dp_rx_defrag.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764
  1. /*
  2. * Copyright (c) 2017-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_api.h"
  22. #include "qdf_trace.h"
  23. #include "qdf_nbuf.h"
  24. #include "dp_rx_defrag.h"
  25. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  26. #include "dp_rx_defrag.h"
  27. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  28. "AES-CCM",
  29. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  30. IEEE80211_WEP_MICLEN,
  31. 0,
  32. };
  33. const struct dp_rx_defrag_cipher dp_f_tkip = {
  34. "TKIP",
  35. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  36. IEEE80211_WEP_CRCLEN,
  37. IEEE80211_WEP_MICLEN,
  38. };
  39. const struct dp_rx_defrag_cipher dp_f_wep = {
  40. "WEP",
  41. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  42. IEEE80211_WEP_CRCLEN,
  43. 0,
  44. };
  45. /*
  46. * dp_rx_defrag_frames_free(): Free fragment chain
  47. * @frames: Fragment chain
  48. *
  49. * Iterates through the fragment chain and frees them
  50. * Returns: None
  51. */
  52. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  53. {
  54. qdf_nbuf_t next, frag = frames;
  55. while (frag) {
  56. next = qdf_nbuf_next(frag);
  57. qdf_nbuf_free(frag);
  58. frag = next;
  59. }
  60. }
  61. /*
  62. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  63. * @peer: Pointer to the peer data structure
  64. * @tid: Transmit ID (TID)
  65. *
  66. * Saves MPDU descriptor info and MSDU link pointer from REO
  67. * ring descriptor. The cache is created per peer, per TID
  68. *
  69. * Returns: None
  70. */
  71. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  72. {
  73. if (peer->rx_tid[tid].dst_ring_desc)
  74. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  75. peer->rx_tid[tid].dst_ring_desc = NULL;
  76. }
  77. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  78. unsigned int tid)
  79. {
  80. struct dp_soc *soc;
  81. struct dp_pdev *pdev;
  82. struct dp_srng *dp_rxdma_srng;
  83. struct rx_desc_pool *rx_desc_pool;
  84. union dp_rx_desc_list_elem_t *head = NULL;
  85. union dp_rx_desc_list_elem_t *tail = NULL;
  86. if (peer->rx_tid[tid].head_frag_desc) {
  87. pdev = peer->vdev->pdev;
  88. soc = pdev->soc;
  89. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  90. rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
  91. dp_rx_add_to_free_desc_list(&head, &tail,
  92. peer->rx_tid[tid].head_frag_desc);
  93. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  94. 1, &head, &tail);
  95. }
  96. }
  97. /*
  98. * dp_rx_reorder_flush_frag(): Flush the frag list
  99. * @peer: Pointer to the peer data structure
  100. * @tid: Transmit ID (TID)
  101. *
  102. * Flush the per-TID frag list
  103. *
  104. * Returns: None
  105. */
  106. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  107. unsigned int tid)
  108. {
  109. struct dp_soc *soc;
  110. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  111. FL("Flushing TID %d"), tid);
  112. if (!peer) {
  113. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  114. "%s: NULL peer\n", __func__);
  115. return;
  116. }
  117. soc = peer->vdev->pdev->soc;
  118. if (peer->rx_tid[tid].dst_ring_desc) {
  119. if (dp_rx_link_desc_return(soc,
  120. peer->rx_tid[tid].dst_ring_desc,
  121. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  122. QDF_STATUS_SUCCESS)
  123. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  124. "%s: Failed to return link desc\n",
  125. __func__);
  126. }
  127. dp_rx_return_head_frag_desc(peer, tid);
  128. dp_rx_defrag_cleanup(peer, tid);
  129. }
  130. /*
  131. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  132. * @soc: DP SOC
  133. *
  134. * Flush fragments of all waitlisted TID's
  135. *
  136. * Returns: None
  137. */
  138. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  139. {
  140. struct dp_rx_tid *rx_reorder;
  141. struct dp_rx_tid *tmp;
  142. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  143. TAILQ_HEAD(, dp_rx_tid) temp_list;
  144. TAILQ_INIT(&temp_list);
  145. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  146. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  147. defrag_waitlist_elem, tmp) {
  148. unsigned int tid;
  149. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  150. FL("Current time %u"), now_ms);
  151. if (rx_reorder->defrag_timeout_ms > now_ms)
  152. break;
  153. tid = rx_reorder->tid;
  154. if (tid >= DP_MAX_TIDS) {
  155. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  156. "%s: TID out of bounds: %d", __func__, tid);
  157. qdf_assert(0);
  158. continue;
  159. }
  160. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  161. defrag_waitlist_elem);
  162. /* Move to temp list and clean-up later */
  163. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  164. defrag_waitlist_elem);
  165. }
  166. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  167. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  168. defrag_waitlist_elem, tmp) {
  169. struct dp_peer *peer;
  170. /* get address of current peer */
  171. peer =
  172. container_of(rx_reorder, struct dp_peer,
  173. rx_tid[rx_reorder->tid]);
  174. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  175. }
  176. }
  177. /*
  178. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  179. * @peer: Pointer to the peer data structure
  180. * @tid: Transmit ID (TID)
  181. *
  182. * Appends per-tid fragments to global fragment wait list
  183. *
  184. * Returns: None
  185. */
  186. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  187. {
  188. struct dp_soc *psoc = peer->vdev->pdev->soc;
  189. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  190. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  191. FL("Adding TID %u to waitlist for peer %pK"),
  192. tid, peer);
  193. /* TODO: use LIST macros instead of TAIL macros */
  194. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  195. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  196. defrag_waitlist_elem);
  197. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  198. }
  199. /*
  200. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  201. * @peer: Pointer to the peer data structure
  202. * @tid: Transmit ID (TID)
  203. *
  204. * Remove fragments from waitlist
  205. *
  206. * Returns: None
  207. */
  208. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  209. {
  210. struct dp_pdev *pdev = peer->vdev->pdev;
  211. struct dp_soc *soc = pdev->soc;
  212. struct dp_rx_tid *rx_reorder;
  213. if (tid > DP_MAX_TIDS) {
  214. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  215. "TID out of bounds: %d", tid);
  216. qdf_assert(0);
  217. return;
  218. }
  219. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  220. FL("Remove TID %u from waitlist for peer %pK"),
  221. tid, peer);
  222. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  223. TAILQ_FOREACH(rx_reorder, &soc->rx.defrag.waitlist,
  224. defrag_waitlist_elem) {
  225. struct dp_peer *peer_on_waitlist;
  226. /* get address of current peer */
  227. peer_on_waitlist =
  228. container_of(rx_reorder, struct dp_peer,
  229. rx_tid[rx_reorder->tid]);
  230. /* Ensure it is TID for same peer */
  231. if (peer_on_waitlist == peer && rx_reorder->tid == tid)
  232. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  233. rx_reorder, defrag_waitlist_elem);
  234. }
  235. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  236. }
  237. /*
  238. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  239. * @peer: Pointer to the peer data structure
  240. * @tid: Transmit ID (TID)
  241. * @head_addr: Pointer to head list
  242. * @tail_addr: Pointer to tail list
  243. * @frag: Incoming fragment
  244. * @all_frag_present: Flag to indicate whether all fragments are received
  245. *
  246. * Build a per-tid, per-sequence fragment list.
