. * @hal: hal_soc data structure
  462. * @ring_type: type enum describing the ring
  463. * @ring_num: which ring of the ring type
  464. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  465. *
  466. * Return: the ring id or -EINVAL if the ring does not exist.
  467. */
  468. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  469. int ring_num, int mac_id)
  470. {
  471. struct hal_hw_srng_config *ring_config =
  472. HAL_SRNG_CONFIG(hal, ring_type);
  473. int ring_id;
  474. if (ring_num >= ring_config->max_rings) {
  475. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  476. "%s: ring_num exceeded maximum no. of supported rings\n",
  477. __func__);
  478. return -EINVAL;
  479. }
  480. if (ring_config->lmac_ring) {
  481. ring_id = ring_config->start_ring_id + ring_num +
  482. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  483. } else {
  484. ring_id = ring_config->start_ring_id + ring_num;
  485. }
  486. return ring_id;
  487. }
  488. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  489. {
  490. /* TODO: Should we allocate srng structures dynamically? */
  491. return &(hal->srng_list[ring_id]);
  492. }
  493. #define HP_OFFSET_IN_REG_START 1
  494. #define OFFSET_FROM_HP_TO_TP 4
  495. static void hal_update_srng_hp_tp_address(void *hal_soc,
  496. int shadow_config_index,
  497. int ring_type,
  498. int ring_num)
  499. {
  500. struct hal_srng *srng;
  501. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  502. int ring_id;
  503. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  504. if (ring_id < 0)
  505. return;
  506. srng = hal_get_srng(hal_soc, ring_id);
  507. if (srng->ring_dir == HAL_SRNG_DST_RING)
  508. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  509. + hal->dev_base_addr;
  510. else
  511. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  512. + hal->dev_base_addr;
  513. }
  514. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  515. int ring_type,
  516. int ring_num)
  517. {
  518. uint32_t target_register;
  519. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  520. struct hal_hw_srng_config *srng_config = &hw_srng_table[ring_type];
  521. int shadow_config_index = hal->num_shadow_registers_configured;
  522. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  523. QDF_ASSERT(0);
  524. return QDF_STATUS_E_RESOURCES;
  525. }
  526. hal->num_shadow_registers_configured++;
  527. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  528. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  529. *ring_num);
  530. /* if the ring is a dst ring, we need to shadow the tail pointer */
  531. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  532. target_register += OFFSET_FROM_HP_TO_TP;
  533. hal->shadow_config[shadow_config_index].addr = target_register;
  534. /* update hp/tp addr in the hal_soc structure*/
  535. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  536. ring_num);
  537. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  538. "%s: target_reg %x, shadow_index %x, ring_type %d, ring num %d\n",
  539. __func__, target_register, shadow_config_index,
  540. ring_type, ring_num);
  541. return QDF_STATUS_SUCCESS;
  542. }
  543. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  544. {
  545. int ring_type, ring_num;
  546. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  547. struct hal_hw_srng_config *srng_config =
  548. &hw_srng_table[ring_type];
  549. if (ring_type == CE_SRC ||
  550. ring_type == CE_DST ||
  551. ring_type == CE_DST_STATUS)
  552. continue;
  553. if (srng_config->lmac_ring)
  554. continue;
  555. for (ring_num = 0; ring_num < srng_config->max_rings;
  556. ring_num++)
  557. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  558. }
  559. return QDF_STATUS_SUCCESS;
  560. }
  561. void hal_get_shadow_config(void *hal_soc,
  562. struct pld_shadow_reg_v2_cfg **shadow_config,
  563. int *num_shadow_registers_configured)
  564. {
  565. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  566. *shadow_config = hal->shadow_config;
  567. *num_shadow_registers_configured =
  568. hal->num_shadow_registers_configured;
  569. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  570. "%s\n", __func__);
