msm_cvp_buf.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #define CLEAR_USE_BITMAP(idx, inst) \
  18. do { \
  19. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  20. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  21. hash32_ptr(inst->session), smem->bitmap_index, \
  22. inst->dma_cache.usage_bitmap); \
  23. } while (0)
  24. #define SET_USE_BITMAP(idx, inst) \
  25. do { \
  26. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), idx, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  32. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  33. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  34. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  35. struct msm_cvp_smem *smem)
  36. {
  37. if (!(tag & msm_cvp_debug))
  38. return 0;
  39. if (!inst || !smem) {
  40. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  41. inst, smem);
  42. return -EINVAL;
  43. }
  44. if (smem->dma_buf) {
  45. dprintk(tag,
  46. "%s: %x : %s size %d flags %#x iova %#x idx %d ref %d",
  47. str, hash32_ptr(inst->session), smem->dma_buf->name,
  48. smem->size, smem->flags, smem->device_addr,
  49. smem->bitmap_index, smem->refcount);
  50. }
  51. return 0;
  52. }
  53. static void print_internal_buffer(u32 tag, const char *str,
  54. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  55. {
  56. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  57. return;
  58. if (cbuf->smem->dma_buf) {
  59. dprintk(tag,
  60. "%s: %x : fd %d off %d %s size %d iova %#x",
  61. str, hash32_ptr(inst->session), cbuf->fd,
  62. cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size,
  63. cbuf->smem->device_addr);
  64. } else {
  65. dprintk(tag,
  66. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  67. str, hash32_ptr(inst->session), cbuf->fd,
  68. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  69. }
  70. }
  71. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  72. struct cvp_internal_buf *cbuf)
  73. {
  74. dprintk(tag, "%s addr: %x size %u\n", str,
  75. cbuf->smem->device_addr, cbuf->size);
  76. }
  77. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  78. struct msm_cvp_smem *smem, bool logging)
  79. {
  80. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  81. return;
  82. if (!logging || !snapshot)
  83. return;
  84. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  85. struct smem_data *s;
  86. s = &snapshot->smem_log[snapshot->smem_index];
  87. snapshot->smem_index++;
  88. s->size = smem->size;
  89. s->flags = smem->flags;
  90. s->device_addr = smem->device_addr;
  91. s->bitmap_index = smem->bitmap_index;
  92. s->refcount = atomic_read(&smem->refcount);
  93. }
  94. }
  95. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  96. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  97. bool logging)
  98. {
  99. struct cvp_buf_data *buf = NULL;
  100. u32 index;
  101. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  102. if (!logging)
  103. return;
  104. if (snapshot) {
  105. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  106. index = snapshot->dsp_index;
  107. buf = &snapshot->dsp_buf_log[index];
  108. snapshot->dsp_index++;
  109. } else if (prop == SMEM_PERSIST &&
  110. snapshot->persist_index < MAX_ENTRIES) {
  111. index = snapshot->persist_index;
  112. buf = &snapshot->persist_buf_log[index];
  113. snapshot->persist_index++;
  114. }
  115. if (buf) {
  116. buf->device_addr = cbuf->smem->device_addr;
  117. buf->size = cbuf->size;
  118. }
  119. }
  120. }
  121. void print_client_buffer(u32 tag, const char *str,
  122. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  123. {
  124. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  125. return;
  126. dprintk(tag,
  127. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  128. " reserved[0] %u\n",
  129. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  130. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  131. cbuf->reserved[0]);
  132. }
  133. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  134. struct eva_kmd_buffer *buf)
  135. {
  136. struct cvp_hal_session *session;
  137. struct cvp_internal_buf *cbuf = NULL;
  138. bool found = false;
  139. if (!inst || !inst->core || !buf) {
  140. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  141. return false;
  142. }
  143. if (buf->fd < 0) {
  144. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  145. return false;
  146. }
  147. if (buf->offset) {
  148. dprintk(CVP_ERR,
  149. "%s: offset is deprecated, set to 0.\n",
  150. __func__);
  151. return false;
  152. }
  153. session = (struct cvp_hal_session *)inst->session;
  154. mutex_lock(&inst->cvpdspbufs.lock);
  155. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  156. if (cbuf->fd == buf->fd) {
  157. if (cbuf->size != buf->size) {
  158. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  159. __func__);
  160. mutex_unlock(&inst->cvpdspbufs.lock);
  161. return false;
  162. }
  163. found = true;
  164. break;
  165. }
  166. }
  167. mutex_unlock(&inst->cvpdspbufs.lock);
  168. if (found) {
  169. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  170. return false;
  171. }
  172. return true;
  173. }
  174. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  175. fmode_t mask, unsigned int refs)
  176. {
  177. struct files_struct *files = task->files;
  178. struct file *file;
  179. if (!files)
  180. return NULL;
  181. rcu_read_lock();
  182. loop:
  183. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  184. file = fcheck_files(files, fd);
  185. #else
  186. file = files_lookup_fd_rcu(files, fd);
  187. #endif
  188. if (file) {
  189. /* File object ref couldn't be taken.