  247. *
  248. * Returns: Success, if inserted
  249. */
  250. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  251. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  252. uint8_t *all_frag_present)
  253. {
  254. qdf_nbuf_t next;
  255. qdf_nbuf_t prev = NULL;
  256. qdf_nbuf_t cur;
  257. uint16_t head_fragno, cur_fragno, next_fragno;
  258. uint8_t last_morefrag = 1, count = 0;
  259. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  260. uint8_t *rx_desc_info;
  261. qdf_assert(frag);
  262. qdf_assert(head_addr);
  263. qdf_assert(tail_addr);
  264. *all_frag_present = 0;
  265. rx_desc_info = qdf_nbuf_data(frag);
  266. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  267. /* If this is the first fragment */
  268. if (!(*head_addr)) {
  269. *head_addr = *tail_addr = frag;
  270. qdf_nbuf_set_next(*tail_addr, NULL);
  271. rx_tid->curr_frag_num = cur_fragno;
  272. goto insert_done;
  273. }
  274. /* In sequence fragment */
  275. if (cur_fragno > rx_tid->curr_frag_num) {
  276. qdf_nbuf_set_next(*tail_addr, frag);
  277. *tail_addr = frag;
  278. qdf_nbuf_set_next(*tail_addr, NULL);
  279. rx_tid->curr_frag_num = cur_fragno;
  280. } else {
  281. /* Out of sequence fragment */
  282. cur = *head_addr;
  283. rx_desc_info = qdf_nbuf_data(cur);
  284. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  285. if (cur_fragno == head_fragno) {
  286. qdf_nbuf_free(frag);
  287. goto insert_fail;
  288. } else if (head_fragno > cur_fragno) {
  289. qdf_nbuf_set_next(frag, cur);
  290. cur = frag;
  291. *head_addr = frag; /* head pointer to be updated */
  292. } else {
  293. while ((cur_fragno > head_fragno) && cur != NULL) {
  294. prev = cur;
  295. cur = qdf_nbuf_next(cur);
  296. rx_desc_info = qdf_nbuf_data(cur);
  297. head_fragno =
  298. dp_rx_frag_get_mpdu_frag_number(
  299. rx_desc_info);
  300. }
  301. if (cur_fragno == head_fragno) {
  302. qdf_nbuf_free(frag);
  303. goto insert_fail;
  304. }
  305. qdf_nbuf_set_next(prev, frag);
  306. qdf_nbuf_set_next(frag, cur);
  307. }
  308. }
  309. next = qdf_nbuf_next(*head_addr);
  310. rx_desc_info = qdf_nbuf_data(*tail_addr);
  311. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  312. /* TODO: optimize the loop */
  313. if (!last_morefrag) {
  314. /* Check if all fragments are present */
  315. do {
  316. rx_desc_info = qdf_nbuf_data(next);
  317. next_fragno =
  318. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  319. count++;
  320. if (next_fragno != count)
  321. break;
  322. next = qdf_nbuf_next(next);
  323. } while (next);
  324. if (!next) {
  325. *all_frag_present = 1;
  326. return QDF_STATUS_SUCCESS;
  327. }
  328. }
  329. insert_done:
  330. return QDF_STATUS_SUCCESS;
  331. insert_fail:
  332. return QDF_STATUS_E_FAILURE;
  333. }
  334. /*
  335. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  336. * @msdu: Pointer to the fragment
  337. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  338. *
  339. * decap tkip encrypted fragment
  340. *
  341. * Returns: QDF_STATUS
  342. */
  343. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  344. {
  345. uint8_t *ivp, *orig_hdr;
  346. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  347. /* start of 802.11 header info */
  348. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  349. /* TKIP header is located post 802.11 header */
  350. ivp = orig_hdr + hdrlen;
  351. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  352. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  353. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  354. return QDF_STATUS_E_DEFRAG_ERROR;
  355. }
  356. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  357. return QDF_STATUS_SUCCESS;
  358. }
  359. /*
  360. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  361. * @nbuf: Pointer to the fragment buffer
  362. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  363. *
  364. * Remove MIC information from CCMP fragment
  365. *
  366. * Returns: QDF_STATUS
  367. */
  368. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  369. {
  370. uint8_t *ivp, *orig_hdr;
  371. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  372. /* start of the 802.11 header */
  373. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  374. /* CCMP header is located after 802.11 header */
  375. ivp = orig_hdr + hdrlen;
  376. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  377. return QDF_STATUS_E_DEFRAG_ERROR;
  378. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  379. return QDF_STATUS_SUCCESS;
  380. }
  381. /*
  382. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  383. * @nbuf: Pointer to the fragment
  384. * @hdrlen: length of the header information
  385. *
  386. * decap CCMP encrypted fragment
  387. *
  388. * Returns: QDF_STATUS
  389. */
  390. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  391. {
  392. uint8_t *ivp, *origHdr;
  393. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  394. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  395. ivp = origHdr + hdrlen;
  396. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  397. return QDF_STATUS_E_DEFRAG_ERROR;
  398. /* Let's pull the header later */
  399. return QDF_STATUS_SUCCESS;
  400. }
  401. /*
  402. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  403. * @msdu: Pointer to the fragment
  404. * @hdrlen: length of the header information
  405. *
  406. * decap WEP encrypted fragment
  407. *
  408. * Returns: QDF_STATUS
  409. */
  410. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  411. {
  412. uint8_t *origHdr;
  413. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  414. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  415. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  416. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  417. return QDF_STATUS_SUCCESS;