  571. }
  572. static void hal_validate_shadow_register(struct hal_soc *hal,
  573. uint32_t *destination,
  574. uint32_t *shadow_address)
  575. {
  576. unsigned int index;
  577. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  578. int destination_ba_offset =
  579. ((char *)destination) - (char *)hal->dev_base_addr;
  580. index = shadow_address - shadow_0_offset;
  581. if (index > MAX_SHADOW_REGISTERS) {
  582. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  583. "%s: index %x out of bounds\n", __func__, index);
  584. goto error;
  585. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  586. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  587. "%s: sanity check failure, expected %x, found %x\n",
  588. __func__, destination_ba_offset,
  589. hal->shadow_config[index].addr);
  590. goto error;
  591. }
  592. return;
  593. error:
  594. qdf_print("%s: baddr %p, desination %p, shadow_address %p s0offset %p index %x",
  595. __func__, hal->dev_base_addr, destination, shadow_address,
  596. shadow_0_offset, index);
  597. QDF_BUG(0);
  598. return;
  599. }
  600. /**
  601. * hal_attach - Initalize HAL layer
  602. * @hif_handle: Opaque HIF handle
  603. * @qdf_dev: QDF device
  604. *
  605. * Return: Opaque HAL SOC handle
  606. * NULL on failure (if given ring is not available)
  607. *
  608. * This function should be called as part of HIF initialization (for accessing
  609. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  610. *
  611. */
  612. void *hal_attach(void *hif_handle, qdf_device_t qdf_dev)
  613. {
  614. struct hal_soc *hal;
  615. int i;
  616. hal = qdf_mem_malloc(sizeof(*hal));
  617. if (!hal) {
  618. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  619. "%s: hal_soc allocation failed\n", __func__);
  620. goto fail0;
  621. }
  622. hal->hif_handle = hif_handle;
  623. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  624. hal->qdf_dev = qdf_dev;
  625. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  626. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  627. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  628. if (!hal->shadow_rdptr_mem_paddr) {
  629. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  630. "%s: hal->shadow_rdptr_mem_paddr allocation failed\n",
  631. __func__);
  632. goto fail1;
  633. }
  634. hal->shadow_wrptr_mem_vaddr =
  635. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  636. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  637. &(hal->shadow_wrptr_mem_paddr));
  638. if (!hal->shadow_wrptr_mem_vaddr) {
  639. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  640. "%s: hal->shadow_wrptr_mem_vaddr allocation failed\n",
  641. __func__);
  642. goto fail2;
  643. }
  644. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  645. hal->srng_list[i].initialized = 0;
  646. hal->srng_list[i].ring_id = i;
  647. }
  648. return (void *)hal;
  649. fail2:
  650. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  651. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  652. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  653. fail1:
  654. qdf_mem_free(hal);
  655. fail0:
  656. return NULL;
  657. }
  658. /**
  659. * hal_detach - Detach HAL layer
  660. * @hal_soc: HAL SOC handle
  661. *
  662. * Return: Opaque HAL SOC handle
  663. * NULL on failure (if given ring is not available)
  664. *
  665. * This function should be called as part of HIF initialization (for accessing
  666. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  667. *
  668. */
  669. extern void hal_detach(void *hal_soc)
  670. {
  671. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  672. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  673. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  674. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  675. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  676. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  677. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  678. qdf_mem_free(hal);
  679. return;
  680. }
  681. /**
  682. * hal_srng_src_hw_init - Private function to initialize SRNG
  683. * source ring HW
