
CNSS prealloc maintains various prealloc pools of 8Kb, 16Kb, 32Kb and so on, and allocates buffer from the pool for wlan driver. When wlan driver requests to free the memory buffer then CNSS prealloc needs to first find out mempool id from which this buffer was allocated. Use slab_cache from slab struct to identify memory pool id. Until kernel 5.16, slab_cache was part of page struct but in kernel 5.17, slab_cache is moved out to mm/slab.h file. Also change WCNSS_PRE_ALLOC_GET_THRESHOLD to 8Kb to match with cnss_pool_alloc_threshold. Change-Id: I4e34d8f0b855c210cc9af30c1f4a0d6c7e43ab00 CRs-Fixed: 3414037
341 rader
8.4 KiB
C
341 rader
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2012,2014-2017,2019-2021 The Linux Foundation. All rights reserved.
|
|
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/of.h>
|
|
#include <linux/version.h>
|
|
#ifdef CONFIG_CNSS_OUT_OF_TREE
|
|
#include "cnss_prealloc.h"
|
|
#else
|
|
#include <net/cnss_prealloc.h>
|
|
#endif
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0))
|
|
/* Ideally header should be from standard include path. So this is not an
|
|
* ideal way of header inclusion but use of slab struct to derive cache
|
|
* from a mem ptr helps in avoiding additional tracking and/or adding headroom
|
|
* of 8 bytes for cache in the beginning of buffer and wasting extra memory,
|
|
* particulary in the case when size of memory requested falls around the edge
|
|
* of a page boundary. We also have precedence of minidump_memory.c which
|
|
* includes mm/slab.h using this style.
|
|
*/
|
|
#include "../mm/slab.h"
|
|
#endif
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("CNSS prealloc driver");
|
|
|
|
/* cnss preallocation scheme is a memory pool that always tries to keep a
|
|
* list of free memory for use in emergencies. It is implemented on kernel
|
|
* features: memorypool and kmem cache.
|
|
*/
|
|
|
|
struct cnss_pool {
|
|
size_t size;
|
|
int min;
|
|
const char name[50];
|
|
mempool_t *mp;
|
|
struct kmem_cache *cache;
|
|
};
|
|
|
|
/**
|
|
* Memory pool
|
|
* -----------
|
|
*
|
|
* How to update this table:
|
|
*
|
|
* 1. Add a new row with following elements
|
|
* size : Size of one allocation unit in bytes.
|
|
* min : Minimum units to be reserved. Used only if a regular
|
|
* allocation fails.
|
|
* name : Name of the cache/pool. Will be displayed in /proc/slabinfo
|
|
* if not merged with another pool.
|
|
* mp : A pointer to memory pool. Updated during init.
|
|
* cache : A pointer to cache. Updated during init.
|
|
* 2. Always keep the table in increasing order
|
|
* 3. Please keep the reserve pool as minimum as possible as it's always
|
|
* preallocated.
|
|
* 4. Always profile with different use cases after updating this table.
|
|
* 5. A dynamic view of this pool can be viewed at /proc/slabinfo.
|
|
* 6. Each pool has a sys node at /sys/kernel/slab/<name>
|
|
*
|
|
*/
|
|
|
|
/* size, min pool reserve, name, memorypool handler, cache handler*/
|
|
static struct cnss_pool cnss_pools[] = {
|
|
{8 * 1024, 16, "cnss-pool-8k", NULL, NULL},
|
|
{16 * 1024, 16, "cnss-pool-16k", NULL, NULL},
|
|
{32 * 1024, 22, "cnss-pool-32k", NULL, NULL},
|
|
{64 * 1024, 38, "cnss-pool-64k", NULL, NULL},
|
|
{128 * 1024, 10, "cnss-pool-128k", NULL, NULL},
|
|
};
|
|
|
|
/**
|
|
* cnss_pool_alloc_threshold() - Allocation threshold
|
|
*
|
|
* Minimum memory size to be part of cnss pool.
