hal_srng.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "hal_reo.h"
  21. #include "target_type.h"
  22. #include "qdf_module.h"
  23. #include "wcss_version.h"
  24. #ifdef QCA_WIFI_QCA8074
  25. void hal_qca6290_attach(struct hal_soc *hal);
  26. #endif
  27. #ifdef QCA_WIFI_QCA8074
  28. void hal_qca8074_attach(struct hal_soc *hal);
  29. #endif
  30. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \
  31. defined(QCA_WIFI_QCA9574)
  32. void hal_qca8074v2_attach(struct hal_soc *hal);
  33. #endif
  34. #ifdef QCA_WIFI_QCA6390
  35. void hal_qca6390_attach(struct hal_soc *hal);
  36. #endif
  37. #ifdef QCA_WIFI_QCA6490
  38. void hal_qca6490_attach(struct hal_soc *hal);
  39. #endif
  40. #ifdef QCA_WIFI_QCN9000
  41. void hal_qcn9000_attach(struct hal_soc *hal);
  42. #endif
  43. #ifdef QCA_WIFI_QCN6122
  44. void hal_qcn6122_attach(struct hal_soc *hal);
  45. #endif
  46. #ifdef QCA_WIFI_QCA6750
  47. void hal_qca6750_attach(struct hal_soc *hal);
  48. #endif
  49. #ifdef QCA_WIFI_QCA5018
  50. void hal_qca5018_attach(struct hal_soc *hal);
  51. #endif
  52. #ifdef QCA_WIFI_WCN7850
  53. void hal_wcn7850_attach(struct hal_soc *hal);
  54. #endif
  55. #ifdef ENABLE_VERBOSE_DEBUG
  56. bool is_hal_verbose_debug_enabled;
  57. #endif
  58. #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4)
  59. #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8)
  60. #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc)
  61. #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10)
  62. #ifdef ENABLE_HAL_REG_WR_HISTORY
  63. struct hal_reg_write_fail_history hal_reg_wr_hist;
  64. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  65. uint32_t offset,
  66. uint32_t wr_val, uint32_t rd_val)
  67. {
  68. struct hal_reg_write_fail_entry *record;
  69. int idx;
  70. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  71. HAL_REG_WRITE_HIST_SIZE);
  72. record = &hal_soc->reg_wr_fail_hist->record[idx];
  73. record->timestamp = qdf_get_log_timestamp();
  74. record->reg_offset = offset;
  75. record->write_val = wr_val;
  76. record->read_val = rd_val;
  77. }
  78. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  79. {
  80. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  81. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  82. }
  83. #else
  84. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  85. {
  86. }
  87. #endif
  88. /**
  89. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  90. * @hal: hal_soc data structure
  91. * @ring_type: type enum describing the ring
  92. * @ring_num: which ring of the ring type
  93. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  94. *
  95. * Return: the ring id or -EINVAL if the ring does not exist.
  96. */
  97. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  98. int ring_num, int mac_id)
  99. {
  100. struct hal_hw_srng_config *ring_config =
  101. HAL_SRNG_CONFIG(hal, ring_type);
  102. int ring_id;
  103. if (ring_num >= ring_config->max_rings) {
  104. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  105. "%s: ring_num exceeded maximum no. of supported rings",
  106. __func__);
  107. /* TODO: This is a programming error. Assert if this happens */
  108. return -EINVAL;
  109. }
  110. if (ring_config->lmac_ring) {
  111. ring_id = ring_config->start_ring_id + ring_num +
  112. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  113. } else {
  114. ring_id = ring_config->start_ring_id + ring_num;
  115. }
  116. return ring_id;
  117. }
  118. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  119. {
  120. /* TODO: Should we allocate srng structures dynamically? */
  121. return &(hal->srng_list[ring_id]);
  122. }
  123. #define HP_OFFSET_IN_REG_START 1
  124. #define OFFSET_FROM_HP_TO_TP 4
  125. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  126. int shadow_config_index,
  127. int ring_type,
  128. int ring_num)
  129. {
  130. struct hal_srng *srng;
  131. int ring_id;
  132. struct hal_hw_srng_config *ring_config =
  133. HAL_SRNG_CONFIG(hal_soc, ring_type);
  134. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  135. if (ring_id < 0)
  136. return;
  137. srng = hal_get_srng(hal_soc, ring_id);
  138. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  139. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  140. + hal_soc->dev_base_addr;
  141. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  142. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  143. shadow_config_index);
  144. } else {
  145. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  146. + hal_soc->dev_base_addr;
  147. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  148. srng->u.src_ring.hp_addr,
  149. hal_soc->dev_base_addr, shadow_config_index);
  150. }
  151. }
  152. #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE
  153. void hal_set_one_target_reg_config(struct hal_soc *hal,
  154. uint32_t target_reg_offset,
  155. int list_index)
  156. {
  157. int i = list_index;
  158. qdf_assert_always(i < MAX_GENERIC_SHADOW_REG);
  159. hal->list_shadow_reg_config[i].target_register =
  160. target_reg_offset;
  161. hal->num_generic_shadow_regs_configured++;
  162. }
  163. qdf_export_symbol(hal_set_one_target_reg_config);
  164. #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4
  165. #define MAX_REO_REMAP_SHADOW_REGS 4
  166. QDF_STATUS hal_set_shadow_regs(void *hal_soc)
  167. {
  168. uint32_t target_reg_offset;
  169. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  170. int i;
  171. struct hal_hw_srng_config *srng_config =
  172. &hal->hw_srng_table[WBM2SW_RELEASE];
  173. uint32_t reo_reg_base;
  174. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc);
  175. target_reg_offset =
  176. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base);
  177. for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) {
  178. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  179. target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET;
  180. }
  181. target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  182. target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  183. * HAL_IPA_TX_COMP_RING_IDX);
  184. hal_set_one_target_reg_config(hal, target_reg_offset, i);
  185. return QDF_STATUS_SUCCESS;
  186. }
  187. qdf_export_symbol(hal_set_shadow_regs);
  188. QDF_STATUS hal_construct_shadow_regs(void *hal_soc)
  189. {
  190. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  191. int shadow_config_index = hal->num_shadow_registers_configured;
  192. int i;
  193. int num_regs = hal->num_generic_shadow_regs_configured;
  194. for (i = 0; i < num_regs; i++) {
  195. qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS);
  196. hal->shadow_config[shadow_config_index].addr =
  197. hal->list_shadow_reg_config[i].target_register;
  198. hal->list_shadow_reg_config[i].shadow_config_index =
  199. shadow_config_index;
  200. hal->list_shadow_reg_config[i].va =
  201. SHADOW_REGISTER(shadow_config_index) +
  202. (uintptr_t)hal->dev_base_addr;
  203. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x",
  204. hal->shadow_config[shadow_config_index].addr,
  205. SHADOW_REGISTER(shadow_config_index),
  206. shadow_config_index);
  207. shadow_config_index++;
  208. hal->num_shadow_registers_configured++;
  209. }
  210. return QDF_STATUS_SUCCESS;
  211. }
  212. qdf_export_symbol(hal_construct_shadow_regs);
  213. #endif
  214. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  215. int ring_type,
  216. int ring_num)
  217. {
  218. uint32_t target_register;
  219. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  220. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  221. int shadow_config_index = hal->num_shadow_registers_configured;
  222. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  223. QDF_ASSERT(0);
  224. return QDF_STATUS_E_RESOURCES;
  225. }
  226. hal->num_shadow_registers_configured++;
  227. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  228. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  229. *ring_num);
  230. /* if the ring is a dst ring, we need to shadow the tail pointer */
  231. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  232. target_register += OFFSET_FROM_HP_TO_TP;
  233. hal->shadow_config[shadow_config_index].addr = target_register;
  234. /* update hp/tp addr in the hal_soc structure*/
  235. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  236. ring_num);
  237. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  238. target_register,
  239. SHADOW_REGISTER(shadow_config_index),
  240. shadow_config_index,
  241. ring_type, ring_num);
  242. return QDF_STATUS_SUCCESS;
  243. }
  244. qdf_export_symbol(hal_set_one_shadow_config);
  245. QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc)
  246. {
  247. int ring_type, ring_num;
  248. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  249. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  250. struct hal_hw_srng_config *srng_config =
  251. &hal->hw_srng_table[ring_type];
  252. if (ring_type == CE_SRC ||
  253. ring_type == CE_DST ||
  254. ring_type == CE_DST_STATUS)
