sde_hw_top.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include "sde_hwio.h"
  6. #include "sde_hw_catalog.h"
  7. #include "sde_hw_top.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #define SSPP_SPARE 0x28
  11. #define UBWC_DEC_HW_VERSION 0x058
  12. #define UBWC_STATIC 0x144
  13. #define UBWC_CTRL_2 0x150
  14. #define UBWC_PREDICTION_MODE 0x154
  15. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  16. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  17. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  18. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  19. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  20. #define MDP_DSPP_DBGBUS_CTRL 0x348
  21. #define MDP_DSPP_DBGBUS_STATUS 0x34C
  22. #define DANGER_STATUS 0x360
  23. #define SAFE_STATUS 0x364
  24. #define TE_LINE_INTERVAL 0x3F4
  25. #define TRAFFIC_SHAPER_EN BIT(31)
  26. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  27. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  28. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  29. #define MDP_WD_TIMER_0_CTL 0x380
  30. #define MDP_WD_TIMER_0_CTL2 0x384
  31. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  32. #define MDP_WD_TIMER_1_CTL 0x390
  33. #define MDP_WD_TIMER_1_CTL2 0x394
  34. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  35. #define MDP_PERIPH_DBGBUS_CTRL 0x418
  36. #define MDP_WD_TIMER_2_CTL 0x420
  37. #define MDP_WD_TIMER_2_CTL2 0x424
  38. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  39. #define MDP_WD_TIMER_3_CTL 0x430
  40. #define MDP_WD_TIMER_3_CTL2 0x434
  41. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  42. #define MDP_WD_TIMER_4_CTL 0x440
  43. #define MDP_WD_TIMER_4_CTL2 0x444
  44. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  45. #define MDP_TICK_COUNT 16
  46. #define XO_CLK_RATE 19200
  47. #define MS_TICKS_IN_SEC 1000
  48. #define AUTOREFRESH_TEST_POINT 0x2
  49. #define TEST_MASK(id, tp) ((id << 4) | (tp << 1) | BIT(0))
  50. #define CALCULATE_WD_LOAD_VALUE(fps) \
  51. ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
  52. #define DCE_SEL 0x450
  53. #define MDP_SID_VIG0 0x0
  54. #define MDP_SID_VIG1 0x4
  55. #define MDP_SID_VIG2 0x8
  56. #define MDP_SID_VIG3 0xC
  57. #define MDP_SID_DMA0 0x10
  58. #define MDP_SID_DMA1 0x14
  59. #define MDP_SID_DMA2 0x18
  60. #define MDP_SID_DMA3 0x1C
  61. #define MDP_SID_ROT_RD 0x20
  62. #define MDP_SID_ROT_WR 0x24
  63. #define MDP_SID_WB2 0x28
  64. #define MDP_SID_XIN7 0x2C
  65. #define ROT_SID_ID_VAL 0x1c
  66. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  67. struct split_pipe_cfg *cfg)
  68. {
  69. struct sde_hw_blk_reg_map *c;
  70. u32 upper_pipe = 0;
  71. u32 lower_pipe = 0;
  72. if (!mdp || !cfg)
  73. return;
  74. c = &mdp->hw;
  75. if (cfg->en) {
  76. if (cfg->mode == INTF_MODE_CMD) {
  77. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  78. /* interface controlling sw trigger */
  79. if (cfg->intf == INTF_2)
  80. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  81. else
  82. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  83. /* free run */
  84. if (cfg->pp_split_slave != INTF_MAX)
  85. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  86. upper_pipe = lower_pipe;
  87. /* smart panel align mode */
  88. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  89. } else {
  90. if (cfg->intf == INTF_2) {
  91. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  92. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  93. } else {
  94. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  95. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  96. }
  97. }
  98. }
  99. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  100. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  101. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  102. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  103. }
  104. static u32 sde_hw_get_split_flush(struct sde_hw_mdp *mdp)
  105. {
  106. struct sde_hw_blk_reg_map *c;
  107. if (!mdp)
  108. return 0;
  109. c = &mdp->hw;
  110. return (SDE_REG_READ(c, SSPP_SPARE) & 0x1);
  111. }
  112. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  113. struct split_pipe_cfg *cfg)
  114. {
  115. u32 ppb_config = 0x0;
  116. u32 ppb_control = 0x0;
  117. if (!mdp || !cfg)
  118. return;
  119. if (cfg->split_link_en) {
  120. ppb_config |= BIT(16); /* split enable */
  121. ppb_control = BIT(5); /* horz split*/
