dp_rx.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef FEATURE_WDS
  32. #include "dp_txrx_wds.h"
  33. #endif
  34. #include "dp_hist.h"
  35. #include "dp_rx_buffer_pool.h"
  36. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  37. #ifdef ATH_RX_PRI_SAVE
  38. #define DP_RX_TID_SAVE(_nbuf, _tid) \
  39. (qdf_nbuf_set_priority(_nbuf, _tid))
  40. #else
  41. #define DP_RX_TID_SAVE(_nbuf, _tid)
  42. #endif
  43. #ifdef DP_RX_DISABLE_NDI_MDNS_FORWARDING
  44. static inline
  45. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  46. {
  47. if (ta_peer->vdev->opmode == wlan_op_mode_ndi &&
  48. qdf_nbuf_is_ipv6_mdns_pkt(nbuf)) {
  49. DP_STATS_INC(ta_peer, rx.intra_bss.mdns_no_fwd, 1);
  50. return false;
  51. }
  52. return true;
  53. }
  54. #else
  55. static inline
  56. bool dp_rx_check_ndi_mdns_fwding(struct dp_peer *ta_peer, qdf_nbuf_t nbuf)
  57. {
  58. return true;
  59. }
  60. #endif
  61. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  62. {
  63. return vdev->ap_bridge_enabled;
  64. }
  65. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  66. #ifdef DUP_RX_DESC_WAR
  67. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  68. hal_ring_handle_t hal_ring,
  69. hal_ring_desc_t ring_desc,
  70. struct dp_rx_desc *rx_desc)
  71. {
  72. void *hal_soc = soc->hal_soc;
  73. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  74. dp_rx_desc_dump(rx_desc);
  75. }
  76. #else
  77. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  78. hal_ring_handle_t hal_ring_hdl,
  79. hal_ring_desc_t ring_desc,
  80. struct dp_rx_desc *rx_desc)
  81. {
  82. hal_soc_handle_t hal_soc = soc->hal_soc;
  83. dp_rx_desc_dump(rx_desc);
  84. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  85. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  86. qdf_assert_always(0);
  87. }
  88. #endif
  89. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  90. #ifdef RX_DESC_SANITY_WAR
  91. static inline
  92. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  93. hal_ring_handle_t hal_ring_hdl,
  94. hal_ring_desc_t ring_desc,
  95. struct dp_rx_desc *rx_desc)
  96. {
  97. uint8_t return_buffer_manager;
  98. if (qdf_unlikely(!rx_desc)) {
  99. /*
  100. * This is an unlikely case where the cookie obtained
  101. * from the ring_desc is invalid and hence we are not
  102. * able to find the corresponding rx_desc
  103. */
  104. goto fail;
  105. }
  106. return_buffer_manager = hal_rx_ret_buf_manager_get(ring_desc);
  107. if (qdf_unlikely(!(return_buffer_manager == HAL_RX_BUF_RBM_SW1_BM ||
  108. return_buffer_manager == HAL_RX_BUF_RBM_SW3_BM))) {
  109. goto fail;
  110. }
  111. return QDF_STATUS_SUCCESS;
  112. fail:
  113. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  114. dp_err("Ring Desc:");
  115. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  116. ring_desc);
  117. return QDF_STATUS_E_NULL_VALUE;
  118. }
  119. #else
  120. static inline
  121. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  122. hal_ring_handle_t hal_ring_hdl,
  123. hal_ring_desc_t ring_desc,
  124. struct dp_rx_desc *rx_desc)
  125. {
  126. return QDF_STATUS_SUCCESS;
  127. }
  128. #endif
  129. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  130. /**
  131. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  132. *
  133. * @dp_soc: struct dp_soc *
  134. * @nbuf_frag_info_t: nbuf frag info
  135. * @dp_pdev: struct dp_pdev *
  136. * @rx_desc_pool: Rx desc pool
  137. *
  138. * Return: QDF_STATUS
  139. */
  140. #ifdef DP_RX_MON_MEM_FRAG
  141. static inline QDF_STATUS
  142. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  143. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  144. struct dp_pdev *dp_pdev,
  145. struct rx_desc_pool *rx_desc_pool)
  146. {
  147. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  148. (nbuf_frag_info_t->virt_addr).vaddr =
  149. qdf_frag_alloc(rx_desc_pool->buf_size);
  150. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  151. dp_err("Frag alloc failed");
  152. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  153. return QDF_STATUS_E_NOMEM;
  154. }
  155. ret = qdf_mem_map_page(dp_soc->osdev,
  156. (nbuf_frag_info_t->virt_addr).vaddr,
  157. QDF_DMA_FROM_DEVICE,
  158. rx_desc_pool->buf_size,
  159. &nbuf_frag_info_t->paddr);
  160. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  161. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  162. dp_err("Frag map failed");
  163. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  164. return QDF_STATUS_E_FAULT;
  165. }
  166. return QDF_STATUS_SUCCESS;
  167. }
  168. #else
  169. static inline QDF_STATUS
  170. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  171. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  172. struct dp_pdev *dp_pdev,
  173. struct rx_desc_pool *rx_desc_pool)
  174. {
  175. return QDF_STATUS_SUCCESS;
  176. }
  177. #endif /* DP_RX_MON_MEM_FRAG */
  178. /**
  179. * dp_pdev_nbuf_alloc_and_map() - Allocate nbuf for desc buffer and map
  180. *
  181. * @dp_soc: struct dp_soc *
  182. * @mac_id: Mac id
  183. * @num_entries_avail: num_entries_avail
  184. * @nbuf_frag_info_t: nbuf frag info
  185. * @dp_pdev: struct dp_pdev *
  186. * @rx_desc_pool: Rx desc pool
  187. *
  188. * Return: QDF_STATUS
  189. */
  190. static inline QDF_STATUS
  191. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  192. uint32_t mac_id,
  193. uint32_t num_entries_avail,
  194. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  195. struct dp_pdev *dp_pdev,
  196. struct rx_desc_pool *rx_desc_pool)
  197. {
  198. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  199. (nbuf_frag_info_t->virt_addr).nbuf =
  200. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  201. mac_id,
  202. rx_desc_pool,
  203. num_entries_avail);
  204. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  205. dp_err("nbuf alloc failed");
  206. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  207. return QDF_STATUS_E_NOMEM;
  208. }
  209. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  210. (nbuf_frag_info_t->virt_addr).nbuf,
  211. QDF_DMA_FROM_DEVICE,
  212. rx_desc_pool->buf_size);
  213. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  214. dp_rx_buffer_pool_nbuf_free(dp_soc,
  215. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  216. dp_err("nbuf map failed");
  217. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  218. return QDF_STATUS_E_FAULT;
  219. }
  220. nbuf_frag_info_t->paddr =
  221. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  222. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc,
  223. (qdf_nbuf_t)((nbuf_frag_info_t->virt_addr).nbuf),
  224. rx_desc_pool->buf_size,
  225. true);
  226. ret = check_x86_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  227. &nbuf_frag_info_t->paddr,
  228. rx_desc_pool);
  229. if (ret == QDF_STATUS_E_FAILURE) {
  230. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev,
  231. (nbuf_frag_info_t->virt_addr).nbuf,
  232. QDF_DMA_FROM_DEVICE,
  233. rx_desc_pool->buf_size);
  234. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  235. return QDF_STATUS_E_ADDRNOTAVAIL;
  236. }
  237. return QDF_STATUS_SUCCESS;
  238. }
  239. /*
  240. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  241. * called during dp rx initialization
  242. * and at the end of dp_rx_process.
  243. *
  244. * @soc: core txrx main context
  245. * @mac_id: mac_id which is one of 3 mac_ids
  246. * @dp_rxdma_srng: dp rxdma circular ring
  247. * @rx_desc_pool: Pointer to free Rx descriptor pool
  248. * @num_req_buffers: number of buffer to be replenished
  249. * @desc_list: list of descs if called from dp_rx_process
  250. * or NULL during dp rx initialization or out of buffer
  251. * interrupt.
  252. * @tail: tail of descs list
  253. * @func_name: name of the caller function
  254. * Return: return success or failure
  255. */
  256. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  257. struct dp_srng *dp_rxdma_srng,
  258. struct rx_desc_pool *rx_desc_pool,
  259. uint32_t num_req_buffers,
  260. union dp_rx_desc_list_elem_t **desc_list,
  261. union dp_rx_desc_list_elem_t **tail,
  262. const char *func_name)
  263. {
  264. uint32_t num_alloc_desc;
  265. uint16_t num_desc_to_free = 0;
  266. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  267. uint32_t num_entries_avail;
  268. uint32_t count;
  269. int sync_hw_ptr = 1;
  270. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  271. void *rxdma_ring_entry;
  272. union dp_rx_desc_list_elem_t *next;
  273. QDF_STATUS ret;
  274. void *rxdma_srng;
  275. rxdma_srng = dp_rxdma_srng->hal_srng;
  276. if (!rxdma_srng) {
  277. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  278. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  279. return QDF_STATUS_E_FAILURE;
  280. }
  281. dp_rx_debug("%pK: requested %d buffers for replenish",
  282. dp_soc, num_req_buffers);
  283. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  284. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  285. rxdma_srng,
  286. sync_hw_ptr);
  287. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  288. dp_soc, num_entries_avail);
  289. if (!(*desc_list) && (num_entries_avail >
  290. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  291. num_req_buffers = num_entries_avail;
  292. } else if (num_entries_avail < num_req_buffers) {
  293. num_desc_to_free = num_req_buffers - num_entries_avail;
  294. num_req_buffers = num_entries_avail;
  295. }
  296. if (qdf_unlikely(!num_req_buffers)) {
  297. num_desc_to_free = num_req_buffers;
  298. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  299. goto free_descs;
  300. }
  301. /*
  302. * if desc_list is NULL, allocate the descs from freelist
  303. */
  304. if (!(*desc_list)) {
  305. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  306. rx_desc_pool,
  307. num_req_buffers,
  308. desc_list,
  309. tail);
  310. if (!num_alloc_desc) {
  311. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  312. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  313. num_req_buffers);
  314. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  315. return QDF_STATUS_E_NOMEM;
  316. }
  317. dp_rx_debug("%pK: %d rx desc allocated", dp_soc, num_alloc_desc);
  318. num_req_buffers = num_alloc_desc;
  319. }
  320. count = 0;
  321. while (count < num_req_buffers) {
  322. /* Flag is set while pdev rx_desc_pool initialization */
  323. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  324. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  325. &nbuf_frag_info,
  326. dp_pdev,
  327. rx_desc_pool);
  328. else
  329. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  330. mac_id,
  331. num_entries_avail, &nbuf_frag_info,
  332. dp_pdev, rx_desc_pool);
  333. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  334. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  335. continue;
  336. break;
  337. }
  338. count++;
  339. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  340. rxdma_srng);
  341. qdf_assert_always(rxdma_ring_entry);
  342. next = (*desc_list)->next;
  343. /* Flag is set while pdev rx_desc_pool initialization */
  344. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  345. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  346. &nbuf_frag_info);
  347. else
  348. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  349. &nbuf_frag_info);
  350. /* rx_desc.in_use should be zero at this time*/
  351. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  352. (*desc_list)->rx_desc.in_use = 1;
  353. (*desc_list)->rx_desc.in_err_state = 0;
  354. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  355. func_name, RX_DESC_REPLENISHED);
  356. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  357. nbuf_frag_info.virt_addr.nbuf,
  358. (unsigned long long)(nbuf_frag_info.paddr),
  359. (*desc_list)->rx_desc.cookie);
  360. hal_rxdma_buff_addr_info_set(rxdma_ring_entry,
  361. nbuf_frag_info.paddr,
  362. (*desc_list)->rx_desc.cookie,
  363. rx_desc_pool->owner);
  364. *desc_list = next;
  365. }
  366. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  367. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  368. count, num_desc_to_free);
  369. /* No need to count the number of bytes received during replenish.
  370. * Therefore set replenish.pkts.bytes as 0.
  371. */
  372. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  373. free_descs:
  374. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  375. /*
  376. * add any available free desc back to the free list
  377. */
  378. if (*desc_list)
  379. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  380. mac_id, rx_desc_pool);
  381. return QDF_STATUS_SUCCESS;
  382. }
  383. /*
  384. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  385. * pkts to RAW mode simulation to
  386. * decapsulate the pkt.