  684. * @hal_soc: HAL SOC handle
  685. * @srng: SRNG ring pointer
  686. */
  687. static inline void hal_srng_src_hw_init(struct hal_soc *hal,
  688. struct hal_srng *srng)
  689. {
  690. uint32_t reg_val = 0;
  691. uint64_t tp_addr = 0;
  692. HIF_INFO("%s: hw_init srng %d", __func__, srng->ring_id);
  693. if (srng->flags & HAL_SRNG_MSI_INTR) {
  694. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_LSB,
  695. srng->msi_addr & 0xffffffff);
  696. reg_val = SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB, ADDR),
  697. (uint64_t)(srng->msi_addr) >> 32) |
  698. SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB,
  699. MSI1_ENABLE), 1);
  700. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  701. SRNG_SRC_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  702. }
  703. HIF_INFO("%s: hw_init srng (msi_end) %d", __func__, srng->ring_id);
  704. SRNG_SRC_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  705. reg_val = SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  706. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  707. SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_SIZE),
  708. srng->entry_size * srng->num_entries);
  709. SRNG_SRC_REG_WRITE(srng, BASE_MSB, reg_val);
  710. #if defined(WCSS_VERSION) && \
  711. ((defined(CONFIG_WIN) && (WCSS_VERSION > 81)) || \
  712. (defined(CONFIG_MCL) && (WCSS_VERSION >= 72)))
  713. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  714. #else
  715. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, RING_ID), srng->ring_id) |
  716. SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  717. #endif
  718. SRNG_SRC_REG_WRITE(srng, ID, reg_val);
  719. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  720. SRNG_SM(SRNG_SRC_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  721. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  722. SRNG_SM(SRNG_SRC_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  723. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  724. SRNG_SM(SRNG_SRC_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  725. /* Loop count is not used for SRC rings */
  726. reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, LOOPCNT_DISABLE), 1);
  727. SRNG_SRC_REG_WRITE(srng, MISC, reg_val);
  728. /**
  729. * Interrupt setup:
  730. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  731. * if level mode is required
  732. */
  733. reg_val = 0;
  734. if (srng->intr_timer_thres_us) {
  735. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  736. INTERRUPT_TIMER_THRESHOLD),
  737. srng->intr_timer_thres_us >> 3);
  738. }
  739. if (srng->intr_batch_cntr_thres_entries) {
  740. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  741. BATCH_COUNTER_THRESHOLD),
  742. srng->intr_batch_cntr_thres_entries *
  743. srng->entry_size);
  744. }
  745. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX0, reg_val);
  746. if (srng->flags & HAL_SRNG_LOW_THRES_INTR_ENABLE) {
  747. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX1,
  748. LOW_THRESHOLD), srng->u.src_ring.low_threshold);
  749. }
  750. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX1, reg_val);
  751. tp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  752. ((unsigned long)(srng->u.src_ring.tp_addr) -
  753. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  754. SRNG_SRC_REG_WRITE(srng, TP_ADDR_LSB, tp_addr & 0xffffffff);
  755. SRNG_SRC_REG_WRITE(srng, TP_ADDR_MSB, tp_addr >> 32);
  756. /* Initilaize head and tail pointers to indicate ring is empty */
  757. SRNG_SRC_REG_WRITE(srng, HP, 0);
  758. SRNG_SRC_REG_WRITE(srng, TP, 0);
  759. *(srng->u.src_ring.tp_addr) = 0;
  760. }
  761. /**
  762. * hal_ce_dst_setup - Initialize CE destination ring registers
  763. * @hal_soc: HAL SOC handle
  764. * @srng: SRNG ring pointer
  765. */
  766. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  767. int ring_num)
  768. {
  769. uint32_t reg_val = 0;
  770. uint32_t reg_addr;
  771. struct hal_hw_srng_config *ring_config =
  772. HAL_SRNG_CONFIG(hal, CE_DST);
  773. /* set DEST_MAX_LENGTH according to ce assignment */
  774. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  775. ring_config->reg_start[R0_INDEX] +
