Files
android_kernel_samsung_sm86…/hal/wifi3.0/hal_rx_flow.c
Rakesh Pillai 1190bfe856 qcacmn: HAL RX flow API changes for beryllium
Add HAL RX flow API changes for WCN7850.

Change-Id: Id5085bffb7a98543e38d9e3b989346b07ae124f0
CRs-Fixed: 2891049
2021-06-05 15:10:50 -07:00

664 rivejä
18 KiB
C

/*
* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "qdf_module.h"
#include "dp_types.h"
#include "hal_rx_flow.h"
/**
* hal_rx_flow_get_cmem_fse() - Get FSE from CMEM
* @hal_soc_hdl: HAL SOC handle
* @fse_offset: CMEM FSE offset
* @fse: referece where FSE will be copied
* @len: length of FSE
*
* Return: If read is succesfull or not
*/
static void
hal_rx_flow_get_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset,
uint32_t *fse, qdf_size_t len)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (hal_soc->ops->hal_rx_flow_get_cmem_fse) {
return hal_soc->ops->hal_rx_flow_get_cmem_fse(
hal_soc, fse_offset, fse, len);
}
}
#if defined(WLAN_SUPPORT_RX_FISA)
static inline void hal_rx_dump_fse(struct rx_flow_search_entry *fse, int index)
{
dp_info("index %d:"
" src_ip_127_96 0x%x"
" src_ip_95_640 0x%x"
" src_ip_63_32 0x%x"
" src_ip_31_0 0x%x"
" dest_ip_127_96 0x%x"
" dest_ip_95_64 0x%x"
" dest_ip_63_32 0x%x"
" dest_ip_31_0 0x%x"
" src_port 0x%x"
" dest_port 0x%x"
" l4_protocol 0x%x"
" valid 0x%x"
" reo_destination_indication 0x%x"
" msdu_drop 0x%x"
" reo_destination_handler 0x%x"
" metadata 0x%x"
" aggregation_count0x%x"
" lro_eligible 0x%x"
" msdu_count 0x%x"
" msdu_byte_count 0x%x"
" timestamp 0x%x"
" cumulative_l4_checksum 0x%x"
" cumulative_ip_length 0x%x"
" tcp_sequence_number 0x%x",
index,
fse->src_ip_127_96,
fse->src_ip_95_64,
fse->src_ip_63_32,
fse->src_ip_31_0,
fse->dest_ip_127_96,
fse->dest_ip_95_64,
fse->dest_ip_63_32,
fse->dest_ip_31_0,
fse->src_port,
fse->dest_port,
fse->l4_protocol,
fse->valid,
fse->reo_destination_indication,
fse->msdu_drop,
fse->reo_destination_handler,
fse->metadata,
fse->aggregation_count,
fse->lro_eligible,
fse->msdu_count,
fse->msdu_byte_count,
fse->timestamp,
fse->cumulative_l4_checksum,
fse->cumulative_ip_length,
fse->tcp_sequence_number);
}
void hal_rx_dump_fse_table(struct hal_rx_fst *fst)
{
int i = 0;
struct rx_flow_search_entry *fse =
(struct rx_flow_search_entry *)fst->base_vaddr;
dp_info("Number flow table entries %d", fst->add_flow_count);
for (i = 0; i < fst->max_entries; i++) {
if (fse[i].valid)
hal_rx_dump_fse(&fse[i], i);
}
}
void hal_rx_dump_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset,
int index)
{
struct rx_flow_search_entry fse = {0};
if (!fse_offset)
return;
hal_rx_flow_get_cmem_fse(hal_soc_hdl, fse_offset, (uint32_t *)&fse,
sizeof(struct rx_flow_search_entry));
if (fse.valid)
hal_rx_dump_fse(&fse, index);
}
#else
void hal_rx_dump_fse_table(struct hal_rx_fst *fst)
{
}
void hal_rx_dump_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset,
int index)
{
}
#endif
/**
* hal_rx_flow_setup_fse() - Setup a flow search entry in HW FST
