msm-pcm-afe-v2.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2012-2019, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/init.h>
  5. #include <linux/err.h>
  6. #include <linux/module.h>
  7. #include <linux/moduleparam.h>
  8. #include <linux/time.h>
  9. #include <linux/wait.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/slab.h>
  12. #include <linux/dma-mapping.h>
  13. #include <sound/core.h>
  14. #include <sound/soc.h>
  15. #include <sound/soc-dapm.h>
  16. #include <sound/pcm.h>
  17. #include <sound/initval.h>
  18. #include <sound/control.h>
  19. #include <asm/dma.h>
  20. #include <dsp/msm_audio_ion.h>
  21. #include <dsp/q6adm-v2.h>
  22. #include "msm-pcm-afe-v2.h"
  23. #define DRV_NAME "msm-pcm-afe-v2"
  24. #define TIMEOUT_MS 1000
  25. #define MIN_PLAYBACK_PERIOD_SIZE (128 * 2)
  26. #define MAX_PLAYBACK_PERIOD_SIZE (128 * 2 * 2 * 6)
  27. #define MIN_PLAYBACK_NUM_PERIODS (4)
  28. #define MAX_PLAYBACK_NUM_PERIODS (384)
  29. #define MIN_CAPTURE_PERIOD_SIZE (128 * 2)
  30. #define MAX_CAPTURE_PERIOD_SIZE (192 * 2 * 2 * 8 * 4)
  31. #define MIN_CAPTURE_NUM_PERIODS (4)
  32. #define MAX_CAPTURE_NUM_PERIODS (384)
  33. static struct snd_pcm_hardware msm_afe_hardware_playback = {
  34. .info = (SNDRV_PCM_INFO_MMAP |
  35. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  36. SNDRV_PCM_INFO_MMAP_VALID |
  37. SNDRV_PCM_INFO_INTERLEAVED),
  38. .formats = SNDRV_PCM_FMTBIT_S16_LE|
  39. SNDRV_PCM_FMTBIT_S24_LE,
  40. .rates = (SNDRV_PCM_RATE_8000 |
  41. SNDRV_PCM_RATE_16000 |
  42. SNDRV_PCM_RATE_48000),
  43. .rate_min = 8000,
  44. .rate_max = 48000,
  45. .channels_min = 1,
  46. .channels_max = 6,
  47. .buffer_bytes_max = MAX_PLAYBACK_PERIOD_SIZE *
  48. MAX_PLAYBACK_NUM_PERIODS,
  49. .period_bytes_min = MIN_PLAYBACK_PERIOD_SIZE,
  50. .period_bytes_max = MAX_PLAYBACK_PERIOD_SIZE,
  51. .periods_min = MIN_PLAYBACK_NUM_PERIODS,
  52. .periods_max = MAX_PLAYBACK_NUM_PERIODS,
  53. .fifo_size = 0,
  54. };
  55. static struct snd_pcm_hardware msm_afe_hardware_capture = {
  56. .info = (SNDRV_PCM_INFO_MMAP |
  57. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  58. SNDRV_PCM_INFO_MMAP_VALID |
  59. SNDRV_PCM_INFO_INTERLEAVED),
  60. .formats = SNDRV_PCM_FMTBIT_S16_LE|
  61. SNDRV_PCM_FMTBIT_S24_LE,
  62. .rates = (SNDRV_PCM_RATE_8000 |
  63. SNDRV_PCM_RATE_16000 |
  64. SNDRV_PCM_RATE_48000),
  65. .rate_min = 8000,
  66. .rate_max = 48000,
  67. .channels_min = 1,
  68. .channels_max = 6,
  69. .buffer_bytes_max = MAX_CAPTURE_PERIOD_SIZE *
  70. MAX_CAPTURE_NUM_PERIODS,
  71. .period_bytes_min = MIN_CAPTURE_PERIOD_SIZE,
  72. .period_bytes_max = MAX_CAPTURE_PERIOD_SIZE,
  73. .periods_min = MIN_CAPTURE_NUM_PERIODS,
  74. .periods_max = MAX_CAPTURE_NUM_PERIODS,
  75. .fifo_size = 0,
  76. };
  77. static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt);
  78. static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt);
  79. static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt)
  80. {
  81. struct pcm_afe_info *prtd =
  82. container_of(hrt, struct pcm_afe_info, hrt);
  83. struct snd_pcm_substream *substream = prtd->substream;
  84. struct snd_pcm_runtime *runtime = substream->runtime;
  85. u32 mem_map_handle = 0;