  190. * dup2() atomicity guarantee is the reason
  191. * we loop to catch the new file (or NULL pointer)
  192. */
  193. if (file->f_mode & mask)
  194. file = NULL;
  195. else if (!get_file_rcu_many(file, refs))
  196. goto loop;
  197. }
  198. rcu_read_unlock();
  199. return file;
  200. }
  201. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  202. struct task_struct *task)
  203. {
  204. if (file->f_op != gfa_cv.dmabuf_f_op) {
  205. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  206. return ERR_PTR(-EINVAL);
  207. }
  208. return file->private_data;
  209. }
  210. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  211. {
  212. int rc = 0;
  213. struct cvp_internal_buf *cbuf = NULL;
  214. struct msm_cvp_smem *smem = NULL;
  215. struct dma_buf *dma_buf = NULL;
  216. struct file *file;
  217. if (!__is_buf_valid(inst, buf))
  218. return -EINVAL;
  219. if (!inst->task)
  220. return -EINVAL;
  221. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  222. if (file == NULL) {
  223. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  224. return -EINVAL;
  225. }
  226. dma_buf = cvp_dma_buf_get(
  227. file,
  228. buf->fd,
  229. inst->task);
  230. if (dma_buf == ERR_PTR(-EINVAL)) {
  231. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  232. rc = -EINVAL;
  233. goto exit;
  234. }
  235. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  236. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  237. if (!cbuf) {
  238. rc = -ENOMEM;
  239. goto exit;
  240. }
  241. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  242. if (!smem) {
  243. rc = -ENOMEM;
  244. goto exit;
  245. }
  246. smem->dma_buf = dma_buf;
  247. smem->bitmap_index = MAX_DMABUF_NUMS;
  248. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  249. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  250. if (rc) {
  251. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  252. goto exit;
  253. }
  254. cbuf->smem = smem;
  255. cbuf->fd = buf->fd;
  256. cbuf->size = buf->size;
  257. cbuf->offset = buf->offset;
  258. cbuf->ownership = CLIENT;
  259. cbuf->index = buf->index;
  260. buf->reserved[0] = (uint32_t)smem->device_addr;
  261. mutex_lock(&inst->cvpdspbufs.lock);
  262. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  263. mutex_unlock(&inst->cvpdspbufs.lock);
  264. return rc;
  265. exit:
  266. fput(file);
  267. if (smem) {
  268. if (smem->device_addr) {
  269. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  270. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  271. }
  272. kmem_cache_free(cvp_driver->smem_cache, smem);
  273. }
  274. if (cbuf)
  275. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  276. return rc;
  277. }
  278. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  279. {
  280. int rc = 0;
  281. bool found;
  282. struct cvp_internal_buf *cbuf;
  283. struct cvp_hal_session *session;
  284. if (!inst || !inst->core || !buf) {
  285. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  286. return -EINVAL;
  287. }
  288. session = (struct cvp_hal_session *)inst->session;
  289. if (!session) {
  290. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  291. return -EINVAL;
  292. }
  293. mutex_lock(&inst->cvpdspbufs.lock);
  294. found = false;
  295. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  296. if (cbuf->fd == buf->fd) {
  297. found = true;
  298. break;
  299. }
  300. }
  301. mutex_unlock(&inst->cvpdspbufs.lock);
  302. if (!found) {
  303. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  304. return -EINVAL;
  305. }
  306. if (cbuf->smem->device_addr) {
  307. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  308. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  309. }
  310. mutex_lock(&inst->cvpdspbufs.lock);
  311. list_del(&cbuf->list);
  312. mutex_unlock(&inst->cvpdspbufs.lock);
  313. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  314. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  315. return rc;
  316. }
  317. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  318. struct eva_kmd_buffer *buf)
  319. {
  320. int rc = 0, i;
  321. bool found = false;
  322. struct cvp_internal_buf* cbuf;
  323. struct msm_cvp_smem* smem = NULL;
  324. struct dma_buf* dma_buf = NULL;
  325. if (!inst || !inst->core || !buf) {
  326. dprintk(CVP_ERR, "%s: invalid params", __func__);
  327. return -EINVAL;
  328. }
  329. if (!inst->session) {
  330. dprintk(CVP_ERR, "%s: invalid session", __func__);
  331. return -EINVAL;
  332. }
  333. if (buf->index) {
  334. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  335. __func__, buf->fd);
  336. return -EINVAL;
  337. }
  338. if (buf->fd < 0) {
  339. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  340. return -EINVAL;
  341. }
  342. if (buf->offset) {
  343. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  344. __func__);
  345. return -EINVAL;
  346. }
  347. mutex_lock(&inst->cvpwnccbufs.lock);
  348. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  349. if (cbuf->fd == buf->fd) {
  350. if (cbuf->size != buf->size) {
  351. dprintk(CVP_ERR, "%s: buf size mismatch",
  352. __func__);
  353. mutex_unlock(&inst->cvpwnccbufs.lock);
  354. return -EINVAL;
  355. }
  356. found = true;
  357. break;
  358. }
  359. }
  360. mutex_unlock(&inst->cvpwnccbufs.lock);
  361. if (found) {
  362. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  363. return -EINVAL;
  364. }
  365. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  366. if (!dma_buf) {
  367. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  368. return -EINVAL;
  369. }
  370. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  371. if (!cbuf) {
  372. msm_cvp_smem_put_dma_buf(dma_buf);
  373. return -ENOMEM;
  374. }
  375. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  376. if (!smem) {
  377. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  378. msm_cvp_smem_put_dma_buf(dma_buf);
  379. return -ENOMEM;
  380. }
  381. smem->dma_buf = dma_buf;
  382. smem->bitmap_index = MAX_DMABUF_NUMS;
  383. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  384. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  385. if (rc) {
  386. dprintk(CVP_ERR, "%s: map failed", __func__);
  387. print_client_buffer(CVP_ERR, __func__, inst, buf);
  388. goto exit;
  389. }
  390. cbuf->smem = smem;
  391. cbuf->fd = buf->fd;
  392. cbuf->size = buf->size;
  393. cbuf->offset = buf->offset;
  394. cbuf->ownership = CLIENT;
  395. cbuf->index = buf->index;
  396. /* Added for PreSil/RUMI testing */
  397. #ifdef USE_PRESIL
  398. dprintk(CVP_DBG,
  399. "wncc buffer is %x for cam_presil_send_buffer"
  400. " with MAP_ADDR_OFFSET %x",
  401. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  402. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  403. (u32)cbuf->offset, (u32)cbuf->size,
  404. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  405. #endif
  406. mutex_lock(&inst->cvpwnccbufs.lock);
  407. if (inst->cvpwnccbufs_table == NULL) {
  408. inst->cvpwnccbufs_table =
  409. (struct msm_cvp_wncc_buffer*) kzalloc(
  410. sizeof(struct msm_cvp_wncc_buffer) *
  411. EVA_KMD_WNCC_MAX_SRC_BUFS,
  412. GFP_KERNEL);
  413. }