  387. *
  388. * @vdev: vdev on which RAW mode is enabled
  389. * @nbuf_list: list of RAW pkts to process
  390. * @peer: peer object from which the pkt is rx
  391. *
  392. * Return: void
  393. */
  394. void
  395. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  396. struct dp_peer *peer)
  397. {
  398. qdf_nbuf_t deliver_list_head = NULL;
  399. qdf_nbuf_t deliver_list_tail = NULL;
  400. qdf_nbuf_t nbuf;
  401. nbuf = nbuf_list;
  402. while (nbuf) {
  403. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  404. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  405. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  406. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  407. /*
  408. * reset the chfrag_start and chfrag_end bits in nbuf cb
  409. * as this is a non-amsdu pkt and RAW mode simulation expects
  410. * these bit s to be 0 for non-amsdu pkt.
  411. */
  412. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  413. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  414. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  415. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  416. }
  417. nbuf = next;
  418. }
  419. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  420. &deliver_list_tail, peer->mac_addr.raw);
  421. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  422. }
  423. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  424. #ifndef FEATURE_WDS
  425. static void
  426. dp_rx_da_learn(struct dp_soc *soc,
  427. uint8_t *rx_tlv_hdr,
  428. struct dp_peer *ta_peer,
  429. qdf_nbuf_t nbuf)
  430. {
  431. }
  432. #endif
  433. /*
  434. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  435. *
  436. * @soc: core txrx main context
  437. * @ta_peer : source peer entry
  438. * @rx_tlv_hdr : start address of rx tlvs
  439. * @nbuf : nbuf that has to be intrabss forwarded
  440. *
  441. * Return: bool: true if it is forwarded else false
  442. */
  443. static bool
  444. dp_rx_intrabss_fwd(struct dp_soc *soc,
  445. struct dp_peer *ta_peer,
  446. uint8_t *rx_tlv_hdr,
  447. qdf_nbuf_t nbuf,
  448. struct hal_rx_msdu_metadata msdu_metadata)
  449. {
  450. uint16_t len;
  451. uint8_t is_frag;
  452. uint16_t da_peer_id = HTT_INVALID_PEER;
  453. struct dp_peer *da_peer = NULL;
  454. bool is_da_bss_peer = false;
  455. struct dp_ast_entry *ast_entry;
  456. qdf_nbuf_t nbuf_copy;
  457. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  458. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  459. struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats.
  460. tid_stats.tid_rx_stats[ring_id][tid];
  461. /* check if the destination peer is available in peer table
  462. * and also check if the source peer and destination peer
  463. * belong to the same vap and destination peer is not bss peer.
  464. */
  465. if ((qdf_nbuf_is_da_valid(nbuf) && !qdf_nbuf_is_da_mcbc(nbuf))) {
  466. ast_entry = soc->ast_table[msdu_metadata.da_idx];
  467. if (!ast_entry)
  468. return false;
  469. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  470. ast_entry->is_active = TRUE;
  471. return false;
  472. }
  473. da_peer_id = ast_entry->peer_id;
  474. if (da_peer_id == HTT_INVALID_PEER)
  475. return false;
  476. /* TA peer cannot be same as peer(DA) on which AST is present
  477. * this indicates a change in topology and that AST entries
  478. * are yet to be updated.
  479. */
  480. if (da_peer_id == ta_peer->peer_id)
  481. return false;
  482. if (ast_entry->vdev_id != ta_peer->vdev->vdev_id)
  483. return false;
  484. da_peer = dp_peer_get_ref_by_id(soc, da_peer_id,
  485. DP_MOD_ID_RX);
  486. if (!da_peer)
  487. return false;
  488. is_da_bss_peer = da_peer->bss_peer;
  489. dp_peer_unref_delete(da_peer, DP_MOD_ID_RX);
  490. if (!is_da_bss_peer) {
  491. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  492. is_frag = qdf_nbuf_is_frag(nbuf);
  493. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  494. /* If the source or destination peer in the isolation
  495. * list then dont forward instead push to bridge stack.
  496. */
  497. if (dp_get_peer_isolation(ta_peer) ||
  498. dp_get_peer_isolation(da_peer))
  499. return false;
  500. /* linearize the nbuf just before we send to
  501. * dp_tx_send()
  502. */
  503. if (qdf_unlikely(is_frag)) {
  504. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  505. return false;
  506. nbuf = qdf_nbuf_unshare(nbuf);
  507. if (!nbuf) {
  508. DP_STATS_INC_PKT(ta_peer,
  509. rx.intra_bss.fail,
  510. 1,
  511. len);
  512. /* return true even though the pkt is
  513. * not forwarded. Basically skb_unshare
  514. * failed and we want to continue with
  515. * next nbuf.
  516. */
  517. tid_stats->fail_cnt[INTRABSS_DROP]++;
  518. return true;
  519. }
  520. }
  521. if (!dp_tx_send((struct cdp_soc_t *)soc,
  522. ta_peer->vdev->vdev_id, nbuf)) {
  523. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  524. len);
  525. return true;
  526. } else {
  527. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  528. len);
  529. tid_stats->fail_cnt[INTRABSS_DROP]++;
  530. return false;
  531. }
  532. }
  533. }
  534. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  535. * source, then clone the pkt and send the cloned pkt for
  536. * intra BSS forwarding and original pkt up the network stack
  537. * Note: how do we handle multicast pkts. do we forward
  538. * all multicast pkts as is or let a higher layer module
  539. * like igmpsnoop decide whether to forward or not with
  540. * Mcast enhancement.
  541. */
  542. else if (qdf_unlikely((qdf_nbuf_is_da_mcbc(nbuf) &&
  543. !ta_peer->bss_peer))) {
  544. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf))
  545. goto end;
  546. /* If the source peer in the isolation list
  547. * then dont forward instead push to bridge stack
  548. */
  549. if (dp_get_peer_isolation(ta_peer))
  550. goto end;
  551. nbuf_copy = qdf_nbuf_copy(nbuf);
  552. if (!nbuf_copy)
  553. goto end;
  554. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  555. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  556. /* Set cb->ftype to intrabss FWD */
  557. qdf_nbuf_set_tx_ftype(nbuf_copy, CB_FTYPE_INTRABSS_FWD);
  558. if (dp_tx_send((struct cdp_soc_t *)soc,
  559. ta_peer->vdev->vdev_id, nbuf_copy)) {
  560. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  561. tid_stats->fail_cnt[INTRABSS_DROP]++;
  562. qdf_nbuf_free(nbuf_copy);
  563. } else {
  564. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  565. tid_stats->intrabss_cnt++;
  566. }
  567. }
  568. end:
  569. /* return false as we have to still send the original pkt
  570. * up the stack
  571. */
  572. return false;
  573. }
  574. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  575. #ifdef MESH_MODE_SUPPORT
  576. /**
  577. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  578. *
  579. * @vdev: DP Virtual device handle
  580. * @nbuf: Buffer pointer
  581. * @rx_tlv_hdr: start of rx tlv header
  582. * @peer: pointer to peer
  583. *
  584. * This function allocated memory for mesh receive stats and fill the
  585. * required stats. Stores the memory address in skb cb.
  586. *
  587. * Return: void
  588. */
  589. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  590. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  591. {
  592. struct mesh_recv_hdr_s *rx_info = NULL;
  593. uint32_t pkt_type;
  594. uint32_t nss;
  595. uint32_t rate_mcs;
  596. uint32_t bw;
  597. uint8_t primary_chan_num;
  598. uint32_t center_chan_freq;
  599. struct dp_soc *soc;
  600. /* fill recv mesh stats */
  601. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  602. /* upper layers are resposible to free this memory */
  603. if (!rx_info) {
  604. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  605. vdev->pdev->soc);
  606. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  607. return;
  608. }
  609. rx_info->rs_flags = MESH_RXHDR_VER1;
  610. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  611. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  612. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  613. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  614. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  615. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  616. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  617. if (vdev->osif_get_key)
  618. vdev->osif_get_key(vdev->osif_vdev,
  619. &rx_info->rs_decryptkey[0],
  620. &peer->mac_addr.raw[0],
  621. rx_info->rs_keyix);
  622. }
  623. rx_info->rs_snr = peer->stats.rx.snr;
  624. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  625. soc = vdev->pdev->soc;
  626. primary_chan_num = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  627. center_chan_freq = hal_rx_msdu_start_get_freq(rx_tlv_hdr) >> 16;
  628. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  629. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  630. soc->ctrl_psoc,
  631. vdev->pdev->pdev_id,
  632. center_chan_freq);
  633. }
  634. rx_info->rs_channel = primary_chan_num;
  635. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  636. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  637. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  638. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  639. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  640. (bw << 24);
  641. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  642. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  643. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  644. rx_info->rs_flags,
  645. rx_info->rs_rssi,
  646. rx_info->rs_channel,
  647. rx_info->rs_ratephy1,
  648. rx_info->rs_keyix,
  649. rx_info->rs_snr);
  650. }
  651. /**
  652. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  653. *
  654. * @vdev: DP Virtual device handle
  655. * @nbuf: Buffer pointer
  656. * @rx_tlv_hdr: start of rx tlv header
  657. *
  658. * This checks if the received packet is matching any filter out
  659. * catogery and and drop the packet if it matches.
  660. *
  661. * Return: status(0 indicates drop, 1 indicate to no drop)
  662. */
  663. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  664. uint8_t *rx_tlv_hdr)
  665. {
  666. union dp_align_mac_addr mac_addr;
  667. struct dp_soc *soc = vdev->pdev->soc;
  668. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  669. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  670. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  671. rx_tlv_hdr))
  672. return QDF_STATUS_SUCCESS;
  673. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  674. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  675. rx_tlv_hdr))
  676. return QDF_STATUS_SUCCESS;
  677. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  678. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  679. rx_tlv_hdr) &&
  680. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  681. rx_tlv_hdr))
  682. return QDF_STATUS_SUCCESS;
  683. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  684. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  685. rx_tlv_hdr,
  686. &mac_addr.raw[0]))
  687. return QDF_STATUS_E_FAILURE;
  688. if (!qdf_mem_cmp(&mac_addr.raw[0],
  689. &vdev->mac_addr.raw[0],
  690. QDF_MAC_ADDR_SIZE))
  691. return QDF_STATUS_SUCCESS;
  692. }
  693. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  694. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  695. rx_tlv_hdr,
  696. &mac_addr.raw[0]))
  697. return QDF_STATUS_E_FAILURE;
  698. if (!qdf_mem_cmp(&mac_addr.raw[0],
  699. &vdev->mac_addr.raw[0],
  700. QDF_MAC_ADDR_SIZE))
  701. return QDF_STATUS_SUCCESS;
  702. }
  703. }
  704. return QDF_STATUS_E_FAILURE;
  705. }
  706. #else
  707. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  708. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  709. {
  710. }
  711. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  712. uint8_t *rx_tlv_hdr)
  713. {
  714. return QDF_STATUS_E_FAILURE;
  715. }
  716. #endif
  717. #ifdef FEATURE_NAC_RSSI
  718. /**
  719. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  720. * clients
  721. * @pdev: DP pdev handle
  722. * @rx_pkt_hdr: Rx packet Header
  723. *
  724. * return: dp_vdev*
  725. */
  726. static
  727. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  728. uint8_t *rx_pkt_hdr)
  729. {
  730. struct ieee80211_frame *wh;
  731. struct dp_neighbour_peer *peer = NULL;
  732. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  733. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  734. return NULL;
  735. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  736. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  737. neighbour_peer_list_elem) {
  738. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  739. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  740. dp_rx_debug("%pK: NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x",
  741. pdev->soc,
  742. peer->neighbour_peers_macaddr.raw[0],
  743. peer->neighbour_peers_macaddr.raw[1],
  744. peer->neighbour_peers_macaddr.raw[2],
  745. peer->neighbour_peers_macaddr.raw[3],
  746. peer->neighbour_peers_macaddr.raw[4],
  747. peer->neighbour_peers_macaddr.raw[5]);
  748. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  749. return pdev->monitor_vdev;
  750. }
  751. }
  752. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  753. return NULL;
  754. }
  755. /**
  756. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  757. * @soc: DP SOC handle
  758. * @mpdu: mpdu for which peer is invalid
  759. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  760. * pool_id has same mapping)
  761. *
  762. * return: integer type
  763. */
  764. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  765. uint8_t mac_id)
  766. {
  767. struct dp_invalid_peer_msg msg;
  768. struct dp_vdev *vdev = NULL;
  769. struct dp_pdev *pdev = NULL;
  770. struct ieee80211_frame *wh;
  771. qdf_nbuf_t curr_nbuf, next_nbuf;
  772. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  773. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  774. rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  775. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  776. dp_rx_debug("%pK: Drop decapped frames", soc);
  777. goto free;
  778. }
  779. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  780. if (!DP_FRAME_IS_DATA(wh)) {
  781. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  782. goto free;
  783. }
  784. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  785. dp_rx_err("%pK: Invalid nbuf length", soc);
  786. goto free;
  787. }
  788. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  789. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  790. dp_rx_err("%pK: PDEV %s", soc, !pdev ? "not found" : "down");
  791. goto free;
  792. }
  793. if (pdev->filter_neighbour_peers) {
  794. /* Next Hop scenario not yet handle */
  795. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  796. if (vdev) {
  797. dp_rx_mon_deliver(soc, pdev->pdev_id,
  798. pdev->invalid_peer_head_msdu,
  799. pdev->invalid_peer_tail_msdu);
  800. pdev->invalid_peer_head_msdu = NULL;
  801. pdev->invalid_peer_tail_msdu = NULL;
  802. return 0;
  803. }
  804. }
  805. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  806. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  807. QDF_MAC_ADDR_SIZE) == 0) {
  808. goto out;
  809. }
  810. }
  811. if (!vdev) {
  812. dp_rx_err("%pK: VDEV not found", soc);
  813. goto free;
  814. }
  815. out:
  816. msg.wh = wh;
  817. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  818. msg.nbuf = mpdu;
  819. msg.vdev_id = vdev->vdev_id;
  820. /*
  821. * NOTE: Only valid for HKv1.