  86. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  87. if (!mem_map_handle)
  88. pr_err("%s: mem_map_handle is NULL\n", __func__);
  89. if (prtd->start) {
  90. pr_debug("sending frame to DSP: poll_time: %d\n",
  91. prtd->poll_time);
  92. if (prtd->dsp_cnt == runtime->periods)
  93. prtd->dsp_cnt = 0;
  94. pr_debug("%s: mem_map_handle 0x%x\n", __func__, mem_map_handle);
  95. afe_rt_proxy_port_write(
  96. (prtd->dma_addr +
  97. (prtd->dsp_cnt *
  98. snd_pcm_lib_period_bytes(prtd->substream))), mem_map_handle,
  99. snd_pcm_lib_period_bytes(prtd->substream));
  100. prtd->dsp_cnt++;
  101. hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
  102. * 1000));
  103. return HRTIMER_RESTART;
  104. } else
  105. return HRTIMER_NORESTART;
  106. }
  107. static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt)
  108. {
  109. struct pcm_afe_info *prtd =
  110. container_of(hrt, struct pcm_afe_info, hrt);
  111. struct snd_pcm_substream *substream = prtd->substream;
  112. struct snd_pcm_runtime *runtime = substream->runtime;
  113. u32 mem_map_handle = 0;
  114. int ret;
  115. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  116. if (!mem_map_handle)
  117. pr_err("%s: mem_map_handle is NULL\n", __func__);
  118. if (prtd->start) {
  119. if (prtd->dsp_cnt == runtime->periods)
  120. prtd->dsp_cnt = 0;
  121. pr_debug("%s: mem_map_handle 0x%x\n", __func__, mem_map_handle);
  122. ret = afe_rt_proxy_port_read(
  123. (prtd->dma_addr + (prtd->dsp_cnt
  124. * snd_pcm_lib_period_bytes(prtd->substream))), mem_map_handle,
  125. snd_pcm_lib_period_bytes(prtd->substream));
  126. if (ret < 0) {
  127. pr_err("%s: AFE port read fails: %d\n", __func__, ret);
  128. prtd->start = 0;
  129. return HRTIMER_NORESTART;
  130. }
  131. prtd->dsp_cnt++;
  132. pr_debug("sending frame rec to DSP: poll_time: %d\n",
  133. prtd->poll_time);
  134. hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
  135. * 1000));
  136. return HRTIMER_RESTART;
  137. } else
  138. return HRTIMER_NORESTART;
  139. }
  140. static void pcm_afe_process_tx_pkt(uint32_t opcode,
  141. uint32_t token, uint32_t *payload,
  142. void *priv)
  143. {
  144. struct pcm_afe_info *prtd = priv;
  145. unsigned long dsp_flags;
  146. struct snd_pcm_substream *substream = NULL;
  147. struct snd_pcm_runtime *runtime = NULL;
  148. uint16_t event;
  149. uint64_t period_bytes;
  150. uint64_t bytes_one_sec;
  151. if (prtd == NULL)
  152. return;
  153. substream = prtd->substream;
  154. runtime = substream->runtime;
  155. pr_debug("%s\n", __func__);
  156. spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
  157. switch (opcode) {
  158. case AFE_EVENT_RT_PROXY_PORT_STATUS: {
  159. event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
  160. switch (event) {
  161. case AFE_EVENT_RTPORT_START: {
  162. prtd->dsp_cnt = 0;
  163. /* Calculate poll time.
  164. * Split steps to avoid overflow.
  165. * Poll time-time corresponding to one period
  166. * in bytes.
  167. * (Samplerate * channelcount * format) =
  168. * bytes in 1 sec.
  169. * Poll time =
  170. * (period bytes / bytes in one sec) *
  171. * 1000000 micro seconds.
  172. * Multiplication by 1000000 is done in two
  173. * steps to keep the accuracy of poll time.