  414. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  415. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  416. {
  417. if (inst->cvpwnccbufs_table[i].iova == 0)
  418. {
  419. inst->cvpwnccbufs_num++;
  420. inst->cvpwnccbufs_table[i].fd = buf->fd;
  421. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  422. inst->cvpwnccbufs_table[i].size = smem->size;
  423. /* buf reserved[0] used to store wncc src buf id */
  424. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  425. /* cbuf ktid used to store wncc src buf id */
  426. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  427. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  428. __func__, inst->cvpwnccbufs_table[i].iova);
  429. break;
  430. }
  431. }
  432. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  433. dprintk(CVP_ERR,
  434. "%s: wncc buf table full - max (%u) already registered",
  435. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  436. /* _wncc_print_cvpwnccbufs_table(inst); */
  437. mutex_unlock(&inst->cvpwnccbufs.lock);
  438. rc = -EDQUOT;
  439. goto exit;
  440. }
  441. mutex_unlock(&inst->cvpwnccbufs.lock);
  442. return rc;
  443. exit:
  444. if (smem->device_addr) {
  445. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  446. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  447. }
  448. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  449. cbuf = NULL;
  450. kmem_cache_free(cvp_driver->smem_cache, smem);
  451. smem = NULL;
  452. return rc;
  453. }
  454. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  455. struct eva_kmd_buffer *buf)
  456. {
  457. int rc = 0;
  458. bool found;
  459. struct cvp_internal_buf *cbuf;
  460. uint32_t buf_id, buf_idx;
  461. if (!inst || !inst->core || !buf) {
  462. dprintk(CVP_ERR, "%s: invalid params", __func__);
  463. return -EINVAL;
  464. }
  465. if (!inst->session) {
  466. dprintk(CVP_ERR, "%s: invalid session", __func__);
  467. return -EINVAL;
  468. }
  469. if (buf->index) {
  470. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  471. __func__, buf->fd);
  472. return -EINVAL;
  473. }
  474. buf_id = buf->reserved[0];
  475. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  476. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  477. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  478. __func__, buf->reserved[0]);
  479. return -EINVAL;
  480. }
  481. mutex_lock(&inst->cvpwnccbufs.lock);
  482. if (inst->cvpwnccbufs_num == 0) {
  483. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  484. mutex_unlock(&inst->cvpwnccbufs.lock);
  485. return -EINVAL;
  486. }
  487. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  488. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  489. dprintk(CVP_ERR, "%s: buffer id %d not found",
  490. __func__, buf_id);
  491. mutex_unlock(&inst->cvpwnccbufs.lock);
  492. return -EINVAL;
  493. }
  494. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  495. found = false;
  496. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  497. if (cbuf->fd == buf->fd) {
  498. found = true;
  499. break;
  500. }
  501. }
  502. if (!found) {
  503. dprintk(CVP_ERR, "%s: buffer id %d not found",
  504. __func__, buf_id);
  505. print_client_buffer(CVP_ERR, __func__, inst, buf);
  506. _wncc_print_cvpwnccbufs_table(inst);
  507. mutex_unlock(&inst->cvpwnccbufs.lock);
  508. return -EINVAL;
  509. }
  510. mutex_unlock(&inst->cvpwnccbufs.lock);
  511. if (cbuf->smem->device_addr) {
  512. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  513. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  514. }
  515. mutex_lock(&inst->cvpwnccbufs.lock);
  516. list_del(&cbuf->list);
  517. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  518. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  519. inst->cvpwnccbufs_table[buf_idx].size = 0;
  520. inst->cvpwnccbufs_num--;
  521. if (inst->cvpwnccbufs_num == 0) {
  522. kfree(inst->cvpwnccbufs_table);
  523. inst->cvpwnccbufs_table = NULL;
  524. }
  525. mutex_unlock(&inst->cvpwnccbufs.lock);
  526. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  527. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  528. return rc;
  529. }
  530. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  531. {
  532. u32 i, j;
  533. if (!wncc_oob) {
  534. dprintk(CVP_ERR, "%s: invalid params", __func__);
  535. return;
  536. }
  537. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  538. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  539. for (i = 0; i < wncc_oob->num_layers; i++) {
  540. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  541. __func__, i, wncc_oob->layers[i].num_addrs);
  542. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  543. dprintk(CVP_DBG,
  544. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  545. __func__, i, j,
  546. wncc_oob->layers[i].addrs[j].buffer_id,
  547. wncc_oob->layers[i].addrs[j].offset);
  548. }
  549. }
  550. }
  551. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  552. {
  553. u32 i, entries = 0;
  554. if (!inst) {
  555. dprintk(CVP_ERR, "%s: invalid params", __func__);
  556. return;
  557. }
  558. if (inst->cvpwnccbufs_num == 0) {
  559. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  560. __func__);
  561. return;
  562. }
  563. if (!inst->cvpwnccbufs_table) {
  564. dprintk(CVP_ERR, "%s: invalid params", __func__);
  565. return;
  566. }
  567. dprintk(CVP_DBG, "%s: wncc buffer table:");
  568. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  569. entries < inst->cvpwnccbufs_num; i++) {
  570. if (inst->cvpwnccbufs_table[i].iova != 0) {
  571. dprintk(CVP_DBG,
  572. "%s: buf_idx=%04d --> "
  573. "fd=%03d, iova=0x%08x, size=%d",
  574. __func__, i,
  575. inst->cvpwnccbufs_table[i].fd,
  576. inst->cvpwnccbufs_table[i].iova,
  577. inst->cvpwnccbufs_table[i].size);
  578. entries++;
  579. }
  580. }
  581. }
  582. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  583. struct eva_kmd_wncc_metadata** wncc_metadata)
  584. {
  585. u32 i, j, iova;
  586. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  587. !wncc_metadata) {
  588. dprintk(CVP_ERR, "%s: invalid params", __func__);
  589. return;
  590. }
  591. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  592. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  593. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  594. for (i = 0; i < num_layers; i++) {
  595. for (j = 0; j < num_addrs; j++) {
  596. iova = (wncc_metadata[i][j].iova_msb << 22) |
  597. wncc_metadata[i][j].iova_lsb;
  598. dprintk(CVP_DBG,
  599. "%s: wncc_metadata[%u][%u]: "
  600. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  601. __func__, i, j,
  602. wncc_metadata[i][j].loc_x_dec,
  603. wncc_metadata[i][j].loc_x_frac,
  604. wncc_metadata[i][j].loc_y_dec,
  605. wncc_metadata[i][j].loc_y_frac,
  606. iova,
  607. wncc_metadata[i][j].scale_idx,
  608. wncc_metadata[i][j].aff_coeff_3,
  609. wncc_metadata[i][j].aff_coeff_2,
  610. wncc_metadata[i][j].aff_coeff_1,
  611. wncc_metadata[i][j].aff_coeff_0);
  612. }
  613. }
  614. }
  615. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  616. struct eva_kmd_oob_wncc* wncc_oob)
  617. {
  618. int rc = 0;
  619. u32 oob_type;
  620. struct eva_kmd_oob_wncc* wncc_oob_u;