  822. * If smart monitor mode is enabled on RE, we are getting invalid
  823. * peer frames with RA as STA mac of RE and the TA not matching
  824. * with any NAC list or the the BSSID.Such frames need to dropped
  825. * in order to avoid HM_WDS false addition.
  826. */
  827. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  828. if (!soc->hw_nac_monitor_support &&
  829. pdev->filter_neighbour_peers &&
  830. vdev->opmode == wlan_op_mode_sta) {
  831. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  832. soc, wh->i_addr1);
  833. goto free;
  834. }
  835. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  836. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  837. pdev->pdev_id, &msg);
  838. }
  839. free:
  840. /* Drop and free packet */
  841. curr_nbuf = mpdu;
  842. while (curr_nbuf) {
  843. next_nbuf = qdf_nbuf_next(curr_nbuf);
  844. qdf_nbuf_free(curr_nbuf);
  845. curr_nbuf = next_nbuf;
  846. }
  847. return 0;
  848. }
  849. /**
  850. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  851. * @soc: DP SOC handle
  852. * @mpdu: mpdu for which peer is invalid
  853. * @mpdu_done: if an mpdu is completed
  854. * @mac_id: mac_id which is one of 3 mac_ids(Assuming mac_id and
  855. * pool_id has same mapping)
  856. *
  857. * return: integer type
  858. */
  859. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  860. qdf_nbuf_t mpdu, bool mpdu_done,
  861. uint8_t mac_id)
  862. {
  863. /* Only trigger the process when mpdu is completed */
  864. if (mpdu_done)
  865. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  866. }
  867. #else
  868. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  869. uint8_t mac_id)
  870. {
  871. qdf_nbuf_t curr_nbuf, next_nbuf;
  872. struct dp_pdev *pdev;
  873. struct dp_vdev *vdev = NULL;
  874. struct ieee80211_frame *wh;
  875. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  876. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  877. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  878. if (!DP_FRAME_IS_DATA(wh)) {
  879. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  880. "only for data frames");
  881. goto free;
  882. }
  883. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  884. dp_rx_err("%pK: Invalid nbuf length", soc);
  885. goto free;
  886. }
  887. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  888. if (!pdev) {
  889. dp_rx_err("%pK: PDEV not found", soc);
  890. goto free;
  891. }
  892. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  893. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  894. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  895. QDF_MAC_ADDR_SIZE) == 0) {
  896. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  897. goto out;
  898. }
  899. }
  900. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  901. if (!vdev) {
  902. dp_rx_err("%pK: VDEV not found", soc);
  903. goto free;
  904. }
  905. out:
  906. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  907. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  908. free:
  909. /* reset the head and tail pointers */
  910. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  911. if (pdev) {
  912. pdev->invalid_peer_head_msdu = NULL;
  913. pdev->invalid_peer_tail_msdu = NULL;
  914. }
  915. /* Drop and free packet */
  916. curr_nbuf = mpdu;
  917. while (curr_nbuf) {
  918. next_nbuf = qdf_nbuf_next(curr_nbuf);
  919. qdf_nbuf_free(curr_nbuf);
  920. curr_nbuf = next_nbuf;
  921. }
  922. /* Reset the head and tail pointers */
  923. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  924. if (pdev) {
  925. pdev->invalid_peer_head_msdu = NULL;
  926. pdev->invalid_peer_tail_msdu = NULL;
  927. }
  928. return 0;
  929. }
  930. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  931. qdf_nbuf_t mpdu, bool mpdu_done,
  932. uint8_t mac_id)
  933. {
  934. /* Process the nbuf */
  935. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  936. }
  937. #endif
  938. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  939. #ifdef RECEIVE_OFFLOAD
  940. /**
  941. * dp_rx_print_offload_info() - Print offload info from RX TLV
  942. * @soc: dp soc handle
  943. * @rx_tlv: RX TLV for which offload information is to be printed
  944. *
  945. * Return: None
  946. */
  947. static void dp_rx_print_offload_info(struct dp_soc *soc, uint8_t *rx_tlv)
  948. {
  949. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  950. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  951. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  952. dp_verbose_debug("chksum 0x%x", hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  953. rx_tlv));
  954. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  955. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  956. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  957. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  958. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  959. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  960. dp_verbose_debug("---------------------------------------------------------");
  961. }
  962. /**
  963. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  964. * @soc: DP SOC handle
  965. * @rx_tlv: RX TLV received for the msdu
  966. * @msdu: msdu for which GRO info needs to be filled
  967. * @rx_ol_pkt_cnt: counter to be incremented for GRO eligible packets
  968. *
  969. * Return: None
  970. */
  971. static
  972. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  973. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  974. {
  975. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  976. return;
  977. /* Filling up RX offload info only for TCP packets */
  978. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  979. return;
  980. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  981. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  982. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  983. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  984. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  985. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  986. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  987. rx_tlv);
  988. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  989. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  990. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  991. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  992. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  993. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  994. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  995. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  996. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  997. HAL_RX_TLV_GET_IPV6(rx_tlv);
  998. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  999. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  1000. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  1001. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  1002. dp_rx_print_offload_info(soc, rx_tlv);
  1003. }
  1004. #else
  1005. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1006. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1007. {
  1008. }
  1009. #endif /* RECEIVE_OFFLOAD */
  1010. /**
  1011. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1012. *
  1013. * @nbuf: pointer to msdu.
  1014. * @mpdu_len: mpdu length
  1015. *
  1016. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  1017. */
  1018. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  1019. {
  1020. bool last_nbuf;
  1021. if (*mpdu_len > (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  1022. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1023. last_nbuf = false;
  1024. } else {
  1025. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  1026. last_nbuf = true;
  1027. }
  1028. *mpdu_len -= (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  1029. return last_nbuf;
  1030. }
  1031. /**
  1032. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  1033. * multiple nbufs.
  1034. * @soc: DP SOC handle
  1035. * @nbuf: pointer to the first msdu of an amsdu.
  1036. *
  1037. * This function implements the creation of RX frag_list for cases
  1038. * where an MSDU is spread across multiple nbufs.
  1039. *
  1040. * Return: returns the head nbuf which contains complete frag_list.
  1041. */
  1042. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1043. {
  1044. qdf_nbuf_t parent, frag_list, next = NULL;
  1045. uint16_t frag_list_len = 0;
  1046. uint16_t mpdu_len;
  1047. bool last_nbuf;
  1048. /*
  1049. * Use msdu len got from REO entry descriptor instead since
  1050. * there is case the RX PKT TLV is corrupted while msdu_len
  1051. * from REO descriptor is right for non-raw RX scatter msdu.
  1052. */
  1053. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1054. /*
  1055. * this is a case where the complete msdu fits in one single nbuf.
  1056. * in this case HW sets both start and end bit and we only need to
  1057. * reset these bits for RAW mode simulator to decap the pkt
  1058. */
  1059. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1060. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1061. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  1062. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1063. return nbuf;
  1064. }
  1065. /*
  1066. * This is a case where we have multiple msdus (A-MSDU) spread across
  1067. * multiple nbufs. here we create a fraglist out of these nbufs.
  1068. *
  1069. * the moment we encounter a nbuf with continuation bit set we
  1070. * know for sure we have an MSDU which is spread across multiple
  1071. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1072. */
  1073. parent = nbuf;
  1074. frag_list = nbuf->next;
  1075. nbuf = nbuf->next;
  1076. /*
  1077. * set the start bit in the first nbuf we encounter with continuation
  1078. * bit set. This has the proper mpdu length set as it is the first
  1079. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1080. * nbufs will form the frag_list of the parent nbuf.
  1081. */
  1082. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1083. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  1084. /*
  1085. * HW issue: MSDU cont bit is set but reported MPDU length can fit
  1086. * in to single buffer
  1087. *
  1088. * Increment error stats and avoid SG list creation
  1089. */
  1090. if (last_nbuf) {
  1091. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1092. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1093. return parent;
  1094. }
  1095. /*
  1096. * this is where we set the length of the fragments which are
  1097. * associated to the parent nbuf. We iterate through the frag_list
  1098. * till we hit the last_nbuf of the list.
  1099. */
  1100. do {
  1101. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  1102. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1103. frag_list_len += qdf_nbuf_len(nbuf);
  1104. if (last_nbuf) {
  1105. next = nbuf->next;
  1106. nbuf->next = NULL;
  1107. break;
  1108. }
  1109. nbuf = nbuf->next;
  1110. } while (!last_nbuf);
  1111. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1112. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1113. parent->next = next;
  1114. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  1115. return parent;
  1116. }
  1117. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1118. #ifdef QCA_PEER_EXT_STATS
  1119. /*
  1120. * dp_rx_compute_tid_delay - Computer per TID delay stats
  1121. * @peer: DP soc context
  1122. * @nbuf: NBuffer
  1123. *
  1124. * Return: Void
  1125. */
  1126. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1127. qdf_nbuf_t nbuf)
  1128. {
  1129. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1130. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1131. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1132. }
  1133. #endif /* QCA_PEER_EXT_STATS */
  1134. /**
  1135. * dp_rx_compute_delay() - Compute and fill in all timestamps
  1136. * to pass in correct fields
  1137. *
  1138. * @vdev: pdev handle
  1139. * @tx_desc: tx descriptor
  1140. * @tid: tid value
  1141. * Return: none
  1142. */
  1143. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1144. {
  1145. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1146. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1147. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1148. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1149. uint32_t interframe_delay =
  1150. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1151. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  1152. CDP_DELAY_STATS_REAP_STACK, ring_id);
  1153. /*
  1154. * Update interframe delay stats calculated at deliver_data_ol point.
  1155. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1156. * interframe delay will not be calculate correctly for 1st frame.
  1157. * On the other side, this will help in avoiding extra per packet check
  1158. * of vdev->prev_rx_deliver_tstamp.
  1159. */
  1160. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  1161. CDP_DELAY_STATS_RX_INTERFRAME, ring_id);
  1162. vdev->prev_rx_deliver_tstamp = current_ts;
  1163. }
  1164. /**
  1165. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1166. * @pdev: dp pdev reference
  1167. * @buf_list: buffer list to be dropepd
  1168. *
  1169. * Return: int (number of bufs dropped)
  1170. */
  1171. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1172. qdf_nbuf_t buf_list)
  1173. {
  1174. struct cdp_tid_rx_stats *stats = NULL;
  1175. uint8_t tid = 0, ring_id = 0;
  1176. int num_dropped = 0;
  1177. qdf_nbuf_t buf, next_buf;
  1178. buf = buf_list;
  1179. while (buf) {
  1180. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1181. next_buf = qdf_nbuf_queue_next(buf);
  1182. tid = qdf_nbuf_get_tid_val(buf);
  1183. if (qdf_likely(pdev)) {
  1184. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1185. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1186. stats->delivered_to_stack--;
  1187. }
  1188. qdf_nbuf_free(buf);
  1189. buf = next_buf;
  1190. num_dropped++;
  1191. }
  1192. return num_dropped;
  1193. }
  1194. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1195. /**
  1196. * dp_rx_wds_ext() - Make different lists for 4-address and 3-address frames
  1197. * @nbuf_head: skb list head
  1198. * @vdev: vdev
  1199. * @peer: peer
  1200. * @peer_id: peer id of new received frame
  1201. * @vdev_id: vdev_id of new received frame
  1202. *
  1203. * Return: true if peer_ids are different.