  418. }
  419. /*
  420. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  421. * @nbuf: Pointer to the fragment
  422. *
  423. * Calculate the header size of the received fragment
  424. *
  425. * Returns: header size (uint16_t)
  426. */
  427. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  428. {
  429. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  430. uint16_t size = sizeof(struct ieee80211_frame);
  431. uint16_t fc = 0;
  432. uint32_t to_ds, fr_ds;
  433. uint8_t frm_ctrl_valid;
  434. uint16_t frm_ctrl_field;
  435. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  436. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  437. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  438. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  439. if (to_ds && fr_ds)
  440. size += IEEE80211_ADDR_LEN;
  441. if (frm_ctrl_valid) {
  442. fc = frm_ctrl_field;
  443. /* use 1-st byte for validation */
  444. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  445. size += sizeof(uint16_t);
  446. /* use 2-nd byte for validation */
  447. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  448. size += sizeof(struct ieee80211_htc);
  449. }
  450. }
  451. return size;
  452. }
  453. /*
  454. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  455. * @wh0: Pointer to the wireless header of the fragment
  456. * @hdr: Array to hold the pseudo header
  457. *
  458. * Calculate a pseudo MIC header
  459. *
  460. * Returns: None
  461. */
  462. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  463. uint8_t hdr[])
  464. {
  465. const struct ieee80211_frame_addr4 *wh =
  466. (const struct ieee80211_frame_addr4 *)wh0;
  467. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  468. case IEEE80211_FC1_DIR_NODS:
  469. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  470. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  471. wh->i_addr2);
  472. break;
  473. case IEEE80211_FC1_DIR_TODS:
  474. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  475. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  476. wh->i_addr2);
  477. break;
  478. case IEEE80211_FC1_DIR_FROMDS:
  479. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  480. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  481. wh->i_addr3);
  482. break;
  483. case IEEE80211_FC1_DIR_DSTODS:
  484. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  485. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN,
  486. wh->i_addr4);
  487. break;
  488. }
  489. /*
  490. * Bit 7 is IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  491. * it could also be set for deauth, disassoc, action, etc. for
  492. * a mgt type frame. It comes into picture for MFP.
  493. */
  494. if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
  495. const struct ieee80211_qosframe *qwh =
  496. (const struct ieee80211_qosframe *)wh;
  497. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  498. } else {
  499. hdr[12] = 0;
  500. }
  501. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  502. }
  503. /*
  504. * dp_rx_defrag_mic(): Calculate MIC header
  505. * @key: Pointer to the key
  506. * @wbuf: fragment buffer
  507. * @off: Offset
  508. * @data_len: Data length
  509. * @mic: Array to hold MIC
  510. *
  511. * Calculate a pseudo MIC header
  512. *
  513. * Returns: QDF_STATUS
  514. */
  515. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  516. uint16_t off, uint16_t data_len, uint8_t mic[])
  517. {
  518. uint8_t hdr[16] = { 0, };
  519. uint32_t l, r;
  520. const uint8_t *data;
  521. uint32_t space;
  522. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  523. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  524. + rx_desc_len), hdr);
  525. l = dp_rx_get_le32(key);
  526. r = dp_rx_get_le32(key + 4);
  527. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  528. l ^= dp_rx_get_le32(hdr);
  529. dp_rx_michael_block(l, r);
  530. l ^= dp_rx_get_le32(&hdr[4]);
  531. dp_rx_michael_block(l, r);
  532. l ^= dp_rx_get_le32(&hdr[8]);
  533. dp_rx_michael_block(l, r);
  534. l ^= dp_rx_get_le32(&hdr[12]);
  535. dp_rx_michael_block(l, r);
  536. /* first buffer has special handling */
  537. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  538. space = qdf_nbuf_len(wbuf) - off;
  539. for (;; ) {
  540. if (space > data_len)
  541. space = data_len;
  542. /* collect 32-bit blocks from current buffer */
  543. while (space >= sizeof(uint32_t)) {
  544. l ^= dp_rx_get_le32(data);
  545. dp_rx_michael_block(l, r);
  546. data += sizeof(uint32_t);
  547. space -= sizeof(uint32_t);
  548. data_len -= sizeof(uint32_t);
  549. }
  550. if (data_len < sizeof(uint32_t))
  551. break;
  552. wbuf = qdf_nbuf_next(wbuf);
  553. if (wbuf == NULL)
  554. return QDF_STATUS_E_DEFRAG_ERROR;
  555. if (space != 0) {
  556. const uint8_t *data_next;
  557. /*
  558. * Block straddles buffers, split references.
  559. */
  560. data_next =
  561. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  562. if ((qdf_nbuf_len(wbuf)) <
  563. sizeof(uint32_t) - space) {
  564. return QDF_STATUS_E_DEFRAG_ERROR;
  565. }
  566. switch (space) {
  567. case 1:
  568. l ^= dp_rx_get_le32_split(data[0],
  569. data_next[0], data_next[1],
  570. data_next[2]);
  571. data = data_next + 3;
  572. space = (qdf_nbuf_len(wbuf) - off) - 3;
  573. break;
  574. case 2:
  575. l ^= dp_rx_get_le32_split(data[0], data[1],
  576. data_next[0], data_next[1]);
  577. data = data_next + 2;
  578. space = (qdf_nbuf_len(wbuf) - off) - 2;
  579. break;
  580. case 3:
  581. l ^= dp_rx_get_le32_split(data[0], data[1],
  582. data[2], data_next[0]);
  583. data = data_next + 1;
  584. space = (qdf_nbuf_len(wbuf) - off) - 1;
  585. break;
  586. }
  587. dp_rx_michael_block(l, r);
  588. data_len -= sizeof(uint32_t);
  589. } else {
  590. /*
  591. * Setup for next buffer.
