1
0
Ficheiros
android_kernel_samsung_sm86…/ubwcp/ubwcp.c
Amol Jadi 00184485c7 ubwcp: driver initial version
Implements driver to interface with ubwcp hw block

Change-Id: I092e45acfedd01978c383bc596e48da23f3e873e
Signed-off-by: Amol Jadi <quic_ajadi@quicinc.com>
Signed-off-by: Liam Mark <quic_lmark@quicinc.com>
2022-11-08 20:37:28 -08:00

2488 linhas
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/dma-buf.h>
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/hashtable.h>
#include <linux/scatterlist.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/regulator/consumer.h>
#include <linux/numa.h>
#include <linux/memory_hotplug.h>
#include <asm/page.h>
#include <linux/delay.h>
#include <linux/ubwcp_dma_heap.h>
#include <linux/debugfs.h>
MODULE_IMPORT_NS(DMA_BUF);
#include "ubwcp.h"
#include "ubwcp_hw.h"
#include "include/uapi/ubwcp_ioctl.h"
#define UBWCP_NUM_DEVICES 1
#define UBWCP_DEVICE_NAME "ubwcp"
#define UBWCP_BUFFER_DESC_OFFSET 64
#define UBWCP_BUFFER_DESC_COUNT 256
#define CACHE_ADDR(x) ((x) >> 6)
#define PAGE_ADDR(x) ((x) >> 12)
#define UBWCP_ALIGN(_x, _y) ((((_x) + (_y) - 1)/(_y))*(_y))
//#define DBG(fmt, args...)
//#define DBG_BUF_ATTR(fmt, args...)
#define DBG_BUF_ATTR(fmt, args...) do { if (ubwcp_debug_trace_enable) \
pr_err("ubwcp: %s(): " fmt "\n", __func__, ##args); \
} while (0)
#define DBG(fmt, args...) do { if (ubwcp_debug_trace_enable) \
pr_err("ubwcp: %s(): " fmt "\n", __func__, ##args); \
} while (0)
#define ERR(fmt, args...) pr_err("ubwcp: %s(): ~~~ERROR~~~: " fmt "\n", __func__, ##args)
#define FENTRY() DBG("ubwcp: %s()", __func__)
#define META_DATA_PITCH_ALIGN 64
#define META_DATA_HEIGHT_ALIGN 16
#define META_DATA_SIZE_ALIGN 4096
#define PIXEL_DATA_SIZE_ALIGN 4096
struct ubwcp_desc {
int idx;
void *ptr;
};
/* TBD: confirm size of width/height */
struct ubwcp_dimension {
u16 width;
u16 height;
};
struct ubwcp_plane_info {
u16 pixel_bytes;
u16 per_pixel;
struct ubwcp_dimension tilesize_p; /* pixels */
struct ubwcp_dimension macrotilesize_p; /* pixels */
};
struct ubwcp_image_format_info {
u16 planes;
struct ubwcp_plane_info p_info[2];
};
enum ubwcp_std_image_format {
RGBA = 0,
NV12 = 1,
NV124R = 2,
P010 = 3,
TP10 = 4,
P016 = 5,
INFO_FORMAT_LIST_SIZE,
STD_IMAGE_FORMAT_INVALID = 0xFF
};
struct ubwcp_driver {
/* cdev related */
dev_t devt;
struct class *dev_class; //sysfs dev class
struct device *dev_sys; //sysfs dev
struct cdev cdev; //char dev
/* debugfs */
struct dentry *debugfs_root;
/* ubwcp devices */
struct device *dev; //ubwcp device
struct device *dev_desc_cb; //smmu dev for descriptors
struct device *dev_buf_cb; //smmu dev for ubwcp buffers
void __iomem *base; //ubwcp base address
struct regulator *vdd;
/* interrupts */
int irq_range_ck_rd;
int irq_range_ck_wr;
int irq_encode;
int irq_decode;
/* ula address pool */
u64 ula_pool_base;
u64 ula_pool_size;
struct gen_pool *ula_pool;
configure_mmap mmap_config_fptr;
/* HW version */
u32 hw_ver_major;
u32 hw_ver_minor;
/* keep track of all buffers. hash table index'ed using dma_buf ptr.