  1204. */
  1205. static inline bool
  1206. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1207. struct dp_vdev *vdev,
  1208. struct dp_peer *peer,
  1209. uint16_t peer_id,
  1210. uint8_t vdev_id)
  1211. {
  1212. if (nbuf_head && peer && (peer->peer_id != peer_id))
  1213. return true;
  1214. return false;
  1215. }
  1216. /**
  1217. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1218. * @soc: core txrx main context
  1219. * @vdev: vdev
  1220. * @peer: peer
  1221. * @nbuf_head: skb list head
  1222. *
  1223. * Return: true if packet is delivered to netdev per STA.
  1224. */
  1225. static inline bool
  1226. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1227. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1228. {
  1229. /*
  1230. * When extended WDS is disabled, frames are sent to AP netdevice.
  1231. */
  1232. if (qdf_likely(!vdev->wds_ext_enabled))
  1233. return false;
  1234. /*
  1235. * There can be 2 cases:
  1236. * 1. Send frame to parent netdev if its not for netdev per STA
  1237. * 2. If frame is meant for netdev per STA:
  1238. * a. Send frame to appropriate netdev using registered fp.
  1239. * b. If fp is NULL, drop the frames.
  1240. */
  1241. if (!peer->wds_ext.init)
  1242. return false;
  1243. if (peer->osif_rx)
  1244. peer->osif_rx(peer->wds_ext.osif_peer, nbuf_head);
  1245. else
  1246. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1247. return true;
  1248. }
  1249. #else
  1250. static inline bool
  1251. dp_rx_is_list_ready(qdf_nbuf_t nbuf_head,
  1252. struct dp_vdev *vdev,
  1253. struct dp_peer *peer,
  1254. uint16_t peer_id,
  1255. uint8_t vdev_id)
  1256. {
  1257. if (nbuf_head && vdev && (vdev->vdev_id != vdev_id))
  1258. return true;
  1259. return false;
  1260. }
  1261. static inline bool
  1262. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1263. struct dp_peer *peer, qdf_nbuf_t nbuf_head)
  1264. {
  1265. return false;
  1266. }
  1267. #endif
  1268. #ifdef PEER_CACHE_RX_PKTS
  1269. /**
  1270. * dp_rx_flush_rx_cached() - flush cached rx frames
  1271. * @peer: peer
  1272. * @drop: flag to drop frames or forward to net stack
  1273. *
  1274. * Return: None
  1275. */
  1276. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1277. {
  1278. struct dp_peer_cached_bufq *bufqi;
  1279. struct dp_rx_cached_buf *cache_buf = NULL;
  1280. ol_txrx_rx_fp data_rx = NULL;
  1281. int num_buff_elem;
  1282. QDF_STATUS status;
  1283. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1284. qdf_atomic_dec(&peer->flush_in_progress);
  1285. return;
  1286. }
  1287. qdf_spin_lock_bh(&peer->peer_info_lock);
  1288. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1289. data_rx = peer->vdev->osif_rx;
  1290. else
  1291. drop = true;
  1292. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1293. bufqi = &peer->bufq_info;
  1294. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1295. qdf_list_remove_front(&bufqi->cached_bufq,
  1296. (qdf_list_node_t **)&cache_buf);
  1297. while (cache_buf) {
  1298. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1299. cache_buf->buf);
  1300. bufqi->entries -= num_buff_elem;
  1301. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1302. if (drop) {
  1303. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1304. cache_buf->buf);
  1305. } else {
  1306. /* Flush the cached frames to OSIF DEV */
  1307. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1308. if (status != QDF_STATUS_SUCCESS)
  1309. bufqi->dropped = dp_rx_drop_nbuf_list(
  1310. peer->vdev->pdev,
  1311. cache_buf->buf);
  1312. }
  1313. qdf_mem_free(cache_buf);
  1314. cache_buf = NULL;
  1315. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1316. qdf_list_remove_front(&bufqi->cached_bufq,
  1317. (qdf_list_node_t **)&cache_buf);
  1318. }
  1319. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1320. qdf_atomic_dec(&peer->flush_in_progress);
  1321. }
  1322. /**
  1323. * dp_rx_enqueue_rx() - cache rx frames
  1324. * @peer: peer
  1325. * @rx_buf_list: cache buffer list
  1326. *
  1327. * Return: None
  1328. */
  1329. static QDF_STATUS
  1330. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1331. {
  1332. struct dp_rx_cached_buf *cache_buf;
  1333. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1334. int num_buff_elem;
  1335. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1336. bufqi->dropped);
  1337. if (!peer->valid) {
  1338. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1339. rx_buf_list);
  1340. return QDF_STATUS_E_INVAL;
  1341. }
  1342. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1343. if (bufqi->entries >= bufqi->thresh) {
  1344. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1345. rx_buf_list);
  1346. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1347. return QDF_STATUS_E_RESOURCES;
  1348. }
  1349. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1350. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1351. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1352. if (!cache_buf) {
  1353. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1354. "Failed to allocate buf to cache rx frames");
  1355. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1356. rx_buf_list);
  1357. return QDF_STATUS_E_NOMEM;
  1358. }
  1359. cache_buf->buf = rx_buf_list;
  1360. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1361. qdf_list_insert_back(&bufqi->cached_bufq,
  1362. &cache_buf->node);
  1363. bufqi->entries += num_buff_elem;
  1364. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1365. return QDF_STATUS_SUCCESS;
  1366. }
  1367. static inline
  1368. bool dp_rx_is_peer_cache_bufq_supported(void)
  1369. {
  1370. return true;
  1371. }
  1372. #else
  1373. static inline
  1374. bool dp_rx_is_peer_cache_bufq_supported(void)
  1375. {
  1376. return false;
  1377. }
  1378. static inline QDF_STATUS
  1379. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1380. {
  1381. return QDF_STATUS_SUCCESS;
  1382. }
  1383. #endif
  1384. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1385. /**
  1386. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1387. * using the appropriate call back functions.
  1388. * @soc: soc
  1389. * @vdev: vdev
  1390. * @peer: peer
  1391. * @nbuf_head: skb list head
  1392. * @nbuf_tail: skb list tail
  1393. *
  1394. * Return: None
  1395. */
  1396. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1397. struct dp_vdev *vdev,
  1398. struct dp_peer *peer,
  1399. qdf_nbuf_t nbuf_head)
  1400. {
  1401. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1402. peer, nbuf_head)))
  1403. return;
  1404. /* Function pointer initialized only when FISA is enabled */
  1405. if (vdev->osif_fisa_rx)
  1406. /* on failure send it via regular path */
  1407. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1408. else
  1409. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1410. }
  1411. #else
  1412. /**
  1413. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1414. * using the appropriate call back functions.
  1415. * @soc: soc
  1416. * @vdev: vdev
  1417. * @peer: peer
  1418. * @nbuf_head: skb list head
  1419. * @nbuf_tail: skb list tail
  1420. *
  1421. * Check the return status of the call back function and drop
  1422. * the packets if the return status indicates a failure.
  1423. *
  1424. * Return: None
  1425. */
  1426. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1427. struct dp_vdev *vdev,
  1428. struct dp_peer *peer,
  1429. qdf_nbuf_t nbuf_head)
  1430. {
  1431. int num_nbuf = 0;
  1432. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1433. /* Function pointer initialized only when FISA is enabled */
  1434. if (vdev->osif_fisa_rx)
  1435. /* on failure send it via regular path */
  1436. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1437. else if (vdev->osif_rx)
  1438. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1439. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1440. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1441. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1442. if (peer)
  1443. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1444. }
  1445. }
  1446. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1447. void dp_rx_deliver_to_stack(struct dp_soc *soc,
  1448. struct dp_vdev *vdev,
  1449. struct dp_peer *peer,
  1450. qdf_nbuf_t nbuf_head,
  1451. qdf_nbuf_t nbuf_tail)
  1452. {
  1453. int num_nbuf = 0;
  1454. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1455. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1456. /*
  1457. * This is a special case where vdev is invalid,
  1458. * so we cannot know the pdev to which this packet
  1459. * belonged. Hence we update the soc rx error stats.
  1460. */
  1461. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1462. return;
  1463. }
  1464. /*
  1465. * highly unlikely to have a vdev without a registered rx
  1466. * callback function. if so let us free the nbuf_list.
  1467. */
  1468. if (qdf_unlikely(!vdev->osif_rx)) {
  1469. if (peer && dp_rx_is_peer_cache_bufq_supported()) {
  1470. dp_rx_enqueue_rx(peer, nbuf_head);
  1471. } else {
  1472. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  1473. nbuf_head);
  1474. DP_STATS_DEC(peer, rx.to_stack.num, num_nbuf);
  1475. }
  1476. return;
  1477. }
  1478. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1479. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1480. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1481. &nbuf_tail, peer->mac_addr.raw);
  1482. }
  1483. dp_rx_check_delivery_to_stack(soc, vdev, peer, nbuf_head);
  1484. }
  1485. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1486. /**
  1487. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1488. * @nbuf: pointer to the first msdu of an amsdu.
  1489. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1490. *
  1491. * The ipsumed field of the skb is set based on whether HW validated the
  1492. * IP/TCP/UDP checksum.
  1493. *
  1494. * Return: void
  1495. */
  1496. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1497. qdf_nbuf_t nbuf,
  1498. uint8_t *rx_tlv_hdr)
  1499. {
  1500. qdf_nbuf_rx_cksum_t cksum = {0};
  1501. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1502. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1503. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1504. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1505. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1506. } else {
  1507. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1508. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1509. }
  1510. }
  1511. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1512. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer) \
  1513. { \
  1514. qdf_nbuf_t nbuf_local; \
  1515. struct dp_peer *peer_local; \
  1516. struct dp_vdev *vdev_local = vdev_hdl; \
  1517. do { \
  1518. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  1519. break; \
  1520. nbuf_local = nbuf; \
  1521. peer_local = peer; \
  1522. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  1523. break; \
  1524. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  1525. break; \
  1526. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  1527. (nbuf_local), \
  1528. (peer_local), 0, 1); \
  1529. } while (0); \
  1530. }
  1531. #else
  1532. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, peer)
  1533. #endif
  1534. /**
  1535. * dp_rx_msdu_stats_update() - update per msdu stats.
  1536. * @soc: core txrx main context
  1537. * @nbuf: pointer to the first msdu of an amsdu.
  1538. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1539. * @peer: pointer to the peer object.
  1540. * @ring_id: reo dest ring number on which pkt is reaped.
  1541. * @tid_stats: per tid rx stats.
  1542. *
  1543. * update all the per msdu stats for that nbuf.
  1544. * Return: void
  1545. */
  1546. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1547. qdf_nbuf_t nbuf,
  1548. uint8_t *rx_tlv_hdr,
  1549. struct dp_peer *peer,
  1550. uint8_t ring_id,
  1551. struct cdp_tid_rx_stats *tid_stats)
  1552. {
  1553. bool is_ampdu, is_not_amsdu;
  1554. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1555. struct dp_vdev *vdev = peer->vdev;
  1556. qdf_ether_header_t *eh;
  1557. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1558. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, peer);
  1559. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1560. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1561. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1562. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1563. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1564. DP_STATS_INCC(peer, rx.rx_retries, 1, qdf_nbuf_is_rx_retry_flag(nbuf));
  1565. tid_stats->msdu_cnt++;
  1566. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  1567. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1568. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1569. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1570. tid_stats->mcast_msdu_cnt++;
  1571. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1572. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1573. tid_stats->bcast_msdu_cnt++;
  1574. }
  1575. }
  1576. /*
  1577. * currently we can return from here as we have similar stats
  1578. * updated at per ppdu level instead of msdu level
  1579. */
  1580. if (!soc->process_rx_status)
  1581. return;
  1582. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1583. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1584. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1585. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1586. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1587. tid = qdf_nbuf_get_tid_val(nbuf);
  1588. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1589. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1590. rx_tlv_hdr);
  1591. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1592. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1593. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[mcs], 1,
  1594. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1595. DP_STATS_INCC(peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  1596. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)));
  1597. DP_STATS_INC(peer, rx.bw[bw], 1);
  1598. /*
  1599. * only if nss > 0 and pkt_type is 11N/AC/AX,
  1600. * then increase index [nss - 1] in array counter.