* @fst: Pointer to the Rx Flow Search Table
* @table_offset: offset into the table where the flow is to be setup
* @flow: Flow Parameters
*
* Return: Success/Failure
*/
void *
hal_rx_flow_setup_fse(hal_soc_handle_t hal_soc_hdl,
struct hal_rx_fst *fst, uint32_t table_offset,
struct hal_rx_flow *flow)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (hal_soc->ops->hal_rx_flow_setup_fse) {
return hal_soc->ops->hal_rx_flow_setup_fse((uint8_t *)fst,
table_offset,
(uint8_t *)flow);
}
return NULL;
}
qdf_export_symbol(hal_rx_flow_setup_fse);
/**
* hal_rx_flow_setup_cmem_fse() - Setup a flow search entry in HW CMEM FST
* @hal_soc_hdl: HAL SOC handle
* @cmem_ba: CMEM base address
* @table_offset: offset into the table where the flow is to be setup
* @flow: Flow Parameters
*
* Return: Success/Failure
*/
uint32_t
hal_rx_flow_setup_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t cmem_ba,
uint32_t table_offset, struct hal_rx_flow *flow)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (hal_soc->ops->hal_rx_flow_setup_cmem_fse) {
return hal_soc->ops->hal_rx_flow_setup_cmem_fse(
hal_soc, cmem_ba,
table_offset, (uint8_t *)flow);
}
return 0;
}
qdf_export_symbol(hal_rx_flow_setup_cmem_fse);
/**
* hal_rx_flow_get_cmem_fse_timestamp() - Get timestamp field from CMEM FSE
* @hal_soc_hdl: HAL SOC handle
* @fse_offset: CMEM FSE offset
*
* Return: Timestamp
*/
uint32_t hal_rx_flow_get_cmem_fse_timestamp(hal_soc_handle_t hal_soc_hdl,
uint32_t fse_offset)
{
struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
if (hal_soc->ops->hal_rx_flow_get_cmem_fse_ts) {
return hal_soc->ops->hal_rx_flow_get_cmem_fse_ts(hal_soc,
fse_offset);
}
return 0;
}
qdf_export_symbol(hal_rx_flow_get_cmem_fse_timestamp);
/**
* hal_rx_flow_delete_entry() - Delete a flow from the Rx Flow Search Table
* @fst: Pointer to the Rx Flow Search Table
* @hal_rx_fse: Pointer to the Rx Flow that is to be deleted from the FST
*
* Return: Success/Failure
*/
QDF_STATUS
hal_rx_flow_delete_entry(struct hal_rx_fst *fst, void *hal_rx_fse)
{
uint8_t *fse = (uint8_t *)hal_rx_fse;
if (!HAL_GET_FLD(fse, HAL_RX_FLOW_SEARCH_ENTRY, VALID))
return QDF_STATUS_E_NOENT;
HAL_CLR_FLD(fse, HAL_RX_FLOW_SEARCH_ENTRY, VALID);
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(hal_rx_flow_delete_entry);
#ifndef WLAN_SUPPORT_RX_FISA
/**
* hal_rx_fst_key_configure() - Configure the Toeplitz key in the FST
* @fst: Pointer to the Rx Flow Search Table
*
* Return: Success/Failure
*/
static void hal_rx_fst_key_configure(struct hal_rx_fst *fst)
{
uint8_t key_bytes[HAL_FST_HASH_KEY_SIZE_BYTES];
qdf_mem_copy(key_bytes, fst->key, HAL_FST_HASH_KEY_SIZE_BYTES);
/**
* The Toeplitz algorithm as per the Microsoft spec works in a
* “big-endian” manner, using the MSBs of the key to hash the
* initial bytes of the input going on to use up the lower order bits
* of the key to hash further bytes of the input until the LSBs of the
* key are used finally.