  122. } else if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  123. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  124. ppb_config |= BIT(16); /* split enable */
  125. ppb_control = BIT(5); /* horz split*/
  126. }
  127. if (cfg->pp_split_index && !cfg->split_link_en) {
  128. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  129. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  130. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  131. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  132. } else {
  133. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  134. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  135. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  136. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  137. }
  138. }
  139. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  140. struct cdm_output_cfg *cfg)
  141. {
  142. struct sde_hw_blk_reg_map *c;
  143. u32 out_ctl = 0;
  144. if (!mdp || !cfg)
  145. return;
  146. c = &mdp->hw;
  147. if (cfg->wb_en)
  148. out_ctl |= BIT(24);
  149. else if (cfg->intf_en)
  150. out_ctl |= BIT(19);
  151. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  152. }
  153. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  154. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  155. {
  156. struct sde_hw_blk_reg_map *c;
  157. u32 reg_off, bit_off;
  158. u32 reg_val, new_val;
  159. bool clk_forced_on;
  160. if (!mdp)
  161. return false;
  162. c = &mdp->hw;
  163. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  164. return false;
  165. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  166. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  167. reg_val = SDE_REG_READ(c, reg_off);
  168. if (enable)
  169. new_val = reg_val | BIT(bit_off);
  170. else
  171. new_val = reg_val & ~BIT(bit_off);
  172. SDE_REG_WRITE(c, reg_off, new_val);
  173. wmb(); /* ensure write finished before progressing */
  174. clk_forced_on = !(reg_val & BIT(bit_off));
  175. return clk_forced_on;
  176. }
  177. static int sde_hw_get_clk_ctrl_status(struct sde_hw_mdp *mdp,
  178. enum sde_clk_ctrl_type clk_ctrl, bool *status)
  179. {
  180. struct sde_hw_blk_reg_map *c;
  181. u32 reg_off, bit_off;
  182. if (!mdp)
  183. return -EINVAL;
  184. c = &mdp->hw;
  185. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX ||
  186. !mdp->caps->clk_status[clk_ctrl].reg_off)
  187. return -EINVAL;
  188. reg_off = mdp->caps->clk_status[clk_ctrl].reg_off;
  189. bit_off = mdp->caps->clk_status[clk_ctrl].bit_off;
  190. *status = SDE_REG_READ(c, reg_off) & BIT(bit_off);
  191. return 0;
  192. }
  193. static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp,
  194. struct sde_danger_safe_status *status)
  195. {
  196. struct sde_hw_blk_reg_map *c;
  197. u32 value;
  198. if (!mdp || !status)
  199. return;
  200. c = &mdp->hw;
  201. value = SDE_REG_READ(c, DANGER_STATUS);
  202. status->mdp = (value >> 0) & 0x3;
  203. status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
  204. status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
  205. status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
  206. status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
  207. status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
  208. status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
  209. status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
  210. status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
  211. status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
  212. status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
  213. status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
  214. status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
  215. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
  216. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
  217. status->wb[WB_0] = 0;
  218. status->wb[WB_1] = 0;
  219. status->wb[WB_2] = (value >> 2) & 0x3;
  220. status->wb[WB_3] = 0;
  221. }
  222. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  223. struct sde_vsync_source_cfg *cfg)
  224. {
  225. struct sde_hw_blk_reg_map *c;
  226. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  227. if (!mdp || !cfg)
  228. return;
  229. c = &mdp->hw;
  230. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  231. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  232. switch (cfg->vsync_source) {
