msm-pcm-afe-v2.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/init.h>
  5. #include <linux/err.h>
  6. #include <linux/module.h>
  7. #include <linux/moduleparam.h>
  8. #include <linux/time.h>
  9. #include <linux/wait.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/slab.h>
  12. #include <linux/dma-mapping.h>
  13. #include <sound/core.h>
  14. #include <sound/soc.h>
  15. #include <sound/soc-dapm.h>
  16. #include <sound/pcm.h>
  17. #include <sound/initval.h>
  18. #include <sound/control.h>
  19. #include <asm/dma.h>
  20. #include <dsp/msm_audio_ion.h>
  21. #include <dsp/q6adm-v2.h>
  22. #include "msm-pcm-afe-v2.h"
  23. #define DRV_NAME "msm-pcm-afe-v2"
  24. #define TIMEOUT_MS 1000
  25. #define MIN_PLAYBACK_PERIOD_SIZE (128 * 2)
  26. #define MAX_PLAYBACK_PERIOD_SIZE (128 * 2 * 2 * 6)
  27. #define MIN_PLAYBACK_NUM_PERIODS (4)
  28. #define MAX_PLAYBACK_NUM_PERIODS (384)
  29. #define MIN_CAPTURE_PERIOD_SIZE (128 * 2)
  30. #define MAX_CAPTURE_PERIOD_SIZE (192 * 2 * 2 * 8 * 4)
  31. #define MIN_CAPTURE_NUM_PERIODS (4)
  32. #define MAX_CAPTURE_NUM_PERIODS (384)
  33. static struct snd_pcm_hardware msm_afe_hardware_playback = {
  34. .info = (SNDRV_PCM_INFO_MMAP |
  35. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  36. SNDRV_PCM_INFO_MMAP_VALID |
  37. SNDRV_PCM_INFO_INTERLEAVED),
  38. .formats = SNDRV_PCM_FMTBIT_S16_LE|
  39. SNDRV_PCM_FMTBIT_S24_LE,
  40. .rates = (SNDRV_PCM_RATE_8000 |
  41. SNDRV_PCM_RATE_16000 |
  42. SNDRV_PCM_RATE_48000),
  43. .rate_min = 8000,
  44. .rate_max = 48000,
  45. .channels_min = 1,
  46. .channels_max = 6,
  47. .buffer_bytes_max = MAX_PLAYBACK_PERIOD_SIZE *
  48. MAX_PLAYBACK_NUM_PERIODS,
  49. .period_bytes_min = MIN_PLAYBACK_PERIOD_SIZE,
  50. .period_bytes_max = MAX_PLAYBACK_PERIOD_SIZE,
  51. .periods_min = MIN_PLAYBACK_NUM_PERIODS,
  52. .periods_max = MAX_PLAYBACK_NUM_PERIODS,
  53. .fifo_size = 0,
  54. };
  55. static struct snd_pcm_hardware msm_afe_hardware_capture = {
  56. .info = (SNDRV_PCM_INFO_MMAP |
  57. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  58. SNDRV_PCM_INFO_MMAP_VALID |
  59. SNDRV_PCM_INFO_INTERLEAVED),
  60. .formats = SNDRV_PCM_FMTBIT_S16_LE|
  61. SNDRV_PCM_FMTBIT_S24_LE,
  62. .rates = (SNDRV_PCM_RATE_8000 |
  63. SNDRV_PCM_RATE_16000 |
  64. SNDRV_PCM_RATE_48000),
  65. .rate_min = 8000,
  66. .rate_max = 48000,
  67. .channels_min = 1,
  68. .channels_max = 6,
  69. .buffer_bytes_max = MAX_CAPTURE_PERIOD_SIZE *
  70. MAX_CAPTURE_NUM_PERIODS,
  71. .period_bytes_min = MIN_CAPTURE_PERIOD_SIZE,
  72. .period_bytes_max = MAX_CAPTURE_PERIOD_SIZE,
  73. .periods_min = MIN_CAPTURE_NUM_PERIODS,
  74. .periods_max = MAX_CAPTURE_NUM_PERIODS,
  75. .fifo_size = 0,
  76. };
  77. static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt);
  78. static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt);
  79. static enum hrtimer_restart afe_hrtimer_callback(struct hrtimer *hrt)
  80. {
  81. struct pcm_afe_info *prtd =
  82. container_of(hrt, struct pcm_afe_info, hrt);
  83. struct snd_pcm_substream *substream = prtd->substream;
  84. struct snd_pcm_runtime *runtime = substream->runtime;
  85. u32 mem_map_handle = 0;
  86. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  87. if (!mem_map_handle)