  592. */
  593. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  594. space = qdf_nbuf_len(wbuf) - off;
  595. }
  596. }
  597. /* Last block and padding (0x5a, 4..7 x 0) */
  598. switch (data_len) {
  599. case 0:
  600. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  601. break;
  602. case 1:
  603. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  604. break;
  605. case 2:
  606. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  607. break;
  608. case 3:
  609. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  610. break;
  611. }
  612. dp_rx_michael_block(l, r);
  613. dp_rx_michael_block(l, r);
  614. dp_rx_put_le32(mic, l);
  615. dp_rx_put_le32(mic + 4, r);
  616. return QDF_STATUS_SUCCESS;
  617. }
  618. /*
  619. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  620. * @key: Pointer to the key
  621. * @msdu: fragment buffer
  622. * @hdrlen: Length of the header information
  623. *
  624. * Remove MIC information from the TKIP frame
  625. *
  626. * Returns: QDF_STATUS
  627. */
  628. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  629. qdf_nbuf_t msdu, uint16_t hdrlen)
  630. {
  631. QDF_STATUS status;
  632. uint32_t pktlen = 0;
  633. uint8_t mic[IEEE80211_WEP_MICLEN];
  634. uint8_t mic0[IEEE80211_WEP_MICLEN];
  635. qdf_nbuf_t prev = NULL, next;
  636. next = msdu;
  637. while (next) {
  638. pktlen += (qdf_nbuf_len(next) - hdrlen);
  639. prev = next;
  640. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  641. "%s pktlen %ld\n", __func__,
  642. qdf_nbuf_len(next) - hdrlen);
  643. next = qdf_nbuf_next(next);
  644. }
  645. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  646. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  647. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  648. pktlen -= dp_f_tkip.ic_miclen;
  649. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  650. pktlen, mic);
  651. if (QDF_IS_STATUS_ERROR(status))
  652. return status;
  653. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  654. return QDF_STATUS_E_DEFRAG_ERROR;
  655. return QDF_STATUS_SUCCESS;
  656. }
  657. /*
  658. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  659. * @nbuf: buffer pointer
  660. * @hdrsize: size of the header to be pulled
  661. *
  662. * Pull the RXTLV & the 802.11 headers
  663. *
  664. * Returns: None
  665. */
  666. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  667. {
  668. qdf_nbuf_pull_head(nbuf,
  669. RX_PKT_TLVS_LEN + hdrsize);
  670. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  671. "%s: final pktlen %d .11len %d\n",
  672. __func__,
  673. (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  674. }
  675. /*
  676. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  677. * @peer: Pointer to the peer
  678. * @head: Pointer to list of fragments
  679. * @hdrsize: Size of the header to be pulled
  680. *
  681. * Construct a nbuf fraglist
  682. *
  683. * Returns: None
  684. */
  685. static void
  686. dp_rx_construct_fraglist(struct dp_peer *peer,
  687. qdf_nbuf_t head, uint16_t hdrsize)
  688. {
  689. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  690. qdf_nbuf_t rx_nbuf = msdu;
  691. uint32_t len = 0;
  692. while (msdu) {
  693. dp_rx_frag_pull_hdr(msdu, hdrsize);
  694. len += qdf_nbuf_len(msdu);
  695. msdu = qdf_nbuf_next(msdu);
  696. }
  697. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  698. qdf_nbuf_set_next(head, NULL);
  699. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  700. "%s: head len %d ext len %d data len %d \n",
  701. __func__,
  702. (uint32_t)qdf_nbuf_len(head),
  703. (uint32_t)qdf_nbuf_len(rx_nbuf),
  704. (uint32_t)(head->data_len));
  705. }
  706. /**
  707. * dp_rx_defrag_err() - rx err handler
  708. * @pdev: handle to pdev object
  709. * @vdev_id: vdev id
  710. * @peer_mac_addr: peer mac address
  711. * @tid: TID
  712. * @tsf32: TSF
  713. * @err_type: error type
  714. * @rx_frame: rx frame
  715. * @pn: PN Number
  716. * @key_id: key id
  717. *
  718. * This function handles rx error and send MIC error notification
  719. *
  720. * Return: None
  721. */
  722. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  723. {
  724. struct ol_if_ops *tops = NULL;
  725. struct dp_pdev *pdev = vdev->pdev;
  726. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  727. uint8_t *orig_hdr;
  728. struct ieee80211_frame *wh;
  729. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  730. wh = (struct ieee80211_frame *)orig_hdr;
  731. tops = pdev->soc->cdp_soc.ol_ops;
  732. if (tops->rx_mic_error)
  733. tops->rx_mic_error(pdev->ctrl_pdev, vdev->vdev_id, wh);
  734. }
  735. /*
  736. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  737. * @nbuf: Pointer to the fragment buffer
  738. * @hdrsize: Size of headers
  739. *
  740. * Transcap the fragment from 802.11 to 802.3
  741. *
  742. * Returns: None
  743. */
  744. static void
  745. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  746. {
  747. struct llc_snap_hdr_t *llchdr;
  748. struct ethernet_hdr_t *eth_hdr;
  749. uint8_t ether_type[2];
  750. uint16_t fc = 0;
  751. union dp_align_mac_addr mac_addr;
  752. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  753. if (rx_desc_info == NULL) {
  754. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  755. "%s: Memory alloc failed ! \n", __func__);
  756. QDF_ASSERT(0);
  757. return;
  758. }
  759. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  760. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  761. RX_PKT_TLVS_LEN + hdrsize);
  762. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  763. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  764. sizeof(struct llc_snap_hdr_t) -
  765. sizeof(struct ethernet_hdr_t)));
  766. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  767. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  768. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  769. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  770. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  771. "%s: frame control type: 0x%x", __func__, fc);
  772. case IEEE80211_FC1_DIR_NODS:
  773. hal_rx_mpdu_get_addr1(rx_desc_info,
  774. &mac_addr.raw[0]);
  775. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  776. IEEE80211_ADDR_LEN);
  777. hal_rx_mpdu_get_addr2(rx_desc_info,
  778. &mac_addr.raw[0]);
  779. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  780. IEEE80211_ADDR_LEN);
  781. break;
  782. case IEEE80211_FC1_DIR_TODS:
  783. hal_rx_mpdu_get_addr3(rx_desc_info,
  784. &mac_addr.raw[0]);
  785. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  786. IEEE80211_ADDR_LEN);
  787. hal_rx_mpdu_get_addr2(rx_desc_info,
  788. &mac_addr.raw[0]);
  789. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  790. IEEE80211_ADDR_LEN);
  791. break;
  792. case IEEE80211_FC1_DIR_FROMDS:
  793. hal_rx_mpdu_get_addr1(rx_desc_info,
  794. &mac_addr.raw[0]);
  795. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  796. IEEE80211_ADDR_LEN);
  797. hal_rx_mpdu_get_addr3(rx_desc_info,
  798. &mac_addr.raw[0]);
  799. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  800. IEEE80211_ADDR_LEN);