  621. struct eva_kmd_oob_wncc* wncc_oob_k;
  622. unsigned int i;
  623. u32 num_addrs;
  624. if (!in_pkt || !wncc_oob) {
  625. dprintk(CVP_ERR, "%s: invalid params", __func__);
  626. return -EINVAL;
  627. }
  628. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  629. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  630. return -EINVAL;
  631. }
  632. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  633. if (rc)
  634. return rc;
  635. if (oob_type != EVA_KMD_OOB_WNCC) {
  636. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  637. __func__, oob_type);
  638. return -EINVAL;
  639. }
  640. wncc_oob_u = &in_pkt->oob_buf->wncc;
  641. wncc_oob_k = wncc_oob;
  642. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  643. if (rc)
  644. return rc;
  645. if (wncc_oob_k->num_layers < 1 ||
  646. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  647. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  648. return -EINVAL;
  649. }
  650. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  651. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  652. &wncc_oob_u->layers[i].num_addrs);
  653. if (rc)
  654. break;
  655. num_addrs = wncc_oob_k->layers[i].num_addrs;
  656. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  657. dprintk(CVP_ERR,
  658. "%s: invalid wncc num addrs for layer %u",
  659. __func__, i);
  660. rc = -EINVAL;
  661. break;
  662. }
  663. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  664. wncc_oob_u->layers[i].addrs,
  665. wncc_oob_k->layers[i].num_addrs *
  666. sizeof(struct eva_kmd_wncc_addr));
  667. if (rc)
  668. break;
  669. }
  670. if (false)
  671. _wncc_print_oob(wncc_oob);
  672. return rc;
  673. }
  674. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  675. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  676. {
  677. int rc = 0, i;
  678. struct cvp_buf_type* wncc_metadata_bufs;
  679. struct dma_buf* dmabuf;
  680. struct dma_buf_map map;
  681. if (!in_pkt || !wncc_metadata ||
  682. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  683. dprintk(CVP_ERR, "%s: invalid params", __func__);
  684. return -EINVAL;
  685. }
  686. wncc_metadata_bufs = (struct cvp_buf_type*)
  687. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  688. for (i = 0; i < num_layers; i++) {
  689. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  690. if (IS_ERR(dmabuf)) {
  691. rc = PTR_ERR(dmabuf);
  692. dprintk(CVP_ERR,
  693. "%s: dma_buf_get() failed for "
  694. "wncc_metadata_bufs[%d], rc %d",
  695. __func__, i, rc);
  696. break;
  697. }
  698. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  699. if (rc) {
  700. dprintk(CVP_ERR,
  701. "%s: dma_buf_begin_cpu_access() failed "
  702. "for wncc_metadata_bufs[%d], rc %d",
  703. __func__, i, rc);
  704. dma_buf_put(dmabuf);
  705. break;
  706. }
  707. rc = dma_buf_vmap(dmabuf, &map);
  708. if (rc) {
  709. dprintk(CVP_ERR,
  710. "%s: dma_buf_vmap() failed for "
  711. "wncc_metadata_bufs[%d]",
  712. __func__, i);
  713. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  714. dma_buf_put(dmabuf);
  715. break;
  716. }
  717. dprintk(CVP_DBG,
  718. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  719. __func__, i, map.is_iomem);
  720. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  721. dma_buf_put(dmabuf);
  722. }
  723. if (rc)
  724. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  725. return rc;
  726. }
  727. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  728. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  729. {
  730. int rc = 0, i;
  731. struct cvp_buf_type* wncc_metadata_bufs;
  732. struct dma_buf* dmabuf;
  733. struct dma_buf_map map;
  734. if (!in_pkt || !wncc_metadata ||
  735. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  736. dprintk(CVP_ERR, "%s: invalid params", __func__);
  737. return -EINVAL;
  738. }
  739. wncc_metadata_bufs = (struct cvp_buf_type*)
  740. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  741. for (i = 0; i < num_layers; i++) {
  742. if (!wncc_metadata[i]) {
  743. rc = -EINVAL;
  744. break;
  745. }
  746. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  747. if (IS_ERR(dmabuf)) {
  748. rc = -PTR_ERR(dmabuf);
  749. dprintk(CVP_ERR,
  750. "%s: dma_buf_get() failed for "
  751. "wncc_metadata_bufs[%d], rc %d",
  752. __func__, i, rc);
  753. break;
  754. }
  755. dma_buf_map_set_vaddr(&map, wncc_metadata[i]);
  756. dma_buf_vunmap(dmabuf, &map);
  757. wncc_metadata[i] = NULL;
  758. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  759. dma_buf_put(dmabuf);
  760. if (rc) {
  761. dprintk(CVP_ERR,
  762. "%s: dma_buf_end_cpu_access() failed "
  763. "for wncc_metadata_bufs[%d], rc %d",
  764. __func__, i, rc);
  765. break;
  766. }
  767. }
  768. return rc;
  769. }
  770. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  771. struct eva_kmd_hfi_packet* in_pkt)
  772. {
  773. int rc = 0;
  774. struct eva_kmd_oob_wncc* wncc_oob;
  775. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  776. unsigned int i, j;
  777. bool empty = false;
  778. u32 buf_id, buf_idx, buf_offset, iova;
  779. if (!inst || !inst->core || !in_pkt) {
  780. dprintk(CVP_ERR, "%s: invalid params", __func__);
  781. return -EINVAL;
  782. }
  783. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  784. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  785. if (!wncc_oob)
  786. return -ENOMEM;
  787. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  788. if (rc) {
  789. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  790. goto exit;
  791. }
  792. rc = _wncc_map_metadata_bufs(in_pkt,
  793. wncc_oob->num_layers, wncc_metadata);
  794. if (rc) {
  795. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  796. __func__);
  797. goto exit;
  798. }
  799. mutex_lock(&inst->cvpwnccbufs.lock);
  800. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  801. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  802. empty = true;
  803. rc = -EINVAL;
  804. }
  805. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  806. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  807. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  808. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  809. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  810. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  811. dprintk(CVP_ERR,
  812. "%s: invalid wncc buf id %u "
  813. "in layer #%u address #%u",
  814. __func__, buf_id, i, j);
  815. rc = -EINVAL;
  816. break;
  817. }
  818. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  819. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  820. dprintk(CVP_ERR,
  821. "%s: unmapped wncc buf id %u "
  822. "in layer #%u address #%u",
  823. __func__, buf_id, i, j);
  824. /* _wncc_print_cvpwnccbufs_table(inst); */
  825. rc = -EINVAL;
  826. break;
  827. }
  828. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  829. if (buf_offset >=
  830. inst->cvpwnccbufs_table[buf_idx].size) {
  831. /* NOTE: This buffer offset validation is
  832. * not comprehensive since wncc src image
  833. * resolution information is not known to
  834. * KMD. UMD is responsible for comprehensive
  835. * validation.