* 2**8 = 256 hash values
*/
DECLARE_HASHTABLE(buf_table, 8);
/* buffer descriptor */
void *buffer_desc_base; /* CPU address */
dma_addr_t buffer_desc_dma_handle; /* dma address */
size_t buffer_desc_size;
struct ubwcp_desc desc_list[UBWCP_BUFFER_DESC_COUNT];
struct ubwcp_image_format_info format_info[INFO_FORMAT_LIST_SIZE];
struct mutex desc_lock; /* allocate/free descriptors */
struct mutex buf_table_lock; /* add/remove dma_buf into list of managed bufffers */
struct mutex ula_lock; /* allocate/free ula */
struct mutex ubwcp_flush_lock; /* ubwcp flush */
struct mutex hw_range_ck_lock; /* range ck */
};
struct ubwcp_buf {
struct hlist_node hnode;
struct ubwcp_driver *ubwcp;
struct ubwcp_buffer_attrs buf_attr;
bool perm;
struct ubwcp_desc *desc;
bool buf_attr_set;
bool locked;
enum dma_data_direction lock_dir;
int lock_count;
/* dma_buf info */
struct dma_buf *dma_buf;
struct dma_buf_attachment *attachment;
struct sg_table *sgt;
/* ula info */
phys_addr_t ula_pa;
size_t ula_size;
/* meta metadata */
struct ubwcp_hw_meta_metadata mmdata;
struct mutex lock;
};
static struct ubwcp_driver *me;
static int error_print_count;
u32 ubwcp_debug_trace_enable;
static struct ubwcp_driver *ubwcp_get_driver(void)
{
if (!me)
WARN(1, "ubwcp: driver ptr requested but driver not initialized");
return me;
}
static void image_format_init(struct ubwcp_driver *ubwcp)
{ /* planes, bytes/p, Tp , MTp */
ubwcp->format_info[RGBA] = (struct ubwcp_image_format_info)
{1, {{4, 1, {16, 4}, {64, 16}}}};
ubwcp->format_info[NV12] = (struct ubwcp_image_format_info)
{2, {{1, 1, {32, 8}, {128, 32}},
{2, 1, {16, 8}, { 64, 32}}}};
ubwcp->format_info[NV124R] = (struct ubwcp_image_format_info)
{2, {{1, 1, {64, 4}, {256, 16}},
{2, 1, {32, 4}, {128, 16}}}};
ubwcp->format_info[P010] = (struct ubwcp_image_format_info)
{2, {{2, 1, {32, 4}, {128, 16}},
{4, 1, {16, 4}, { 64, 16}}}};
ubwcp->format_info[TP10] = (struct ubwcp_image_format_info)
{2, {{4, 3, {48, 4}, {192, 16}},
{8, 3, {24, 4}, { 96, 16}}}};
ubwcp->format_info[P016] = (struct ubwcp_image_format_info)
{2, {{2, 1, {32, 4}, {128, 16}},
{4, 1, {16, 4}, { 64, 16}}}};
}
static void ubwcp_buf_desc_list_init(struct ubwcp_driver *ubwcp)
{
int idx;
struct ubwcp_desc *desc_list = ubwcp->desc_list;
for (idx = 0; idx < UBWCP_BUFFER_DESC_COUNT; idx++) {
desc_list[idx].idx = -1;
desc_list[idx].ptr = NULL;
}
}
/* UBWCP Power control */
static int ubwcp_power(struct ubwcp_driver *ubwcp, bool enable)
{
int ret = 0;
if (enable) {
ret = regulator_enable(ubwcp->vdd);
if (ret < 0) {
ERR("regulator_enable failed: %d", ret);
ret = -1;
} else {
DBG("regulator_enable() success");
}
} else {
ret = regulator_disable(ubwcp->vdd);
if (ret < 0) {
ERR("regulator_disable failed: %d", ret);
ret = -1;
} else {
DBG("regulator_disable() success");
}
}
return ret;
}
static int ubwcp_flush(struct ubwcp_driver *ubwcp)
{
int ret = 0;
mutex_lock(&ubwcp->ubwcp_flush_lock);
ret = ubwcp_hw_flush(ubwcp->base);
mutex_unlock(&ubwcp->ubwcp_flush_lock);
if (ret != 0)
WARN(1, "ubwcp_hw_flush() failed!");
return ret;
}
/* get dma_buf ptr for the given dma_buf fd */
struct dma_buf *ubwcp_dma_buf_fd_to_dma_buf(int dma_buf_fd)
{
struct dma_buf *dmabuf;
/* TBD: dma_buf_get() results in taking ref to buf and it won't ever get
* free'ed until ref count goes to 0. So we must reduce the ref count
* immediately after we find our corresponding ubwcp_buf.