  255. continue;
  256. if (srng_config->lmac_ring)
  257. continue;
  258. for (ring_num = 0; ring_num < srng_config->max_rings;
  259. ring_num++)
  260. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  261. }
  262. return QDF_STATUS_SUCCESS;
  263. }
  264. qdf_export_symbol(hal_construct_srng_shadow_regs);
  265. void hal_get_shadow_config(void *hal_soc,
  266. struct pld_shadow_reg_v2_cfg **shadow_config,
  267. int *num_shadow_registers_configured)
  268. {
  269. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  270. *shadow_config = hal->shadow_config;
  271. *num_shadow_registers_configured =
  272. hal->num_shadow_registers_configured;
  273. }
  274. qdf_export_symbol(hal_get_shadow_config);
  275. static void hal_validate_shadow_register(struct hal_soc *hal,
  276. uint32_t *destination,
  277. uint32_t *shadow_address)
  278. {
  279. unsigned int index;
  280. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  281. int destination_ba_offset =
  282. ((char *)destination) - (char *)hal->dev_base_addr;
  283. index = shadow_address - shadow_0_offset;
  284. if (index >= MAX_SHADOW_REGISTERS) {
  285. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  286. "%s: index %x out of bounds", __func__, index);
  287. goto error;
  288. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  289. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  290. "%s: sanity check failure, expected %x, found %x",
  291. __func__, destination_ba_offset,
  292. hal->shadow_config[index].addr);
  293. goto error;
  294. }
  295. return;
  296. error:
  297. qdf_print("baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  298. hal->dev_base_addr, destination, shadow_address,
  299. shadow_0_offset, index);
  300. QDF_BUG(0);
  301. return;
  302. }
  303. static void hal_target_based_configure(struct hal_soc *hal)
  304. {
  305. /**
  306. * Indicate Initialization of srngs to avoid force wake
  307. * as umac power collapse is not enabled yet
  308. */
  309. hal->init_phase = true;
  310. switch (hal->target_type) {
  311. #ifdef QCA_WIFI_QCA6290
  312. case TARGET_TYPE_QCA6290:
  313. hal->use_register_windowing = true;
  314. hal_qca6290_attach(hal);
  315. break;
  316. #endif
  317. #ifdef QCA_WIFI_QCA6390
  318. case TARGET_TYPE_QCA6390:
  319. hal->use_register_windowing = true;
  320. hal_qca6390_attach(hal);
  321. break;
  322. #endif
  323. #ifdef QCA_WIFI_QCA6490
  324. case TARGET_TYPE_QCA6490:
  325. hal->use_register_windowing = true;
  326. hal_qca6490_attach(hal);
  327. break;
  328. #endif
  329. #ifdef QCA_WIFI_QCA6750
  330. case TARGET_TYPE_QCA6750:
  331. hal->use_register_windowing = true;
  332. hal->static_window_map = true;
  333. hal_qca6750_attach(hal);
  334. break;
  335. #endif
  336. #ifdef QCA_WIFI_WCN7850
  337. case TARGET_TYPE_WCN7850:
  338. hal->use_register_windowing = true;
  339. hal_wcn7850_attach(hal);
  340. hal->init_phase = false;
  341. break;
  342. #endif
  343. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  344. case TARGET_TYPE_QCA8074:
  345. hal_qca8074_attach(hal);
  346. break;
  347. #endif
  348. #if defined(QCA_WIFI_QCA8074V2)
  349. case TARGET_TYPE_QCA8074V2:
  350. hal_qca8074v2_attach(hal);
  351. break;
  352. #endif
  353. #if defined(QCA_WIFI_QCA6018)
  354. case TARGET_TYPE_QCA6018:
  355. hal_qca8074v2_attach(hal);
  356. break;
  357. #endif
  358. #if defined(QCA_WIFI_QCA9574)
  359. case TARGET_TYPE_QCA9574:
  360. hal_qca8074v2_attach(hal);
  361. break;
  362. #endif
  363. #if defined(QCA_WIFI_QCN6122)
  364. case TARGET_TYPE_QCN6122:
  365. hal->use_register_windowing = true;
  366. /*
  367. * Static window map is enabled for qcn9000 to use 2mb bar
  368. * size and use multiple windows to write into registers.
  369. */
  370. hal->static_window_map = true;
  371. hal_qcn6122_attach(hal);
  372. break;
  373. #endif
  374. #ifdef QCA_WIFI_QCN9000
  375. case TARGET_TYPE_QCN9000:
  376. hal->use_register_windowing = true;
  377. /*
  378. * Static window map is enabled for qcn9000 to use 2mb bar
  379. * size and use multiple windows to write into registers.
  380. */
  381. hal->static_window_map = true;
  382. hal_qcn9000_attach(hal);
  383. break;
  384. #endif
  385. #ifdef QCA_WIFI_QCA5018
  386. case TARGET_TYPE_QCA5018:
  387. hal->use_register_windowing = true;
  388. hal->static_window_map = true;
  389. hal_qca5018_attach(hal);
  390. break;
  391. #endif
  392. default:
  393. break;
  394. }
  395. }
  396. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  397. {
  398. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  399. struct hif_target_info *tgt_info =
  400. hif_get_target_info_handle(hal_soc->hif_handle);
  401. return tgt_info->target_type;
  402. }
  403. qdf_export_symbol(hal_get_target_type);
  404. #if defined(FEATURE_HAL_DELAYED_REG_WRITE) || \
  405. defined(FEATURE_HAL_DELAYED_REG_WRITE_V2)
  406. /**
  407. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  408. * @hal: hal_soc pointer
  409. *
  410. * Return: true if throughput is high, else false.
  411. */
  412. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  413. {
  414. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  415. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  416. }
  417. static inline
  418. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  419. char *buf, qdf_size_t size)
  420. {
  421. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  422. srng->wstats.enqueues, srng->wstats.dequeues,
  423. srng->wstats.coalesces, srng->wstats.direct);
  424. return buf;
  425. }
  426. /* bytes for local buffer */
  427. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  428. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  429. {
  430. struct hal_srng *srng;
  431. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  432. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  433. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  434. hal_debug("SW2TCL1: %s",
  435. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  436. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  437. hal_debug("WBM2SW0: %s",
  438. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  439. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  440. hal_debug("REO2SW1: %s",
  441. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  442. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  443. hal_debug("REO2SW2: %s",
  444. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  445. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  446. hal_debug("REO2SW3: %s",
  447. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  448. }
  449. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  450. /**
  451. * hal_dump_tcl_stats() - dump the TCL reg write stats
  452. * @hal: hal_soc pointer
  453. *
  454. * Return: None
  455. */
  456. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  457. {
  458. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  459. uint32_t *hist = hal->tcl_stats.sched_delay;
  460. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  461. hal_debug("TCL: %s sched-delay hist %u %u %u %u",
  462. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)),
  463. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  464. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  465. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  466. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  467. hal_debug("wq_dly %u wq_dir %u tim_enq %u tim_dir %u enq_tim_cnt %u dir_tim_cnt %u rst_tim_cnt %u",
  468. hal->tcl_stats.wq_delayed,
  469. hal->tcl_stats.wq_direct,
  470. hal->tcl_stats.timer_enq,
  471. hal->tcl_stats.timer_direct,
  472. hal->tcl_stats.enq_timer_set,
  473. hal->tcl_stats.direct_timer_set,
  474. hal->tcl_stats.timer_reset);
  475. }
  476. #else
  477. static inline void hal_dump_tcl_stats(struct hal_soc *hal)
  478. {
  479. }
  480. #endif
  481. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  482. {
  483. uint32_t *hist;
  484. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  485. hist = hal->stats.wstats.sched_delay;
  486. hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  487. qdf_atomic_read(&hal->stats.wstats.enqueues),
  488. hal->stats.wstats.dequeues,
  489. qdf_atomic_read(&hal->stats.wstats.coalesces),
  490. qdf_atomic_read(&hal->stats.wstats.direct),
  491. qdf_atomic_read(&hal->stats.wstats.q_depth),
  492. hal->stats.wstats.max_q_depth,
  493. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  494. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  495. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  496. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  497. hal_dump_tcl_stats(hal);
  498. }
  499. int hal_get_reg_write_pending_work(void *hal_soc)
  500. {
  501. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  502. return qdf_atomic_read(&hal->active_work_cnt);
  503. }
  504. #endif
  505. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  506. #ifdef MEMORY_DEBUG
  507. /*
  508. * Length of the queue(array) used to hold delayed register writes.