  836. */
  837. dprintk(CVP_ERR,
  838. "%s: invalid wncc buf offset %u "
  839. "in layer #%u address #%u",
  840. __func__, buf_offset, i, j);
  841. rc = -EINVAL;
  842. break;
  843. }
  844. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  845. buf_offset;
  846. wncc_metadata[i][j].iova_lsb = iova;
  847. wncc_metadata[i][j].iova_msb = iova >> 22;
  848. }
  849. }
  850. mutex_unlock(&inst->cvpwnccbufs.lock);
  851. if (false)
  852. _wncc_print_metadata_buf(wncc_oob->num_layers,
  853. wncc_oob->layers[0].num_addrs, wncc_metadata);
  854. if (_wncc_unmap_metadata_bufs(in_pkt,
  855. wncc_oob->num_layers, wncc_metadata)) {
  856. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  857. __func__);
  858. }
  859. exit:
  860. kfree(wncc_oob);
  861. return rc;
  862. }
  863. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  864. struct eva_kmd_hfi_packet* in_pkt)
  865. {
  866. int rc = 0;
  867. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  868. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  869. if (!inst || !inst->core || !in_pkt) {
  870. dprintk(CVP_ERR, "%s: invalid params", __func__);
  871. return -EINVAL;
  872. }
  873. switch (cmd_hdr->packet_type) {
  874. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  875. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  876. break;
  877. default:
  878. break;
  879. }
  880. return rc;
  881. }
  882. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  883. u32 offset, u32 size)
  884. {
  885. enum smem_cache_ops cache_op;
  886. if (msm_cvp_cacheop_disabled)
  887. return;
  888. if (!smem) {
  889. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  890. return;
  891. }
  892. switch (type) {
  893. case EVA_KMD_BUFTYPE_INPUT:
  894. cache_op = SMEM_CACHE_CLEAN;
  895. break;
  896. case EVA_KMD_BUFTYPE_OUTPUT:
  897. cache_op = SMEM_CACHE_INVALIDATE;
  898. break;
  899. default:
  900. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  901. }
  902. dprintk(CVP_MEM,
  903. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  904. __func__, smem->dma_buf, cache_op, offset, size);
  905. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  906. }
  907. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  908. struct dma_buf *dma_buf)
  909. {
  910. struct msm_cvp_smem *smem;
  911. int i;
  912. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  913. return NULL;
  914. mutex_lock(&inst->dma_cache.lock);
  915. for (i = 0; i < inst->dma_cache.nr; i++)
  916. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  917. SET_USE_BITMAP(i, inst);
  918. smem = inst->dma_cache.entries[i];
  919. smem->bitmap_index = i;
  920. atomic_inc(&smem->refcount);
  921. /*
  922. * If we find it, it means we already increased
  923. * refcount before, so we put it to avoid double
  924. * incremental.
  925. */
  926. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  927. mutex_unlock(&inst->dma_cache.lock);
  928. print_smem(CVP_MEM, "found", inst, smem);
  929. return smem;
  930. }
  931. mutex_unlock(&inst->dma_cache.lock);
  932. return NULL;
  933. }
  934. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  935. struct msm_cvp_smem *smem)
  936. {
  937. unsigned int i;
  938. struct msm_cvp_smem *smem2;
  939. mutex_lock(&inst->dma_cache.lock);
  940. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  941. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  942. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  943. smem->bitmap_index = inst->dma_cache.nr;
  944. inst->dma_cache.nr++;
  945. i = smem->bitmap_index;
  946. } else {
  947. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  948. MAX_DMABUF_NUMS);
  949. if (i < MAX_DMABUF_NUMS) {
  950. smem2 = inst->dma_cache.entries[i];
  951. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  952. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  953. kmem_cache_free(cvp_driver->smem_cache, smem2);
  954. inst->dma_cache.entries[i] = smem;
  955. smem->bitmap_index = i;
  956. SET_USE_BITMAP(i, inst);
  957. } else {
  958. dprintk(CVP_WARN, "%s: not enough memory\n", __func__);
  959. mutex_unlock(&inst->dma_cache.lock);
  960. return -ENOMEM;
  961. }
  962. }
  963. atomic_inc(&smem->refcount);
  964. mutex_unlock(&inst->dma_cache.lock);
  965. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  966. return 0;
  967. }
  968. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  969. struct cvp_buf_type *buf)
  970. {
  971. int rc = 0, found = 1;
  972. struct msm_cvp_smem *smem = NULL;
  973. struct dma_buf *dma_buf = NULL;
  974. if (buf->fd < 0) {
  975. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  976. return NULL;
  977. }
  978. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  979. if (!dma_buf) {
  980. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  981. return NULL;
  982. }
  983. smem = msm_cvp_session_find_smem(inst, dma_buf);
  984. if (!smem) {
  985. found = 0;
  986. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  987. if (!smem)
  988. return NULL;
  989. smem->dma_buf = dma_buf;
  990. smem->bitmap_index = MAX_DMABUF_NUMS;
  991. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  992. if (rc)
  993. goto exit;
  994. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  995. dprintk(CVP_ERR, "%s: invalid offset %d or size %d for a new entry\n",
  996. __func__, buf->offset, buf->size);
  997. goto exit2;
  998. }
  999. rc = msm_cvp_session_add_smem(inst, smem);
  1000. if (rc && rc != -ENOMEM)
  1001. goto exit2;
  1002. }
  1003. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  1004. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  1005. __func__, buf->offset, buf->size);
  1006. if (found) {
  1007. mutex_lock(&inst->dma_cache.lock);
  1008. atomic_dec(&smem->refcount);
  1009. mutex_unlock(&inst->dma_cache.lock);
  1010. return NULL;
  1011. }
  1012. goto exit2;
  1013. }
  1014. return smem;
  1015. exit2:
  1016. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1017. exit:
  1018. msm_cvp_smem_put_dma_buf(dma_buf);
  1019. kmem_cache_free(cvp_driver->smem_cache, smem);
  1020. smem = NULL;
  1021. return smem;
  1022. }
  1023. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1024. struct cvp_buf_type *buf)
  1025. {
  1026. u32 iova = 0;
  1027. struct msm_cvp_smem *smem = NULL;
  1028. struct cvp_internal_buf *pbuf;
  1029. if (!inst) {
  1030. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1031. return -EINVAL;
  1032. }
  1033. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1034. if (!pbuf)
  1035. return 0;
  1036. smem = msm_cvp_session_get_smem(inst, buf);
  1037. if (!smem)
  1038. goto exit;
  1039. smem->flags |= SMEM_PERSIST;
  1040. pbuf->smem = smem;
  1041. pbuf->fd = buf->fd;
  1042. pbuf->size = buf->size;
  1043. pbuf->offset = buf->offset;
  1044. pbuf->ownership = CLIENT;
  1045. mutex_lock(&inst->persistbufs.lock);
  1046. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1047. mutex_unlock(&inst->persistbufs.lock);