|
|
*
|
|
* Return: Size
|
|
*
|
|
*/
|
|
static inline size_t cnss_pool_alloc_threshold(void)
|
|
{
|
|
return cnss_pools[0].size;
|
|
}
|
|
|
|
/**
|
|
* cnss_pool_int() - Initialize memory pools.
|
|
*
|
|
* Create cnss pools as configured by cnss_pools[]. It is the responsibility of
|
|
* the caller to invoke cnss_pool_deinit() routine to clean it up. This
|
|
* function needs to be called at early boot to preallocate minimum buffers in
|
|
* the pool.
|
|
*
|
|
* Return: 0 - success, otherwise error code.
|
|
*
|
|
*/
|
|
static int cnss_pool_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
|
|
/* Create the slab cache */
|
|
cnss_pools[i].cache =
|
|
kmem_cache_create_usercopy(cnss_pools[i].name,
|
|
cnss_pools[i].size, 0,
|
|
SLAB_ACCOUNT, 0,
|
|
cnss_pools[i].size, NULL);
|
|
if (!cnss_pools[i].cache) {
|
|
pr_err("cnss_prealloc: cache %s failed\n",
|
|
cnss_pools[i].name);
|
|
continue;
|
|
}
|
|
|
|
/* Create the pool and associate to slab cache */
|
|
cnss_pools[i].mp =
|
|
mempool_create(cnss_pools[i].min, mempool_alloc_slab,
|
|
mempool_free_slab, cnss_pools[i].cache);
|
|
|
|
if (!cnss_pools[i].mp) {
|
|
pr_err("cnss_prealloc: mempool %s failed\n",
|
|
cnss_pools[i].name);
|
|
kmem_cache_destroy(cnss_pools[i].cache);
|
|
cnss_pools[i].cache = NULL;
|
|
continue;
|
|
}
|
|
|
|
pr_info("cnss_prealloc: created mempool %s of min size %d * %zu\n",
|
|
cnss_pools[i].name, cnss_pools[i].min,
|
|
cnss_pools[i].size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cnss_pool_deinit() - Free memory pools.
|
|
*
|
|
* Free the memory pools and return resources back to the system. It warns
|
|
* if there is any pending element in memory pool or cache.
|
|
*
|
|
*/
|
|
static void cnss_pool_deinit(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
|
|
pr_info("cnss_prealloc: destroy mempool %s\n",
|
|
cnss_pools[i].name);
|
|
mempool_destroy(cnss_pools[i].mp);
|
|
kmem_cache_destroy(cnss_pools[i].cache);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cnss_pool_get_index() - Get the index of memory pool
|
|
* @mem: Allocated memory
|
|
*
|
|
* Returns the index of the memory pool which fits the reqested memory. The
|
|
* complexity of this check is O(num of memory pools). Returns a negative
|
|
* value with error code in case of failure.
|
|
*
|
|
*/
|
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0))
|
|
static int cnss_pool_get_index(void *mem)
|
|
{
|
|
struct slab *slab;
|
|
struct kmem_cache *cache;
|
|
int i;
|
|
|
|
if (!virt_addr_valid(mem))
|
|
return -EINVAL;
|
|
|
|
/* mem -> slab -> cache */
|
|
slab = virt_to_slab(mem);
|
|
if (!slab)
|
|
return -ENOENT;
|
|
|
|
cache = slab->slab_cache;
|
|
if (!cache)
|
|
return -ENOENT;
|
|
|
|
/* Check if memory belongs to a pool */
|
|
for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
|
|
if (cnss_pools[i].cache == cache)
|
|
return i;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
#else /* (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)) */
|
|
static int cnss_pool_get_index(void *mem)
|
|
{
|
|
struct page *page;
|
|
struct kmem_cache *cache;
|
|
int i;
|
|
|
|
if (!virt_addr_valid(mem))
|
|
return -EINVAL;
|
|
|
|
/* mem -> page -> cache */
|
|
page = virt_to_head_page(mem);
|
|
if (!page)
|
|
return -ENOENT;
|
|
|
|
cache = page->slab_cache;
|
|
if (!cache)
|
|
return -ENOENT;
|
|
|
|
/* Check if memory belongs to a pool */
|
|
for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
|
|
if (cnss_pools[i].cache == cache)
|
|
return i;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)) */
|
|
|
|
/**
|
|
* wcnss_prealloc_get() - Get preallocated memory from a pool
|
|
* @size: Size to allocate
|
|
*
|
|
* Memory pool is chosen based on the size. If memory is not available in a
|
|
* given pool it goes to next higher sized pool until it succeeds.