  1601. */
  1602. if (nss > 0 && (pkt_type == DOT11_N ||
  1603. pkt_type == DOT11_AC ||
  1604. pkt_type == DOT11_AX))
  1605. DP_STATS_INC(peer, rx.nss[nss - 1], 1);
  1606. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1607. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1608. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1609. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1610. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1611. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1612. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1613. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1614. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1615. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1616. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1617. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1618. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1619. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1620. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1621. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1622. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1623. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1624. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1625. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1626. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1627. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1628. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1629. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1630. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1631. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1632. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1633. if ((soc->process_rx_status) &&
  1634. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1635. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1636. if (!vdev->pdev)
  1637. return;
  1638. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1639. &peer->stats, peer->peer_id,
  1640. UPDATE_PEER_STATS,
  1641. vdev->pdev->pdev_id);
  1642. #endif
  1643. }
  1644. }
  1645. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1646. uint8_t *rx_tlv_hdr,
  1647. qdf_nbuf_t nbuf,
  1648. struct hal_rx_msdu_metadata msdu_info)
  1649. {
  1650. if ((qdf_nbuf_is_sa_valid(nbuf) &&
  1651. (msdu_info.sa_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1652. (!qdf_nbuf_is_da_mcbc(nbuf) &&
  1653. qdf_nbuf_is_da_valid(nbuf) &&
  1654. (msdu_info.da_idx > wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1655. return false;
  1656. return true;
  1657. }
  1658. #ifndef WDS_VENDOR_EXTENSION
  1659. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  1660. struct dp_vdev *vdev,
  1661. struct dp_peer *peer)
  1662. {
  1663. return 1;
  1664. }
  1665. #endif
  1666. #ifdef RX_DESC_DEBUG_CHECK
  1667. /**
  1668. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1669. * corruption
  1670. *
  1671. * @ring_desc: REO ring descriptor
  1672. * @rx_desc: Rx descriptor
  1673. *
  1674. * Return: NONE
  1675. */
  1676. static inline
  1677. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1678. struct dp_rx_desc *rx_desc)
  1679. {
  1680. struct hal_buf_info hbi;
  1681. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1682. /* Sanity check for possible buffer paddr corruption */
  1683. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  1684. return QDF_STATUS_SUCCESS;
  1685. return QDF_STATUS_E_FAILURE;
  1686. }
  1687. #else
  1688. static inline
  1689. QDF_STATUS dp_rx_desc_nbuf_sanity_check(hal_ring_desc_t ring_desc,
  1690. struct dp_rx_desc *rx_desc)
  1691. {
  1692. return QDF_STATUS_SUCCESS;
  1693. }
  1694. #endif
  1695. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  1696. static inline
  1697. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1698. {
  1699. bool limit_hit = false;
  1700. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  1701. limit_hit =
  1702. (num_reaped >= cfg->rx_reap_loop_pkt_limit) ? true : false;
  1703. if (limit_hit)
  1704. DP_STATS_INC(soc, rx.reap_loop_pkt_limit_hit, 1)
  1705. return limit_hit;
  1706. }
  1707. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1708. {
  1709. return soc->wlan_cfg_ctx->rx_enable_eol_data_check;
  1710. }
  1711. #else
  1712. static inline
  1713. bool dp_rx_reap_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped)
  1714. {
  1715. return false;
  1716. }
  1717. static inline bool dp_rx_enable_eol_data_check(struct dp_soc *soc)
  1718. {
  1719. return false;
  1720. }
  1721. #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
  1722. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  1723. /**
  1724. * dp_rx_deliver_to_stack_no_peer() - try deliver rx data even if
  1725. * no corresbonding peer found
  1726. * @soc: core txrx main context
  1727. * @nbuf: pkt skb pointer
  1728. *
  1729. * This function will try to deliver some RX special frames to stack
  1730. * even there is no peer matched found. for instance, LFR case, some
  1731. * eapol data will be sent to host before peer_map done.
  1732. *
  1733. * Return: None
  1734. */
  1735. static
  1736. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1737. {
  1738. uint16_t peer_id;
  1739. uint8_t vdev_id;
  1740. struct dp_vdev *vdev = NULL;
  1741. uint32_t l2_hdr_offset = 0;
  1742. uint16_t msdu_len = 0;
  1743. uint32_t pkt_len = 0;
  1744. uint8_t *rx_tlv_hdr;
  1745. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  1746. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  1747. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1748. if (peer_id > soc->max_peers)
  1749. goto deliver_fail;
  1750. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1751. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  1752. if (!vdev || vdev->delete.pending || !vdev->osif_rx)
  1753. goto deliver_fail;
  1754. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  1755. goto deliver_fail;
  1756. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1757. l2_hdr_offset =
  1758. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1759. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1760. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1761. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  1762. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1763. qdf_nbuf_pull_head(nbuf,
  1764. RX_PKT_TLVS_LEN +
  1765. l2_hdr_offset);
  1766. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  1767. qdf_nbuf_set_exc_frame(nbuf, 1);
  1768. if (QDF_STATUS_SUCCESS !=
  1769. vdev->osif_rx(vdev->osif_vdev, nbuf))
  1770. goto deliver_fail;
  1771. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  1772. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1773. return;
  1774. }
  1775. deliver_fail:
  1776. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1777. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1778. qdf_nbuf_free(nbuf);
  1779. if (vdev)
  1780. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  1781. }
  1782. #else
  1783. static inline
  1784. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1785. {
  1786. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1787. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1788. qdf_nbuf_free(nbuf);
  1789. }
  1790. #endif
  1791. /**
  1792. * dp_rx_srng_get_num_pending() - get number of pending entries
  1793. * @hal_soc: hal soc opaque pointer
  1794. * @hal_ring: opaque pointer to the HAL Rx Ring
  1795. * @num_entries: number of entries in the hal_ring.
  1796. * @near_full: pointer to a boolean. This is set if ring is near full.
  1797. *
  1798. * The function returns the number of entries in a destination ring which are
  1799. * yet to be reaped. The function also checks if the ring is near full.
  1800. * If more than half of the ring needs to be reaped, the ring is considered
  1801. * approaching full.
  1802. * The function useses hal_srng_dst_num_valid_locked to get the number of valid
  1803. * entries. It should not be called within a SRNG lock. HW pointer value is
  1804. * synced into cached_hp.
  1805. *
  1806. * Return: Number of pending entries if any
  1807. */
  1808. static
  1809. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  1810. hal_ring_handle_t hal_ring_hdl,
  1811. uint32_t num_entries,
  1812. bool *near_full)
  1813. {
  1814. uint32_t num_pending = 0;
  1815. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  1816. hal_ring_hdl,
  1817. true);
  1818. if (num_entries && (num_pending >= num_entries >> 1))
  1819. *near_full = true;
  1820. else
  1821. *near_full = false;
  1822. return num_pending;
  1823. }
  1824. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1825. #ifdef WLAN_SUPPORT_RX_FISA
  1826. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1827. {
  1828. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1829. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1830. }
  1831. /**
  1832. * dp_rx_set_hdr_pad() - set l3 padding in nbuf cb
  1833. * @nbuf: pkt skb pointer
  1834. * @l3_padding: l3 padding
  1835. *
  1836. * Return: None
  1837. */
  1838. static inline
  1839. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1840. {
  1841. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  1842. }
  1843. #else
  1844. void dp_rx_skip_tlvs(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1845. {
  1846. qdf_nbuf_pull_head(nbuf, l3_padding + RX_PKT_TLVS_LEN);
  1847. }
  1848. static inline
  1849. void dp_rx_set_hdr_pad(qdf_nbuf_t nbuf, uint32_t l3_padding)
  1850. {
  1851. }
  1852. #endif
  1853. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1854. #ifdef DP_RX_DROP_RAW_FRM
  1855. /**
  1856. * dp_rx_is_raw_frame_dropped() - if raw frame nbuf, free and drop
  1857. * @nbuf: pkt skb pointer
  1858. *
  1859. * Return: true - raw frame, dropped
  1860. * false - not raw frame, do nothing
  1861. */
  1862. static inline
  1863. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1864. {
  1865. if (qdf_nbuf_is_raw_frame(nbuf)) {
  1866. qdf_nbuf_free(nbuf);
  1867. return true;
  1868. }
  1869. return false;
  1870. }
  1871. #else
  1872. static inline
  1873. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  1874. {
  1875. return false;
  1876. }
  1877. #endif
  1878. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1879. /**
  1880. * dp_rx_ring_record_entry() - Record an entry into the rx ring history.
  1881. * @soc: Datapath soc structure
  1882. * @ring_num: REO ring number
  1883. * @ring_desc: REO ring descriptor
  1884. *
  1885. * Returns: None
  1886. */
  1887. static inline void
  1888. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1889. hal_ring_desc_t ring_desc)
  1890. {
  1891. struct dp_buf_info_record *record;
  1892. uint8_t rbm;
  1893. struct hal_buf_info hbi;
  1894. uint32_t idx;
  1895. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  1896. return;
  1897. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1898. rbm = hal_rx_ret_buf_manager_get(ring_desc);
  1899. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  1900. DP_RX_HIST_MAX);
  1901. /* No NULL check needed for record since its an array */
  1902. record = &soc->rx_ring_history[ring_num]->entry[idx];
  1903. record->timestamp = qdf_get_log_timestamp();
  1904. record->hbi.paddr = hbi.paddr;
  1905. record->hbi.sw_cookie = hbi.sw_cookie;
  1906. record->hbi.rbm = rbm;
  1907. }
  1908. #else
  1909. static inline void
  1910. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  1911. hal_ring_desc_t ring_desc)
  1912. {
  1913. }
  1914. #endif
  1915. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1916. /**
  1917. * dp_rx_update_stats() - Update soc level rx packet count
  1918. * @soc: DP soc handle
  1919. * @nbuf: nbuf received
  1920. *
  1921. * Returns: none
  1922. */
  1923. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1924. qdf_nbuf_t nbuf)
  1925. {
  1926. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  1927. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  1928. }
  1929. #else
  1930. static inline void dp_rx_update_stats(struct dp_soc *soc,
  1931. qdf_nbuf_t nbuf)
  1932. {
  1933. }
  1934. #endif
  1935. #ifdef WLAN_FEATURE_PKT_CAPTURE_LITHIUM
  1936. /**
  1937. * dp_rx_deliver_to_pkt_capture() - deliver rx packet to packet capture
  1938. * @soc : dp_soc handle
  1939. * @pdev: dp_pdev handle
  1940. * @peer_id: peer_id of the peer for which completion came
  1941. * @ppdu_id: ppdu_id
  1942. * @netbuf: Buffer pointer
  1943. *
  1944. * This function is used to deliver rx packet to packet capture
  1945. */
  1946. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  1947. uint16_t peer_id, uint32_t is_offload,
  1948. qdf_nbuf_t netbuf)
  1949. {
  1950. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  1951. peer_id, is_offload, pdev->pdev_id);
  1952. }
  1953. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  1954. uint32_t is_offload)
  1955. {
  1956. uint16_t msdu_len = 0;
  1957. uint16_t peer_id, vdev_id;
  1958. uint32_t pkt_len = 0;
  1959. uint8_t *rx_tlv_hdr;
  1960. uint32_t l2_hdr_offset = 0;
  1961. struct hal_rx_msdu_metadata msdu_metadata;
  1962. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  1963. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  1964. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1965. hal_rx_msdu_metadata_get(soc->hal_soc, rx_tlv_hdr, &msdu_metadata);
  1966. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1967. pkt_len = msdu_len + msdu_metadata.l3_hdr_pad +
  1968. RX_PKT_TLVS_LEN;
  1969. l2_hdr_offset =
  1970. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  1971. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1972. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  1973. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, nbuf,
  1974. HTT_INVALID_VDEV, is_offload, 0);
  1975. }
  1976. #endif
  1977. /**
  1978. * dp_rx_process() - Brain of the Rx processing functionality
  1979. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1980. * @int_ctx: per interrupt context
  1981. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1982. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1983. * @quota: No. of units (packets) that can be serviced in one shot.
  1984. *
  1985. * This function implements the core of Rx functionality. This is
  1986. * expected to handle only non-error frames.