  801. break;
  802. case IEEE80211_FC1_DIR_DSTODS:
  803. hal_rx_mpdu_get_addr3(rx_desc_info,
  804. &mac_addr.raw[0]);
  805. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  806. IEEE80211_ADDR_LEN);
  807. hal_rx_mpdu_get_addr4(rx_desc_info,
  808. &mac_addr.raw[0]);
  809. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  810. IEEE80211_ADDR_LEN);
  811. break;
  812. default:
  813. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  814. "%s: Unknown frame control type: 0x%x", __func__, fc);
  815. }
  816. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  817. sizeof(ether_type));
  818. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  819. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  820. qdf_mem_free(rx_desc_info);
  821. }
  822. /*
  823. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  824. * @peer: Pointer to the peer
  825. * @tid: Transmit Identifier
  826. * @head: Buffer to be reinjected back
  827. *
  828. * Reinject the fragment chain back into REO
  829. *
  830. * Returns: QDF_STATUS
  831. */
  832. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  833. unsigned tid, qdf_nbuf_t head)
  834. {
  835. struct dp_pdev *pdev = peer->vdev->pdev;
  836. struct dp_soc *soc = pdev->soc;
  837. struct hal_buf_info buf_info;
  838. void *link_desc_va;
  839. void *msdu0, *msdu_desc_info;
  840. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  841. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  842. qdf_dma_addr_t paddr;
  843. uint32_t nbuf_len, seq_no, dst_ind;
  844. uint32_t *mpdu_wrd;
  845. uint32_t ret, cookie;
  846. void *dst_ring_desc =
  847. peer->rx_tid[tid].dst_ring_desc;
  848. void *hal_srng = soc->reo_reinject_ring.hal_srng;
  849. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  850. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  851. qdf_assert(link_desc_va);
  852. msdu0 = (uint8_t *)link_desc_va +
  853. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  854. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  855. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  856. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  857. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  858. /* msdu reconfig */
  859. msdu_desc_info = (uint8_t *)msdu0 +
  860. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  861. dst_ind = hal_rx_msdu_reo_dst_ind_get(link_desc_va);
  862. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  863. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  864. FIRST_MSDU_IN_MPDU_FLAG, 1);
  865. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  866. LAST_MSDU_IN_MPDU_FLAG, 1);
  867. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  868. MSDU_CONTINUATION, 0x0);
  869. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  870. REO_DESTINATION_INDICATION, dst_ind);
  871. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  872. MSDU_LENGTH, nbuf_len);
  873. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  874. SA_IS_VALID, 1);
  875. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  876. DA_IS_VALID, 1);
  877. /* change RX TLV's */
  878. hal_rx_msdu_start_msdu_len_set(
  879. qdf_nbuf_data(head), nbuf_len);
  880. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  881. /* map the nbuf before reinject it into HW */
  882. ret = qdf_nbuf_map_single(soc->osdev, head,
  883. QDF_DMA_BIDIRECTIONAL);
  884. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  885. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  886. "%s: nbuf map failed !\n", __func__);
  887. qdf_nbuf_free(head);
  888. return QDF_STATUS_E_FAILURE;
  889. }
  890. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  891. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  892. if (ret == QDF_STATUS_E_FAILURE) {
  893. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  894. "%s: x86 check failed !\n", __func__);
  895. return QDF_STATUS_E_FAILURE;
  896. }
  897. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
  898. /* Lets fill entrance ring now !!! */
  899. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  900. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  901. "HAL RING Access For REO entrance SRNG Failed: %pK",
  902. hal_srng);
  903. return QDF_STATUS_E_FAILURE;
  904. }
  905. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  906. qdf_assert(ent_ring_desc);
  907. paddr = (uint64_t)buf_info.paddr;
  908. /* buf addr */
  909. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  910. buf_info.sw_cookie,
  911. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  912. /* mpdu desc info */
  913. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  914. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  915. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  916. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  917. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  918. sizeof(struct rx_mpdu_desc_info));
  919. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  920. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  921. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  922. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  923. MSDU_COUNT, 0x1);
  924. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  925. MPDU_SEQUENCE_NUMBER, seq_no);
  926. /* unset frag bit */
  927. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  928. FRAGMENT_FLAG, 0x0);
  929. /* set sa/da valid bits */
  930. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  931. SA_IS_VALID, 0x1);
  932. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  933. DA_IS_VALID, 0x1);
  934. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  935. RAW_MPDU, 0x0);
  936. /* qdesc addr */
  937. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  938. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  939. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  940. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  941. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  942. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  943. REO_DESTINATION_INDICATION, dst_ind);
  944. hal_srng_access_end(soc->hal_soc, hal_srng);
  945. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  946. "%s: reinjection done !\n", __func__);
  947. return QDF_STATUS_SUCCESS;
  948. }
  949. /*
  950. * dp_rx_defrag(): Defragment the fragment chain
  951. * @peer: Pointer to the peer
  952. * @tid: Transmit Identifier
  953. * @frag_list_head: Pointer to head list
  954. * @frag_list_tail: Pointer to tail list
  955. *
  956. * Defragment the fragment chain
  957. *
  958. * Returns: QDF_STATUS
  959. */
  960. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  961. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  962. {
  963. qdf_nbuf_t tmp_next, prev;
  964. qdf_nbuf_t cur = frag_list_head, msdu;
  965. uint32_t index, tkip_demic = 0;
  966. uint16_t hdr_space;
  967. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  968. struct dp_vdev *vdev = peer->vdev;
  969. struct dp_soc *soc = vdev->pdev->soc;
  970. uint8_t status = 0;
  971. hdr_space = dp_rx_defrag_hdrsize(cur);