  174. */
  175. if (prtd->mmap_flag) {
  176. period_bytes = ((uint64_t)(
  177. (snd_pcm_lib_period_bytes(
  178. prtd->substream)) *
  179. 1000));
  180. bytes_one_sec = (runtime->rate
  181. * runtime->channels * 2);
  182. bytes_one_sec =
  183. div_u64(bytes_one_sec, 1000);
  184. prtd->poll_time =
  185. div_u64(period_bytes,
  186. bytes_one_sec);
  187. pr_debug("prtd->poll_time: %d",
  188. prtd->poll_time);
  189. }
  190. break;
  191. }
  192. case AFE_EVENT_RTPORT_STOP:
  193. pr_debug("%s: event!=0\n", __func__);
  194. prtd->start = 0;
  195. snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
  196. break;
  197. case AFE_EVENT_RTPORT_LOW_WM:
  198. pr_debug("%s: Underrun\n", __func__);
  199. break;
  200. case AFE_EVENT_RTPORT_HI_WM:
  201. pr_debug("%s: Overrun\n", __func__);
  202. break;
  203. default:
  204. break;
  205. }
  206. break;
  207. }
  208. case APR_BASIC_RSP_RESULT: {
  209. switch (payload[0]) {
  210. case AFE_PORT_DATA_CMD_RT_PROXY_PORT_WRITE_V2:
  211. pr_debug("write done\n");
  212. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  213. (prtd->substream);
  214. snd_pcm_period_elapsed(prtd->substream);
  215. break;
  216. default:
  217. break;
  218. }
  219. break;
  220. }
  221. case RESET_EVENTS:
  222. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  223. (prtd->substream);
  224. prtd->reset_event = true;
  225. snd_pcm_period_elapsed(prtd->substream);
  226. break;
  227. default:
  228. break;
  229. }
  230. spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
  231. }
  232. static void pcm_afe_process_rx_pkt(uint32_t opcode,
  233. uint32_t token, uint32_t *payload,
  234. void *priv)
  235. {
  236. struct pcm_afe_info *prtd = priv;
  237. unsigned long dsp_flags;
  238. struct snd_pcm_substream *substream = NULL;
  239. struct snd_pcm_runtime *runtime = NULL;
  240. uint16_t event;
  241. uint64_t period_bytes;
  242. uint64_t bytes_one_sec;
  243. uint32_t mem_map_handle = 0;
  244. if (prtd == NULL)
  245. return;
  246. substream = prtd->substream;
  247. runtime = substream->runtime;
  248. pr_debug("%s\n", __func__);
  249. spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
  250. switch (opcode) {
  251. case AFE_EVENT_RT_PROXY_PORT_STATUS: {
  252. event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
  253. switch (event) {
  254. case AFE_EVENT_RTPORT_START: {
  255. prtd->dsp_cnt = 0;
  256. /* Calculate poll time. Split steps to avoid overflow.
  257. * Poll time-time corresponding to one period in bytes.
  258. * (Samplerate * channelcount * format)=bytes in 1 sec.
  259. * Poll time = (period bytes / bytes in one sec) *
  260. * 1000000 micro seconds.
  261. * Multiplication by 1000000 is done in two steps to
  262. * keep the accuracy of poll time.
  263. */
  264. if (prtd->mmap_flag) {
  265. period_bytes = ((uint64_t)(
  266. (snd_pcm_lib_period_bytes(
  267. prtd->substream)) * 1000));
  268. bytes_one_sec = (runtime->rate *
  269. runtime->channels * 2);
  270. bytes_one_sec = div_u64(bytes_one_sec, 1000);
  271. prtd->poll_time =
  272. div_u64(period_bytes, bytes_one_sec);
  273. pr_debug("prtd->poll_time : %d\n",
  274. prtd->poll_time);
  275. } else {
  276. mem_map_handle =
  277. afe_req_mmap_handle(prtd->audio_client);
  278. if (!mem_map_handle)
  279. pr_err("%s:mem_map_handle is NULL\n",
  280. __func__);
  281. /* Do initial read to start transfer */
  282. afe_rt_proxy_port_read((prtd->dma_addr +
  283. (prtd->dsp_cnt *
  284. snd_pcm_lib_period_bytes(
  285. prtd->substream))),
  286. mem_map_handle,
  287. snd_pcm_lib_period_bytes(
  288. prtd->substream));
  289. prtd->dsp_cnt++;
  290. }
  291. break;
  292. }