*
* So first, rightshift 320-bit input key 5 times to get 315 MS bits
*/
key_bitwise_shift_left(key_bytes, HAL_FST_HASH_KEY_SIZE_BYTES, 5);
key_reverse(fst->shifted_key, key_bytes, HAL_FST_HASH_KEY_SIZE_BYTES);
}
#else
static void hal_rx_fst_key_configure(struct hal_rx_fst *fst)
{
}
#endif
/**
* hal_rx_fst_get_base() - Retrieve the virtual base address of the Rx FST
* @fst: Pointer to the Rx Flow Search Table
*
* Return: Success/Failure
*/
static inline void *hal_rx_fst_get_base(struct hal_rx_fst *fst)
{
return fst->base_vaddr;
}
/**
* hal_rx_fst_get_fse_size() - Retrieve the size of each entry(flow) in Rx FST
*
* Return: size of each entry/flow in Rx FST
*/
static inline uint32_t hal_rx_fst_get_fse_size(void)
{
return HAL_RX_FST_ENTRY_SIZE;
}
/**
* hal_rx_flow_get_tuple_info() - Retrieve the 5-tuple flow info for an entry
* @hal_fse: Pointer to the Flow in Rx FST
* @tuple_info: 5-tuple info of the flow returned to the caller
*
* Return: Success/Failure
*/
QDF_STATUS hal_rx_flow_get_tuple_info(void *hal_fse,
struct hal_flow_tuple_info *tuple_info)
{
if (!hal_fse || !tuple_info)
return QDF_STATUS_E_INVAL;
if (!HAL_GET_FLD(hal_fse, HAL_RX_FLOW_SEARCH_ENTRY, VALID))
return QDF_STATUS_E_NOENT;
tuple_info->src_ip_127_96 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
SRC_IP_127_96));
tuple_info->src_ip_95_64 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
SRC_IP_95_64));
tuple_info->src_ip_63_32 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
SRC_IP_63_32));
tuple_info->src_ip_31_0 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
SRC_IP_31_0));
tuple_info->dest_ip_127_96 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
DEST_IP_127_96));
tuple_info->dest_ip_95_64 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
DEST_IP_95_64));
tuple_info->dest_ip_63_32 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
DEST_IP_63_32));
tuple_info->dest_ip_31_0 =
qdf_ntohl(HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
DEST_IP_31_0));
tuple_info->dest_port = HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
DEST_PORT);
tuple_info->src_port = HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
SRC_PORT);
tuple_info->l4_protocol = HAL_GET_FLD(hal_fse,
HAL_RX_FLOW_SEARCH_ENTRY,
L4_PROTOCOL);
return QDF_STATUS_SUCCESS;
}
#ifndef WLAN_SUPPORT_RX_FISA
/**
* hal_flow_toeplitz_create_cache() - Calculate hashes for each possible
* byte value with the key taken as is
*
* @fst: FST Handle
* @key: Hash Key
*
* Return: Success/Failure
*/
static void hal_flow_toeplitz_create_cache(struct hal_rx_fst *fst)
{
int bit;
int val;
int i;
uint8_t *key = fst->shifted_key;
/*
* Initialise to first 32 bits of the key; shift in further key material
* through the loop
*/
uint32_t cur_key = (key[0] << 24) | (key[1] << 16) | (key[2] << 8) |
key[3];
for (i = 0; i < HAL_FST_HASH_KEY_SIZE_BYTES; i++) {
uint8_t new_key_byte;
uint32_t shifted_key[8];
if (i + 4 < HAL_FST_HASH_KEY_SIZE_BYTES)
new_key_byte = key[i + 4];
else
new_key_byte = 0;
shifted_key[0] = cur_key;
for (bit = 1; bit < 8; bit++) {
/*
* For each iteration, shift out one more bit of the
* current key and shift in one more bit of the new key
* material
*/
shifted_key[bit] = cur_key << bit |
new_key_byte >> (8 - bit);
}
for (val = 0; val < (1 << 8); val++) {
uint32_t hash = 0;
int mask;
/*
* For each bit set in the input, XOR in
* the appropriately shifted key
*/
for (bit = 0, mask = 1 << 7; bit < 8; bit++, mask >>= 1)
if ((val & mask))
hash ^= shifted_key[bit];
fst->key_cache[i][val] = hash;
}
cur_key = cur_key << 8 | new_key_byte;
}
}
#else
static void hal_flow_toeplitz_create_cache(struct hal_rx_fst *fst)
{
}
#endif