  972. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  973. dp_sec_mcast : dp_sec_ucast;
  974. /* Remove FCS from all fragments */
  975. while (cur) {
  976. tmp_next = qdf_nbuf_next(cur);
  977. qdf_nbuf_set_next(cur, NULL);
  978. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  979. prev = cur;
  980. qdf_nbuf_set_next(cur, tmp_next);
  981. cur = tmp_next;
  982. }
  983. cur = frag_list_head;
  984. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  985. "%s: index %d Security type: %d\n", __func__,
  986. index, peer->security[index].sec_type);
  987. switch (peer->security[index].sec_type) {
  988. case htt_sec_type_tkip:
  989. tkip_demic = 1;
  990. case htt_sec_type_tkip_nomic:
  991. while (cur) {
  992. tmp_next = qdf_nbuf_next(cur);
  993. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  994. QDF_TRACE(QDF_MODULE_ID_TXRX,
  995. QDF_TRACE_LEVEL_ERROR,
  996. "dp_rx_defrag: TKIP decap failed");
  997. return QDF_STATUS_E_DEFRAG_ERROR;
  998. }
  999. cur = tmp_next;
  1000. }
  1001. /* If success, increment header to be stripped later */
  1002. hdr_space += dp_f_tkip.ic_header;
  1003. break;
  1004. case htt_sec_type_aes_ccmp:
  1005. while (cur) {
  1006. tmp_next = qdf_nbuf_next(cur);
  1007. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1008. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1009. QDF_TRACE_LEVEL_ERROR,
  1010. "dp_rx_defrag: CCMP demic failed");
  1011. return QDF_STATUS_E_DEFRAG_ERROR;
  1012. }
  1013. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1014. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1015. QDF_TRACE_LEVEL_ERROR,
  1016. "dp_rx_defrag: CCMP decap failed");
  1017. return QDF_STATUS_E_DEFRAG_ERROR;
  1018. }
  1019. cur = tmp_next;
  1020. }
  1021. /* If success, increment header to be stripped later */
  1022. hdr_space += dp_f_ccmp.ic_header;
  1023. break;
  1024. case htt_sec_type_wep40:
  1025. case htt_sec_type_wep104:
  1026. case htt_sec_type_wep128:
  1027. while (cur) {
  1028. tmp_next = qdf_nbuf_next(cur);
  1029. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1030. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1031. QDF_TRACE_LEVEL_ERROR,
  1032. "dp_rx_defrag: WEP decap failed");
  1033. return QDF_STATUS_E_DEFRAG_ERROR;
  1034. }
  1035. cur = tmp_next;
  1036. }
  1037. /* If success, increment header to be stripped later */
  1038. hdr_space += dp_f_wep.ic_header;
  1039. break;
  1040. default:
  1041. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1042. QDF_TRACE_LEVEL_ERROR,
  1043. "dp_rx_defrag: Did not match any security type");
  1044. break;
  1045. }
  1046. if (tkip_demic) {
  1047. msdu = frag_list_head;
  1048. if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
  1049. status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
  1050. peer->ol_peer, msdu, hdr_space);
  1051. } else {
  1052. qdf_mem_copy(key,
  1053. &peer->security[index].michael_key[0],
  1054. IEEE80211_WEP_MICLEN);
  1055. status = dp_rx_defrag_tkip_demic(key, msdu,
  1056. RX_PKT_TLVS_LEN +
  1057. hdr_space);
  1058. if (status) {
  1059. dp_rx_defrag_err(vdev, frag_list_head);
  1060. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1061. QDF_TRACE_LEVEL_ERROR,
  1062. "%s: TKIP demic failed status %d\n",
  1063. __func__, status);
  1064. return QDF_STATUS_E_DEFRAG_ERROR;
  1065. }
  1066. }
  1067. }
  1068. /* Convert the header to 802.3 header */
  1069. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1070. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1071. return QDF_STATUS_SUCCESS;
  1072. }
  1073. /*
  1074. * dp_rx_defrag_cleanup(): Clean up activities
  1075. * @peer: Pointer to the peer
  1076. * @tid: Transmit Identifier
  1077. *
  1078. * Returns: None
  1079. */
  1080. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1081. {
  1082. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1083. peer->rx_tid[tid].array;
  1084. if (!rx_reorder_array_elem) {
  1085. /*
  1086. * if this condition is hit then somebody
  1087. * must have reset this pointer to NULL.
  1088. * array pointer usually points to base variable
  1089. * of TID queue structure: "struct dp_rx_tid"
  1090. */
  1091. QDF_ASSERT(0);
  1092. return;
  1093. }
  1094. /* Free up nbufs */
  1095. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1096. /* Free up saved ring descriptors */
  1097. dp_rx_clear_saved_desc_info(peer, tid);
  1098. rx_reorder_array_elem->head = NULL;
  1099. rx_reorder_array_elem->tail = NULL;
  1100. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1101. peer->rx_tid[tid].curr_frag_num = 0;
  1102. peer->rx_tid[tid].curr_seq_num = 0;
  1103. peer->rx_tid[tid].head_frag_desc = NULL;
  1104. }
  1105. /*
  1106. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1107. * @ring_desc: Pointer to the dst ring descriptor
  1108. * @peer: Pointer to the peer
  1109. * @tid: Transmit Identifier
  1110. *
  1111. * Returns: None
  1112. */
  1113. static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(void *ring_desc,
  1114. struct dp_rx_desc *rx_desc, struct dp_peer *peer, unsigned tid)
  1115. {
  1116. void *dst_ring_desc = qdf_mem_malloc(
  1117. sizeof(struct reo_destination_ring));
  1118. if (dst_ring_desc == NULL) {
  1119. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1120. "%s: Memory alloc failed !\n", __func__);
  1121. QDF_ASSERT(0);
  1122. return QDF_STATUS_E_NOMEM;
  1123. }
  1124. qdf_mem_copy(dst_ring_desc, ring_desc,
  1125. sizeof(struct reo_destination_ring));
  1126. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1127. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1128. return QDF_STATUS_SUCCESS;
  1129. }
  1130. /*
  1131. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1132. * @soc: Pointer to the SOC data structure
  1133. * @ring_desc: Pointer to the ring descriptor
  1134. * @mpdu_desc_info: MPDU descriptor info
  1135. * @tid: Traffic Identifier
  1136. * @rx_desc: Pointer to rx descriptor
  1137. * @rx_bfs: Number of bfs consumed
  1138. *
  1139. * Returns: QDF_STATUS
  1140. */
  1141. static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1142. void *ring_desc,
  1143. union dp_rx_desc_list_elem_t **head,
  1144. union dp_rx_desc_list_elem_t **tail,
  1145. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1146. unsigned tid, struct dp_rx_desc *rx_desc,
  1147. uint32_t *rx_bfs)
  1148. {
  1149. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1150. struct dp_pdev *pdev;
  1151. struct dp_peer *peer;
  1152. uint16_t peer_id;
  1153. uint8_t fragno, more_frag, all_frag_present = 0;
  1154. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1155. QDF_STATUS status;
  1156. struct dp_rx_tid *rx_tid;
  1157. uint8_t mpdu_sequence_control_valid;
  1158. uint8_t mpdu_frame_control_valid;
  1159. qdf_nbuf_t frag = rx_desc->nbuf;
  1160. /* Check if the packet is from a valid peer */
  1161. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1162. mpdu_desc_info->peer_meta_data);
  1163. peer = dp_peer_find_by_id(soc, peer_id);
  1164. if (!peer) {
  1165. /* We should not receive anything from unknown peer
  1166. * however, that might happen while we are in the monitor mode.