  293. case AFE_EVENT_RTPORT_STOP:
  294. pr_debug("%s: event!=0\n", __func__);
  295. prtd->start = 0;
  296. snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
  297. break;
  298. case AFE_EVENT_RTPORT_LOW_WM:
  299. pr_debug("%s: Underrun\n", __func__);
  300. break;
  301. case AFE_EVENT_RTPORT_HI_WM:
  302. pr_debug("%s: Overrun\n", __func__);
  303. break;
  304. default:
  305. break;
  306. }
  307. break;
  308. }
  309. case APR_BASIC_RSP_RESULT: {
  310. switch (payload[0]) {
  311. case AFE_PORT_DATA_CMD_RT_PROXY_PORT_READ_V2:
  312. pr_debug("%s :Read done\n", __func__);
  313. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  314. (prtd->substream);
  315. if (!prtd->mmap_flag) {
  316. atomic_set(&prtd->rec_bytes_avail, 1);
  317. wake_up(&prtd->read_wait);
  318. }
  319. snd_pcm_period_elapsed(prtd->substream);
  320. break;
  321. default:
  322. break;
  323. }
  324. break;
  325. }
  326. case RESET_EVENTS:
  327. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  328. (prtd->substream);
  329. prtd->reset_event = true;
  330. if (!prtd->mmap_flag) {
  331. atomic_set(&prtd->rec_bytes_avail, 1);
  332. wake_up(&prtd->read_wait);
  333. }
  334. snd_pcm_period_elapsed(prtd->substream);
  335. break;
  336. default:
  337. break;
  338. }
  339. spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
  340. }
  341. static int msm_afe_playback_prepare(struct snd_pcm_substream *substream)
  342. {
  343. struct snd_pcm_runtime *runtime = substream->runtime;
  344. struct pcm_afe_info *prtd = runtime->private_data;
  345. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  346. struct snd_soc_dai *dai = rtd->cpu_dai;
  347. int ret = 0;
  348. pr_debug("%s: sample_rate=%d\n", __func__, runtime->rate);
  349. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  350. ret = afe_register_get_events(dai->id,
  351. pcm_afe_process_tx_pkt, prtd);
  352. if (ret < 0) {
  353. pr_err("afe-pcm:register for events failed\n");
  354. return ret;
  355. }
  356. pr_debug("%s:success\n", __func__);
  357. prtd->prepared++;
  358. return ret;
  359. }
  360. static int msm_afe_capture_prepare(struct snd_pcm_substream *substream)
  361. {
  362. struct snd_pcm_runtime *runtime = substream->runtime;
  363. struct pcm_afe_info *prtd = runtime->private_data;
  364. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  365. struct snd_soc_dai *dai = rtd->cpu_dai;
  366. int ret = 0;
  367. pr_debug("%s\n", __func__);
  368. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  369. ret = afe_register_get_events(dai->id,
  370. pcm_afe_process_rx_pkt, prtd);
  371. if (ret < 0) {
  372. pr_err("afe-pcm:register for events failed\n");
  373. return ret;
  374. }
  375. pr_debug("%s:success\n", __func__);
  376. prtd->prepared++;
  377. return 0;
  378. }
  379. /* Conventional and unconventional sample rate supported */
  380. static unsigned int supported_sample_rates[] = {
  381. 8000, 16000, 48000
  382. };
  383. static struct snd_pcm_hw_constraint_list constraints_sample_rates = {
  384. .count = ARRAY_SIZE(supported_sample_rates),
  385. .list = supported_sample_rates,
  386. .mask = 0,
  387. };
  388. static int msm_afe_open(struct snd_pcm_substream *substream)
  389. {
  390. struct snd_pcm_runtime *runtime = substream->runtime;
  391. struct pcm_afe_info *prtd = NULL;
  392. int ret = 0;
  393. prtd = kzalloc(sizeof(struct pcm_afe_info), GFP_KERNEL);
  394. if (prtd == NULL)
  395. return -ENOMEM;
  396. pr_debug("prtd %pK\n", prtd);
  397. mutex_init(&prtd->lock);
  398. spin_lock_init(&prtd->dsp_lock);
  399. prtd->dsp_cnt = 0;
  400. mutex_lock(&prtd->lock);
  401. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  402. runtime->hw = msm_afe_hardware_playback;