  233. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  234. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  235. wd_ctl = MDP_WD_TIMER_4_CTL;
  236. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  237. break;
  238. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  239. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  240. wd_ctl = MDP_WD_TIMER_3_CTL;
  241. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  242. break;
  243. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  244. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  245. wd_ctl = MDP_WD_TIMER_2_CTL;
  246. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  247. break;
  248. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  249. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  250. wd_ctl = MDP_WD_TIMER_1_CTL;
  251. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  252. break;
  253. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  254. default:
  255. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  256. wd_ctl = MDP_WD_TIMER_0_CTL;
  257. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  258. break;
  259. }
  260. if (cfg->is_dummy) {
  261. SDE_REG_WRITE(c, wd_ctl2, 0x0);
  262. } else {
  263. SDE_REG_WRITE(c, wd_load_value,
  264. CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  265. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  266. reg = SDE_REG_READ(c, wd_ctl2);
  267. reg |= BIT(8); /* enable heartbeat timer */
  268. reg |= BIT(0); /* enable WD timer */
  269. SDE_REG_WRITE(c, wd_ctl2, reg);
  270. }
  271. /* make sure that timers are enabled/disabled for vsync state */
  272. wmb();
  273. }
  274. }
  275. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  276. struct sde_vsync_source_cfg *cfg)
  277. {
  278. struct sde_hw_blk_reg_map *c;
  279. u32 reg, i;
  280. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  281. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  282. return;
  283. c = &mdp->hw;
  284. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  285. for (i = 0; i < cfg->pp_count; i++) {
  286. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  287. if (pp_idx >= ARRAY_SIZE(pp_offset))
  288. continue;
  289. reg &= ~(0xf << pp_offset[pp_idx]);
  290. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  291. }
  292. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  293. _update_vsync_source(mdp, cfg);
  294. }
  295. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  296. struct sde_vsync_source_cfg *cfg)
  297. {
  298. _update_vsync_source(mdp, cfg);
  299. }
  300. static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp,
  301. struct sde_danger_safe_status *status)
  302. {
  303. struct sde_hw_blk_reg_map *c;
  304. u32 value;
  305. if (!mdp || !status)
  306. return;
  307. c = &mdp->hw;
  308. value = SDE_REG_READ(c, SAFE_STATUS);
  309. status->mdp = (value >> 0) & 0x1;
  310. status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
  311. status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
  312. status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
  313. status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
  314. status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
  315. status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
  316. status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
  317. status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
  318. status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
  319. status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
  320. status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
  321. status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
  322. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
  323. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
  324. status->wb[WB_0] = 0;
  325. status->wb[WB_1] = 0;
  326. status->wb[WB_2] = (value >> 2) & 0x1;
  327. status->wb[WB_3] = 0;
  328. }
  329. static void sde_hw_setup_dce(struct sde_hw_mdp *mdp, u32 dce_sel)
  330. {
  331. struct sde_hw_blk_reg_map *c;
  332. if (!mdp)
  333. return;
  334. c = &mdp->hw;
  335. SDE_REG_WRITE(c, DCE_SEL, dce_sel);
  336. }
  337. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  338. {
  339. struct sde_hw_blk_reg_map c;
  340. u32 ubwc_version;
  341. if (!mdp || !m)
  342. return;
  343. /* force blk offset to zero to access beginning of register region */