  1987. *
  1988. * Return: uint32_t: No. of elements processed
  1989. */
  1990. uint32_t dp_rx_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl,
  1991. uint8_t reo_ring_num, uint32_t quota)
  1992. {
  1993. hal_ring_desc_t ring_desc;
  1994. hal_soc_handle_t hal_soc;
  1995. struct dp_rx_desc *rx_desc = NULL;
  1996. qdf_nbuf_t nbuf, next;
  1997. bool near_full;
  1998. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT];
  1999. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT];
  2000. uint32_t num_pending;
  2001. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  2002. uint16_t msdu_len = 0;
  2003. uint16_t peer_id;
  2004. uint8_t vdev_id;
  2005. struct dp_peer *peer;
  2006. struct dp_vdev *vdev;
  2007. uint32_t pkt_len = 0;
  2008. struct hal_rx_mpdu_desc_info mpdu_desc_info;
  2009. struct hal_rx_msdu_desc_info msdu_desc_info;
  2010. enum hal_reo_error_status error;
  2011. uint32_t peer_mdata;
  2012. uint8_t *rx_tlv_hdr;
  2013. uint32_t rx_bufs_reaped[MAX_PDEV_CNT];
  2014. uint8_t mac_id = 0;
  2015. struct dp_pdev *rx_pdev;
  2016. struct dp_srng *dp_rxdma_srng;
  2017. struct rx_desc_pool *rx_desc_pool;
  2018. struct dp_soc *soc = int_ctx->soc;
  2019. uint8_t ring_id = 0;
  2020. uint8_t core_id = 0;
  2021. struct cdp_tid_rx_stats *tid_stats;
  2022. qdf_nbuf_t nbuf_head;
  2023. qdf_nbuf_t nbuf_tail;
  2024. qdf_nbuf_t deliver_list_head;
  2025. qdf_nbuf_t deliver_list_tail;
  2026. uint32_t num_rx_bufs_reaped = 0;
  2027. uint32_t intr_id;
  2028. struct hif_opaque_softc *scn;
  2029. int32_t tid = 0;
  2030. bool is_prev_msdu_last = true;
  2031. uint32_t num_entries_avail = 0;
  2032. uint32_t rx_ol_pkt_cnt = 0;
  2033. uint32_t num_entries = 0;
  2034. struct hal_rx_msdu_metadata msdu_metadata;
  2035. QDF_STATUS status;
  2036. qdf_nbuf_t ebuf_head;
  2037. qdf_nbuf_t ebuf_tail;
  2038. uint8_t pkt_capture_offload = 0;
  2039. DP_HIST_INIT();
  2040. qdf_assert_always(soc && hal_ring_hdl);
  2041. hal_soc = soc->hal_soc;
  2042. qdf_assert_always(hal_soc);
  2043. scn = soc->hif_handle;
  2044. hif_pm_runtime_mark_dp_rx_busy(scn);
  2045. intr_id = int_ctx->dp_intr_id;
  2046. num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl);
  2047. more_data:
  2048. /* reset local variables here to be re-used in the function */
  2049. nbuf_head = NULL;
  2050. nbuf_tail = NULL;
  2051. deliver_list_head = NULL;
  2052. deliver_list_tail = NULL;
  2053. peer = NULL;
  2054. vdev = NULL;
  2055. num_rx_bufs_reaped = 0;
  2056. ebuf_head = NULL;
  2057. ebuf_tail = NULL;
  2058. qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped));
  2059. qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info));
  2060. qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info));
  2061. qdf_mem_zero(head, sizeof(head));
  2062. qdf_mem_zero(tail, sizeof(tail));
  2063. if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  2064. /*
  2065. * Need API to convert from hal_ring pointer to
  2066. * Ring Type / Ring Id combo
  2067. */
  2068. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  2069. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  2070. FL("HAL RING Access Failed -- %pK"), hal_ring_hdl);
  2071. goto done;
  2072. }
  2073. /*
  2074. * start reaping the buffers from reo ring and queue
  2075. * them in per vdev queue.
  2076. * Process the received pkts in a different per vdev loop.
  2077. */
  2078. while (qdf_likely(quota &&
  2079. (ring_desc = hal_srng_dst_peek(hal_soc,
  2080. hal_ring_hdl)))) {
  2081. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  2082. ring_id = hal_srng_ring_id_get(hal_ring_hdl);
  2083. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  2084. dp_rx_err("%pK: HAL RING 0x%pK:error %d",
  2085. soc, hal_ring_hdl, error);
  2086. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  2087. /* Don't know how to deal with this -- assert */
  2088. qdf_assert(0);
  2089. }
  2090. dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc);
  2091. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  2092. status = dp_rx_cookie_check_and_invalidate(ring_desc);
  2093. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2094. DP_STATS_INC(soc, rx.err.stale_cookie, 1);
  2095. break;
  2096. }
  2097. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  2098. status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl,
  2099. ring_desc, rx_desc);
  2100. if (QDF_IS_STATUS_ERROR(status)) {
  2101. if (qdf_unlikely(rx_desc && rx_desc->nbuf)) {
  2102. qdf_assert_always(rx_desc->unmapped);
  2103. dp_ipa_handle_rx_buf_smmu_mapping(
  2104. soc,
  2105. rx_desc->nbuf,
  2106. RX_DATA_BUFFER_SIZE,
  2107. false);
  2108. qdf_nbuf_unmap_nbytes_single(
  2109. soc->osdev,
  2110. rx_desc->nbuf,
  2111. QDF_DMA_FROM_DEVICE,
  2112. RX_DATA_BUFFER_SIZE);
  2113. rx_desc->unmapped = 1;
  2114. dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf,
  2115. rx_desc->pool_id);
  2116. dp_rx_add_to_free_desc_list(
  2117. &head[rx_desc->pool_id],
  2118. &tail[rx_desc->pool_id],
  2119. rx_desc);
  2120. }
  2121. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2122. continue;
  2123. }
  2124. /*
  2125. * this is a unlikely scenario where the host is reaping
  2126. * a descriptor which it already reaped just a while ago
  2127. * but is yet to replenish it back to HW.
  2128. * In this case host will dump the last 128 descriptors
  2129. * including the software descriptor rx_desc and assert.
  2130. */
  2131. if (qdf_unlikely(!rx_desc->in_use)) {
  2132. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  2133. dp_info_rl("Reaping rx_desc not in use!");
  2134. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2135. ring_desc, rx_desc);
  2136. /* ignore duplicate RX desc and continue to process */
  2137. /* Pop out the descriptor */
  2138. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2139. continue;
  2140. }
  2141. status = dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  2142. if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) {
  2143. DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1);
  2144. dp_info_rl("Nbuf sanity check failure!");
  2145. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2146. ring_desc, rx_desc);
  2147. rx_desc->in_err_state = 1;
  2148. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2149. continue;
  2150. }
  2151. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  2152. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  2153. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  2154. dp_rx_dump_info_and_assert(soc, hal_ring_hdl,
  2155. ring_desc, rx_desc);
  2156. }
  2157. /* Get MPDU DESC info */
  2158. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  2159. /* Get MSDU DESC info */
  2160. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  2161. if (qdf_unlikely(msdu_desc_info.msdu_flags &
  2162. HAL_MSDU_F_MSDU_CONTINUATION)) {
  2163. /* previous msdu has end bit set, so current one is
  2164. * the new MPDU
  2165. */
  2166. if (is_prev_msdu_last) {
  2167. /* Get number of entries available in HW ring */
  2168. num_entries_avail =
  2169. hal_srng_dst_num_valid(hal_soc,
  2170. hal_ring_hdl, 1);
  2171. /* For new MPDU check if we can read complete
  2172. * MPDU by comparing the number of buffers
  2173. * available and number of buffers needed to
  2174. * reap this MPDU
  2175. */
  2176. if (((msdu_desc_info.msdu_len /
  2177. (RX_DATA_BUFFER_SIZE - RX_PKT_TLVS_LEN) +
  2178. 1)) > num_entries_avail) {
  2179. DP_STATS_INC(
  2180. soc,
  2181. rx.msdu_scatter_wait_break,
  2182. 1);
  2183. break;
  2184. }
  2185. is_prev_msdu_last = false;
  2186. }
  2187. }
  2188. core_id = smp_processor_id();
  2189. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  2190. if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT)
  2191. qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1);
  2192. if (qdf_unlikely(mpdu_desc_info.mpdu_flags &
  2193. HAL_MPDU_F_RAW_AMPDU))
  2194. qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1);
  2195. if (!is_prev_msdu_last &&
  2196. msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2197. is_prev_msdu_last = true;
  2198. /* Pop out the descriptor*/
  2199. hal_srng_dst_get_next(hal_soc, hal_ring_hdl);
  2200. rx_bufs_reaped[rx_desc->pool_id]++;
  2201. peer_mdata = mpdu_desc_info.peer_meta_data;
  2202. QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) =
  2203. DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  2204. QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) =
  2205. DP_PEER_METADATA_VDEV_ID_GET(peer_mdata);
  2206. /* to indicate whether this msdu is rx offload */
  2207. pkt_capture_offload =
  2208. DP_PEER_METADATA_OFFLOAD_GET(peer_mdata);
  2209. /*
  2210. * save msdu flags first, last and continuation msdu in
  2211. * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and
  2212. * length to nbuf->cb. This ensures the info required for
  2213. * per pkt processing is always in the same cache line.
  2214. * This helps in improving throughput for smaller pkt
  2215. * sizes.
  2216. */
  2217. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  2218. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  2219. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  2220. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  2221. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  2222. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  2223. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC)
  2224. qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1);
  2225. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID)
  2226. qdf_nbuf_set_da_valid(rx_desc->nbuf, 1);
  2227. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID)
  2228. qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1);
  2229. qdf_nbuf_set_tid_val(rx_desc->nbuf,
  2230. HAL_RX_REO_QUEUE_NUMBER_GET(ring_desc));
  2231. qdf_nbuf_set_rx_reo_dest_ind(
  2232. rx_desc->nbuf,
  2233. HAL_RX_REO_MSDU_REO_DST_IND_GET(ring_desc));
  2234. QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len;
  2235. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  2236. /*
  2237. * move unmap after scattered msdu waiting break logic
  2238. * in case double skb unmap happened.
  2239. */
  2240. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  2241. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  2242. rx_desc_pool->buf_size,
  2243. false);
  2244. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  2245. QDF_DMA_FROM_DEVICE,
  2246. rx_desc_pool->buf_size);
  2247. rx_desc->unmapped = 1;
  2248. DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head,
  2249. ebuf_tail, rx_desc);
  2250. /*
  2251. * if continuation bit is set then we have MSDU spread
  2252. * across multiple buffers, let us not decrement quota
  2253. * till we reap all buffers of that MSDU.
  2254. */
  2255. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  2256. quota -= 1;
  2257. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  2258. &tail[rx_desc->pool_id],
  2259. rx_desc);
  2260. num_rx_bufs_reaped++;
  2261. /*
  2262. * only if complete msdu is received for scatter case,
  2263. * then allow break.
  2264. */
  2265. if (is_prev_msdu_last &&
  2266. dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped))
  2267. break;
  2268. }
  2269. done:
  2270. dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl);
  2271. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  2272. /*
  2273. * continue with next mac_id if no pkts were reaped
  2274. * from that pool
  2275. */
  2276. if (!rx_bufs_reaped[mac_id])
  2277. continue;
  2278. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_id];
  2279. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  2280. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  2281. rx_desc_pool, rx_bufs_reaped[mac_id],
  2282. &head[mac_id], &tail[mac_id]);
  2283. }
  2284. dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]);
  2285. /* Peer can be NULL is case of LFR */
  2286. if (qdf_likely(peer))
  2287. vdev = NULL;
  2288. /*
  2289. * BIG loop where each nbuf is dequeued from global queue,
  2290. * processed and queued back on a per vdev basis. These nbufs
  2291. * are sent to stack as and when we run out of nbufs
  2292. * or a new nbuf dequeued from global queue has a different
  2293. * vdev when compared to previous nbuf.
  2294. */
  2295. nbuf = nbuf_head;
  2296. while (nbuf) {
  2297. next = nbuf->next;
  2298. if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) {
  2299. nbuf = next;
  2300. DP_STATS_INC(soc, rx.err.raw_frm_drop, 1);
  2301. continue;
  2302. }
  2303. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2304. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2305. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2306. if (dp_rx_is_list_ready(deliver_list_head, vdev, peer,
  2307. peer_id, vdev_id)) {
  2308. dp_rx_deliver_to_stack(soc, vdev, peer,
  2309. deliver_list_head,
  2310. deliver_list_tail);
  2311. deliver_list_head = NULL;
  2312. deliver_list_tail = NULL;
  2313. }
  2314. /* Get TID from struct cb->tid_val, save to tid */
  2315. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  2316. tid = qdf_nbuf_get_tid_val(nbuf);
  2317. if (qdf_unlikely(!peer)) {
  2318. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2319. DP_MOD_ID_RX);
  2320. } else if (peer && peer->peer_id != peer_id) {
  2321. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2322. peer = dp_peer_get_ref_by_id(soc, peer_id,
  2323. DP_MOD_ID_RX);
  2324. }
  2325. if (peer) {
  2326. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  2327. qdf_dp_trace_set_track(nbuf, QDF_RX);
  2328. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  2329. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  2330. QDF_NBUF_RX_PKT_DATA_TRACK;
  2331. }
  2332. rx_bufs_used++;
  2333. if (qdf_likely(peer)) {
  2334. vdev = peer->vdev;
  2335. /*
  2336. * In encryption mode, all data packets except
  2337. * EAPOL frames should be dropped when peer is not
  2338. * authenticated. Thie feature is enabled for all peers
  2339. * under this vdev when peer_authorize flag is set.