  1167. * We don't need to handle that here
  1168. */
  1169. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1170. "Unknown peer, dropping the fragment");
  1171. qdf_nbuf_free(frag);
  1172. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1173. *rx_bfs = 1;
  1174. return QDF_STATUS_E_DEFRAG_ERROR;
  1175. }
  1176. pdev = peer->vdev->pdev;
  1177. rx_tid = &peer->rx_tid[tid];
  1178. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1179. mpdu_sequence_control_valid =
  1180. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1181. /* Invalid MPDU sequence control field, MPDU is of no use */
  1182. if (!mpdu_sequence_control_valid) {
  1183. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1184. "Invalid MPDU seq control field, dropping MPDU");
  1185. qdf_nbuf_free(frag);
  1186. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1187. *rx_bfs = 1;
  1188. qdf_assert(0);
  1189. goto end;
  1190. }
  1191. mpdu_frame_control_valid =
  1192. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1193. /* Invalid frame control field */
  1194. if (!mpdu_frame_control_valid) {
  1195. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1196. "Invalid frame control field, dropping MPDU");
  1197. qdf_nbuf_free(frag);
  1198. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1199. *rx_bfs = 1;
  1200. qdf_assert(0);
  1201. goto end;
  1202. }
  1203. /* Current mpdu sequence */
  1204. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1205. /* HW does not populate the fragment number as of now
  1206. * need to get from the 802.11 header
  1207. */
  1208. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1209. /*
  1210. * !more_frag: no more fragments to be delivered
  1211. * !frag_no: packet is not fragmented
  1212. * !rx_reorder_array_elem->head: no saved fragments so far
  1213. */
  1214. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1215. /* We should not get into this situation here.
  1216. * It means an unfragmented packet with fragment flag
  1217. * is delivered over the REO exception ring.
  1218. * Typically it follows normal rx path.
  1219. */
  1220. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1221. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1222. qdf_nbuf_free(frag);
  1223. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1224. *rx_bfs = 1;
  1225. qdf_assert(0);
  1226. goto end;
  1227. }
  1228. /* Check if the fragment is for the same sequence or a different one */
  1229. if (rx_reorder_array_elem->head) {
  1230. if (rxseq != rx_tid->curr_seq_num) {
  1231. /* Drop stored fragments if out of sequence
  1232. * fragment is received
  1233. */
  1234. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1235. rx_reorder_array_elem->head = NULL;
  1236. rx_reorder_array_elem->tail = NULL;
  1237. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1238. "%s mismatch, dropping earlier sequence ",
  1239. (rxseq == rx_tid->curr_seq_num)
  1240. ? "address"
  1241. : "seq number");
  1242. /*
  1243. * The sequence number for this fragment becomes the
  1244. * new sequence number to be processed
  1245. */
  1246. rx_tid->curr_seq_num = rxseq;
  1247. }
  1248. } else {
  1249. /* Start of a new sequence */
  1250. dp_rx_defrag_cleanup(peer, tid);
  1251. rx_tid->curr_seq_num = rxseq;
  1252. }
  1253. /*
  1254. * If the earlier sequence was dropped, this will be the fresh start.
  1255. * Else, continue with next fragment in a given sequence
  1256. */
  1257. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1258. &rx_reorder_array_elem->tail, frag,
  1259. &all_frag_present);
  1260. /*
  1261. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1262. * packet sequence has more than 6 MSDUs for some reason, we will
  1263. * have to use the next MSDU link descriptor and chain them together
  1264. * before reinjection
  1265. */
  1266. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1267. (rx_reorder_array_elem->head == frag)) {
  1268. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1269. rx_desc, peer, tid);
  1270. if (status != QDF_STATUS_SUCCESS) {
  1271. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1272. "%s: Unable to store ring desc !\n", __func__);
  1273. goto end;
  1274. }
  1275. } else {
  1276. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1277. *rx_bfs = 1;
  1278. /* Return the non-head link desc */
  1279. if (dp_rx_link_desc_return(soc, ring_desc,
  1280. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1281. QDF_STATUS_SUCCESS)
  1282. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1283. "%s: Failed to return link desc\n",
  1284. __func__);
  1285. }
  1286. if (pdev->soc->rx.flags.defrag_timeout_check)
  1287. dp_rx_defrag_waitlist_remove(peer, tid);
  1288. /* Yet to receive more fragments for this sequence number */
  1289. if (!all_frag_present) {
  1290. uint32_t now_ms =
  1291. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1292. peer->rx_tid[tid].defrag_timeout_ms =
  1293. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1294. dp_rx_defrag_waitlist_add(peer, tid);
  1295. return QDF_STATUS_SUCCESS;
  1296. }
  1297. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1298. "All fragments received for sequence: %d", rxseq);
  1299. /* Process the fragments */
  1300. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1301. rx_reorder_array_elem->tail);
  1302. if (QDF_IS_STATUS_ERROR(status)) {
  1303. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1304. "Fragment processing failed");
  1305. dp_rx_add_to_free_desc_list(head, tail,
  1306. peer->rx_tid[tid].head_frag_desc);
  1307. *rx_bfs = 1;
  1308. if (dp_rx_link_desc_return(soc,
  1309. peer->rx_tid[tid].dst_ring_desc,
  1310. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1311. QDF_STATUS_SUCCESS)
  1312. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1313. "%s: Failed to return link desc\n",
  1314. __func__);
  1315. dp_rx_defrag_cleanup(peer, tid);
  1316. goto end;
  1317. }
  1318. /* Re-inject the fragments back to REO for further processing */
  1319. status = dp_rx_defrag_reo_reinject(peer, tid,
  1320. rx_reorder_array_elem->head);
  1321. if (QDF_IS_STATUS_SUCCESS(status)) {
  1322. rx_reorder_array_elem->head = NULL;
  1323. rx_reorder_array_elem->tail = NULL;
  1324. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1325. "Fragmented sequence successfully reinjected");
  1326. } else {
  1327. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1328. "Fragmented sequence reinjection failed");
  1329. dp_rx_return_head_frag_desc(peer, tid);
  1330. }
  1331. dp_rx_defrag_cleanup(peer, tid);
  1332. return QDF_STATUS_SUCCESS;
  1333. end:
  1334. return QDF_STATUS_E_DEFRAG_ERROR;
  1335. }
  1336. /**
  1337. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1338. *
  1339. * @soc: core txrx main context
  1340. * @ring_desc: opaque pointer to the REO error ring descriptor
  1341. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1342. * @head: head of the local descriptor free-list
  1343. * @tail: tail of the local descriptor free-list
  1344. * @quota: No. of units (packets) that can be serviced in one shot.