  1048. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1049. iova = smem->device_addr + buf->offset;
  1050. return iova;
  1051. exit:
  1052. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  1053. return 0;
  1054. }
  1055. u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1056. struct cvp_buf_type *buf,
  1057. struct msm_cvp_frame *frame)
  1058. {
  1059. u32 iova = 0;
  1060. struct msm_cvp_smem *smem = NULL;
  1061. u32 nr;
  1062. u32 type;
  1063. if (!inst || !frame) {
  1064. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1065. return 0;
  1066. }
  1067. nr = frame->nr;
  1068. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1069. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1070. return 0;
  1071. }
  1072. smem = msm_cvp_session_get_smem(inst, buf);
  1073. if (!smem)
  1074. return 0;
  1075. frame->bufs[nr].fd = buf->fd;
  1076. frame->bufs[nr].smem = smem;
  1077. frame->bufs[nr].size = buf->size;
  1078. frame->bufs[nr].offset = buf->offset;
  1079. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1080. frame->nr++;
  1081. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1082. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1083. iova = smem->device_addr + buf->offset;
  1084. return iova;
  1085. }
  1086. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1087. struct msm_cvp_frame *frame)
  1088. {
  1089. u32 i;
  1090. u32 type;
  1091. struct msm_cvp_smem *smem = NULL;
  1092. struct cvp_internal_buf *buf;
  1093. type = EVA_KMD_BUFTYPE_OUTPUT;
  1094. for (i = 0; i < frame->nr; ++i) {
  1095. buf = &frame->bufs[i];
  1096. smem = buf->smem;
  1097. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1098. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1099. /* smem not in dmamap cache */
  1100. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1101. dma_heap_buffer_free(smem->dma_buf);
  1102. kmem_cache_free(cvp_driver->smem_cache, smem);
  1103. buf->smem = NULL;
  1104. } else {
  1105. mutex_lock(&inst->dma_cache.lock);
  1106. if (atomic_dec_and_test(&smem->refcount)) {
  1107. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1108. print_smem(CVP_MEM, "Map dereference",
  1109. inst, smem);
  1110. }
  1111. mutex_unlock(&inst->dma_cache.lock);
  1112. }
  1113. }
  1114. kmem_cache_free(cvp_driver->frame_cache, frame);
  1115. }
  1116. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1117. {
  1118. struct msm_cvp_frame *frame, *dummy1;
  1119. bool found;
  1120. if (!inst) {
  1121. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1122. return;
  1123. }
  1124. ktid &= (FENCE_BIT - 1);
  1125. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1126. __func__, hash32_ptr(inst->session), ktid);
  1127. found = false;
  1128. mutex_lock(&inst->frames.lock);
  1129. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1130. if (frame->ktid == ktid) {
  1131. found = true;
  1132. list_del(&frame->list);
  1133. break;
  1134. }
  1135. }
  1136. mutex_unlock(&inst->frames.lock);
  1137. if (found)
  1138. msm_cvp_unmap_frame_buf(inst, frame);
  1139. else
  1140. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1141. }
  1142. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  1143. struct eva_kmd_hfi_packet *in_pkt,
  1144. unsigned int offset, unsigned int buf_num)
  1145. {
  1146. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1147. struct cvp_internal_buf *pbuf, *dummy;
  1148. u64 ktid;
  1149. int rc = 0;
  1150. struct msm_cvp_smem *smem = NULL;
  1151. if (!offset || !buf_num)
  1152. return rc;
  1153. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1154. ktid = cmd_hdr->client_data.kdata & (FENCE_BIT - 1);
  1155. mutex_lock(&inst->persistbufs.lock);
  1156. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) {
  1157. if (pbuf->ktid == ktid && pbuf->ownership == CLIENT) {
  1158. list_del(&pbuf->list);
  1159. smem = pbuf->smem;
  1160. dprintk(CVP_MEM, "unmap persist: %x %d %d %#x",
  1161. hash32_ptr(inst->session), pbuf->fd,
  1162. pbuf->size, smem->device_addr);
  1163. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1164. /* smem not in dmamap cache */
  1165. msm_cvp_unmap_smem(inst, smem,
  1166. "unmap cpu");
  1167. dma_heap_buffer_free(smem->dma_buf);
  1168. kmem_cache_free(
  1169. cvp_driver->smem_cache,
  1170. smem);
  1171. pbuf->smem = NULL;
  1172. } else {
  1173. mutex_lock(&inst->dma_cache.lock);
  1174. if (atomic_dec_and_test(&smem->refcount))
  1175. CLEAR_USE_BITMAP(
  1176. smem->bitmap_index,
  1177. inst);
  1178. mutex_unlock(&inst->dma_cache.lock);
  1179. }
  1180. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  1181. }
  1182. }
  1183. mutex_unlock(&inst->persistbufs.lock);
  1184. return rc;
  1185. }
  1186. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1187. struct eva_kmd_hfi_packet *in_pkt,
  1188. unsigned int offset, unsigned int buf_num)
  1189. {
  1190. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1191. struct cvp_internal_buf *pbuf, *dummy;
  1192. u64 ktid;
  1193. struct cvp_buf_type *buf;
  1194. int i, rc = 0;
  1195. if (!offset || !buf_num)
  1196. return 0;
  1197. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1198. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1199. ktid &= (FENCE_BIT - 1);
  1200. cmd_hdr->client_data.kdata = ktid;
  1201. for (i = 0; i < buf_num; i++) {
  1202. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1203. offset += sizeof(*buf) >> 2;
  1204. if (buf->fd < 0 || !buf->size)
  1205. continue;
  1206. mutex_lock(&inst->persistbufs.lock);
  1207. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list,
  1208. list) {
  1209. if (pbuf->ownership == CLIENT) {
  1210. if (pbuf->fd == buf->fd &&
  1211. pbuf->size == buf->size)
  1212. buf->fd = pbuf->smem->device_addr;
  1213. rc = 1;
  1214. break;
  1215. }
  1216. }
  1217. mutex_unlock(&inst->persistbufs.lock);
  1218. if (!rc) {
  1219. dprintk(CVP_ERR, "%s No persist buf %d found\n",
  1220. __func__, buf->fd);
  1221. rc = -EFAULT;
  1222. break;
  1223. }
  1224. pbuf->ktid = ktid;
  1225. rc = 0;
  1226. }
  1227. return rc;
  1228. }
  1229. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1230. struct eva_kmd_hfi_packet *in_pkt,
  1231. unsigned int offset, unsigned int buf_num)
  1232. {
  1233. struct cvp_buf_type *buf;
  1234. int i;
  1235. u32 iova;
  1236. if (!offset || !buf_num)
  1237. return 0;
  1238. for (i = 0; i < buf_num; i++) {
  1239. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1240. offset += sizeof(*buf) >> 2;
  1241. if (buf->fd < 0 || !buf->size)
  1242. continue;
  1243. iova = msm_cvp_map_user_persist_buf(inst, buf);
  1244. if (!iova) {
  1245. dprintk(CVP_ERR,
  1246. "%s: buf %d register failed.\n",
  1247. __func__, i);
  1248. return -EINVAL;
  1249. }
  1250. buf->fd = iova;
  1251. }
  1252. return 0;
  1253. }
  1254. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1255. struct eva_kmd_hfi_packet *in_pkt,
  1256. unsigned int offset, unsigned int buf_num)
  1257. {
  1258. struct cvp_buf_type *buf;
  1259. int i;
  1260. u32 iova;
  1261. u64 ktid;