/**
* hal_rx_fst_attach() - Initialize Rx flow search table in HW FST
*
* @qdf_dev: QDF device handle
* @hal_fst_base_paddr: Pointer to the physical base address of the Rx FST
* @max_entries: Max number of flows allowed in the FST
* @max_search: Number of collisions allowed in the hash-based FST
* @hash_key: Toeplitz key used for the hash FST
*
* Return:
*/
struct hal_rx_fst *
hal_rx_fst_attach(qdf_device_t qdf_dev,
uint64_t *hal_fst_base_paddr, uint16_t max_entries,
uint16_t max_search, uint8_t *hash_key)
{
struct hal_rx_fst *fst = qdf_mem_malloc(sizeof(struct hal_rx_fst));
if (!fst) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("hal fst allocation failed,"));
return NULL;
}
qdf_mem_set(fst, sizeof(struct hal_rx_fst), 0);
fst->key = hash_key;
fst->max_skid_length = max_search;
fst->max_entries = max_entries;
fst->hash_mask = max_entries - 1;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
"HAL FST allocation %pK %d * %d\n", fst,
fst->max_entries, HAL_RX_FST_ENTRY_SIZE);
fst->base_vaddr = (uint8_t *)qdf_mem_alloc_consistent(qdf_dev,
qdf_dev->dev,
(fst->max_entries * HAL_RX_FST_ENTRY_SIZE),
&fst->base_paddr);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
"hal_rx_fst base address 0x%pK", (void *)fst->base_paddr);
if (!fst->base_vaddr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("hal fst->base_vaddr allocation failed"));
qdf_mem_free(fst);
return NULL;
}
QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_DEBUG,
(void *)fst->key, HAL_FST_HASH_KEY_SIZE_BYTES);
qdf_mem_set((uint8_t *)fst->base_vaddr,
(fst->max_entries * HAL_RX_FST_ENTRY_SIZE), 0);
hal_rx_fst_key_configure(fst);
hal_flow_toeplitz_create_cache(fst);
*hal_fst_base_paddr = (uint64_t)fst->base_paddr;
return fst;
}
qdf_export_symbol(hal_rx_fst_attach);
/**
* hal_rx_fst_detach() - De-init the Rx flow search table from HW
*
* @rx_fst: Pointer to the Rx FST
* @qdf_dev: QDF device handle
*
* Return:
*/
void hal_rx_fst_detach(struct hal_rx_fst *rx_fst,
qdf_device_t qdf_dev)
{
if (!rx_fst || !qdf_dev)
return;
qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
rx_fst->max_entries * HAL_RX_FST_ENTRY_SIZE,
rx_fst->base_vaddr, rx_fst->base_paddr, 0);
qdf_mem_free(rx_fst);
}
qdf_export_symbol(hal_rx_fst_detach);
#ifndef WLAN_SUPPORT_RX_FISA
/**
* hal_flow_toeplitz_hash() - Calculate Toeplitz hash by using the cached key
*
* @hal_fst: FST Handle
* @flow: Flow Parameters
*
* Return: Success/Failure
*/
uint32_t
hal_flow_toeplitz_hash(void *hal_fst, struct hal_rx_flow *flow)
{
int i, j;
uint32_t hash = 0;
struct hal_rx_fst *fst = (struct hal_rx_fst *)hal_fst;
uint32_t input[HAL_FST_HASH_KEY_SIZE_WORDS];
uint8_t *tuple;
qdf_mem_zero(input, HAL_FST_HASH_KEY_SIZE_BYTES);
*(uint32_t *)&input[0] = qdf_htonl(flow->tuple_info.src_ip_127_96);
*(uint32_t *)&input[1] = qdf_htonl(flow->tuple_info.src_ip_95_64);
*(uint32_t *)&input[2] = qdf_htonl(flow->tuple_info.src_ip_63_32);
*(uint32_t *)&input[3] = qdf_htonl(flow->tuple_info.src_ip_31_0);
*(uint32_t *)&input[4] = qdf_htonl(flow->tuple_info.dest_ip_127_96);
*(uint32_t *)&input[5] = qdf_htonl(flow->tuple_info.dest_ip_95_64);
*(uint32_t *)&input[6] = qdf_htonl(flow->tuple_info.dest_ip_63_32);
*(uint32_t *)&input[7] = qdf_htonl(flow->tuple_info.dest_ip_31_0);
*(uint32_t *)&input[8] = (flow->tuple_info.dest_port << 16) |
(flow->tuple_info.src_port);
*(uint32_t *)&input[9] = flow->tuple_info.l4_protocol;
tuple = (uint8_t *)input;
QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
tuple, sizeof(input));
for (i = 0, j = HAL_FST_HASH_DATA_SIZE - 1;
i < HAL_FST_HASH_KEY_SIZE_BYTES && j >= 0; i++, j--) {
hash ^= fst->key_cache[i][tuple[j]];