  403. else
  404. runtime->hw = msm_afe_hardware_capture;
  405. prtd->substream = substream;
  406. runtime->private_data = prtd;
  407. prtd->audio_client = q6afe_audio_client_alloc(prtd);
  408. if (!prtd->audio_client) {
  409. pr_debug("%s: Could not allocate memory\n", __func__);
  410. mutex_unlock(&prtd->lock);
  411. kfree(prtd);
  412. return -ENOMEM;
  413. }
  414. atomic_set(&prtd->rec_bytes_avail, 0);
  415. init_waitqueue_head(&prtd->read_wait);
  416. hrtimer_init(&prtd->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  417. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  418. prtd->hrt.function = afe_hrtimer_callback;
  419. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  420. prtd->hrt.function = afe_hrtimer_rec_callback;
  421. mutex_unlock(&prtd->lock);
  422. ret = snd_pcm_hw_constraint_list(runtime, 0,
  423. SNDRV_PCM_HW_PARAM_RATE,
  424. &constraints_sample_rates);
  425. if (ret < 0)
  426. pr_err("snd_pcm_hw_constraint_list failed\n");
  427. /* Ensure that buffer size is a multiple of period size */
  428. ret = snd_pcm_hw_constraint_integer(runtime,
  429. SNDRV_PCM_HW_PARAM_PERIODS);
  430. if (ret < 0)
  431. pr_err("snd_pcm_hw_constraint_integer failed\n");
  432. if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
  433. ret = snd_pcm_hw_constraint_minmax(runtime,
  434. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  435. MIN_CAPTURE_NUM_PERIODS * MIN_CAPTURE_PERIOD_SIZE,
  436. MAX_CAPTURE_NUM_PERIODS * MAX_CAPTURE_PERIOD_SIZE);
  437. if (ret < 0) {
  438. pr_err("constraint for buffer bytes min max ret = %d\n",
  439. ret);
  440. }
  441. }
  442. prtd->reset_event = false;
  443. return 0;
  444. }
  445. static int msm_afe_playback_copy(struct snd_pcm_substream *substream,
  446. int channel, unsigned long hwoff,
  447. void __user *buf, unsigned long fbytes)
  448. {
  449. int ret = 0;
  450. struct snd_pcm_runtime *runtime = substream->runtime;
  451. struct pcm_afe_info *prtd = runtime->private_data;
  452. char *hwbuf = runtime->dma_area + hwoff;
  453. u32 mem_map_handle = 0;
  454. pr_debug("%s : appl_ptr 0x%lx hw_ptr 0x%lx dest_to_copy 0x%pK\n",
  455. __func__,
  456. runtime->control->appl_ptr, runtime->status->hw_ptr, hwbuf);
  457. if (copy_from_user(hwbuf, buf, fbytes)) {
  458. pr_err("%s :Failed to copy audio from user buffer\n",
  459. __func__);
  460. ret = -EFAULT;
  461. goto fail;
  462. }
  463. if (!prtd->mmap_flag) {
  464. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  465. if (!mem_map_handle) {
  466. pr_err("%s: mem_map_handle is NULL\n", __func__);
  467. ret = -EFAULT;
  468. goto fail;
  469. }
  470. pr_debug("%s : prtd-> dma_addr 0x%lx dsp_cnt %d\n", __func__,
  471. prtd->dma_addr, prtd->dsp_cnt);
  472. if (prtd->dsp_cnt == runtime->periods)
  473. prtd->dsp_cnt = 0;
  474. ret = afe_rt_proxy_port_write(
  475. (prtd->dma_addr + (prtd->dsp_cnt *
  476. snd_pcm_lib_period_bytes(prtd->substream))),
  477. mem_map_handle,
  478. snd_pcm_lib_period_bytes(prtd->substream));
  479. if (ret) {
  480. pr_err("%s: AFE proxy port write failed %d\n",
  481. __func__, ret);
  482. goto fail;
  483. }
  484. prtd->dsp_cnt++;
  485. }
  486. fail:
  487. return ret;
  488. }
  489. static int msm_afe_capture_copy(struct snd_pcm_substream *substream,
  490. int channel, unsigned long hwoff,
  491. void __user *buf, unsigned long fbytes)
  492. {
  493. int ret = 0;
  494. struct snd_pcm_runtime *runtime = substream->runtime;
  495. struct pcm_afe_info *prtd = runtime->private_data;
  496. char *hwbuf = runtime->dma_area + hwoff;
  497. u32 mem_map_handle = 0;
  498. if (!prtd->mmap_flag) {