  344. c = mdp->hw;
  345. c.blk_off = 0x0;
  346. ubwc_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  347. if (IS_UBWC_40_SUPPORTED(ubwc_version)) {
  348. u32 ver = 2;
  349. u32 mode = 1;
  350. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  351. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  352. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  353. ((m->macrotile_mode & 0x1) << 12);
  354. if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) {
  355. ver = 1;
  356. mode = 0;
  357. }
  358. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  359. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  360. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  361. } else if (IS_UBWC_20_SUPPORTED(ubwc_version)) {
  362. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  363. } else if (IS_UBWC_30_SUPPORTED(ubwc_version)) {
  364. u32 reg = m->mdp[0].ubwc_static |
  365. (m->mdp[0].ubwc_swizzle & 0x1) |
  366. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  367. ((m->macrotile_mode & 0x1) << 12);
  368. if (IS_UBWC_30_SUPPORTED(m->ubwc_version))
  369. reg |= BIT(10);
  370. if (IS_UBWC_10_SUPPORTED(m->ubwc_version))
  371. reg |= BIT(8);
  372. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  373. } else {
  374. SDE_ERROR("Unsupported UBWC version 0x%08x\n", ubwc_version);
  375. }
  376. }
  377. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  378. {
  379. struct sde_hw_blk_reg_map *c;
  380. if (!mdp)
  381. return;
  382. c = &mdp->hw;
  383. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  384. }
  385. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  386. {
  387. struct sde_hw_blk_reg_map *c;
  388. if (!mdp)
  389. return;
  390. c = &mdp->hw;
  391. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  392. }
  393. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  394. u32 sid_len, const struct sde_mdss_cfg *m)
  395. {
  396. struct sde_hw_sid *c;
  397. c = kzalloc(sizeof(*c), GFP_KERNEL);
  398. if (!c)
  399. return ERR_PTR(-ENOMEM);
  400. c->hw.base_off = addr;
  401. c->hw.blk_off = 0;
  402. c->hw.length = sid_len;
  403. c->hw.hwversion = m->hwversion;
  404. c->hw.log_mask = SDE_DBG_MASK_SID;
  405. return c;
  406. }
  407. void sde_hw_set_rotator_sid(struct sde_hw_sid *sid)
  408. {
  409. if (!sid)
  410. return;
  411. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_RD, ROT_SID_ID_VAL);
  412. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_WR, ROT_SID_ID_VAL);
  413. }
  414. void sde_hw_set_sspp_sid(struct sde_hw_sid *sid, u32 pipe, u32 vm)
  415. {
  416. u32 offset = 0;
  417. if (!sid)
  418. return;
  419. if ((pipe >= SSPP_VIG0) && (pipe <= SSPP_VIG3))
  420. offset = MDP_SID_VIG0 + ((pipe - SSPP_VIG0) * 4);
  421. else if ((pipe >= SSPP_DMA0) && (pipe <= SSPP_DMA3))
  422. offset = MDP_SID_DMA0 + ((pipe - SSPP_DMA0) * 4);
  423. else
  424. return;
  425. SDE_REG_WRITE(&sid->hw, offset, vm << 2);
  426. }
  427. void sde_hw_set_lutdma_sid(struct sde_hw_sid *sid, u32 vm)
  428. {
  429. if (!sid)
  430. return;
  431. SDE_REG_WRITE(&sid->hw, MDP_SID_XIN7, vm << 2);
  432. }
  433. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  434. bool dual, bool dspp_out)
  435. {
  436. u32 value = dspp_out ? 0x4 : 0x0;
  437. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  438. if (dual) {
  439. value |= 0x1;
  440. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  441. }
  442. }
  443. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  444. u8 *payload, u32 len, u32 stream_id)
  445. {
  446. u32 i, b;
  447. u32 length = len - 1;
  448. u32 d_offset, nb_offset, data = 0;
  449. const u32 dword_size = sizeof(u32);
  450. bool is_4k_aligned = mdp->caps->features &
  451. BIT(SDE_MDP_DHDR_MEMPOOL_4K);
  452. if (!payload || !len) {
  453. SDE_ERROR("invalid payload with length: %d\n", len);
  454. return;
  455. }
  456. if (stream_id) {
  457. if (is_4k_aligned) {
  458. d_offset = DP_DHDR_MEM_POOL_1_DATA_4K;
  459. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES_4K;
  460. } else {
  461. d_offset = DP_DHDR_MEM_POOL_1_DATA;
  462. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES;
  463. }
  464. } else {
  465. if (is_4k_aligned) {
  466. d_offset = DP_DHDR_MEM_POOL_0_DATA_4K;
  467. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES_4K;
  468. } else {
  469. d_offset = DP_DHDR_MEM_POOL_0_DATA;
  470. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES;