  88. pr_err("%s: mem_map_handle is NULL\n", __func__);
  89. if (prtd->start) {
  90. pr_debug("sending frame to DSP: poll_time: %d\n",
  91. prtd->poll_time);
  92. if (prtd->dsp_cnt == runtime->periods)
  93. prtd->dsp_cnt = 0;
  94. pr_debug("%s: mem_map_handle 0x%x\n", __func__, mem_map_handle);
  95. afe_rt_proxy_port_write(
  96. (prtd->dma_addr +
  97. (prtd->dsp_cnt *
  98. snd_pcm_lib_period_bytes(prtd->substream))), mem_map_handle,
  99. snd_pcm_lib_period_bytes(prtd->substream));
  100. prtd->dsp_cnt++;
  101. hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
  102. * 1000));
  103. return HRTIMER_RESTART;
  104. } else
  105. return HRTIMER_NORESTART;
  106. }
  107. static enum hrtimer_restart afe_hrtimer_rec_callback(struct hrtimer *hrt)
  108. {
  109. struct pcm_afe_info *prtd =
  110. container_of(hrt, struct pcm_afe_info, hrt);
  111. struct snd_pcm_substream *substream = prtd->substream;
  112. struct snd_pcm_runtime *runtime = substream->runtime;
  113. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  114. u32 mem_map_handle = 0;
  115. int port_id = rtd->cpu_dai->id;
  116. int ret;
  117. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  118. if (!mem_map_handle)
  119. pr_err("%s: mem_map_handle is NULL\n", __func__);
  120. if (prtd->start) {
  121. if (prtd->dsp_cnt == runtime->periods)
  122. prtd->dsp_cnt = 0;
  123. pr_debug("%s: mem_map_handle 0x%x\n", __func__, mem_map_handle);
  124. ret = afe_rt_proxy_port_read(
  125. (prtd->dma_addr + (prtd->dsp_cnt
  126. * snd_pcm_lib_period_bytes(prtd->substream))), mem_map_handle,
  127. snd_pcm_lib_period_bytes(prtd->substream), port_id);
  128. if (ret < 0) {
  129. pr_err("%s: AFE port read fails: %d\n", __func__, ret);
  130. prtd->start = 0;
  131. return HRTIMER_NORESTART;
  132. }
  133. prtd->dsp_cnt++;
  134. pr_debug("sending frame rec to DSP: poll_time: %d\n",
  135. prtd->poll_time);
  136. hrtimer_forward_now(hrt, ns_to_ktime(prtd->poll_time
  137. * 1000));
  138. return HRTIMER_RESTART;
  139. } else
  140. return HRTIMER_NORESTART;
  141. }
  142. static void pcm_afe_process_tx_pkt(uint32_t opcode,
  143. uint32_t token, uint32_t *payload,
  144. void *priv)
  145. {
  146. struct pcm_afe_info *prtd = priv;
  147. unsigned long dsp_flags;
  148. struct snd_pcm_substream *substream = NULL;
  149. struct snd_pcm_runtime *runtime = NULL;
  150. uint16_t event;
  151. uint64_t period_bytes;
  152. uint64_t bytes_one_sec;
  153. if (prtd == NULL)
  154. return;
  155. substream = prtd->substream;
  156. runtime = substream->runtime;
  157. pr_debug("%s\n", __func__);
  158. spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
  159. switch (opcode) {
  160. case AFE_EVENT_RT_PROXY_PORT_STATUS: {
  161. event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
  162. switch (event) {
  163. case AFE_EVENT_RTPORT_START: {
  164. prtd->dsp_cnt = 0;
  165. /* Calculate poll time.
  166. * Split steps to avoid overflow.
  167. * Poll time-time corresponding to one period
  168. * in bytes.
  169. * (Samplerate * channelcount * format) =
  170. * bytes in 1 sec.
  171. * Poll time =
  172. * (period bytes / bytes in one sec) *
  173. * 1000000 micro seconds.
  174. * Multiplication by 1000000 is done in two
  175. * steps to keep the accuracy of poll time.