|
|
*
|
|
* Return: A void pointer to allocated memory
|
|
*/
|
|
void *wcnss_prealloc_get(size_t size)
|
|
{
|
|
|
|
void *mem = NULL;
|
|
gfp_t gfp_mask = __GFP_ZERO;
|
|
int i;
|
|
|
|
if (in_interrupt() || !preemptible() || rcu_preempt_depth())
|
|
gfp_mask |= GFP_ATOMIC;
|
|
else
|
|
gfp_mask |= GFP_KERNEL;
|
|
|
|
if (size >= cnss_pool_alloc_threshold()) {
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cnss_pools); i++) {
|
|
if (cnss_pools[i].size >= size && cnss_pools[i].mp) {
|
|
mem = mempool_alloc(cnss_pools[i].mp, gfp_mask);
|
|
if (mem)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!mem && size >= cnss_pool_alloc_threshold()) {
|
|
pr_debug("cnss_prealloc: not available for size %zu, flag %x\n",
|
|
size, gfp_mask);
|
|
}
|
|
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(wcnss_prealloc_get);
|
|
|
|
/**
|
|
* wcnss_prealloc_put() - Relase allocated memory
|
|
* @mem: Allocated memory
|
|
*
|
|
* Free the memory got by wcnss_prealloc_get() to slab or pool reserve if memory
|
|
* pool doesn't have enough elements.
|
|
*
|
|
* Return: 1 - success
|
|
* 0 - fail
|
|
*/
|
|
int wcnss_prealloc_put(void *mem)
|
|
{
|
|
int i;
|
|
|
|
if (!mem)
|
|
return 0;
|
|
|
|
i = cnss_pool_get_index(mem);
|
|
if (i >= 0 && i < ARRAY_SIZE(cnss_pools) && cnss_pools[i].mp) {
|
|
mempool_free(mem, cnss_pools[i].mp);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wcnss_prealloc_put);
|
|
|
|
/* Not implemented. Make use of Linux SLAB features. */
|
|
void wcnss_prealloc_check_memory_leak(void) {}
|
|
EXPORT_SYMBOL(wcnss_prealloc_check_memory_leak);
|
|
|
|
/* Not implemented. Make use of Linux SLAB features. */
|
|
int wcnss_pre_alloc_reset(void) { return -EOPNOTSUPP; }
|
|
EXPORT_SYMBOL(wcnss_pre_alloc_reset);
|
|
|
|
/**
|
|
* cnss_prealloc_is_valid_dt_node_found - Check if valid device tree node
|
|
* present
|
|
*
|
|
* Valid device tree node means a node with "qcom,wlan" property present
|
|
* and "status" property not disabled.
|
|
*
|
|
* Return: true if valid device tree node found, false if not found
|
|
*/
|
|
static bool cnss_prealloc_is_valid_dt_node_found(void)
|
|
{
|
|
struct device_node *dn = NULL;
|
|
|
|
for_each_node_with_property(dn, "qcom,wlan") {
|
|
if (of_device_is_available(dn))
|
|
break;
|
|
}
|
|
|
|
if (dn)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int __init cnss_prealloc_init(void)
|
|
{
|
|
if (!cnss_prealloc_is_valid_dt_node_found())
|
|
return -ENODEV;
|
|
|
|
return cnss_pool_init();
|
|
}
|
|
|
|
static void __exit cnss_prealloc_exit(void)
|
|
{
|
|
cnss_pool_deinit();
|
|
}
|
|
|
|
module_init(cnss_prealloc_init);
|
|
module_exit(cnss_prealloc_exit);
|
|
|