  509. * Must be a multiple of 2.
  510. */
  511. #define HAL_REG_WRITE_QUEUE_LEN 128
  512. #else
  513. #define HAL_REG_WRITE_QUEUE_LEN 32
  514. #endif
  515. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  516. /**
  517. * hal_process_reg_write_q_elem() - process a regiter write queue element
  518. * @hal: hal_soc pointer
  519. * @q_elem: pointer to hal regiter write queue element
  520. *
  521. * Return: The value which was written to the address
  522. */
  523. static uint32_t
  524. hal_process_reg_write_q_elem(struct hal_soc *hal,
  525. struct hal_reg_write_q_elem *q_elem)
  526. {
  527. struct hal_srng *srng = q_elem->srng;
  528. uint32_t write_val;
  529. SRNG_LOCK(&srng->lock);
  530. srng->reg_write_in_progress = false;
  531. srng->wstats.dequeues++;
  532. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  533. write_val = srng->u.src_ring.hp;
  534. q_elem->dequeue_val = write_val;
  535. q_elem->valid = 0;
  536. SRNG_UNLOCK(&srng->lock);
  537. hal_write_address_32_mb(hal,
  538. srng->u.src_ring.hp_addr,
  539. write_val, false);
  540. } else {
  541. write_val = srng->u.dst_ring.tp;
  542. q_elem->dequeue_val = write_val;
  543. q_elem->valid = 0;
  544. SRNG_UNLOCK(&srng->lock);
  545. hal_write_address_32_mb(hal,
  546. srng->u.dst_ring.tp_addr,
  547. write_val, false);
  548. }
  549. return write_val;
  550. }
  551. #else
  552. /**
  553. * hal_process_reg_write_q_elem() - process a regiter write queue element
  554. * @hal: hal_soc pointer
  555. * @q_elem: pointer to hal regiter write queue element
  556. *
  557. * Return: The value which was written to the address
  558. */
  559. static uint32_t
  560. hal_process_reg_write_q_elem(struct hal_soc *hal,
  561. struct hal_reg_write_q_elem *q_elem)
  562. {
  563. struct hal_srng *srng = q_elem->srng;
  564. uint32_t write_val;
  565. SRNG_LOCK(&srng->lock);
  566. srng->reg_write_in_progress = false;
  567. srng->wstats.dequeues++;
  568. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  569. q_elem->dequeue_val = srng->u.src_ring.hp;
  570. hal_write_address_32_mb(hal,
  571. srng->u.src_ring.hp_addr,
  572. srng->u.src_ring.hp, false);
  573. write_val = srng->u.src_ring.hp;
  574. } else {
  575. q_elem->dequeue_val = srng->u.dst_ring.tp;
  576. hal_write_address_32_mb(hal,
  577. srng->u.dst_ring.tp_addr,
  578. srng->u.dst_ring.tp, false);
  579. write_val = srng->u.dst_ring.tp;
  580. }
  581. q_elem->valid = 0;
  582. SRNG_UNLOCK(&srng->lock);
  583. return write_val;
  584. }
  585. #endif
  586. /**
  587. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  588. * @hal: hal_soc pointer
  589. * @delay: delay in us
  590. *
  591. * Return: None
  592. */
  593. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  594. uint64_t delay_us)
  595. {
  596. uint32_t *hist;
  597. hist = hal->stats.wstats.sched_delay;
  598. if (delay_us < 100)
  599. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  600. else if (delay_us < 1000)
  601. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  602. else if (delay_us < 5000)
  603. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  604. else
  605. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  606. }
  607. /**
  608. * hal_reg_write_work() - Worker to process delayed writes
  609. * @arg: hal_soc pointer
  610. *
  611. * Return: None
  612. */
  613. static void hal_reg_write_work(void *arg)
  614. {
  615. int32_t q_depth, write_val;
  616. struct hal_soc *hal = arg;
  617. struct hal_reg_write_q_elem *q_elem;
  618. uint64_t delta_us;
  619. uint8_t ring_id;
  620. uint32_t *addr;
  621. uint32_t num_processed = 0;
  622. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  623. q_elem->work_scheduled_time = qdf_get_log_timestamp();
  624. /* Make sure q_elem consistent in the memory for multi-cores */
  625. qdf_rmb();
  626. if (!q_elem->valid)
  627. return;
  628. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  629. if (q_depth > hal->stats.wstats.max_q_depth)
  630. hal->stats.wstats.max_q_depth = q_depth;
  631. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  632. hal->stats.wstats.prevent_l1_fails++;
  633. return;
  634. }
  635. while (true) {
  636. qdf_rmb();
  637. if (!q_elem->valid)
  638. break;
  639. q_elem->dequeue_time = qdf_get_log_timestamp();
  640. ring_id = q_elem->srng->ring_id;
  641. addr = q_elem->addr;
  642. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  643. q_elem->enqueue_time);
  644. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  645. hal->stats.wstats.dequeues++;
  646. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  647. write_val = hal_process_reg_write_q_elem(hal, q_elem);
  648. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  649. hal->read_idx, ring_id, addr, write_val, delta_us);
  650. num_processed++;
  651. hal->read_idx = (hal->read_idx + 1) &
  652. (HAL_REG_WRITE_QUEUE_LEN - 1);
  653. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  654. }
  655. hif_allow_link_low_power_states(hal->hif_handle);
  656. /*
  657. * Decrement active_work_cnt by the number of elements dequeued after
  658. * hif_allow_link_low_power_states.
  659. * This makes sure that hif_try_complete_tasks will wait till we make
  660. * the bus access in hif_allow_link_low_power_states. This will avoid
  661. * race condition between delayed register worker and bus suspend
  662. * (system suspend or runtime suspend).
  663. *
  664. * The following decrement should be done at the end!