  176. */
  177. if (prtd->mmap_flag) {
  178. period_bytes = ((uint64_t)(
  179. (snd_pcm_lib_period_bytes(
  180. prtd->substream)) *
  181. 1000));
  182. bytes_one_sec = (runtime->rate
  183. * runtime->channels * 2);
  184. bytes_one_sec =
  185. div_u64(bytes_one_sec, 1000);
  186. prtd->poll_time =
  187. div_u64(period_bytes,
  188. bytes_one_sec);
  189. pr_debug("prtd->poll_time: %d",
  190. prtd->poll_time);
  191. }
  192. break;
  193. }
  194. case AFE_EVENT_RTPORT_STOP:
  195. pr_debug("%s: event!=0\n", __func__);
  196. prtd->start = 0;
  197. snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
  198. break;
  199. case AFE_EVENT_RTPORT_LOW_WM:
  200. pr_debug("%s: Underrun\n", __func__);
  201. break;
  202. case AFE_EVENT_RTPORT_HI_WM:
  203. pr_debug("%s: Overrun\n", __func__);
  204. break;
  205. default:
  206. break;
  207. }
  208. break;
  209. }
  210. case APR_BASIC_RSP_RESULT: {
  211. switch (payload[0]) {
  212. case AFE_PORT_DATA_CMD_RT_PROXY_PORT_WRITE_V2:
  213. pr_debug("write done\n");
  214. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  215. (prtd->substream);
  216. snd_pcm_period_elapsed(prtd->substream);
  217. break;
  218. default:
  219. break;
  220. }
  221. break;
  222. }
  223. case RESET_EVENTS:
  224. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  225. (prtd->substream);
  226. prtd->reset_event = true;
  227. snd_pcm_period_elapsed(prtd->substream);
  228. break;
  229. default:
  230. break;
  231. }
  232. spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
  233. }
  234. static void pcm_afe_process_rx_pkt(uint32_t opcode,
  235. uint32_t token, uint32_t *payload,
  236. void *priv)
  237. {
  238. struct pcm_afe_info *prtd = priv;
  239. unsigned long dsp_flags;
  240. struct snd_pcm_substream *substream = NULL;
  241. struct snd_pcm_runtime *runtime = NULL;
  242. struct snd_soc_pcm_runtime *rtd = NULL;
  243. uint16_t event;
  244. uint64_t period_bytes;
  245. uint64_t bytes_one_sec;
  246. uint32_t mem_map_handle = 0;
  247. int port_id = 0;
  248. if (prtd == NULL)
  249. return;
  250. substream = prtd->substream;
  251. runtime = substream->runtime;
  252. rtd = substream->private_data;
  253. port_id = rtd->cpu_dai->id;
  254. pr_debug("%s\n", __func__);
  255. spin_lock_irqsave(&prtd->dsp_lock, dsp_flags);
  256. switch (opcode) {
  257. case AFE_EVENT_RT_PROXY_PORT_STATUS: {
  258. event = (uint16_t)((0xFFFF0000 & payload[0]) >> 0x10);
  259. switch (event) {
  260. case AFE_EVENT_RTPORT_START: {
  261. prtd->dsp_cnt = 0;
  262. /* Calculate poll time. Split steps to avoid overflow.
  263. * Poll time-time corresponding to one period in bytes.
  264. * (Samplerate * channelcount * format)=bytes in 1 sec.
  265. * Poll time = (period bytes / bytes in one sec) *
  266. * 1000000 micro seconds.
  267. * Multiplication by 1000000 is done in two steps to
  268. * keep the accuracy of poll time.
  269. */
  270. if (prtd->mmap_flag) {
  271. period_bytes = ((uint64_t)(
  272. (snd_pcm_lib_period_bytes(
  273. prtd->substream)) * 1000));
  274. bytes_one_sec = (runtime->rate *
  275. runtime->channels * 2);
  276. bytes_one_sec = div_u64(bytes_one_sec, 1000);
  277. prtd->poll_time =
  278. div_u64(period_bytes, bytes_one_sec);
  279. pr_debug("prtd->poll_time : %d\n",
  280. prtd->poll_time);
  281. } else {
  282. mem_map_handle =
  283. afe_req_mmap_handle(prtd->audio_client);
  284. if (!mem_map_handle)
  285. pr_err("%s:mem_map_handle is NULL\n",
  286. __func__);
  287. /* Do initial read to start transfer */
  288. afe_rt_proxy_port_read((prtd->dma_addr +
  289. (prtd->dsp_cnt *
  290. snd_pcm_lib_period_bytes(
  291. prtd->substream))),
  292. mem_map_handle,
  293. snd_pcm_lib_period_bytes(