  1262. struct msm_cvp_frame *frame;
  1263. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1264. if (!offset || !buf_num)
  1265. return 0;
  1266. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1267. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1268. ktid &= (FENCE_BIT - 1);
  1269. cmd_hdr->client_data.kdata = ktid;
  1270. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  1271. if (!frame)
  1272. return -ENOMEM;
  1273. frame->ktid = ktid;
  1274. frame->nr = 0;
  1275. frame->pkt_type = cmd_hdr->packet_type;
  1276. for (i = 0; i < buf_num; i++) {
  1277. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1278. offset += sizeof(*buf) >> 2;
  1279. if (buf->fd < 0 || !buf->size)
  1280. continue;
  1281. iova = msm_cvp_map_frame_buf(inst, buf, frame);
  1282. if (!iova) {
  1283. dprintk(CVP_ERR,
  1284. "%s: buf %d register failed.\n",
  1285. __func__, i);
  1286. msm_cvp_unmap_frame_buf(inst, frame);
  1287. return -EINVAL;
  1288. }
  1289. buf->fd = iova;
  1290. }
  1291. mutex_lock(&inst->frames.lock);
  1292. list_add_tail(&frame->list, &inst->frames.list);
  1293. mutex_unlock(&inst->frames.lock);
  1294. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1295. return 0;
  1296. }
  1297. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1298. {
  1299. int rc = 0, i;
  1300. struct cvp_internal_buf *cbuf, *dummy;
  1301. struct msm_cvp_frame *frame, *dummy1;
  1302. struct msm_cvp_smem *smem;
  1303. struct cvp_hal_session *session;
  1304. struct eva_kmd_buffer buf;
  1305. session = (struct cvp_hal_session *)inst->session;
  1306. mutex_lock(&inst->frames.lock);
  1307. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1308. list_del(&frame->list);
  1309. msm_cvp_unmap_frame_buf(inst, frame);
  1310. }
  1311. mutex_unlock(&inst->frames.lock);
  1312. mutex_lock(&inst->dma_cache.lock);
  1313. for (i = 0; i < inst->dma_cache.nr; i++) {
  1314. smem = inst->dma_cache.entries[i];
  1315. if (atomic_read(&smem->refcount) == 0) {
  1316. print_smem(CVP_MEM, "free", inst, smem);
  1317. } else if (!(smem->flags & SMEM_PERSIST)) {
  1318. print_smem(CVP_WARN, "in use", inst, smem);
  1319. }
  1320. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1321. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1322. kmem_cache_free(cvp_driver->smem_cache, smem);
  1323. inst->dma_cache.entries[i] = NULL;
  1324. }
  1325. mutex_unlock(&inst->dma_cache.lock);
  1326. mutex_lock(&inst->cvpdspbufs.lock);
  1327. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1328. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1329. if (cbuf->ownership == CLIENT) {
  1330. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1331. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1332. cbuf->offset, cbuf->index,
  1333. (uint32_t)cbuf->smem->device_addr);
  1334. if (rc)
  1335. dprintk(CVP_ERR,
  1336. "%s: failed dsp deregistration fd=%d rc=%d",
  1337. __func__, cbuf->fd, rc);
  1338. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1339. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1340. } else if (cbuf->ownership == DSP) {
  1341. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1342. if (rc)
  1343. dprintk(CVP_ERR,
  1344. "%s: failed to unmap buf from DSP\n",
  1345. __func__);
  1346. rc = cvp_release_dsp_buffers(inst, cbuf);
  1347. if (rc)
  1348. dprintk(CVP_ERR,
  1349. "%s Fail to free buffer 0x%x\n",
  1350. __func__, rc);
  1351. }
  1352. list_del(&cbuf->list);
  1353. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  1354. }
  1355. mutex_unlock(&inst->cvpdspbufs.lock);
  1356. mutex_lock(&inst->cvpwnccbufs.lock);
  1357. if (inst->cvpwnccbufs_num != 0)
  1358. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1359. __func__, inst->cvpwnccbufs_num);
  1360. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1361. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1362. buf.fd = cbuf->fd;
  1363. buf.reserved[0] = cbuf->ktid;
  1364. mutex_unlock(&inst->cvpwnccbufs.lock);
  1365. msm_cvp_unmap_buf_wncc(inst, &buf);
  1366. mutex_lock(&inst->cvpwnccbufs.lock);
  1367. }
  1368. mutex_unlock(&inst->cvpwnccbufs.lock);
  1369. return rc;
  1370. }
  1371. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1372. {
  1373. struct cvp_internal_buf *buf;
  1374. struct msm_cvp_core *core;
  1375. struct inst_snapshot *snap = NULL;
  1376. int i;
  1377. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1378. if (log && core->log.snapshot_index < 16) {
  1379. snap = &core->log.snapshot[core->log.snapshot_index];
  1380. snap->session = inst->session;
  1381. core->log.snapshot_index++;
  1382. }
  1383. if (!inst) {
  1384. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1385. __func__, inst);
  1386. return;
  1387. }
  1388. dprintk(CVP_ERR,
  1389. "---Buffer details for inst: %pK of type: %d---\n",
  1390. inst, inst->session_type);
  1391. mutex_lock(&inst->dma_cache.lock);
  1392. dprintk(CVP_ERR, "dma cache: %d\n", inst->dma_cache.nr);
  1393. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1394. for (i = 0; i < inst->dma_cache.nr; i++)
  1395. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1396. mutex_unlock(&inst->dma_cache.lock);
  1397. mutex_lock(&inst->cvpdspbufs.lock);
  1398. dprintk(CVP_ERR, "dsp buffer list:\n");
  1399. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1400. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1401. mutex_unlock(&inst->cvpdspbufs.lock);
  1402. mutex_lock(&inst->cvpwnccbufs.lock);
  1403. dprintk(CVP_ERR, "wncc buffer list:\n");
  1404. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1405. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1406. mutex_unlock(&inst->cvpwnccbufs.lock);
  1407. mutex_lock(&inst->persistbufs.lock);
  1408. dprintk(CVP_ERR, "persist buffer list:\n");
  1409. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1410. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1411. mutex_unlock(&inst->persistbufs.lock);
  1412. }
  1413. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1414. u32 buffer_size)
  1415. {
  1416. struct cvp_internal_buf *buf;
  1417. struct msm_cvp_list *buf_list;
  1418. u32 smem_flags = SMEM_UNCACHED;
  1419. int rc = 0;
  1420. if (!inst) {
  1421. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1422. return NULL;
  1423. }
  1424. buf_list = &inst->persistbufs;
  1425. if (!buffer_size)
  1426. return NULL;
  1427. /* PERSIST buffer requires secure mapping
  1428. * Disable and wait for hyp_assign available
  1429. */
  1430. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1431. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1432. if (!buf) {
  1433. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1434. goto fail_kzalloc;
  1435. }
  1436. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1437. if (!buf->smem) {
  1438. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1439. goto fail_kzalloc;
  1440. }
  1441. buf->smem->flags = smem_flags;
  1442. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1443. &(inst->core->resources), buf->smem);
  1444. if (rc) {