  665. */
  666. qdf_atomic_sub(num_processed, &hal->active_work_cnt);
  667. }
  668. static void __hal_flush_reg_write_work(struct hal_soc *hal)
  669. {
  670. qdf_cancel_work(&hal->reg_write_work);
  671. }
  672. void hal_flush_reg_write_work(hal_soc_handle_t hal_handle)
  673. { __hal_flush_reg_write_work((struct hal_soc *)hal_handle);
  674. }
  675. /**
  676. * hal_reg_write_enqueue() - enqueue register writes into kworker
  677. * @hal_soc: hal_soc pointer
  678. * @srng: srng pointer
  679. * @addr: iomem address of regiter
  680. * @value: value to be written to iomem address
  681. *
  682. * This function executes from within the SRNG LOCK
  683. *
  684. * Return: None
  685. */
  686. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  687. struct hal_srng *srng,
  688. void __iomem *addr,
  689. uint32_t value)
  690. {
  691. struct hal_reg_write_q_elem *q_elem;
  692. uint32_t write_idx;
  693. if (srng->reg_write_in_progress) {
  694. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  695. srng->ring_id, addr, value);
  696. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  697. srng->wstats.coalesces++;
  698. return;
  699. }
  700. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  701. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  702. q_elem = &hal_soc->reg_write_queue[write_idx];
  703. if (q_elem->valid) {
  704. hal_err("queue full");
  705. QDF_BUG(0);
  706. return;
  707. }
  708. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  709. srng->wstats.enqueues++;
  710. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  711. q_elem->srng = srng;
  712. q_elem->addr = addr;
  713. q_elem->enqueue_val = value;
  714. q_elem->enqueue_time = qdf_get_log_timestamp();
  715. /*
  716. * Before the valid flag is set to true, all the other
  717. * fields in the q_elem needs to be updated in memory.
  718. * Else there is a chance that the dequeuing worker thread
  719. * might read stale entries and process incorrect srng.
  720. */
  721. qdf_wmb();
  722. q_elem->valid = true;
  723. /*
  724. * After all other fields in the q_elem has been updated
  725. * in memory successfully, the valid flag needs to be updated
  726. * in memory in time too.
  727. * Else there is a chance that the dequeuing worker thread
  728. * might read stale valid flag and the work will be bypassed
  729. * for this round. And if there is no other work scheduled
  730. * later, this hal register writing won't be updated any more.
  731. */
  732. qdf_wmb();
  733. srng->reg_write_in_progress = true;
  734. qdf_atomic_inc(&hal_soc->active_work_cnt);
  735. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  736. write_idx, srng->ring_id, addr, value);
  737. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  738. &hal_soc->reg_write_work);
  739. }
  740. /**
  741. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  742. * @hal_soc: hal_soc pointer
  743. *
  744. * Initialize main data structures to process register writes in a delayed
  745. * workqueue.
  746. *
  747. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  748. */
  749. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  750. {
  751. hal->reg_write_wq =
  752. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  753. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  754. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  755. sizeof(*hal->reg_write_queue));
  756. if (!hal->reg_write_queue) {
  757. hal_err("unable to allocate memory");
  758. QDF_BUG(0);
  759. return QDF_STATUS_E_NOMEM;
  760. }
  761. /* Initial value of indices */
  762. hal->read_idx = 0;
  763. qdf_atomic_set(&hal->write_idx, -1);
  764. return QDF_STATUS_SUCCESS;
  765. }
  766. /**
  767. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  768. * @hal_soc: hal_soc pointer
  769. *
  770. * De-initialize main data structures to process register writes in a delayed
  771. * workqueue.
  772. *
  773. * Return: None
  774. */
  775. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  776. {
  777. __hal_flush_reg_write_work(hal);
  778. qdf_flush_workqueue(0, hal->reg_write_wq);
  779. qdf_destroy_workqueue(0, hal->reg_write_wq);
  780. qdf_mem_free(hal->reg_write_queue);
  781. }
  782. #else
  783. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  784. {
  785. return QDF_STATUS_SUCCESS;
  786. }
  787. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  788. {
  789. }
  790. #endif
  791. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  792. #ifdef MEMORY_DEBUG
  793. /**
  794. * hal_reg_write_get_timestamp() - Function to get the timestamp
  795. *
  796. * Return: return present simestamp
  797. */
  798. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  799. {
  800. return qdf_get_log_timestamp();
  801. }
  802. /**
  803. * hal_del_reg_write_ts_usecs() - Convert the timestamp to micro secs
  804. * @ts: timestamp value to be converted
  805. *
  806. * Return: return the timestamp in micro secs
  807. */
  808. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  809. {
  810. return qdf_log_timestamp_to_usecs(ts);
  811. }
  812. /**
  813. * hal_tcl_write_fill_sched_delay_hist() - fill TCL reg write delay histogram
  814. * @hal: hal_soc pointer
  815. * @delay: delay in us
  816. *
  817. * Return: None
  818. */
  819. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  820. {
  821. uint32_t *hist;
  822. uint32_t delay_us;
  823. hal->tcl_stats.deq_time = hal_del_reg_write_get_ts();
  824. delay_us = hal_del_reg_write_ts_usecs(hal->tcl_stats.deq_time -
  825. hal->tcl_stats.enq_time);
  826. hist = hal->tcl_stats.sched_delay;
  827. if (delay_us < 100)
  828. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  829. else if (delay_us < 1000)
  830. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  831. else if (delay_us < 5000)
  832. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  833. else
  834. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  835. }
  836. #else
  837. static inline qdf_time_t hal_del_reg_write_get_ts(void)
  838. {
  839. return 0;
  840. }
  841. static inline qdf_time_t hal_del_reg_write_ts_usecs(qdf_time_t ts)
  842. {
  843. return 0;
  844. }
  845. static inline void hal_tcl_write_fill_sched_delay_hist(struct hal_soc *hal)
  846. {
  847. }
  848. #endif
  849. /**
  850. * hal_tcl_reg_write_work() - Worker to process delayed SW2TCL1 writes
  851. * @arg: hal_soc pointer
  852. *
  853. * Return: None
  854. */
  855. static void hal_tcl_reg_write_work(void *arg)
  856. {
  857. struct hal_soc *hal = arg;
  858. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  859. SRNG_LOCK(&srng->lock);
  860. srng->wstats.dequeues++;
  861. hal_tcl_write_fill_sched_delay_hist(hal);
  862. /*
  863. * During the tranition of low to high tput scenario, reg write moves
  864. * from delayed to direct write context, there is a little chance that
  865. * worker thread gets scheduled later than direct context write which
  866. * already wrote the latest HP value. This check can catch that case
  867. * and avoid the repetitive writing of the same HP value.
  868. */
  869. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  870. srng->last_reg_wr_val = srng->u.src_ring.hp;
  871. if (hal->tcl_direct) {
  872. /*
  873. * TCL reg writes have been moved to direct context and
  874. * the assumption is that PCIe bus stays in Active state
  875. * during high tput, hence its fine to write the HP
  876. * while the SRNG_LOCK is being held.
  877. */
  878. hal->tcl_stats.wq_direct++;
  879. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  880. srng->last_reg_wr_val, false);
  881. srng->reg_write_in_progress = false;
  882. SRNG_UNLOCK(&srng->lock);
  883. } else {
  884. /*
  885. * TCL reg write to happen in delayed context,
  886. * write operation might take time due to possibility of
  887. * PCIe bus stays in low power state during low tput,
  888. * Hence release the SRNG_LOCK before writing.
  889. */
  890. hal->tcl_stats.wq_delayed++;
  891. srng->reg_write_in_progress = false;
  892. SRNG_UNLOCK(&srng->lock);
  893. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  894. srng->last_reg_wr_val, false);
  895. }
  896. } else {
  897. srng->reg_write_in_progress = false;
  898. SRNG_UNLOCK(&srng->lock);
  899. }
  900. /*
  901. * Decrement active_work_cnt to make sure that hif_try_complete_tasks
  902. * will wait. This will avoid race condition between delayed register
  903. * worker and bus suspend (system suspend or runtime suspend).
  904. *
  905. * The following decrement should be done at the end!