  294. prtd->substream),
  295. port_id);
  296. prtd->dsp_cnt++;
  297. }
  298. break;
  299. }
  300. case AFE_EVENT_RTPORT_STOP:
  301. pr_debug("%s: event!=0\n", __func__);
  302. prtd->start = 0;
  303. snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
  304. break;
  305. case AFE_EVENT_RTPORT_LOW_WM:
  306. pr_debug("%s: Underrun\n", __func__);
  307. break;
  308. case AFE_EVENT_RTPORT_HI_WM:
  309. pr_debug("%s: Overrun\n", __func__);
  310. break;
  311. default:
  312. break;
  313. }
  314. break;
  315. }
  316. case APR_BASIC_RSP_RESULT: {
  317. switch (payload[0]) {
  318. case AFE_PORT_DATA_CMD_RT_PROXY_PORT_READ_V2:
  319. pr_debug("%s :Read done\n", __func__);
  320. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  321. (prtd->substream);
  322. if (!prtd->mmap_flag) {
  323. atomic_set(&prtd->rec_bytes_avail, 1);
  324. wake_up(&prtd->read_wait);
  325. }
  326. snd_pcm_period_elapsed(prtd->substream);
  327. break;
  328. default:
  329. break;
  330. }
  331. break;
  332. }
  333. case RESET_EVENTS:
  334. prtd->pcm_irq_pos += snd_pcm_lib_period_bytes
  335. (prtd->substream);
  336. prtd->reset_event = true;
  337. if (!prtd->mmap_flag) {
  338. atomic_set(&prtd->rec_bytes_avail, 1);
  339. wake_up(&prtd->read_wait);
  340. }
  341. snd_pcm_period_elapsed(prtd->substream);
  342. break;
  343. default:
  344. break;
  345. }
  346. spin_unlock_irqrestore(&prtd->dsp_lock, dsp_flags);
  347. }
  348. static int msm_afe_playback_prepare(struct snd_pcm_substream *substream)
  349. {
  350. struct snd_pcm_runtime *runtime = substream->runtime;
  351. struct pcm_afe_info *prtd = runtime->private_data;
  352. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  353. struct snd_soc_dai *dai = rtd->cpu_dai;
  354. int ret = 0;
  355. pr_debug("%s: sample_rate=%d\n", __func__, runtime->rate);
  356. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  357. ret = afe_register_get_events(dai->id,
  358. pcm_afe_process_tx_pkt, prtd);
  359. if (ret < 0) {
  360. pr_err("afe-pcm:register for events failed\n");
  361. return ret;
  362. }
  363. pr_debug("%s:success\n", __func__);
  364. prtd->prepared++;
  365. return ret;
  366. }
  367. static int msm_afe_capture_prepare(struct snd_pcm_substream *substream)
  368. {
  369. struct snd_pcm_runtime *runtime = substream->runtime;
  370. struct pcm_afe_info *prtd = runtime->private_data;
  371. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  372. struct snd_soc_dai *dai = rtd->cpu_dai;
  373. int ret = 0;
  374. pr_debug("%s\n", __func__);
  375. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  376. ret = afe_register_get_events(dai->id,
  377. pcm_afe_process_rx_pkt, prtd);
  378. if (ret < 0) {
  379. pr_err("afe-pcm:register for events failed\n");
  380. return ret;
  381. }
  382. pr_debug("%s:success\n", __func__);
  383. prtd->prepared++;
  384. return 0;
  385. }
  386. /* Conventional and unconventional sample rate supported */
  387. static unsigned int supported_sample_rates[] = {
  388. 8000, 16000, 48000
  389. };
  390. static struct snd_pcm_hw_constraint_list constraints_sample_rates = {
  391. .count = ARRAY_SIZE(supported_sample_rates),
  392. .list = supported_sample_rates,
  393. .mask = 0,
  394. };
  395. static int msm_afe_open(struct snd_pcm_substream *substream)
  396. {
  397. struct snd_pcm_runtime *runtime = substream->runtime;
  398. struct pcm_afe_info *prtd = NULL;
  399. int ret = 0;
  400. prtd = kzalloc(sizeof(struct pcm_afe_info), GFP_KERNEL);
  401. if (prtd == NULL)
  402. return -ENOMEM;
  403. pr_debug("prtd %pK\n", prtd);
  404. mutex_init(&prtd->lock);
  405. spin_lock_init(&prtd->dsp_lock);
  406. prtd->dsp_cnt = 0;
  407. mutex_lock(&prtd->lock);