  1445. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1446. goto err_no_mem;
  1447. }
  1448. buf->size = buf->smem->size;
  1449. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1450. buf->ownership = DRIVER;
  1451. mutex_lock(&buf_list->lock);
  1452. list_add_tail(&buf->list, &buf_list->list);
  1453. mutex_unlock(&buf_list->lock);
  1454. return buf;
  1455. err_no_mem:
  1456. kmem_cache_free(cvp_driver->buf_cache, buf);
  1457. fail_kzalloc:
  1458. return NULL;
  1459. }
  1460. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1461. {
  1462. struct msm_cvp_smem *smem;
  1463. struct list_head *ptr, *next;
  1464. struct cvp_internal_buf *buf;
  1465. int rc = 0;
  1466. struct msm_cvp_core *core;
  1467. struct cvp_hfi_device *hdev;
  1468. if (!inst) {
  1469. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1470. return -EINVAL;
  1471. }
  1472. core = inst->core;
  1473. if (!core) {
  1474. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1475. return -EINVAL;
  1476. }
  1477. hdev = core->device;
  1478. if (!hdev) {
  1479. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1480. return -EINVAL;
  1481. }
  1482. dprintk(CVP_MEM, "release persist buffer!\n");
  1483. mutex_lock(&inst->persistbufs.lock);
  1484. /* Workaround for FW: release buffer means release all */
  1485. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1486. rc = call_hfi_op(hdev, session_release_buffers,
  1487. (void *)inst->session);
  1488. if (!rc) {
  1489. mutex_unlock(&inst->persistbufs.lock);
  1490. rc = wait_for_sess_signal_receipt(inst,
  1491. HAL_SESSION_RELEASE_BUFFER_DONE);
  1492. if (rc)
  1493. dprintk(CVP_WARN,
  1494. "%s: wait for signal failed, rc %d\n",
  1495. __func__, rc);
  1496. mutex_lock(&inst->persistbufs.lock);
  1497. } else {
  1498. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  1499. }
  1500. }
  1501. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1502. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1503. smem = buf->smem;
  1504. if (!smem) {
  1505. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1506. mutex_unlock(&inst->persistbufs.lock);
  1507. return -EINVAL;
  1508. }
  1509. list_del(&buf->list);
  1510. if (buf->ownership == DRIVER) {
  1511. dprintk(CVP_MEM,
  1512. "%s: %x : fd %d %s size %d",
  1513. "free arp", hash32_ptr(inst->session), buf->fd,
  1514. smem->dma_buf->name, buf->size);
  1515. msm_cvp_smem_free(smem);
  1516. kmem_cache_free(cvp_driver->smem_cache, smem);
  1517. }
  1518. buf->smem = NULL;
  1519. kmem_cache_free(cvp_driver->buf_cache, buf);
  1520. }
  1521. mutex_unlock(&inst->persistbufs.lock);
  1522. return rc;
  1523. }
  1524. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1525. struct cvp_internal_buf *buf,
  1526. u32 buffer_size,
  1527. u32 secure_type)
  1528. {
  1529. u32 smem_flags = SMEM_UNCACHED;
  1530. int rc = 0;
  1531. if (!inst) {
  1532. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1533. return -EINVAL;
  1534. }
  1535. if (!buf)
  1536. return -EINVAL;
  1537. if (!buffer_size)
  1538. return -EINVAL;
  1539. switch (secure_type) {
  1540. case 0:
  1541. break;
  1542. case 1:
  1543. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1544. break;
  1545. case 2:
  1546. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1547. break;
  1548. default:
  1549. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1550. __func__, secure_type);
  1551. return -EINVAL;
  1552. }
  1553. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1554. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1555. if (!buf->smem) {
  1556. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1557. goto fail_kzalloc_smem_cache;
  1558. }
  1559. buf->smem->flags = smem_flags;
  1560. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1561. &(inst->core->resources), buf->smem);
  1562. if (rc) {
  1563. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1564. goto err_no_mem;
  1565. }
  1566. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1567. buf->size = buf->smem->size;
  1568. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1569. buf->ownership = DSP;
  1570. return rc;
  1571. err_no_mem:
  1572. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  1573. fail_kzalloc_smem_cache:
  1574. return rc;
  1575. }
  1576. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1577. struct cvp_internal_buf *buf)
  1578. {
  1579. struct msm_cvp_smem *smem;
  1580. int rc = 0;
  1581. if (!inst) {
  1582. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1583. return -EINVAL;
  1584. }
  1585. if (!buf) {
  1586. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1587. return -EINVAL;
  1588. }
  1589. smem = buf->smem;
  1590. if (!smem) {
  1591. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1592. return -EINVAL;
  1593. }
  1594. if (buf->ownership == DSP) {
  1595. dprintk(CVP_MEM,
  1596. "%s: %x : fd %x %s size %d",
  1597. __func__, hash32_ptr(inst->session), buf->fd,
  1598. smem->dma_buf->name, buf->size);
  1599. msm_cvp_smem_free(smem);
  1600. kmem_cache_free(cvp_driver->smem_cache, smem);
  1601. } else {
  1602. dprintk(CVP_ERR,
  1603. "%s: wrong owner %d %x : fd %x %s size %d",
  1604. __func__, buf->ownership, hash32_ptr(inst->session),
  1605. buf->fd, smem->dma_buf->name, buf->size);
  1606. }
  1607. return rc;
  1608. }
  1609. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1610. struct eva_kmd_buffer *buf)
  1611. {
  1612. struct cvp_hfi_device *hdev;
  1613. struct cvp_hal_session *session;
  1614. struct msm_cvp_inst *s;
  1615. int rc = 0;
  1616. if (!inst || !inst->core || !buf) {
  1617. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1618. return -EINVAL;
  1619. }
  1620. s = cvp_get_inst_validate(inst->core, inst);
  1621. if (!s)
  1622. return -ECONNRESET;
  1623. session = (struct cvp_hal_session *)inst->session;
  1624. if (!session) {
  1625. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1626. rc = -EINVAL;
  1627. goto exit;
  1628. }
  1629. hdev = inst->core->device;
  1630. print_client_buffer(CVP_HFI, "register", inst, buf);
  1631. if (buf->index)
  1632. rc = msm_cvp_map_buf_dsp(inst, buf);
  1633. else
  1634. rc = msm_cvp_map_buf_wncc(inst, buf);
  1635. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1636. buf->fd, buf->reserved[0]);
  1637. exit:
  1638. cvp_put_inst(s);
  1639. return rc;
  1640. }
  1641. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1642. struct eva_kmd_buffer *buf)
  1643. {
  1644. struct msm_cvp_inst *s;
  1645. int rc = 0;
  1646. if (!inst || !inst->core || !buf) {
  1647. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1648. return -EINVAL;
  1649. }
  1650. s = cvp_get_inst_validate(inst->core, inst);
  1651. if (!s)
  1652. return -ECONNRESET;
  1653. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1654. if (buf->index)
  1655. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1656. else
  1657. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1658. cvp_put_inst(s);
  1659. return rc;
  1660. }