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
"Hash value %u %u truncated hash %u\n", hash,
(hash >> 12), (hash >> 12) % (fst->max_entries));
hash >>= 12;
hash &= (fst->max_entries - 1);
return hash;
}
#else
uint32_t
hal_flow_toeplitz_hash(void *hal_fst, struct hal_rx_flow *flow)
{
return 0;
}
#endif
qdf_export_symbol(hal_flow_toeplitz_hash);
/**
* hal_rx_get_hal_hash() - Retrieve hash index of a flow in the FST table
*
* @hal_fst: HAL Rx FST Handle
* @flow_hash: Flow hash computed from flow tuple
*
* Return: hash index truncated to the size of the hash table
*/
uint32_t hal_rx_get_hal_hash(struct hal_rx_fst *hal_fst, uint32_t flow_hash)
{
uint32_t trunc_hash = flow_hash;
/* Take care of hash wrap around scenario */
if (flow_hash >= hal_fst->max_entries)
trunc_hash &= hal_fst->hash_mask;
return trunc_hash;
}
qdf_export_symbol(hal_rx_get_hal_hash);
/**
* hal_rx_insert_flow_entry() - Add a flow into the FST table
*
* @hal_fst: HAL Rx FST Handle
* @flow_hash: Flow hash computed from flow tuple
* @flow_tuple_info: Flow tuple used to compute the hash
* @flow_index: Hash index of the flow in the table when inserted successfully
*
* Return: Success if flow is inserted into the table, error otherwise
*/
QDF_STATUS
hal_rx_insert_flow_entry(struct hal_rx_fst *fst, uint32_t flow_hash,
void *flow_tuple_info, uint32_t *flow_idx)
{
int i;
void *hal_fse = NULL;
uint32_t hal_hash = 0;
struct hal_flow_tuple_info hal_tuple_info = { 0 };
QDF_STATUS status;
for (i = 0; i < fst->max_skid_length; i++) {
hal_hash = hal_rx_get_hal_hash(fst, (flow_hash + i));
hal_fse = (uint8_t *)fst->base_vaddr +
(hal_hash * HAL_RX_FST_ENTRY_SIZE);
status = hal_rx_flow_get_tuple_info(hal_fse, &hal_tuple_info);
if (status == QDF_STATUS_E_NOENT)
break;
/* Find the matching flow entry in HW FST */
if (!qdf_mem_cmp(&hal_tuple_info,
flow_tuple_info,
sizeof(struct hal_flow_tuple_info))) {
dp_err("Duplicate flow entry in FST %u at skid %u ",
hal_hash, i);
return QDF_STATUS_E_EXISTS;
}
}
if (i == fst->max_skid_length) {
dp_err("Max skid length reached for hash %u", flow_hash);
return QDF_STATUS_E_RANGE;
}
*flow_idx = hal_hash;
dp_info("flow_hash = %u, skid_entry = %d, flow_addr = %pK flow_idx = %d",
flow_hash, i, hal_fse, *flow_idx);
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(hal_rx_insert_flow_entry);
/**
* hal_rx_find_flow_from_tuple() - Find a flow in the FST table
*
* @fst: HAL Rx FST Handle
* @flow_hash: Flow hash computed from flow tuple
* @flow_tuple_info: Flow tuple used to compute the hash
* @flow_index: Hash index of the flow in the table when found
*
* Return: Success if matching flow is found in the table, error otherwise
*/
QDF_STATUS
hal_rx_find_flow_from_tuple(struct hal_rx_fst *fst, uint32_t flow_hash,
void *flow_tuple_info, uint32_t *flow_idx)
{
int i;
void *hal_fse = NULL;
uint32_t hal_hash = 0;
struct hal_flow_tuple_info hal_tuple_info = { 0 };
QDF_STATUS status;
for (i = 0; i < fst->max_skid_length; i++) {
hal_hash = hal_rx_get_hal_hash(fst, (flow_hash + i));
hal_fse = (uint8_t *)fst->base_vaddr +
(hal_hash * HAL_RX_FST_ENTRY_SIZE);
status = hal_rx_flow_get_tuple_info(hal_fse, &hal_tuple_info);
if (status != QDF_STATUS_SUCCESS)
continue;
/* Find the matching flow entry in HW FST */
if (!qdf_mem_cmp(&hal_tuple_info,
flow_tuple_info,
sizeof(struct hal_flow_tuple_info))) {
break;
}
}
if (i == fst->max_skid_length) {
dp_err("Max skid length reached for hash %u", flow_hash);
return QDF_STATUS_E_RANGE;
}
*flow_idx = hal_hash;
dp_info("flow_hash = %u, skid_entry = %d, flow_addr = %pK flow_idx = %d",
flow_hash, i, hal_fse, *flow_idx);
return QDF_STATUS_SUCCESS;
}
qdf_export_symbol(hal_rx_find_flow_from_tuple);