  776. (ring_num * ring_config->reg_size[R0_INDEX]));
  777. reg_val = HAL_REG_READ(hal, reg_addr);
  778. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  779. reg_val |= srng->u.dst_ring.max_buffer_length &
  780. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  781. HAL_REG_WRITE(hal, reg_addr, reg_val);
  782. }
  783. /**
  784. * hal_srng_dst_hw_init - Private function to initialize SRNG
  785. * destination ring HW
  786. * @hal_soc: HAL SOC handle
  787. * @srng: SRNG ring pointer
  788. */
  789. static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
  790. struct hal_srng *srng)
  791. {
  792. uint32_t reg_val = 0;
  793. uint64_t hp_addr = 0;
  794. HIF_INFO("%s: hw_init srng %d", __func__, srng->ring_id);
  795. if (srng->flags & HAL_SRNG_MSI_INTR) {
  796. SRNG_DST_REG_WRITE(srng, MSI1_BASE_LSB,
  797. srng->msi_addr & 0xffffffff);
  798. reg_val = SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB, ADDR),
  799. (uint64_t)(srng->msi_addr) >> 32) |
  800. SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB,
  801. MSI1_ENABLE), 1);
  802. SRNG_DST_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  803. SRNG_DST_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  804. }
  805. HIF_INFO("%s: hw_init srng msi end %d", __func__, srng->ring_id);
  806. SRNG_DST_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  807. reg_val = SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  808. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  809. SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_SIZE),
  810. srng->entry_size * srng->num_entries);
  811. SRNG_DST_REG_WRITE(srng, BASE_MSB, reg_val);
  812. reg_val = SRNG_SM(SRNG_DST_FLD(ID, RING_ID), srng->ring_id) |
  813. SRNG_SM(SRNG_DST_FLD(ID, ENTRY_SIZE), srng->entry_size);
  814. SRNG_DST_REG_WRITE(srng, ID, reg_val);
  815. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  816. SRNG_SM(SRNG_DST_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  817. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  818. SRNG_SM(SRNG_DST_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  819. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  820. SRNG_SM(SRNG_DST_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  821. SRNG_DST_REG_WRITE(srng, MISC, reg_val);
  822. /**
  823. * Interrupt setup:
  824. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  825. * if level mode is required
  826. */
  827. reg_val = 0;
  828. if (srng->intr_timer_thres_us) {
  829. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  830. INTERRUPT_TIMER_THRESHOLD),
  831. srng->intr_timer_thres_us >> 3);
  832. }
  833. if (srng->intr_batch_cntr_thres_entries) {
  834. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  835. BATCH_COUNTER_THRESHOLD),
  836. srng->intr_batch_cntr_thres_entries *
  837. srng->entry_size);
  838. }
  839. SRNG_DST_REG_WRITE(srng, PRODUCER_INT_SETUP, reg_val);
  840. hp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  841. ((unsigned long)(srng->u.dst_ring.hp_addr) -
  842. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  843. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB, hp_addr & 0xffffffff);
  844. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB, hp_addr >> 32);
  845. /* Initilaize head and tail pointers to indicate ring is empty */
  846. SRNG_DST_REG_WRITE(srng, HP, 0);
  847. SRNG_DST_REG_WRITE(srng, TP, 0);
  848. *(srng->u.dst_ring.hp_addr) = 0;
  849. }
  850. /**
  851. * hal_srng_hw_init - Private function to initialize SRNG HW
  852. * @hal_soc: HAL SOC handle
  853. * @srng: SRNG ring pointer
  854. */
  855. static inline void hal_srng_hw_init(struct hal_soc *hal,
  856. struct hal_srng *srng)
  857. {
  858. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  859. hal_srng_src_hw_init(hal, srng);
  860. else
  861. hal_srng_dst_hw_init(hal, srng);
  862. }
  863. #ifdef CONFIG_SHADOW_V2
  864. #define ignore_shadow false
  865. #define CHECK_SHADOW_REGISTERS true
  866. #else
  867. #define ignore_shadow true
  868. #define CHECK_SHADOW_REGISTERS false
  869. #endif
  870. /**
  871. * hal_srng_setup - Initalize HW SRNG ring.