  1345. *
  1346. * This function implements RX 802.11 fragmentation handling
  1347. * The handling is mostly same as legacy fragmentation handling.
  1348. * If required, this function can re-inject the frames back to
  1349. * REO ring (with proper setting to by-pass fragmentation check
  1350. * but use duplicate detection / re-ordering and routing these frames
  1351. * to a different core.
  1352. *
  1353. * Return: uint32_t: No. of elements processed
  1354. */
  1355. uint32_t dp_rx_frag_handle(struct dp_soc *soc, void *ring_desc,
  1356. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1357. union dp_rx_desc_list_elem_t **head,
  1358. union dp_rx_desc_list_elem_t **tail,
  1359. uint32_t quota)
  1360. {
  1361. uint32_t rx_bufs_used = 0;
  1362. void *link_desc_va;
  1363. struct hal_buf_info buf_info;
  1364. struct hal_rx_msdu_list msdu_list; /* per MPDU list of MSDUs */
  1365. qdf_nbuf_t msdu = NULL;
  1366. uint32_t tid, msdu_len;
  1367. int idx, rx_bfs = 0;
  1368. QDF_STATUS status;
  1369. qdf_assert(soc);
  1370. qdf_assert(mpdu_desc_info);
  1371. /* Fragment from a valid peer */
  1372. hal_rx_reo_buf_paddr_get(ring_desc, &buf_info);
  1373. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1374. qdf_assert(link_desc_va);
  1375. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1376. "Number of MSDUs to process, num_msdus: %d",
  1377. mpdu_desc_info->msdu_count);
  1378. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1379. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1380. "Not sufficient MSDUs to process");
  1381. return rx_bufs_used;
  1382. }
  1383. /* Get msdu_list for the given MPDU */
  1384. hal_rx_msdu_list_get(link_desc_va, &msdu_list,
  1385. &mpdu_desc_info->msdu_count);
  1386. /* Process all MSDUs in the current MPDU */
  1387. for (idx = 0; (idx < mpdu_desc_info->msdu_count) && quota--; idx++) {
  1388. struct dp_rx_desc *rx_desc =
  1389. dp_rx_cookie_2_va_rxdma_buf(soc,
  1390. msdu_list.sw_cookie[idx]);
  1391. qdf_assert(rx_desc);
  1392. msdu = rx_desc->nbuf;
  1393. qdf_nbuf_unmap_single(soc->osdev, msdu,
  1394. QDF_DMA_BIDIRECTIONAL);
  1395. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1396. msdu_len = hal_rx_msdu_start_msdu_len_get(
  1397. rx_desc->rx_buf_start);
  1398. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1399. tid = hal_rx_mpdu_start_tid_get(rx_desc->rx_buf_start);
  1400. /* Process fragment-by-fragment */
  1401. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1402. head, tail, mpdu_desc_info,
  1403. tid, rx_desc, &rx_bfs);
  1404. if (rx_bfs)
  1405. rx_bufs_used++;
  1406. if (!QDF_IS_STATUS_SUCCESS(status)) {
  1407. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1408. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1409. mpdu_desc_info->mpdu_seq,
  1410. mpdu_desc_info->msdu_count,
  1411. mpdu_desc_info->mpdu_flags);
  1412. /* No point in processing rest of the fragments */
  1413. break;
  1414. }
  1415. }
  1416. return rx_bufs_used;
  1417. }
  1418. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1419. struct dp_peer *peer, uint16_t tid,
  1420. uint16_t rxseq, qdf_nbuf_t nbuf)
  1421. {
  1422. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1423. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1424. uint8_t all_frag_present;
  1425. uint32_t msdu_len;
  1426. QDF_STATUS status;
  1427. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1428. if (rx_reorder_array_elem->head &&
  1429. rxseq != rx_tid->curr_seq_num) {
  1430. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1431. "%s: No list found for TID %d Seq# %d\n",
  1432. __func__, tid, rxseq);
  1433. qdf_nbuf_free(nbuf);
  1434. goto fail;
  1435. }
  1436. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1437. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1438. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1439. &rx_reorder_array_elem->head,
  1440. &rx_reorder_array_elem->tail, nbuf,
  1441. &all_frag_present);
  1442. if (QDF_IS_STATUS_ERROR(status)) {
  1443. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1444. "%s Fragment insert failed\n", __func__);
  1445. goto fail;
  1446. }
  1447. if (soc->rx.flags.defrag_timeout_check)
  1448. dp_rx_defrag_waitlist_remove(peer, tid);
  1449. if (!all_frag_present) {
  1450. uint32_t now_ms =
  1451. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1452. peer->rx_tid[tid].defrag_timeout_ms =
  1453. now_ms + soc->rx.defrag.timeout_ms;
  1454. dp_rx_defrag_waitlist_add(peer, tid);
  1455. return QDF_STATUS_SUCCESS;
  1456. }
  1457. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1458. rx_reorder_array_elem->tail);
  1459. if (QDF_IS_STATUS_ERROR(status)) {
  1460. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1461. "%s Fragment processing failed\n", __func__);
  1462. dp_rx_return_head_frag_desc(peer, tid);
  1463. dp_rx_defrag_cleanup(peer, tid);
  1464. goto fail;
  1465. }
  1466. /* Re-inject the fragments back to REO for further processing */
  1467. status = dp_rx_defrag_reo_reinject(peer, tid,
  1468. rx_reorder_array_elem->head);
  1469. if (QDF_IS_STATUS_SUCCESS(status)) {
  1470. rx_reorder_array_elem->head = NULL;
  1471. rx_reorder_array_elem->tail = NULL;
  1472. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1473. "%s: Frag seq successfully reinjected\n",
  1474. __func__);
  1475. } else {
  1476. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1477. "%s: Frag seq reinjection failed\n",
  1478. __func__);
  1479. dp_rx_return_head_frag_desc(peer, tid);
  1480. }
  1481. dp_rx_defrag_cleanup(peer, tid);
  1482. return QDF_STATUS_SUCCESS;
  1483. fail:
  1484. return QDF_STATUS_E_DEFRAG_ERROR;
  1485. }