  2340. */
  2341. if (qdf_unlikely(vdev->peer_authorize)) {
  2342. if (qdf_unlikely(vdev->sec_type != cdp_sec_type_none)) {
  2343. /*
  2344. * Allow only EAPOL frames
  2345. */
  2346. if (qdf_unlikely(!peer->authorize &&
  2347. !qdf_nbuf_is_ipv4_eapol_pkt(nbuf))) {
  2348. qdf_nbuf_free(nbuf);
  2349. nbuf = next;
  2350. DP_STATS_INC(soc, rx.err.peer_unauth_rx_pkt_drop, 1);
  2351. continue;
  2352. }
  2353. }
  2354. }
  2355. } else {
  2356. nbuf->next = NULL;
  2357. dp_rx_deliver_to_pkt_capture_no_peer(
  2358. soc, nbuf, pkt_capture_offload);
  2359. if (!pkt_capture_offload)
  2360. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2361. nbuf = next;
  2362. continue;
  2363. }
  2364. if (qdf_unlikely(!vdev)) {
  2365. qdf_nbuf_free(nbuf);
  2366. nbuf = next;
  2367. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  2368. continue;
  2369. }
  2370. /* when hlos tid override is enabled, save tid in
  2371. * skb->priority
  2372. */
  2373. if (qdf_unlikely(vdev->skip_sw_tid_classification &
  2374. DP_TXRX_HLOS_TID_OVERRIDE_ENABLED))
  2375. qdf_nbuf_set_priority(nbuf, tid);
  2376. rx_pdev = vdev->pdev;
  2377. DP_RX_TID_SAVE(nbuf, tid);
  2378. if (qdf_unlikely(rx_pdev->delay_stats_flag) ||
  2379. qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled(
  2380. soc->wlan_cfg_ctx)))
  2381. qdf_nbuf_set_timestamp(nbuf);
  2382. ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  2383. tid_stats =
  2384. &rx_pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  2385. /*
  2386. * Check if DMA completed -- msdu_done is the last bit
  2387. * to be written
  2388. */
  2389. if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) &&
  2390. !hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  2391. dp_err("MSDU DONE failure");
  2392. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  2393. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  2394. QDF_TRACE_LEVEL_INFO);
  2395. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  2396. qdf_nbuf_free(nbuf);
  2397. qdf_assert(0);
  2398. nbuf = next;
  2399. continue;
  2400. }
  2401. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  2402. /*
  2403. * First IF condition:
  2404. * 802.11 Fragmented pkts are reinjected to REO
  2405. * HW block as SG pkts and for these pkts we only
  2406. * need to pull the RX TLVS header length.
  2407. * Second IF condition:
  2408. * The below condition happens when an MSDU is spread
  2409. * across multiple buffers. This can happen in two cases
  2410. * 1. The nbuf size is smaller then the received msdu.
  2411. * ex: we have set the nbuf size to 2048 during
  2412. * nbuf_alloc. but we received an msdu which is
  2413. * 2304 bytes in size then this msdu is spread
  2414. * across 2 nbufs.
  2415. *
  2416. * 2. AMSDUs when RAW mode is enabled.
  2417. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  2418. * across 1st nbuf and 2nd nbuf and last MSDU is
  2419. * spread across 2nd nbuf and 3rd nbuf.
  2420. *
  2421. * for these scenarios let us create a skb frag_list and
  2422. * append these buffers till the last MSDU of the AMSDU
  2423. * Third condition:
  2424. * This is the most likely case, we receive 802.3 pkts
  2425. * decapsulated by HW, here we need to set the pkt length.
  2426. */
  2427. hal_rx_msdu_metadata_get(hal_soc, rx_tlv_hdr, &msdu_metadata);
  2428. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2429. bool is_mcbc, is_sa_vld, is_da_vld;
  2430. is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc,
  2431. rx_tlv_hdr);
  2432. is_sa_vld =
  2433. hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc,
  2434. rx_tlv_hdr);
  2435. is_da_vld =
  2436. hal_rx_msdu_end_da_is_valid_get(soc->hal_soc,
  2437. rx_tlv_hdr);
  2438. qdf_nbuf_set_da_mcbc(nbuf, is_mcbc);
  2439. qdf_nbuf_set_da_valid(nbuf, is_da_vld);
  2440. qdf_nbuf_set_sa_valid(nbuf, is_sa_vld);
  2441. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  2442. } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  2443. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2444. nbuf = dp_rx_sg_create(soc, nbuf);
  2445. next = nbuf->next;
  2446. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2447. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  2448. DP_STATS_INC_PKT(peer, rx.raw, 1, msdu_len);
  2449. } else {
  2450. qdf_nbuf_free(nbuf);
  2451. DP_STATS_INC(soc, rx.err.scatter_msdu, 1);
  2452. dp_info_rl("scatter msdu len %d, dropped",
  2453. msdu_len);
  2454. nbuf = next;
  2455. continue;
  2456. }
  2457. } else {
  2458. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2459. pkt_len = msdu_len +
  2460. msdu_metadata.l3_hdr_pad +
  2461. RX_PKT_TLVS_LEN;
  2462. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2463. dp_rx_skip_tlvs(nbuf, msdu_metadata.l3_hdr_pad);
  2464. }
  2465. /*
  2466. * process frame for mulitpass phrase processing
  2467. */
  2468. if (qdf_unlikely(vdev->multipass_en)) {
  2469. if (dp_rx_multipass_process(peer, nbuf, tid) == false) {
  2470. DP_STATS_INC(peer, rx.multipass_rx_pkt_drop, 1);
  2471. qdf_nbuf_free(nbuf);
  2472. nbuf = next;
  2473. continue;
  2474. }
  2475. }
  2476. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer)) {
  2477. dp_rx_err("%pK: Policy Check Drop pkt", soc);
  2478. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  2479. /* Drop & free packet */
  2480. qdf_nbuf_free(nbuf);
  2481. /* Statistics */
  2482. nbuf = next;
  2483. continue;
  2484. }
  2485. if (qdf_unlikely(peer && (peer->nawds_enabled) &&
  2486. (qdf_nbuf_is_da_mcbc(nbuf)) &&
  2487. (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc,
  2488. rx_tlv_hdr) ==
  2489. false))) {
  2490. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  2491. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  2492. qdf_nbuf_free(nbuf);
  2493. nbuf = next;
  2494. continue;
  2495. }
  2496. if (soc->process_rx_status)
  2497. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  2498. /* Update the protocol tag in SKB based on CCE metadata */
  2499. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr,
  2500. reo_ring_num, false, true);
  2501. /* Update the flow tag in SKB based on FSE metadata */
  2502. dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  2503. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer,
  2504. ring_id, tid_stats);
  2505. if (qdf_unlikely(vdev->mesh_vdev)) {
  2506. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  2507. == QDF_STATUS_SUCCESS) {
  2508. dp_rx_info("%pK: mesh pkt filtered", soc);
  2509. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  2510. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  2511. 1);
  2512. qdf_nbuf_free(nbuf);
  2513. nbuf = next;
  2514. continue;
  2515. }
  2516. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  2517. }
  2518. if (qdf_likely(vdev->rx_decap_type ==
  2519. htt_cmn_pkt_type_ethernet) &&
  2520. qdf_likely(!vdev->mesh_vdev)) {
  2521. /* WDS Destination Address Learning */
  2522. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  2523. /* Due to HW issue, sometimes we see that the sa_idx
  2524. * and da_idx are invalid with sa_valid and da_valid
  2525. * bits set
  2526. *
  2527. * in this case we also see that value of
  2528. * sa_sw_peer_id is set as 0
  2529. *
  2530. * Drop the packet if sa_idx and da_idx OOB or
  2531. * sa_sw_peerid is 0
  2532. */
  2533. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr, nbuf,
  2534. msdu_metadata)) {
  2535. qdf_nbuf_free(nbuf);
  2536. nbuf = next;
  2537. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  2538. continue;
  2539. }
  2540. /* WDS Source Port Learning */
  2541. if (qdf_likely(vdev->wds_enabled))
  2542. dp_rx_wds_srcport_learn(soc,
  2543. rx_tlv_hdr,
  2544. peer,
  2545. nbuf,
  2546. msdu_metadata);
  2547. /* Intrabss-fwd */
  2548. if (dp_rx_check_ap_bridge(vdev))
  2549. if (dp_rx_intrabss_fwd(soc,
  2550. peer,
  2551. rx_tlv_hdr,
  2552. nbuf,
  2553. msdu_metadata)) {
  2554. nbuf = next;
  2555. tid_stats->intrabss_cnt++;
  2556. continue; /* Get next desc */
  2557. }
  2558. }
  2559. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt);
  2560. dp_rx_update_stats(soc, nbuf);
  2561. DP_RX_LIST_APPEND(deliver_list_head,
  2562. deliver_list_tail,
  2563. nbuf);
  2564. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  2565. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2566. if (qdf_unlikely(peer->in_twt))
  2567. DP_STATS_INC_PKT(peer, rx.to_stack_twt, 1,
  2568. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2569. tid_stats->delivered_to_stack++;
  2570. nbuf = next;
  2571. }
  2572. if (qdf_likely(deliver_list_head)) {
  2573. if (qdf_likely(peer)) {
  2574. dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id,
  2575. pkt_capture_offload,
  2576. deliver_list_head);
  2577. if (!pkt_capture_offload)
  2578. dp_rx_deliver_to_stack(soc, vdev, peer,
  2579. deliver_list_head,
  2580. deliver_list_tail);
  2581. }
  2582. else {
  2583. nbuf = deliver_list_head;
  2584. while (nbuf) {
  2585. next = nbuf->next;
  2586. nbuf->next = NULL;
  2587. dp_rx_deliver_to_stack_no_peer(soc, nbuf);
  2588. nbuf = next;
  2589. }
  2590. }
  2591. }
  2592. if (qdf_likely(peer))
  2593. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2594. if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) {
  2595. if (quota) {
  2596. num_pending =
  2597. dp_rx_srng_get_num_pending(hal_soc,
  2598. hal_ring_hdl,
  2599. num_entries,
  2600. &near_full);
  2601. if (num_pending) {
  2602. DP_STATS_INC(soc, rx.hp_oos2, 1);
  2603. if (!hif_exec_should_yield(scn, intr_id))
  2604. goto more_data;
  2605. if (qdf_unlikely(near_full)) {
  2606. DP_STATS_INC(soc, rx.near_full, 1);
  2607. goto more_data;
  2608. }
  2609. }
  2610. }
  2611. if (vdev && vdev->osif_fisa_flush)
  2612. vdev->osif_fisa_flush(soc, reo_ring_num);
  2613. if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) {
  2614. vdev->osif_gro_flush(vdev->osif_vdev,
  2615. reo_ring_num);
  2616. }
  2617. }
  2618. /* Update histogram statistics by looping through pdev's */
  2619. DP_RX_HIST_STATS_PER_PDEV();
  2620. return rx_bufs_used; /* Assume no scale factor for now */
  2621. }
  2622. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2623. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2624. {
  2625. QDF_STATUS ret;
  2626. if (vdev->osif_rx_flush) {
  2627. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2628. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2629. dp_err("Failed to flush rx pkts for vdev %d\n",
  2630. vdev->vdev_id);
  2631. return ret;
  2632. }
  2633. }
  2634. return QDF_STATUS_SUCCESS;
  2635. }
  2636. static QDF_STATUS
  2637. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2638. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2639. struct dp_pdev *dp_pdev,
  2640. struct rx_desc_pool *rx_desc_pool)
  2641. {
  2642. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2643. (nbuf_frag_info_t->virt_addr).nbuf =
  2644. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2645. RX_BUFFER_RESERVATION,
  2646. rx_desc_pool->buf_alignment, FALSE);
  2647. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2648. dp_err("nbuf alloc failed");
  2649. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2650. return ret;
  2651. }
  2652. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2653. (nbuf_frag_info_t->virt_addr).nbuf,
  2654. QDF_DMA_FROM_DEVICE,
  2655. rx_desc_pool->buf_size);
  2656. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2657. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2658. dp_err("nbuf map failed");
  2659. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2660. return ret;
  2661. }
  2662. nbuf_frag_info_t->paddr =
  2663. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2664. ret = check_x86_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2665. &nbuf_frag_info_t->paddr,
  2666. rx_desc_pool);
  2667. if (ret == QDF_STATUS_E_FAILURE) {
  2668. qdf_nbuf_unmap_nbytes_single(dp_soc->osdev,
  2669. (nbuf_frag_info_t->virt_addr).nbuf,
  2670. QDF_DMA_FROM_DEVICE,
  2671. rx_desc_pool->buf_size);
  2672. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2673. dp_err("nbuf check x86 failed");
  2674. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2675. return ret;
  2676. }
  2677. return QDF_STATUS_SUCCESS;
  2678. }
  2679. QDF_STATUS
  2680. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2681. struct dp_srng *dp_rxdma_srng,
  2682. struct rx_desc_pool *rx_desc_pool,
  2683. uint32_t num_req_buffers)
  2684. {
  2685. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2686. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2687. union dp_rx_desc_list_elem_t *next;
  2688. void *rxdma_ring_entry;
  2689. qdf_dma_addr_t paddr;
  2690. struct dp_rx_nbuf_frag_info *nf_info;
  2691. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2692. uint32_t buffer_index, nbuf_ptrs_per_page;
  2693. qdf_nbuf_t nbuf;
  2694. QDF_STATUS ret;
  2695. int page_idx, total_pages;
  2696. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2697. union dp_rx_desc_list_elem_t *tail = NULL;
  2698. int sync_hw_ptr = 1;
  2699. uint32_t num_entries_avail;
  2700. if (qdf_unlikely(!rxdma_srng)) {
  2701. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2702. return QDF_STATUS_E_FAILURE;
  2703. }
  2704. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2705. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2706. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2707. rxdma_srng,
  2708. sync_hw_ptr);
  2709. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2710. if (!num_entries_avail) {
  2711. dp_err("Num of available entries is zero, nothing to do");
  2712. return QDF_STATUS_E_NOMEM;
  2713. }
  2714. if (num_entries_avail < num_req_buffers)
  2715. num_req_buffers = num_entries_avail;
  2716. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2717. num_req_buffers, &desc_list, &tail);
  2718. if (!nr_descs) {
  2719. dp_err("no free rx_descs in freelist");
  2720. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2721. return QDF_STATUS_E_NOMEM;
  2722. }
  2723. dp_debug("got %u RX descs for driver attach", nr_descs);
  2724. /*
  2725. * Try to allocate pointers to the nbuf one page at a time.