  499. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  500. if (!mem_map_handle) {
  501. pr_err("%s: mem_map_handle is NULL\n", __func__);
  502. ret = -EFAULT;
  503. goto fail;
  504. }
  505. if (prtd->dsp_cnt == runtime->periods)
  506. prtd->dsp_cnt = 0;
  507. ret = afe_rt_proxy_port_read((prtd->dma_addr +
  508. (prtd->dsp_cnt *
  509. snd_pcm_lib_period_bytes(prtd->substream))),
  510. mem_map_handle,
  511. snd_pcm_lib_period_bytes(prtd->substream));
  512. if (ret) {
  513. pr_err("%s: AFE proxy port read failed %d\n",
  514. __func__, ret);
  515. goto fail;
  516. }
  517. prtd->dsp_cnt++;
  518. ret = wait_event_timeout(prtd->read_wait,
  519. atomic_read(&prtd->rec_bytes_avail),
  520. msecs_to_jiffies(TIMEOUT_MS));
  521. if (ret < 0) {
  522. pr_err("%s: wait_event_timeout failed\n", __func__);
  523. ret = -ETIMEDOUT;
  524. goto fail;
  525. }
  526. atomic_set(&prtd->rec_bytes_avail, 0);
  527. }
  528. pr_debug("%s:appl_ptr 0x%lx hw_ptr 0x%lx src_to_copy 0x%pK\n",
  529. __func__, runtime->control->appl_ptr,
  530. runtime->status->hw_ptr, hwbuf);
  531. if (copy_to_user(buf, hwbuf, fbytes)) {
  532. pr_err("%s: copy to user failed\n", __func__);
  533. goto fail;
  534. ret = -EFAULT;
  535. }
  536. fail:
  537. return ret;
  538. }
  539. static int msm_afe_copy(struct snd_pcm_substream *substream, int channel,
  540. unsigned long hwoff, void __user *buf,
  541. unsigned long fbytes)
  542. {
  543. struct snd_pcm_runtime *runtime = substream->runtime;
  544. struct pcm_afe_info *prtd = runtime->private_data;
  545. int ret = 0;
  546. if (prtd->reset_event) {
  547. pr_debug("%s: reset events received from ADSP, return error\n",
  548. __func__);
  549. return -ENETRESET;
  550. }
  551. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  552. ret = msm_afe_playback_copy(substream, channel, hwoff,
  553. buf, fbytes);
  554. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  555. ret = msm_afe_capture_copy(substream, channel, hwoff,
  556. buf, fbytes);
  557. return ret;
  558. }
  559. static int msm_afe_close(struct snd_pcm_substream *substream)
  560. {
  561. int rc = 0;
  562. struct snd_dma_buffer *dma_buf;
  563. struct snd_pcm_runtime *runtime;
  564. struct pcm_afe_info *prtd;
  565. struct snd_soc_pcm_runtime *rtd = NULL;
  566. struct snd_soc_dai *dai = NULL;
  567. int dir = IN;
  568. int ret = 0;
  569. pr_debug("%s\n", __func__);
  570. if (substream == NULL) {
  571. pr_err("substream is NULL\n");
  572. return -EINVAL;
  573. }
  574. rtd = substream->private_data;
  575. dai = rtd->cpu_dai;
  576. runtime = substream->runtime;
  577. prtd = runtime->private_data;
  578. mutex_lock(&prtd->lock);
  579. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  580. dir = IN;
  581. ret = afe_unregister_get_events(dai->id);
  582. if (ret < 0)
  583. pr_err("AFE unregister for events failed\n");
  584. } else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
  585. dir = OUT;
  586. ret = afe_unregister_get_events(dai->id);
  587. if (ret < 0)
  588. pr_err("AFE unregister for events failed\n");
  589. }
  590. if (prtd->mmap_flag)
  591. hrtimer_cancel(&prtd->hrt);
  592. rc = afe_cmd_memory_unmap(afe_req_mmap_handle(prtd->audio_client));
  593. if (rc < 0)
  594. pr_err("AFE memory unmap failed\n");
  595. pr_debug("release all buffer\n");
  596. dma_buf = &substream->dma_buffer;
  597. if (dma_buf == NULL) {
  598. pr_debug("dma_buf is NULL\n");
  599. goto done;
  600. }
  601. if (dma_buf->area)
  602. dma_buf->area = NULL;
  603. q6afe_audio_client_buf_free_contiguous(dir, prtd->audio_client);
  604. done:
  605. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  606. q6afe_audio_client_free(prtd->audio_client);