  408. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  409. runtime->hw = msm_afe_hardware_playback;
  410. else
  411. runtime->hw = msm_afe_hardware_capture;
  412. prtd->substream = substream;
  413. runtime->private_data = prtd;
  414. prtd->audio_client = q6afe_audio_client_alloc(prtd);
  415. if (!prtd->audio_client) {
  416. pr_debug("%s: Could not allocate memory\n", __func__);
  417. mutex_unlock(&prtd->lock);
  418. kfree(prtd);
  419. return -ENOMEM;
  420. }
  421. atomic_set(&prtd->rec_bytes_avail, 0);
  422. init_waitqueue_head(&prtd->read_wait);
  423. hrtimer_init(&prtd->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  424. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  425. prtd->hrt.function = afe_hrtimer_callback;
  426. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  427. prtd->hrt.function = afe_hrtimer_rec_callback;
  428. mutex_unlock(&prtd->lock);
  429. ret = snd_pcm_hw_constraint_list(runtime, 0,
  430. SNDRV_PCM_HW_PARAM_RATE,
  431. &constraints_sample_rates);
  432. if (ret < 0)
  433. pr_err("snd_pcm_hw_constraint_list failed\n");
  434. /* Ensure that buffer size is a multiple of period size */
  435. ret = snd_pcm_hw_constraint_integer(runtime,
  436. SNDRV_PCM_HW_PARAM_PERIODS);
  437. if (ret < 0)
  438. pr_err("snd_pcm_hw_constraint_integer failed\n");
  439. if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
  440. ret = snd_pcm_hw_constraint_minmax(runtime,
  441. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  442. MIN_CAPTURE_NUM_PERIODS * MIN_CAPTURE_PERIOD_SIZE,
  443. MAX_CAPTURE_NUM_PERIODS * MAX_CAPTURE_PERIOD_SIZE);
  444. if (ret < 0) {
  445. pr_err("constraint for buffer bytes min max ret = %d\n",
  446. ret);
  447. }
  448. }
  449. prtd->reset_event = false;
  450. return 0;
  451. }
  452. static int msm_afe_playback_copy(struct snd_pcm_substream *substream,
  453. int channel, unsigned long hwoff,
  454. void __user *buf, unsigned long fbytes)
  455. {
  456. int ret = 0;
  457. struct snd_pcm_runtime *runtime = substream->runtime;
  458. struct pcm_afe_info *prtd = runtime->private_data;
  459. char *hwbuf = runtime->dma_area + hwoff;
  460. u32 mem_map_handle = 0;
  461. pr_debug("%s : appl_ptr 0x%lx hw_ptr 0x%lx dest_to_copy 0x%pK\n",
  462. __func__,
  463. runtime->control->appl_ptr, runtime->status->hw_ptr, hwbuf);
  464. if (copy_from_user(hwbuf, buf, fbytes)) {
  465. pr_err("%s :Failed to copy audio from user buffer\n",
  466. __func__);
  467. ret = -EFAULT;
  468. goto fail;
  469. }
  470. if (!prtd->mmap_flag) {
  471. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  472. if (!mem_map_handle) {
  473. pr_err("%s: mem_map_handle is NULL\n", __func__);
  474. ret = -EFAULT;
  475. goto fail;
  476. }
  477. pr_debug("%s : prtd-> dma_addr 0x%lx dsp_cnt %d\n", __func__,
  478. prtd->dma_addr, prtd->dsp_cnt);
  479. if (prtd->dsp_cnt == runtime->periods)
  480. prtd->dsp_cnt = 0;
  481. ret = afe_rt_proxy_port_write(
  482. (prtd->dma_addr + (prtd->dsp_cnt *
  483. snd_pcm_lib_period_bytes(prtd->substream))),
  484. mem_map_handle,
  485. snd_pcm_lib_period_bytes(prtd->substream));
  486. if (ret) {
  487. pr_err("%s: AFE proxy port write failed %d\n",
  488. __func__, ret);
  489. goto fail;
  490. }
  491. prtd->dsp_cnt++;
  492. }
  493. fail:
  494. return ret;
  495. }
  496. static int msm_afe_capture_copy(struct snd_pcm_substream *substream,
  497. int channel, unsigned long hwoff,
  498. void __user *buf, unsigned long fbytes)
  499. {
  500. int ret = 0;
  501. struct snd_pcm_runtime *runtime = substream->runtime;
  502. struct pcm_afe_info *prtd = runtime->private_data;
  503. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  504. int port_id = rtd->cpu_dai->id;