  906. */
  907. qdf_atomic_dec(&hal->active_work_cnt);
  908. qdf_atomic_set(&hal->tcl_work_active, false);
  909. }
  910. static void __hal_flush_tcl_reg_write_work(struct hal_soc *hal)
  911. {
  912. qdf_cancel_work(&hal->tcl_reg_write_work);
  913. }
  914. /**
  915. * hal_tcl_reg_write_enqueue() - enqueue TCL register writes into kworker
  916. * @hal_soc: hal_soc pointer
  917. * @srng: srng pointer
  918. * @addr: iomem address of regiter
  919. * @value: value to be written to iomem address
  920. *
  921. * This function executes from within the SRNG LOCK
  922. *
  923. * Return: None
  924. */
  925. static void hal_tcl_reg_write_enqueue(struct hal_soc *hal_soc,
  926. struct hal_srng *srng,
  927. void __iomem *addr,
  928. uint32_t value)
  929. {
  930. hal_soc->tcl_stats.enq_time = hal_del_reg_write_get_ts();
  931. if (qdf_queue_work(hal_soc->qdf_dev, hal_soc->tcl_reg_write_wq,
  932. &hal_soc->tcl_reg_write_work)) {
  933. srng->reg_write_in_progress = true;
  934. qdf_atomic_inc(&hal_soc->active_work_cnt);
  935. qdf_atomic_set(&hal_soc->tcl_work_active, true);
  936. srng->wstats.enqueues++;
  937. } else {
  938. hal_soc->tcl_stats.enq_timer_set++;
  939. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  940. }
  941. }
  942. /**
  943. * hal_tcl_reg_write_timer() - timer handler to take care of pending TCL writes
  944. * @arg: srng handle
  945. *
  946. * This function handles the pending TCL reg writes missed due to the previous
  947. * scheduled worker running.
  948. *
  949. * Return: None
  950. */
  951. static void hal_tcl_reg_write_timer(void *arg)
  952. {
  953. hal_ring_handle_t srng_hdl = arg;
  954. struct hal_srng *srng;
  955. struct hal_soc *hal;
  956. srng = (struct hal_srng *)srng_hdl;
  957. hal = srng->hal_soc;
  958. if (hif_pm_runtime_get(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE,
  959. true)) {
  960. hal_srng_set_event(srng_hdl, HAL_SRNG_FLUSH_EVENT);
  961. hal_srng_inc_flush_cnt(srng_hdl);
  962. goto fail;
  963. }
  964. SRNG_LOCK(&srng->lock);
  965. if (hal->tcl_direct) {
  966. /*
  967. * Due to the previous scheduled worker still running,
  968. * direct reg write cannot be performed, so posted the
  969. * pending writes to timer context.
  970. */
  971. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  972. srng->last_reg_wr_val = srng->u.src_ring.hp;
  973. srng->wstats.direct++;
  974. hal->tcl_stats.timer_direct++;
  975. hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr,
  976. srng->last_reg_wr_val, false);
  977. }
  978. } else {
  979. /*
  980. * Due to the previous scheduled worker still running,
  981. * queue_work from delayed context would fail,
  982. * so retry from timer context.
  983. */
  984. if (qdf_queue_work(hal->qdf_dev, hal->tcl_reg_write_wq,
  985. &hal->tcl_reg_write_work)) {
  986. srng->reg_write_in_progress = true;
  987. qdf_atomic_inc(&hal->active_work_cnt);
  988. qdf_atomic_set(&hal->tcl_work_active, true);
  989. srng->wstats.enqueues++;
  990. hal->tcl_stats.timer_enq++;
  991. } else {
  992. if (srng->last_reg_wr_val != srng->u.src_ring.hp) {
  993. hal->tcl_stats.timer_reset++;
  994. qdf_timer_mod(&hal->tcl_reg_write_timer, 1);
  995. }
  996. }
  997. }
  998. SRNG_UNLOCK(&srng->lock);
  999. hif_pm_runtime_put(hal->hif_handle, RTPM_ID_DW_TX_HW_ENQUEUE);
  1000. fail:
  1001. return;
  1002. }
  1003. /**
  1004. * hal_delayed_tcl_reg_write_init() - Initialization for delayed TCL reg writes
  1005. * @hal_soc: hal_soc pointer
  1006. *
  1007. * Initialize main data structures to process TCL register writes in a delayed
  1008. * workqueue.
  1009. *
  1010. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  1011. */
  1012. static QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1013. {
  1014. struct hal_srng *srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  1015. QDF_STATUS status;
  1016. hal->tcl_reg_write_wq =
  1017. qdf_alloc_high_prior_ordered_workqueue("hal_tcl_reg_write_wq");
  1018. if (!hal->tcl_reg_write_wq) {
  1019. hal_err("hal_tcl_reg_write_wq alloc failed");
  1020. return QDF_STATUS_E_NOMEM;
  1021. }
  1022. status = qdf_create_work(0, &hal->tcl_reg_write_work,
  1023. hal_tcl_reg_write_work, hal);
  1024. if (status != QDF_STATUS_SUCCESS) {
  1025. hal_err("tcl_reg_write_work create failed");
  1026. goto fail;
  1027. }
  1028. status = qdf_timer_init(hal->qdf_dev, &hal->tcl_reg_write_timer,
  1029. hal_tcl_reg_write_timer, (void *)srng,
  1030. QDF_TIMER_TYPE_WAKE_APPS);
  1031. if (status != QDF_STATUS_SUCCESS) {
  1032. hal_err("tcl_reg_write_timer init failed");
  1033. goto fail;
  1034. }
  1035. qdf_atomic_init(&hal->tcl_work_active);
  1036. return QDF_STATUS_SUCCESS;
  1037. fail:
  1038. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1039. return status;
  1040. }
  1041. /**
  1042. * hal_delayed_tcl_reg_write_deinit() - De-Initialize delayed TCL reg writes
  1043. * @hal_soc: hal_soc pointer
  1044. *
  1045. * De-initialize main data structures to process TCL register writes in a
  1046. * delayed workqueue.
  1047. *
  1048. * Return: None
  1049. */
  1050. static void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1051. {
  1052. qdf_timer_stop(&hal->tcl_reg_write_timer);
  1053. qdf_timer_free(&hal->tcl_reg_write_timer);
  1054. __hal_flush_tcl_reg_write_work(hal);
  1055. qdf_flush_workqueue(0, hal->tcl_reg_write_wq);
  1056. qdf_destroy_workqueue(0, hal->tcl_reg_write_wq);
  1057. }
  1058. #else
  1059. static inline QDF_STATUS hal_delayed_tcl_reg_write_init(struct hal_soc *hal)
  1060. {
  1061. return QDF_STATUS_SUCCESS;
  1062. }
  1063. static inline void hal_delayed_tcl_reg_write_deinit(struct hal_soc *hal)
  1064. {
  1065. }
  1066. #endif
  1067. #ifdef FEATURE_HAL_DELAYED_REG_WRITE_V2
  1068. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1069. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1070. struct hal_srng *srng,
  1071. void __iomem *addr,
  1072. uint32_t value)
  1073. {
  1074. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1075. }
  1076. #else
  1077. static inline void hal_reg_write_enqueue_v2(struct hal_soc *hal_soc,
  1078. struct hal_srng *srng,
  1079. void __iomem *addr,
  1080. uint32_t value)
  1081. {
  1082. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1083. srng->wstats.direct++;
  1084. hal_write_address_32_mb(hal_soc, addr, value, false);
  1085. }
  1086. #endif
  1087. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1088. struct hal_srng *srng,
  1089. void __iomem *addr,
  1090. uint32_t value)
  1091. {
  1092. switch (srng->ring_type) {
  1093. case TCL_DATA:
  1094. if (hal_is_reg_write_tput_level_high(hal_soc)) {
  1095. hal_soc->tcl_direct = true;
  1096. if (srng->reg_write_in_progress ||
  1097. !qdf_atomic_read(&hal_soc->tcl_work_active)) {
  1098. /*
  1099. * Now the delayed work have either completed
  1100. * the writing or not even scheduled and would
  1101. * be blocked by SRNG_LOCK, hence it is fine to
  1102. * do direct write here.