  2726. * Take pointers that can fit in one page of memory and
  2727. * iterate through the total descriptors that need to be
  2728. * allocated in order of pages. Reuse the pointers that
  2729. * have been allocated to fit in one page across each
  2730. * iteration to index into the nbuf.
  2731. */
  2732. total_pages = (nr_descs * sizeof(*nf_info)) / PAGE_SIZE;
  2733. /*
  2734. * Add an extra page to store the remainder if any
  2735. */
  2736. if ((nr_descs * sizeof(*nf_info)) % PAGE_SIZE)
  2737. total_pages++;
  2738. nf_info = qdf_mem_malloc(PAGE_SIZE);
  2739. if (!nf_info) {
  2740. dp_err("failed to allocate nbuf array");
  2741. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2742. QDF_BUG(0);
  2743. return QDF_STATUS_E_NOMEM;
  2744. }
  2745. nbuf_ptrs_per_page = PAGE_SIZE / sizeof(*nf_info);
  2746. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2747. qdf_mem_zero(nf_info, PAGE_SIZE);
  2748. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2749. /*
  2750. * The last page of buffer pointers may not be required
  2751. * completely based on the number of descriptors. Below
  2752. * check will ensure we are allocating only the
  2753. * required number of descriptors.
  2754. */
  2755. if (nr_nbuf_total >= nr_descs)
  2756. break;
  2757. /* Flag is set while pdev rx_desc_pool initialization */
  2758. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2759. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2760. &nf_info[nr_nbuf], dp_pdev,
  2761. rx_desc_pool);
  2762. else
  2763. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2764. &nf_info[nr_nbuf], dp_pdev,
  2765. rx_desc_pool);
  2766. if (QDF_IS_STATUS_ERROR(ret))
  2767. break;
  2768. nr_nbuf_total++;
  2769. }
  2770. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2771. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2772. rxdma_ring_entry =
  2773. hal_srng_src_get_next(dp_soc->hal_soc,
  2774. rxdma_srng);
  2775. qdf_assert_always(rxdma_ring_entry);
  2776. next = desc_list->next;
  2777. paddr = nf_info[buffer_index].paddr;
  2778. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2779. /* Flag is set while pdev rx_desc_pool initialization */
  2780. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2781. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2782. &nf_info[buffer_index]);
  2783. else
  2784. dp_rx_desc_prep(&desc_list->rx_desc,
  2785. &nf_info[buffer_index]);
  2786. desc_list->rx_desc.in_use = 1;
  2787. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2788. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2789. __func__,
  2790. RX_DESC_REPLENISHED);
  2791. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  2792. desc_list->rx_desc.cookie,
  2793. rx_desc_pool->owner);
  2794. dp_ipa_handle_rx_buf_smmu_mapping(
  2795. dp_soc, nbuf,
  2796. rx_desc_pool->buf_size,
  2797. true);
  2798. desc_list = next;
  2799. }
  2800. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2801. }
  2802. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2803. qdf_mem_free(nf_info);
  2804. if (!nr_nbuf_total) {
  2805. dp_err("No nbuf's allocated");
  2806. QDF_BUG(0);
  2807. return QDF_STATUS_E_RESOURCES;
  2808. }
  2809. /* No need to count the number of bytes received during replenish.
  2810. * Therefore set replenish.pkts.bytes as 0.
  2811. */
  2812. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2813. return QDF_STATUS_SUCCESS;
  2814. }
  2815. /**
  2816. * dp_rx_enable_mon_dest_frag() - Enable frag processing for
  2817. * monitor destination ring via frag.
  2818. *
  2819. * Enable this flag only for monitor destination buffer processing
  2820. * if DP_RX_MON_MEM_FRAG feature is enabled.
  2821. * If flag is set then frag based function will be called for alloc,
  2822. * map, prep desc and free ops for desc buffer else normal nbuf based
  2823. * function will be called.
  2824. *
  2825. * @rx_desc_pool: Rx desc pool
  2826. * @is_mon_dest_desc: Is it for monitor dest buffer
  2827. *
  2828. * Return: None
  2829. */
  2830. #ifdef DP_RX_MON_MEM_FRAG
  2831. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2832. bool is_mon_dest_desc)
  2833. {
  2834. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2835. if (is_mon_dest_desc)
  2836. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2837. }
  2838. #else
  2839. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2840. bool is_mon_dest_desc)
  2841. {
  2842. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2843. if (is_mon_dest_desc)
  2844. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2845. }
  2846. #endif
  2847. /*
  2848. * dp_rx_pdev_desc_pool_alloc() - allocate memory for software rx descriptor
  2849. * pool
  2850. *
  2851. * @pdev: core txrx pdev context
  2852. *
  2853. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2854. * QDF_STATUS_E_NOMEM
  2855. */
  2856. QDF_STATUS
  2857. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2858. {
  2859. struct dp_soc *soc = pdev->soc;
  2860. uint32_t rxdma_entries;
  2861. uint32_t rx_sw_desc_num;
  2862. struct dp_srng *dp_rxdma_srng;
  2863. struct rx_desc_pool *rx_desc_pool;
  2864. uint32_t status = QDF_STATUS_SUCCESS;
  2865. int mac_for_pdev;
  2866. mac_for_pdev = pdev->lmac_id;
  2867. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2868. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2869. soc, mac_for_pdev);
  2870. return status;
  2871. }
  2872. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2873. rxdma_entries = dp_rxdma_srng->num_entries;
  2874. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2875. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2876. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2877. status = dp_rx_desc_pool_alloc(soc,
  2878. rx_sw_desc_num,
  2879. rx_desc_pool);
  2880. if (status != QDF_STATUS_SUCCESS)
  2881. return status;
  2882. return status;
  2883. }
  2884. /*
  2885. * dp_rx_pdev_desc_pool_free() - free software rx descriptor pool
  2886. *
  2887. * @pdev: core txrx pdev context
  2888. */
  2889. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2890. {
  2891. int mac_for_pdev = pdev->lmac_id;
  2892. struct dp_soc *soc = pdev->soc;
  2893. struct rx_desc_pool *rx_desc_pool;
  2894. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2895. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2896. }
  2897. /*
  2898. * dp_rx_pdev_desc_pool_init() - initialize software rx descriptors
  2899. *
  2900. * @pdev: core txrx pdev context
  2901. *
  2902. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2903. * QDF_STATUS_E_NOMEM
  2904. */
  2905. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2906. {
  2907. int mac_for_pdev = pdev->lmac_id;
  2908. struct dp_soc *soc = pdev->soc;
  2909. uint32_t rxdma_entries;
  2910. uint32_t rx_sw_desc_num;
  2911. struct dp_srng *dp_rxdma_srng;
  2912. struct rx_desc_pool *rx_desc_pool;
  2913. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2914. /**
  2915. * If NSS is enabled, rx_desc_pool is already filled.
  2916. * Hence, just disable desc_pool frag flag.
  2917. */
  2918. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2919. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2920. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2921. soc, mac_for_pdev);
  2922. return QDF_STATUS_SUCCESS;
  2923. }
  2924. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2925. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2926. return QDF_STATUS_E_NOMEM;
  2927. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2928. rxdma_entries = dp_rxdma_srng->num_entries;
  2929. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2930. rx_sw_desc_num =
  2931. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2932. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2933. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2934. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2935. /* Disable monitor dest processing via frag */
  2936. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2937. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2938. rx_sw_desc_num, rx_desc_pool);
  2939. return QDF_STATUS_SUCCESS;
  2940. }
  2941. /*
  2942. * dp_rx_pdev_desc_pool_deinit() - de-initialize software rx descriptor pools
  2943. * @pdev: core txrx pdev context
  2944. *
  2945. * This function resets the freelist of rx descriptors and destroys locks
  2946. * associated with this list of descriptors.
  2947. */
  2948. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2949. {
  2950. int mac_for_pdev = pdev->lmac_id;
  2951. struct dp_soc *soc = pdev->soc;
  2952. struct rx_desc_pool *rx_desc_pool;
  2953. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2954. dp_rx_desc_pool_deinit(soc, rx_desc_pool);
  2955. }
  2956. /*
  2957. * dp_rx_pdev_buffers_alloc() - Allocate nbufs (skbs) and replenish RxDMA ring
  2958. *
  2959. * @pdev: core txrx pdev context
  2960. *
  2961. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  2962. * QDF_STATUS_E_NOMEM
  2963. */
  2964. QDF_STATUS
  2965. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2966. {
  2967. int mac_for_pdev = pdev->lmac_id;
  2968. struct dp_soc *soc = pdev->soc;
  2969. struct dp_srng *dp_rxdma_srng;
  2970. struct rx_desc_pool *rx_desc_pool;
  2971. uint32_t rxdma_entries;
  2972. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2973. rxdma_entries = dp_rxdma_srng->num_entries;
  2974. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2975. /* Initialize RX buffer pool which will be
  2976. * used during low memory conditions
  2977. */
  2978. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2979. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev, dp_rxdma_srng,
  2980. rx_desc_pool, rxdma_entries - 1);
  2981. }
  2982. /*
  2983. * dp_rx_pdev_buffers_free - Free nbufs (skbs)
  2984. *
  2985. * @pdev: core txrx pdev context
  2986. */
  2987. void
  2988. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2989. {
  2990. int mac_for_pdev = pdev->lmac_id;
  2991. struct dp_soc *soc = pdev->soc;
  2992. struct rx_desc_pool *rx_desc_pool;
  2993. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2994. dp_rx_desc_nbuf_free(soc, rx_desc_pool);
  2995. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2996. }
  2997. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2998. bool dp_rx_deliver_special_frame(struct dp_soc *soc, struct dp_peer *peer,
  2999. qdf_nbuf_t nbuf, uint32_t frame_mask,
  3000. uint8_t *rx_tlv_hdr)
  3001. {
  3002. uint32_t l2_hdr_offset = 0;
  3003. uint16_t msdu_len = 0;
  3004. uint32_t skip_len;
  3005. l2_hdr_offset =
  3006. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  3007. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  3008. skip_len = l2_hdr_offset;
  3009. } else {
  3010. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  3011. skip_len = l2_hdr_offset + RX_PKT_TLVS_LEN;
  3012. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  3013. }
  3014. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  3015. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  3016. qdf_nbuf_pull_head(nbuf, skip_len);
  3017. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  3018. qdf_nbuf_set_exc_frame(nbuf, 1);
  3019. dp_rx_deliver_to_stack(soc, peer->vdev, peer,
  3020. nbuf, NULL);
  3021. return true;
  3022. }
  3023. return false;
  3024. }
  3025. #endif