  505. char *hwbuf = runtime->dma_area + hwoff;
  506. u32 mem_map_handle = 0;
  507. if (!prtd->mmap_flag) {
  508. mem_map_handle = afe_req_mmap_handle(prtd->audio_client);
  509. if (!mem_map_handle) {
  510. pr_err("%s: mem_map_handle is NULL\n", __func__);
  511. ret = -EFAULT;
  512. goto fail;
  513. }
  514. if (prtd->dsp_cnt == runtime->periods)
  515. prtd->dsp_cnt = 0;
  516. ret = afe_rt_proxy_port_read((prtd->dma_addr +
  517. (prtd->dsp_cnt *
  518. snd_pcm_lib_period_bytes(prtd->substream))),
  519. mem_map_handle,
  520. snd_pcm_lib_period_bytes(prtd->substream),
  521. port_id);
  522. if (ret) {
  523. pr_err("%s: AFE proxy port read failed %d\n",
  524. __func__, ret);
  525. goto fail;
  526. }
  527. prtd->dsp_cnt++;
  528. ret = wait_event_timeout(prtd->read_wait,
  529. atomic_read(&prtd->rec_bytes_avail),
  530. msecs_to_jiffies(TIMEOUT_MS));
  531. if (ret < 0) {
  532. pr_err("%s: wait_event_timeout failed\n", __func__);
  533. ret = -ETIMEDOUT;
  534. goto fail;
  535. }
  536. atomic_set(&prtd->rec_bytes_avail, 0);
  537. }
  538. pr_debug("%s:appl_ptr 0x%lx hw_ptr 0x%lx src_to_copy 0x%pK\n",
  539. __func__, runtime->control->appl_ptr,
  540. runtime->status->hw_ptr, hwbuf);
  541. if (copy_to_user(buf, hwbuf, fbytes)) {
  542. pr_err("%s: copy to user failed\n", __func__);
  543. goto fail;
  544. ret = -EFAULT;
  545. }
  546. fail:
  547. return ret;
  548. }
  549. static int msm_afe_copy(struct snd_pcm_substream *substream, int channel,
  550. unsigned long hwoff, void __user *buf,
  551. unsigned long fbytes)
  552. {
  553. struct snd_pcm_runtime *runtime = substream->runtime;
  554. struct pcm_afe_info *prtd = runtime->private_data;
  555. int ret = 0;
  556. if (prtd->reset_event) {
  557. pr_debug("%s: reset events received from ADSP, return error\n",
  558. __func__);
  559. return -ENETRESET;
  560. }
  561. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  562. ret = msm_afe_playback_copy(substream, channel, hwoff,
  563. buf, fbytes);
  564. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  565. ret = msm_afe_capture_copy(substream, channel, hwoff,
  566. buf, fbytes);
  567. return ret;
  568. }
  569. static int msm_afe_close(struct snd_pcm_substream *substream)
  570. {
  571. int rc = 0;
  572. struct snd_dma_buffer *dma_buf;
  573. struct snd_pcm_runtime *runtime;
  574. struct pcm_afe_info *prtd;
  575. struct snd_soc_pcm_runtime *rtd = NULL;
  576. struct snd_soc_dai *dai = NULL;
  577. int dir = IN;
  578. int ret = 0;
  579. pr_debug("%s\n", __func__);
  580. if (substream == NULL) {
  581. pr_err("substream is NULL\n");
  582. return -EINVAL;
  583. }
  584. rtd = substream->private_data;
  585. dai = rtd->cpu_dai;
  586. runtime = substream->runtime;
  587. prtd = runtime->private_data;
  588. mutex_lock(&prtd->lock);
  589. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  590. dir = IN;
  591. ret = afe_unregister_get_events(dai->id);
  592. if (ret < 0)
  593. pr_err("AFE unregister for events failed\n");
  594. } else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
  595. dir = OUT;
  596. ret = afe_unregister_get_events(dai->id);
  597. if (ret < 0)
  598. pr_err("AFE unregister for events failed\n");
  599. }
  600. if (prtd->mmap_flag)
  601. hrtimer_cancel(&prtd->hrt);
  602. rc = afe_cmd_memory_unmap(afe_req_mmap_handle(prtd->audio_client));
  603. if (rc < 0)
  604. pr_err("AFE memory unmap failed\n");
  605. pr_debug("release all buffer\n");
  606. dma_buf = &substream->dma_buffer;
  607. if (dma_buf == NULL) {
  608. pr_debug("dma_buf is NULL\n");
  609. goto done;
  610. }
  611. if (dma_buf->area)
  612. dma_buf->area = NULL;
  613. q6afe_audio_client_buf_free_contiguous(dir, prtd->audio_client);
  614. done:
  615. pr_debug("%s: dai->id =%x\n", __func__, dai->id);
  616. q6afe_audio_client_free(prtd->audio_client);
  617. mutex_unlock(&prtd->lock);
  618. prtd->prepared--;
  619. kfree(prtd);
  620. runtime->private_data = NULL;
  621. return 0;
  622. }
  623. static int msm_afe_prepare(struct snd_pcm_substream *substream)
  624. {
  625. int ret = 0;
  626. struct snd_pcm_runtime *runtime = substream->runtime;
  627. struct pcm_afe_info *prtd = runtime->private_data;
  628. prtd->pcm_irq_pos = 0;
  629. if (prtd->prepared)
  630. return 0;
  631. mutex_lock(&prtd->lock);
  632. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  633. ret = msm_afe_playback_prepare(substream);
  634. else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  635. ret = msm_afe_capture_prepare(substream);
  636. mutex_unlock(&prtd->lock);
  637. return ret;
  638. }
  639. static int msm_afe_mmap(struct snd_pcm_substream *substream,
  640. struct vm_area_struct *vma)
  641. {
  642. struct snd_pcm_runtime *runtime = substream->runtime;
  643. struct pcm_afe_info *prtd = runtime->private_data;
  644. struct afe_audio_client *ac = prtd->audio_client;
  645. struct afe_audio_port_data *apd = ac->port;
  646. struct afe_audio_buffer *ab;
  647. int dir = -1;
  648. pr_debug("%s\n", __func__);
  649. prtd->mmap_flag = 1;
  650. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  651. dir = IN;
  652. else
  653. dir = OUT;
  654. ab = &(apd[dir].buf[0]);
  655. return msm_audio_ion_mmap((struct audio_buffer *)ab, vma);
  656. }
  657. static int msm_afe_trigger(struct snd_pcm_substream *substream, int cmd)
  658. {
  659. int ret = 0;
  660. struct snd_pcm_runtime *runtime = substream->runtime;
  661. struct pcm_afe_info *prtd = runtime->private_data;
  662. switch (cmd) {
  663. case SNDRV_PCM_TRIGGER_START:
  664. case SNDRV_PCM_TRIGGER_RESUME:
  665. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  666. pr_debug("%s: SNDRV_PCM_TRIGGER_START\n", __func__);
  667. prtd->start = 1;
  668. if (prtd->mmap_flag)
  669. hrtimer_start(&prtd->hrt, ns_to_ktime(0),
  670. HRTIMER_MODE_REL);
  671. break;
  672. case SNDRV_PCM_TRIGGER_STOP:
  673. case SNDRV_PCM_TRIGGER_SUSPEND:
  674. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  675. pr_debug("%s: SNDRV_PCM_TRIGGER_STOP\n", __func__);
  676. prtd->start = 0;
  677. break;
  678. default:
  679. ret = -EINVAL;
  680. break;
  681. }
  682. return ret;
  683. }
  684. static int msm_afe_hw_params(struct snd_pcm_substream *substream,
  685. struct snd_pcm_hw_params *params)
  686. {
  687. struct snd_pcm_runtime *runtime = substream->runtime;
  688. struct snd_dma_buffer *dma_buf = &substream->dma_buffer;
  689. struct pcm_afe_info *prtd = runtime->private_data;
  690. struct afe_audio_buffer *buf;
  691. int dir, rc;
  692. pr_debug("%s:\n", __func__);
  693. mutex_lock(&prtd->lock);
  694. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  695. dir = IN;
  696. else
  697. dir = OUT;
  698. rc = q6afe_audio_client_buf_alloc_contiguous(dir,
  699. prtd->audio_client,
  700. (params_buffer_bytes(params) / params_periods(params)),
  701. params_periods(params));
  702. pr_debug("params_buffer_bytes(params) = %d\n",
  703. (params_buffer_bytes(params)));
  704. pr_debug("params_periods(params) = %d\n",
  705. (params_periods(params)));
  706. pr_debug("params_periodsize(params) = %d\n",
  707. (params_buffer_bytes(params) / params_periods(params)));
  708. if (rc < 0) {
  709. pr_err("Audio Start: Buffer Allocation failed rc = %d\n", rc);
  710. mutex_unlock(&prtd->lock);
  711. return -ENOMEM;
  712. }
  713. buf = prtd->audio_client->port[dir].buf;
  714. if (buf == NULL || buf[0].data == NULL) {
  715. mutex_unlock(&prtd->lock);
  716. return -ENOMEM;
  717. }