  1103. */
  1104. srng->last_reg_wr_val = srng->u.src_ring.hp;
  1105. srng->wstats.direct++;
  1106. hal_write_address_32_mb(hal_soc, addr,
  1107. srng->last_reg_wr_val,
  1108. false);
  1109. } else {
  1110. hal_soc->tcl_stats.direct_timer_set++;
  1111. qdf_timer_mod(&hal_soc->tcl_reg_write_timer, 1);
  1112. }
  1113. } else {
  1114. hal_soc->tcl_direct = false;
  1115. if (srng->reg_write_in_progress) {
  1116. srng->wstats.coalesces++;
  1117. } else {
  1118. hal_tcl_reg_write_enqueue(hal_soc, srng,
  1119. addr, value);
  1120. }
  1121. }
  1122. break;
  1123. case CE_SRC:
  1124. case CE_DST:
  1125. case CE_DST_STATUS:
  1126. hal_reg_write_enqueue_v2(hal_soc, srng, addr, value);
  1127. break;
  1128. default:
  1129. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1130. srng->wstats.direct++;
  1131. hal_write_address_32_mb(hal_soc, addr, value, false);
  1132. break;
  1133. }
  1134. }
  1135. #else
  1136. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  1137. #ifdef QCA_WIFI_QCA6750
  1138. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1139. struct hal_srng *srng,
  1140. void __iomem *addr,
  1141. uint32_t value)
  1142. {
  1143. uint8_t vote_access;
  1144. switch (srng->ring_type) {
  1145. case CE_SRC:
  1146. case CE_DST:
  1147. case CE_DST_STATUS:
  1148. vote_access = hif_get_ep_vote_access(hal_soc->hif_handle,
  1149. HIF_EP_VOTE_NONDP_ACCESS);
  1150. if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) ||
  1151. (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS &&
  1152. PLD_MHI_STATE_L0 ==
  1153. pld_get_mhi_state(hal_soc->qdf_dev->dev))) {
  1154. hal_write_address_32_mb(hal_soc, addr, value, false);
  1155. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1156. srng->wstats.direct++;
  1157. } else {
  1158. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1159. }
  1160. break;
  1161. default:
  1162. if (hif_get_ep_vote_access(hal_soc->hif_handle,
  1163. HIF_EP_VOTE_DP_ACCESS) ==
  1164. HIF_EP_VOTE_ACCESS_DISABLE ||
  1165. hal_is_reg_write_tput_level_high(hal_soc) ||
  1166. PLD_MHI_STATE_L0 ==
  1167. pld_get_mhi_state(hal_soc->qdf_dev->dev)) {
  1168. hal_write_address_32_mb(hal_soc, addr, value, false);
  1169. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1170. srng->wstats.direct++;
  1171. } else {
  1172. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1173. }
  1174. break;
  1175. }
  1176. }
  1177. #else
  1178. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  1179. struct hal_srng *srng,
  1180. void __iomem *addr,
  1181. uint32_t value)
  1182. {
  1183. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  1184. hal_is_reg_write_tput_level_high(hal_soc)) {
  1185. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  1186. srng->wstats.direct++;
  1187. hal_write_address_32_mb(hal_soc, addr, value, false);
  1188. } else {
  1189. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  1190. }
  1191. }
  1192. #endif
  1193. #endif
  1194. #endif
  1195. /**
  1196. * hal_attach - Initialize HAL layer
  1197. * @hif_handle: Opaque HIF handle
  1198. * @qdf_dev: QDF device
  1199. *
  1200. * Return: Opaque HAL SOC handle
  1201. * NULL on failure (if given ring is not available)
  1202. *
  1203. * This function should be called as part of HIF initialization (for accessing
  1204. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1205. *
  1206. */
  1207. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  1208. {
  1209. struct hal_soc *hal;
  1210. int i;
  1211. hal = qdf_mem_malloc(sizeof(*hal));
  1212. if (!hal) {
  1213. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1214. "%s: hal_soc allocation failed", __func__);
  1215. goto fail0;
  1216. }
  1217. hal->hif_handle = hif_handle;
  1218. hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */
  1219. hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */
  1220. hal->qdf_dev = qdf_dev;
  1221. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  1222. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  1223. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  1224. if (!hal->shadow_rdptr_mem_paddr) {
  1225. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1226. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  1227. __func__);
  1228. goto fail1;
  1229. }
  1230. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  1231. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  1232. hal->shadow_wrptr_mem_vaddr =
  1233. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  1234. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1235. &(hal->shadow_wrptr_mem_paddr));
  1236. if (!hal->shadow_wrptr_mem_vaddr) {
  1237. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1238. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  1239. __func__);
  1240. goto fail2;
  1241. }
  1242. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  1243. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  1244. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  1245. hal->srng_list[i].initialized = 0;
  1246. hal->srng_list[i].ring_id = i;
  1247. }
  1248. qdf_spinlock_create(&hal->register_access_lock);
  1249. hal->register_window = 0;
  1250. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  1251. hal->ops = qdf_mem_malloc(sizeof(*hal->ops));
  1252. if (!hal->ops) {
  1253. hal_err("unable to allocable memory for HAL ops");
  1254. goto fail3;
  1255. }
  1256. hal_target_based_configure(hal);
  1257. hal_reg_write_fail_history_init(hal);
  1258. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  1259. qdf_atomic_init(&hal->active_work_cnt);
  1260. hal_delayed_reg_write_init(hal);
  1261. hal_delayed_tcl_reg_write_init(hal);
  1262. return (void *)hal;
  1263. fail3:
  1264. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1265. sizeof(*hal->shadow_wrptr_mem_vaddr) *
  1266. HAL_MAX_LMAC_RINGS,
  1267. hal->shadow_wrptr_mem_vaddr,
  1268. hal->shadow_wrptr_mem_paddr, 0);
  1269. fail2:
  1270. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  1271. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1272. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1273. fail1:
  1274. qdf_mem_free(hal);
  1275. fail0:
  1276. return NULL;
  1277. }
  1278. qdf_export_symbol(hal_attach);
  1279. /**
  1280. * hal_mem_info - Retrieve hal memory base address
  1281. *
  1282. * @hal_soc: Opaque HAL SOC handle
  1283. * @mem: pointer to structure to be updated with hal mem info
  1284. */
  1285. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  1286. {
  1287. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1288. mem->dev_base_addr = (void *)hal->dev_base_addr;
  1289. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  1290. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  1291. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  1292. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  1293. hif_read_phy_mem_base((void *)hal->hif_handle,
  1294. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  1295. mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START;
  1296. return;
  1297. }
  1298. qdf_export_symbol(hal_get_meminfo);
  1299. /**
  1300. * hal_detach - Detach HAL layer
  1301. * @hal_soc: HAL SOC handle
  1302. *
  1303. * Return: Opaque HAL SOC handle
  1304. * NULL on failure (if given ring is not available)
  1305. *