  471. }
  472. }
  473. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  474. SDE_REG_WRITE(&mdp->hw, nb_offset, length);
  475. for (i = 1; i < len; i += dword_size) {
  476. for (b = 0; (i + b) < len && b < dword_size; b++)
  477. data |= payload[i + b] << (8 * b);
  478. SDE_REG_WRITE(&mdp->hw, d_offset, data);
  479. data = 0;
  480. }
  481. }
  482. static u32 sde_hw_get_autorefresh_status(struct sde_hw_mdp *mdp, u32 intf_idx)
  483. {
  484. struct sde_hw_blk_reg_map *c;
  485. u32 autorefresh_status;
  486. u32 blk_id = (intf_idx == INTF_2) ? 65 : 64;
  487. if (!mdp)
  488. return 0;
  489. c = &mdp->hw;
  490. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL,
  491. TEST_MASK(blk_id, AUTOREFRESH_TEST_POINT));
  492. SDE_REG_WRITE(&mdp->hw, MDP_DSPP_DBGBUS_CTRL, 0x7001);
  493. wmb(); /* make sure test bits were written */
  494. autorefresh_status = SDE_REG_READ(&mdp->hw, MDP_DSPP_DBGBUS_STATUS);
  495. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL, 0x0);
  496. return autorefresh_status;
  497. }
  498. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops,
  499. unsigned long cap)
  500. {
  501. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  502. ops->setup_pp_split = sde_hw_setup_pp_split;
  503. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  504. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  505. ops->get_clk_ctrl_status = sde_hw_get_clk_ctrl_status;
  506. ops->get_danger_status = sde_hw_get_danger_status;
  507. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  508. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  509. ops->get_safe_status = sde_hw_get_safe_status;
  510. ops->get_split_flush_status = sde_hw_get_split_flush;
  511. ops->setup_dce = sde_hw_setup_dce;
  512. ops->reset_ubwc = sde_hw_reset_ubwc;
  513. ops->intf_audio_select = sde_hw_intf_audio_select;
  514. ops->set_mdp_hw_events = sde_hw_mdp_events;
  515. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  516. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  517. else
  518. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  519. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL_4K) ||
  520. cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  521. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  522. ops->get_autorefresh_status = sde_hw_get_autorefresh_status;
  523. }
  524. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  525. const struct sde_mdss_cfg *m,
  526. void __iomem *addr,
  527. struct sde_hw_blk_reg_map *b)
  528. {
  529. int i;
  530. if (!m || !addr || !b)
  531. return ERR_PTR(-EINVAL);
  532. for (i = 0; i < m->mdp_count; i++) {
  533. if (mdp == m->mdp[i].id) {
  534. b->base_off = addr;
  535. b->blk_off = m->mdp[i].base;
  536. b->length = m->mdp[i].len;
  537. b->hwversion = m->hwversion;
  538. b->log_mask = SDE_DBG_MASK_TOP;
  539. return &m->mdp[i];
  540. }
  541. }
  542. return ERR_PTR(-EINVAL);
  543. }
  544. static struct sde_hw_blk_ops sde_hw_ops = {
  545. .start = NULL,
  546. .stop = NULL,
  547. };
  548. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  549. void __iomem *addr,
  550. const struct sde_mdss_cfg *m)
  551. {
  552. struct sde_hw_mdp *mdp;
  553. const struct sde_mdp_cfg *cfg;
  554. int rc;
  555. if (!addr || !m)
  556. return ERR_PTR(-EINVAL);
  557. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  558. if (!mdp)
  559. return ERR_PTR(-ENOMEM);
  560. cfg = _top_offset(idx, m, addr, &mdp->hw);
  561. if (IS_ERR_OR_NULL(cfg)) {
  562. kfree(mdp);
  563. return ERR_PTR(-EINVAL);
  564. }
  565. /*
  566. * Assign ops
  567. */
  568. mdp->idx = idx;
  569. mdp->caps = cfg;
  570. _setup_mdp_ops(&mdp->ops, mdp->caps->features);
  571. rc = sde_hw_blk_init(&mdp->base, SDE_HW_BLK_TOP, idx, &sde_hw_ops);
  572. if (rc) {
  573. SDE_ERROR("failed to init hw blk %d\n", rc);
  574. goto blk_init_error;
  575. }
  576. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, "mdss_hw", 0,
  577. m->mdss_hw_block_size, 0);
  578. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  579. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  580. mdp->hw.xin_id);
  581. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  582. return mdp;
  583. blk_init_error:
  584. kzfree(mdp);
  585. return ERR_PTR(rc);
  586. }
  587. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  588. {
  589. if (mdp)
  590. sde_hw_blk_destroy(&mdp->base);
  591. kfree(mdp);
  592. }