  718. pr_debug("%s:buf = %pK\n", __func__, buf);
  719. dma_buf->dev.type = SNDRV_DMA_TYPE_DEV;
  720. dma_buf->dev.dev = substream->pcm->card->dev;
  721. dma_buf->private_data = NULL;
  722. dma_buf->area = buf[0].data;
  723. dma_buf->addr = buf[0].phys;
  724. dma_buf->bytes = params_buffer_bytes(params);
  725. if (!dma_buf->area) {
  726. pr_err("%s:MSM AFE physical memory allocation failed\n",
  727. __func__);
  728. mutex_unlock(&prtd->lock);
  729. return -ENOMEM;
  730. }
  731. memset(dma_buf->area, 0, params_buffer_bytes(params));
  732. prtd->dma_addr = (phys_addr_t) dma_buf->addr;
  733. mutex_unlock(&prtd->lock);
  734. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  735. rc = afe_memory_map(dma_buf->addr, dma_buf->bytes, prtd->audio_client);
  736. if (rc < 0)
  737. pr_err("fail to map memory to DSP\n");
  738. return rc;
  739. }
  740. static snd_pcm_uframes_t msm_afe_pointer(struct snd_pcm_substream *substream)
  741. {
  742. struct snd_pcm_runtime *runtime = substream->runtime;
  743. struct pcm_afe_info *prtd = runtime->private_data;
  744. if (prtd->pcm_irq_pos >= snd_pcm_lib_buffer_bytes(substream))
  745. prtd->pcm_irq_pos = 0;
  746. if (prtd->reset_event) {
  747. pr_debug("%s: reset events received from ADSP, return XRUN\n",
  748. __func__);
  749. return SNDRV_PCM_POS_XRUN;
  750. }
  751. pr_debug("pcm_irq_pos = %d\n", prtd->pcm_irq_pos);
  752. return bytes_to_frames(runtime, (prtd->pcm_irq_pos));
  753. }
  754. static const struct snd_pcm_ops msm_afe_ops = {
  755. .open = msm_afe_open,
  756. .copy_user = msm_afe_copy,
  757. .hw_params = msm_afe_hw_params,
  758. .trigger = msm_afe_trigger,
  759. .close = msm_afe_close,
  760. .prepare = msm_afe_prepare,
  761. .mmap = msm_afe_mmap,
  762. .pointer = msm_afe_pointer,
  763. };
  764. static int msm_asoc_pcm_new(struct snd_soc_pcm_runtime *rtd)
  765. {
  766. struct snd_card *card = rtd->card->snd_card;
  767. int ret = 0;
  768. pr_debug("%s\n", __func__);
  769. if (!card->dev->coherent_dma_mask)
  770. card->dev->coherent_dma_mask = DMA_BIT_MASK(32);
  771. return ret;
  772. }
  773. static int msm_afe_afe_probe(struct snd_soc_component *component)
  774. {
  775. pr_debug("%s\n", __func__);
  776. return 0;
  777. }
  778. static struct snd_soc_component_driver msm_soc_component = {
  779. .name = DRV_NAME,
  780. .ops = &msm_afe_ops,
  781. .pcm_new = msm_asoc_pcm_new,
  782. .probe = msm_afe_afe_probe,
  783. };
  784. static int msm_afe_probe(struct platform_device *pdev)
  785. {
  786. pr_debug("%s: dev name %s\n", __func__, dev_name(&pdev->dev));
  787. return snd_soc_register_component(&pdev->dev,
  788. &msm_soc_component, NULL, 0);
  789. }
  790. static int msm_afe_remove(struct platform_device *pdev)
  791. {
  792. pr_debug("%s\n", __func__);
  793. snd_soc_unregister_component(&pdev->dev);
  794. return 0;
  795. }
  796. static const struct of_device_id msm_pcm_afe_dt_match[] = {
  797. {.compatible = "qcom,msm-pcm-afe"},
  798. {}
  799. };
  800. MODULE_DEVICE_TABLE(of, msm_pcm_afe_dt_match);
  801. static struct platform_driver msm_afe_driver = {
  802. .driver = {
  803. .name = "msm-pcm-afe",
  804. .owner = THIS_MODULE,
  805. .of_match_table = msm_pcm_afe_dt_match,
  806. .suppress_bind_attrs = true,
  807. },
  808. .probe = msm_afe_probe,
  809. .remove = msm_afe_remove,
  810. };
  811. int __init msm_pcm_afe_init(void)
  812. {
  813. pr_debug("%s\n", __func__);
  814. return platform_driver_register(&msm_afe_driver);
  815. }
  816. void msm_pcm_afe_exit(void)
  817. {
  818. pr_debug("%s\n", __func__);
  819. platform_driver_unregister(&msm_afe_driver);
  820. }
  821. MODULE_DESCRIPTION("AFE PCM module platform driver");
  822. MODULE_LICENSE("GPL v2");