  1306. * This function should be called as part of HIF initialization (for accessing
  1307. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  1308. *
  1309. */
  1310. extern void hal_detach(void *hal_soc)
  1311. {
  1312. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1313. hal_delayed_reg_write_deinit(hal);
  1314. hal_delayed_tcl_reg_write_deinit(hal);
  1315. qdf_mem_free(hal->ops);
  1316. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1317. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  1318. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  1319. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  1320. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  1321. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  1322. qdf_minidump_remove(hal, sizeof(*hal), "hal_soc");
  1323. qdf_mem_free(hal);
  1324. return;
  1325. }
  1326. qdf_export_symbol(hal_detach);
  1327. #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0)
  1328. #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff
  1329. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040)
  1330. #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007
  1331. /**
  1332. * hal_ce_dst_setup - Initialize CE destination ring registers
  1333. * @hal_soc: HAL SOC handle
  1334. * @srng: SRNG ring pointer
  1335. */
  1336. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  1337. int ring_num)
  1338. {
  1339. uint32_t reg_val = 0;
  1340. uint32_t reg_addr;
  1341. struct hal_hw_srng_config *ring_config =
  1342. HAL_SRNG_CONFIG(hal, CE_DST);
  1343. /* set DEST_MAX_LENGTH according to ce assignment */
  1344. reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(
  1345. ring_config->reg_start[R0_INDEX] +
  1346. (ring_num * ring_config->reg_size[R0_INDEX]));
  1347. reg_val = HAL_REG_READ(hal, reg_addr);
  1348. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1349. reg_val |= srng->u.dst_ring.max_buffer_length &
  1350. HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  1351. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1352. if (srng->prefetch_timer) {
  1353. reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(
  1354. ring_config->reg_start[R0_INDEX] +
  1355. (ring_num * ring_config->reg_size[R0_INDEX]));
  1356. reg_val = HAL_REG_READ(hal, reg_addr);
  1357. reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK;
  1358. reg_val |= srng->prefetch_timer;
  1359. HAL_REG_WRITE(hal, reg_addr, reg_val);
  1360. reg_val = HAL_REG_READ(hal, reg_addr);
  1361. }
  1362. }
  1363. /**
  1364. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  1365. * @hal: HAL SOC handle
  1366. * @read: boolean value to indicate if read or write
  1367. * @ix0: pointer to store IX0 reg value
  1368. * @ix1: pointer to store IX1 reg value
  1369. * @ix2: pointer to store IX2 reg value
  1370. * @ix3: pointer to store IX3 reg value
  1371. */
  1372. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  1373. uint32_t *ix0, uint32_t *ix1,
  1374. uint32_t *ix2, uint32_t *ix3)
  1375. {
  1376. uint32_t reg_offset;
  1377. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  1378. uint32_t reo_reg_base;
  1379. reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl);
  1380. if (read) {
  1381. if (ix0) {
  1382. reg_offset =
  1383. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1384. reo_reg_base);
  1385. *ix0 = HAL_REG_READ(hal, reg_offset);
  1386. }
  1387. if (ix1) {
  1388. reg_offset =
  1389. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1390. reo_reg_base);
  1391. *ix1 = HAL_REG_READ(hal, reg_offset);
  1392. }
  1393. if (ix2) {
  1394. reg_offset =
  1395. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1396. reo_reg_base);
  1397. *ix2 = HAL_REG_READ(hal, reg_offset);
  1398. }
  1399. if (ix3) {
  1400. reg_offset =
  1401. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1402. reo_reg_base);
  1403. *ix3 = HAL_REG_READ(hal, reg_offset);
  1404. }
  1405. } else {
  1406. if (ix0) {
  1407. reg_offset =
  1408. HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(
  1409. reo_reg_base);
  1410. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1411. *ix0, true);
  1412. }
  1413. if (ix1) {
  1414. reg_offset =
  1415. HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(
  1416. reo_reg_base);
  1417. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1418. *ix1, true);
  1419. }
  1420. if (ix2) {
  1421. reg_offset =
  1422. HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(
  1423. reo_reg_base);
  1424. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1425. *ix2, true);
  1426. }
  1427. if (ix3) {
  1428. reg_offset =
  1429. HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(
  1430. reo_reg_base);
  1431. HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset,
  1432. *ix3, true);
  1433. }
  1434. }
  1435. }
  1436. /**
  1437. * hal_srng_dst_set_hp_paddr_confirm() - Set physical address to dest ring head
  1438. * pointer and confirm that write went through by reading back the value
  1439. * @srng: sring pointer
  1440. * @paddr: physical address
  1441. *
  1442. * Return: None
  1443. */
  1444. void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr)
  1445. {
  1446. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff);
  1447. SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32);
  1448. }
  1449. /**
  1450. * hal_srng_dst_init_hp() - Initialize destination ring head
  1451. * pointer
  1452. * @hal_soc: hal_soc handle
  1453. * @srng: sring pointer
  1454. * @vaddr: virtual address
  1455. */
  1456. void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc,
  1457. struct hal_srng *srng,
  1458. uint32_t *vaddr)
  1459. {
  1460. uint32_t reg_offset;
  1461. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1462. if (!srng)
  1463. return;
  1464. srng->u.dst_ring.hp_addr = vaddr;
  1465. reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr;
  1466. HAL_REG_WRITE_CONFIRM_RETRY(
  1467. hal, reg_offset, srng->u.dst_ring.cached_hp, true);
  1468. if (vaddr) {
  1469. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  1470. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1471. "hp_addr=%pK, cached_hp=%d, hp=%d",
  1472. (void *)srng->u.dst_ring.hp_addr,
  1473. srng->u.dst_ring.cached_hp,
  1474. *srng->u.dst_ring.hp_addr);
  1475. }
  1476. }
  1477. /**
  1478. * hal_srng_hw_init - Private function to initialize SRNG HW
  1479. * @hal_soc: HAL SOC handle
  1480. * @srng: SRNG ring pointer
  1481. */
  1482. static inline void hal_srng_hw_init(struct hal_soc *hal,
  1483. struct hal_srng *srng)
  1484. {
  1485. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  1486. hal_srng_src_hw_init(hal, srng);
  1487. else
  1488. hal_srng_dst_hw_init(hal, srng);
  1489. }
  1490. #ifdef CONFIG_SHADOW_V2
  1491. #define ignore_shadow false
  1492. #define CHECK_SHADOW_REGISTERS true
  1493. #else
  1494. #define ignore_shadow true
  1495. #define CHECK_SHADOW_REGISTERS false
  1496. #endif
  1497. /**
  1498. * hal_srng_setup - Initialize HW SRNG ring.
  1499. * @hal_soc: Opaque HAL SOC handle
  1500. * @ring_type: one of the types from hal_ring_type
  1501. * @ring_num: Ring number if there are multiple rings of same type (staring
  1502. * from 0)
  1503. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1504. * @ring_params: SRNG ring params in hal_srng_params structure.