  872. * @hal_soc: Opaque HAL SOC handle
  873. * @ring_type: one of the types from hal_ring_type
  874. * @ring_num: Ring number if there are multiple rings of same type (staring
  875. * from 0)
  876. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  877. * @ring_params: SRNG ring params in hal_srng_params structure.
  878. * Callers are expected to allocate contiguous ring memory of size
  879. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  880. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  881. * hal_srng_params structure. Ring base address should be 8 byte aligned
  882. * and size of each ring entry should be queried using the API
  883. * hal_srng_get_entrysize
  884. *
  885. * Return: Opaque pointer to ring on success
  886. * NULL on failure (if given ring is not available)
  887. */
  888. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  889. int mac_id, struct hal_srng_params *ring_params)
  890. {
  891. int ring_id;
  892. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  893. struct hal_srng *srng;
  894. struct hal_hw_srng_config *ring_config =
  895. HAL_SRNG_CONFIG(hal, ring_type);
  896. void *dev_base_addr;
  897. int i;
  898. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  899. if (ring_id < 0)
  900. return NULL;
  901. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  902. "%s: mac_id %d ring_id %d\n",
  903. __func__, mac_id, ring_id);
  904. srng = hal_get_srng(hal_soc, ring_id);
  905. if (srng->initialized) {
  906. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  907. "%s: Ring (ring_type, ring_num) already initialized\n",
  908. __func__);
  909. return NULL;
  910. }
  911. dev_base_addr = hal->dev_base_addr;
  912. srng->ring_id = ring_id;
  913. srng->ring_dir = ring_config->ring_dir;
  914. srng->ring_base_paddr = ring_params->ring_base_paddr;
  915. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  916. srng->entry_size = ring_config->entry_size;
  917. srng->num_entries = ring_params->num_entries;
  918. srng->ring_size = srng->num_entries * srng->entry_size;
  919. srng->ring_size_mask = srng->ring_size - 1;
  920. srng->msi_addr = ring_params->msi_addr;
  921. srng->msi_data = ring_params->msi_data;
  922. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  923. srng->intr_batch_cntr_thres_entries =
  924. ring_params->intr_batch_cntr_thres_entries;
  925. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  926. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  927. + (ring_num * ring_config->reg_size[i]);
  928. }
  929. /* Zero out the entire ring memory */
  930. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  931. srng->num_entries) << 2);
  932. srng->flags = ring_params->flags;
  933. #ifdef BIG_ENDIAN_HOST
  934. /* TODO: See if we should we get these flags from caller */
  935. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  936. srng->flags |= HAL_SRNG_MSI_SWAP;
  937. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  938. #endif
  939. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  940. srng->u.src_ring.hp = 0;
  941. srng->u.src_ring.reap_hp = srng->ring_size -
  942. srng->entry_size;
  943. srng->u.src_ring.tp_addr =
  944. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  945. srng->u.src_ring.low_threshold = ring_params->low_threshold;
  946. if (ring_config->lmac_ring) {
  947. /* For LMAC rings, head pointer updates will be done
  948. * through FW by writing to a shared memory location
  949. */
  950. srng->u.src_ring.hp_addr =
  951. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  952. HAL_SRNG_LMAC1_ID_START]);
  953. srng->flags |= HAL_SRNG_LMAC_RING;
  954. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  955. srng->u.src_ring.hp_addr = SRNG_SRC_ADDR(srng, HP);
  956. if (CHECK_SHADOW_REGISTERS) {
  957. QDF_TRACE(QDF_MODULE_ID_TXRX,
  958. QDF_TRACE_LEVEL_ERROR,
  959. "%s: Ring (%d, %d) missing shadow config\n",
  960. __func__, ring_type, ring_num);
  961. }
  962. } else {
  963. hal_validate_shadow_register(hal,
  964. SRNG_SRC_ADDR(srng, HP),
  965. srng->u.src_ring.hp_addr);
  966. }
  967. } else {
  968. /* During initialization loop count in all the descriptors
  969. * will be set to zero, and HW will set it to 1 on completing
  970. * descriptor update in first loop, and increments it by 1 on
  971. * subsequent loops (loop count wraps around after reaching
  972. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  973. * loop count in descriptors updated by HW (to be processed
  974. * by SW).