  607. mutex_unlock(&prtd->lock);
  608. prtd->prepared--;
  609. kfree(prtd);
  610. runtime->private_data = NULL;
  611. return 0;
  612. }
  613. static int msm_afe_prepare(struct snd_pcm_substream *substream)
  614. {
  615. int ret = 0;
  616. struct snd_pcm_runtime *runtime = substream->runtime;
  617. struct pcm_afe_info *prtd = runtime->private_data;
  618. prtd->pcm_irq_pos = 0;
  619. if (prtd->prepared)
  620. return 0;
  621. mutex_lock(&prtd->lock);
  622. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  623. ret = msm_afe_playback_prepare(substream);
  624. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  625. ret = msm_afe_capture_prepare(substream);
  626. mutex_unlock(&prtd->lock);
  627. return ret;
  628. }
  629. static int msm_afe_mmap(struct snd_pcm_substream *substream,
  630. struct vm_area_struct *vma)
  631. {
  632. struct snd_pcm_runtime *runtime = substream->runtime;
  633. struct pcm_afe_info *prtd = runtime->private_data;
  634. struct afe_audio_client *ac = prtd->audio_client;
  635. struct afe_audio_port_data *apd = ac->port;
  636. struct afe_audio_buffer *ab;
  637. int dir = -1;
  638. pr_debug("%s\n", __func__);
  639. prtd->mmap_flag = 1;
  640. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  641. dir = IN;
  642. else
  643. dir = OUT;
  644. ab = &(apd[dir].buf[0]);
  645. return msm_audio_ion_mmap((struct audio_buffer *)ab, vma);
  646. }
  647. static int msm_afe_trigger(struct snd_pcm_substream *substream, int cmd)
  648. {
  649. int ret = 0;
  650. struct snd_pcm_runtime *runtime = substream->runtime;
  651. struct pcm_afe_info *prtd = runtime->private_data;
  652. switch (cmd) {
  653. case SNDRV_PCM_TRIGGER_START:
  654. case SNDRV_PCM_TRIGGER_RESUME:
  655. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  656. pr_debug("%s: SNDRV_PCM_TRIGGER_START\n", __func__);
  657. prtd->start = 1;
  658. if (prtd->mmap_flag)
  659. hrtimer_start(&prtd->hrt, ns_to_ktime(0),
  660. HRTIMER_MODE_REL);
  661. break;
  662. case SNDRV_PCM_TRIGGER_STOP:
  663. case SNDRV_PCM_TRIGGER_SUSPEND:
  664. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  665. pr_debug("%s: SNDRV_PCM_TRIGGER_STOP\n", __func__);
  666. prtd->start = 0;
  667. break;
  668. default:
  669. ret = -EINVAL;
  670. break;
  671. }
  672. return ret;
  673. }
  674. static int msm_afe_hw_params(struct snd_pcm_substream *substream,
  675. struct snd_pcm_hw_params *params)
  676. {
  677. struct snd_pcm_runtime *runtime = substream->runtime;
  678. struct snd_dma_buffer *dma_buf = &substream->dma_buffer;
  679. struct pcm_afe_info *prtd = runtime->private_data;
  680. struct afe_audio_buffer *buf;
  681. int dir, rc;
  682. pr_debug("%s:\n", __func__);
  683. mutex_lock(&prtd->lock);
  684. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  685. dir = IN;
  686. else
  687. dir = OUT;
  688. rc = q6afe_audio_client_buf_alloc_contiguous(dir,
  689. prtd->audio_client,
  690. (params_buffer_bytes(params) / params_periods(params)),
  691. params_periods(params));
  692. pr_debug("params_buffer_bytes(params) = %d\n",
  693. (params_buffer_bytes(params)));
  694. pr_debug("params_periods(params) = %d\n",
  695. (params_periods(params)));
  696. pr_debug("params_periodsize(params) = %d\n",
  697. (params_buffer_bytes(params) / params_periods(params)));
  698. if (rc < 0) {
  699. pr_err("Audio Start: Buffer Allocation failed rc = %d\n", rc);
  700. mutex_unlock(&prtd->lock);
  701. return -ENOMEM;
  702. }
  703. buf = prtd->audio_client->port[dir].buf;
  704. if (buf == NULL || buf[0].data == NULL) {
  705. mutex_unlock(&prtd->lock);
  706. return -ENOMEM;
  707. }
  708. pr_debug("%s:buf = %pK\n", __func__, buf);