  1505. * Callers are expected to allocate contiguous ring memory of size
  1506. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1507. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1508. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1509. * and size of each ring entry should be queried using the API
  1510. * hal_srng_get_entrysize
  1511. *
  1512. * Return: Opaque pointer to ring on success
  1513. * NULL on failure (if given ring is not available)
  1514. */
  1515. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1516. int mac_id, struct hal_srng_params *ring_params)
  1517. {
  1518. int ring_id;
  1519. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1520. struct hal_srng *srng;
  1521. struct hal_hw_srng_config *ring_config =
  1522. HAL_SRNG_CONFIG(hal, ring_type);
  1523. void *dev_base_addr;
  1524. int i;
  1525. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1526. if (ring_id < 0)
  1527. return NULL;
  1528. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  1529. srng = hal_get_srng(hal_soc, ring_id);
  1530. if (srng->initialized) {
  1531. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  1532. return NULL;
  1533. }
  1534. dev_base_addr = hal->dev_base_addr;
  1535. srng->ring_id = ring_id;
  1536. srng->ring_type = ring_type;
  1537. srng->ring_dir = ring_config->ring_dir;
  1538. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1539. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1540. srng->entry_size = ring_config->entry_size;
  1541. srng->num_entries = ring_params->num_entries;
  1542. srng->ring_size = srng->num_entries * srng->entry_size;
  1543. srng->ring_size_mask = srng->ring_size - 1;
  1544. srng->msi_addr = ring_params->msi_addr;
  1545. srng->msi_data = ring_params->msi_data;
  1546. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1547. srng->intr_batch_cntr_thres_entries =
  1548. ring_params->intr_batch_cntr_thres_entries;
  1549. srng->prefetch_timer = ring_params->prefetch_timer;
  1550. srng->hal_soc = hal_soc;
  1551. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1552. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1553. + (ring_num * ring_config->reg_size[i]);
  1554. }
  1555. /* Zero out the entire ring memory */
  1556. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1557. srng->num_entries) << 2);
  1558. srng->flags = ring_params->flags;
  1559. #ifdef BIG_ENDIAN_HOST
  1560. /* TODO: See if we should we get these flags from caller */
  1561. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1562. srng->flags |= HAL_SRNG_MSI_SWAP;
  1563. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1564. #endif
  1565. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1566. srng->u.src_ring.hp = 0;
  1567. srng->u.src_ring.reap_hp = srng->ring_size -
  1568. srng->entry_size;
  1569. srng->u.src_ring.tp_addr =
  1570. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1571. srng->u.src_ring.low_threshold =
  1572. ring_params->low_threshold * srng->entry_size;
  1573. if (ring_config->lmac_ring) {
  1574. /* For LMAC rings, head pointer updates will be done
  1575. * through FW by writing to a shared memory location
  1576. */
  1577. srng->u.src_ring.hp_addr =
  1578. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1579. HAL_SRNG_LMAC1_ID_START]);
  1580. srng->flags |= HAL_SRNG_LMAC_RING;
  1581. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1582. srng->u.src_ring.hp_addr =
  1583. hal_get_window_address(hal,
  1584. SRNG_SRC_ADDR(srng, HP));
  1585. if (CHECK_SHADOW_REGISTERS) {
  1586. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1587. QDF_TRACE_LEVEL_ERROR,
  1588. "%s: Ring (%d, %d) missing shadow config",
  1589. __func__, ring_type, ring_num);
  1590. }
  1591. } else {
  1592. hal_validate_shadow_register(hal,
  1593. SRNG_SRC_ADDR(srng, HP),
  1594. srng->u.src_ring.hp_addr);
  1595. }
  1596. } else {
  1597. /* During initialization loop count in all the descriptors
  1598. * will be set to zero, and HW will set it to 1 on completing
  1599. * descriptor update in first loop, and increments it by 1 on
  1600. * subsequent loops (loop count wraps around after reaching
  1601. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1602. * loop count in descriptors updated by HW (to be processed
  1603. * by SW).
  1604. */
  1605. srng->u.dst_ring.loop_cnt = 1;
  1606. srng->u.dst_ring.tp = 0;
  1607. srng->u.dst_ring.hp_addr =
  1608. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1609. if (ring_config->lmac_ring) {
  1610. /* For LMAC rings, tail pointer updates will be done
  1611. * through FW by writing to a shared memory location
  1612. */
  1613. srng->u.dst_ring.tp_addr =
  1614. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1615. HAL_SRNG_LMAC1_ID_START]);
  1616. srng->flags |= HAL_SRNG_LMAC_RING;
  1617. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1618. srng->u.dst_ring.tp_addr =
  1619. hal_get_window_address(hal,
  1620. SRNG_DST_ADDR(srng, TP));
  1621. if (CHECK_SHADOW_REGISTERS) {
  1622. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1623. QDF_TRACE_LEVEL_ERROR,
  1624. "%s: Ring (%d, %d) missing shadow config",
  1625. __func__, ring_type, ring_num);
  1626. }
  1627. } else {
  1628. hal_validate_shadow_register(hal,
  1629. SRNG_DST_ADDR(srng, TP),
  1630. srng->u.dst_ring.tp_addr);
  1631. }
  1632. }
  1633. if (!(ring_config->lmac_ring)) {
  1634. hal_srng_hw_init(hal, srng);
  1635. if (ring_type == CE_DST) {
  1636. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1637. hal_ce_dst_setup(hal, srng, ring_num);
  1638. }
  1639. }
  1640. SRNG_LOCK_INIT(&srng->lock);
  1641. srng->srng_event = 0;
  1642. srng->initialized = true;
  1643. return (void *)srng;
  1644. }
  1645. qdf_export_symbol(hal_srng_setup);
  1646. /**
  1647. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1648. * @hal_soc: Opaque HAL SOC handle
  1649. * @hal_srng: Opaque HAL SRNG pointer
  1650. */
  1651. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1652. {
  1653. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1654. SRNG_LOCK_DESTROY(&srng->lock);
  1655. srng->initialized = 0;
  1656. }
  1657. qdf_export_symbol(hal_srng_cleanup);
  1658. /**
  1659. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1660. * @hal_soc: Opaque HAL SOC handle
  1661. * @ring_type: one of the types from hal_ring_type
  1662. *
  1663. */
  1664. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1665. {
  1666. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1667. struct hal_hw_srng_config *ring_config =
  1668. HAL_SRNG_CONFIG(hal, ring_type);
  1669. return ring_config->entry_size << 2;
  1670. }
  1671. qdf_export_symbol(hal_srng_get_entrysize);
  1672. /**
  1673. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1674. * @hal_soc: Opaque HAL SOC handle
  1675. * @ring_type: one of the types from hal_ring_type
  1676. *
  1677. * Return: Maximum number of entries for the given ring_type
  1678. */
  1679. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1680. {
  1681. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1682. struct hal_hw_srng_config *ring_config =
  1683. HAL_SRNG_CONFIG(hal, ring_type);
  1684. return ring_config->max_size / ring_config->entry_size;
  1685. }
  1686. qdf_export_symbol(hal_srng_max_entries);
  1687. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1688. {
  1689. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1690. struct hal_hw_srng_config *ring_config =
  1691. HAL_SRNG_CONFIG(hal, ring_type);
  1692. return ring_config->ring_dir;
  1693. }
  1694. /**
  1695. * hal_srng_dump - Dump ring status
  1696. * @srng: hal srng pointer
  1697. */
  1698. void hal_srng_dump(struct hal_srng *srng)
  1699. {
  1700. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1701. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1702. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1703. srng->u.src_ring.hp,
  1704. srng->u.src_ring.reap_hp,
  1705. *srng->u.src_ring.tp_addr,
  1706. srng->u.src_ring.cached_tp);
  1707. } else {
  1708. hal_debug("=== DST RING %d ===", srng->ring_id);
  1709. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1710. srng->u.dst_ring.tp,
  1711. *srng->u.dst_ring.hp_addr,
  1712. srng->u.dst_ring.cached_hp,
  1713. srng->u.dst_ring.loop_cnt);
  1714. }
  1715. }
  1716. /**
  1717. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1718. *
  1719. * @hal_soc: Opaque HAL SOC handle
  1720. * @hal_ring: Ring pointer (Source or Destination ring)
  1721. * @ring_params: SRNG parameters will be returned through this structure
  1722. */
  1723. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1724. hal_ring_handle_t hal_ring_hdl,
  1725. struct hal_srng_params *ring_params)
  1726. {
  1727. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1728. int i =0;
  1729. ring_params->ring_id = srng->ring_id;
  1730. ring_params->ring_dir = srng->ring_dir;
  1731. ring_params->entry_size = srng->entry_size;
  1732. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1733. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1734. ring_params->num_entries = srng->num_entries;
  1735. ring_params->msi_addr = srng->msi_addr;
  1736. ring_params->msi_data = srng->msi_data;
  1737. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1738. ring_params->intr_batch_cntr_thres_entries =
  1739. srng->intr_batch_cntr_thres_entries;
  1740. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1741. ring_params->flags = srng->flags;
  1742. ring_params->ring_id = srng->ring_id;
  1743. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1744. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1745. }
  1746. qdf_export_symbol(hal_get_srng_params);
  1747. void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl,
  1748. uint32_t low_threshold)
  1749. {
  1750. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1751. srng->u.src_ring.low_threshold = low_threshold * srng->entry_size;
  1752. }
  1753. qdf_export_symbol(hal_set_low_threshold);
  1754. #ifdef FORCE_WAKE
  1755. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1756. {
  1757. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1758. hal_soc->init_phase = init_phase;
  1759. }
  1760. #endif /* FORCE_WAKE */