  975. */
  976. srng->u.dst_ring.loop_cnt = 1;
  977. srng->u.dst_ring.tp = 0;
  978. srng->u.dst_ring.hp_addr =
  979. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  980. if (ring_config->lmac_ring) {
  981. /* For LMAC rings, tail pointer updates will be done
  982. * through FW by writing to a shared memory location
  983. */
  984. srng->u.dst_ring.tp_addr =
  985. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  986. HAL_SRNG_LMAC1_ID_START]);
  987. srng->flags |= HAL_SRNG_LMAC_RING;
  988. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  989. srng->u.dst_ring.tp_addr = SRNG_DST_ADDR(srng, TP);
  990. if (CHECK_SHADOW_REGISTERS) {
  991. QDF_TRACE(QDF_MODULE_ID_TXRX,
  992. QDF_TRACE_LEVEL_ERROR,
  993. "%s: Ring (%d, %d) missing shadow config\n",
  994. __func__, ring_type, ring_num);
  995. }
  996. } else {
  997. hal_validate_shadow_register(hal,
  998. SRNG_DST_ADDR(srng, TP),
  999. srng->u.dst_ring.tp_addr);
  1000. }
  1001. }
  1002. if (!(ring_config->lmac_ring)) {
  1003. hal_srng_hw_init(hal, srng);
  1004. if (ring_type == CE_DST) {
  1005. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1006. hal_ce_dst_setup(hal, srng, ring_num);
  1007. }
  1008. }
  1009. SRNG_LOCK_INIT(&srng->lock);
  1010. return (void *)srng;
  1011. }
  1012. /**
  1013. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1014. * @hal_soc: Opaque HAL SOC handle
  1015. * @hal_srng: Opaque HAL SRNG pointer
  1016. */
  1017. void hal_srng_cleanup(void *hal_soc, void *hal_srng)
  1018. {
  1019. struct hal_srng *srng = (struct hal_srng *)hal_srng;
  1020. SRNG_LOCK_DESTROY(&srng->lock);
  1021. srng->initialized = 0;
  1022. }
  1023. /**
  1024. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1025. * @hal_soc: Opaque HAL SOC handle
  1026. * @ring_type: one of the types from hal_ring_type
  1027. *
  1028. */
  1029. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1030. {
  1031. struct hal_hw_srng_config *ring_config =
  1032. HAL_SRNG_CONFIG(hal, ring_type);
  1033. return ring_config->entry_size << 2;
  1034. }
  1035. /**
  1036. * hal_get_srng_params - Retreive SRNG parameters for a given ring from HAL
  1037. *
  1038. * @hal_soc: Opaque HAL SOC handle
  1039. * @hal_ring: Ring pointer (Source or Destination ring)
  1040. * @ring_params: SRNG parameters will be returned through this structure
  1041. */
  1042. extern void hal_get_srng_params(void *hal_soc, void *hal_ring,
  1043. struct hal_srng_params *ring_params)
  1044. {
  1045. struct hal_srng *srng = (struct hal_srng *)hal_ring;
  1046. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1047. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1048. ring_params->num_entries = srng->num_entries;
  1049. ring_params->msi_addr = srng->msi_addr;
  1050. ring_params->msi_data = srng->msi_data;
  1051. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1052. ring_params->intr_batch_cntr_thres_entries =
  1053. srng->intr_batch_cntr_thres_entries;
  1054. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1055. ring_params->flags = srng->flags;
  1056. ring_params->ring_id = srng->ring_id;
  1057. }