  709. dma_buf->dev.type = SNDRV_DMA_TYPE_DEV;
  710. dma_buf->dev.dev = substream->pcm->card->dev;
  711. dma_buf->private_data = NULL;
  712. dma_buf->area = buf[0].data;
  713. dma_buf->addr = buf[0].phys;
  714. dma_buf->bytes = params_buffer_bytes(params);
  715. if (!dma_buf->area) {
  716. pr_err("%s:MSM AFE physical memory allocation failed\n",
  717. __func__);
  718. mutex_unlock(&prtd->lock);
  719. return -ENOMEM;
  720. }
  721. memset(dma_buf->area, 0, params_buffer_bytes(params));
  722. prtd->dma_addr = (phys_addr_t) dma_buf->addr;
  723. mutex_unlock(&prtd->lock);
  724. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  725. rc = afe_memory_map(dma_buf->addr, dma_buf->bytes, prtd->audio_client);
  726. if (rc < 0)
  727. pr_err("fail to map memory to DSP\n");
  728. return rc;
  729. }
  730. static snd_pcm_uframes_t msm_afe_pointer(struct snd_pcm_substream *substream)
  731. {
  732. struct snd_pcm_runtime *runtime = substream->runtime;
  733. struct pcm_afe_info *prtd = runtime->private_data;
  734. if (prtd->pcm_irq_pos >= snd_pcm_lib_buffer_bytes(substream))
  735. prtd->pcm_irq_pos = 0;
  736. if (prtd->reset_event) {
  737. pr_debug("%s: reset events received from ADSP, return XRUN\n",
  738. __func__);
  739. return SNDRV_PCM_POS_XRUN;
  740. }
  741. pr_debug("pcm_irq_pos = %d\n", prtd->pcm_irq_pos);
  742. return bytes_to_frames(runtime, (prtd->pcm_irq_pos));
  743. }
  744. static const struct snd_pcm_ops msm_afe_ops = {
  745. .open = msm_afe_open,
  746. .copy_user = msm_afe_copy,
  747. .hw_params = msm_afe_hw_params,
  748. .trigger = msm_afe_trigger,
  749. .close = msm_afe_close,
  750. .prepare = msm_afe_prepare,
  751. .mmap = msm_afe_mmap,
  752. .pointer = msm_afe_pointer,
  753. };
  754. static int msm_asoc_pcm_new(struct snd_soc_pcm_runtime *rtd)
  755. {
  756. struct snd_card *card = rtd->card->snd_card;
  757. int ret = 0;
  758. pr_debug("%s\n", __func__);
  759. if (!card->dev->coherent_dma_mask)
  760. card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
  761. return ret;
  762. }
  763. static int msm_afe_afe_probe(struct snd_soc_component *component)
  764. {
  765. pr_debug("%s\n", __func__);
  766. return 0;
  767. }
  768. static struct snd_soc_component_driver msm_soc_component = {
  769. .name = DRV_NAME,
  770. .ops = &msm_afe_ops,
  771. .pcm_new = msm_asoc_pcm_new,
  772. .probe = msm_afe_afe_probe,
  773. };
  774. static int msm_afe_probe(struct platform_device *pdev)
  775. {
  776. pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev));
  777. return snd_soc_register_component(&pdev->dev,
  778. &msm_soc_component, NULL, 0);
  779. }
  780. static int msm_afe_remove(struct platform_device *pdev)
  781. {
  782. pr_debug("%s\n", __func__);
  783. snd_soc_unregister_component(&pdev->dev);
  784. return 0;
  785. }
  786. static const struct of_device_id msm_pcm_afe_dt_match[] = {
  787. {.compatible = "qcom,msm-pcm-afe"},
  788. {}
  789. };
  790. MODULE_DEVICE_TABLE(of, msm_pcm_afe_dt_match);
  791. static struct platform_driver msm_afe_driver = {
  792. .driver = {
  793. .name = "msm-pcm-afe",
  794. .owner = THIS_MODULE,
  795. .of_match_table = msm_pcm_afe_dt_match,
  796. .suppress_bind_attrs = true,
  797. },
  798. .probe = msm_afe_probe,
  799. .remove = msm_afe_remove,
  800. };
  801. int __init msm_pcm_afe_init(void)
  802. {
  803. pr_debug("%s\n", __func__);
  804. return platform_driver_register(&msm_afe_driver);
  805. }
  806. void msm_pcm_afe_exit(void)
  807. {
  808. pr_debug("%s\n", __func__);
  809. platform_driver_unregister(&msm_afe_driver);
  810. }
  811. MODULE_DESCRIPTION("AFE PCM module platform driver");
  812. MODULE_LICENSE("GPL v2");