*/
dmabuf = dma_buf_get(dma_buf_fd);
if (IS_ERR(dmabuf)) {
ERR("dmabuf ptr not found for dma_buf_fd = %d", dma_buf_fd);
return NULL;
}
dma_buf_put(dmabuf);
return dmabuf;
}
EXPORT_SYMBOL(ubwcp_dma_buf_fd_to_dma_buf);
/* get ubwcp_buf corresponding to the given dma_buf */
static struct ubwcp_buf *dma_buf_to_ubwcp_buf(struct dma_buf *dmabuf)
{
struct ubwcp_buf *buf = NULL;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
if (!dmabuf || !ubwcp)
return NULL;
mutex_lock(&ubwcp->buf_table_lock);
/* look up ubwcp_buf corresponding to this dma_buf */
hash_for_each_possible(ubwcp->buf_table, buf, hnode, (u64)dmabuf) {
if (buf->dma_buf == dmabuf)
break;
}
mutex_unlock(&ubwcp->buf_table_lock);
return buf;
}
/* return ubwcp hardware version */
int ubwcp_get_hw_version(struct ubwcp_ioctl_hw_version *ver)
{
struct ubwcp_driver *ubwcp;
FENTRY();
if (!ver) {
ERR("invalid version ptr");
return -EINVAL;
}
ubwcp = ubwcp_get_driver();
if (!ubwcp)
return -1;
ver->major = ubwcp->hw_ver_major;
ver->minor = ubwcp->hw_ver_minor;
return 0;
}
EXPORT_SYMBOL(ubwcp_get_hw_version);
/**
*
* Initialize ubwcp buffer for the given dma_buf. This
* initializes ubwcp internal data structures and possibly hw to
* use ubwcp for this buffer.
*
* @param dmabuf : ptr to the buffer to be configured for ubwcp
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_init_buffer(struct dma_buf *dmabuf)
{
int ret = 0;
int nid;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp = ubwcp_get_driver();
FENTRY();
if (!ubwcp)
return -1;
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
if (dma_buf_to_ubwcp_buf(dmabuf)) {
ERR("dma_buf already initialized for ubwcp");
return -EEXIST;
}
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf) {
ERR("failed to alloc for new ubwcp_buf");
return -ENOMEM;
}
mutex_init(&buf->lock);
buf->dma_buf = dmabuf;
buf->ubwcp = ubwcp;
mutex_lock(&ubwcp->buf_table_lock);
if (hash_empty(ubwcp->buf_table)) {
ret = ubwcp_power(ubwcp, true);
if (ret)
goto err_power_on;
nid = memory_add_physaddr_to_nid(ubwcp->ula_pool_base);
DBG("calling add_memory()...");
ret = add_memory(nid, ubwcp->ula_pool_base, ubwcp->ula_pool_size, MHP_NONE);
if (ret) {
ERR("add_memory() failed st:0x%lx sz:0x%lx err: %d",
ubwcp->ula_pool_base,
ubwcp->ula_pool_size,
ret);
goto err_add_memory;
} else {
DBG("add_memory() ula_pool_base:0x%llx, size:0x%zx, kernel addr:0x%p",
ubwcp->ula_pool_base,
ubwcp->ula_pool_size,
page_to_virt(pfn_to_page(PFN_DOWN(ubwcp->ula_pool_base))));
}
}
hash_add(ubwcp->buf_table, &buf->hnode, (u64)buf->dma_buf);
mutex_unlock(&ubwcp->buf_table_lock);
return ret;
err_add_memory:
ubwcp_power(ubwcp, false);
err_power_on:
mutex_unlock(&ubwcp->buf_table_lock);
kfree(buf);
if (!ret)
ret = -1;
return ret;
}
static void dump_attributes(struct ubwcp_buffer_attrs *attr)
{
DBG_BUF_ATTR("");
DBG_BUF_ATTR("image_format: %d", attr->image_format);
DBG_BUF_ATTR("major_ubwc_ver: %d", attr->major_ubwc_ver);
DBG_BUF_ATTR("minor_ubwc_ver: %d", attr->minor_ubwc_ver);
DBG_BUF_ATTR("compression_type: %d", attr->compression_type);
DBG_BUF_ATTR("lossy_params: %llu", attr->lossy_params);
DBG_BUF_ATTR("width: %d", attr->width);
DBG_BUF_ATTR("height: %d", attr->height);
DBG_BUF_ATTR("stride: %d", attr->stride);
DBG_BUF_ATTR("scanlines: %d", attr->scanlines);
DBG_BUF_ATTR("planar_padding: %d", attr->planar_padding);
DBG_BUF_ATTR("subsample: %d", attr->subsample);
DBG_BUF_ATTR("sub_system_target: %d", attr->sub_system_target);
DBG_BUF_ATTR("y_offset: %d", attr->y_offset);
DBG_BUF_ATTR("batch_size: %d", attr->batch_size);
DBG_BUF_ATTR("");
}
/* validate buffer attributes */
static bool ubwcp_buf_attrs_valid(struct ubwcp_buffer_attrs *attr)
{
bool valid_format;
switch (attr->image_format) {
case UBWCP_LINEAR:
case UBWCP_RGBA8888:
case UBWCP_NV12:
case UBWCP_NV12_Y:
case UBWCP_NV12_UV:
case UBWCP_NV124R:
case UBWCP_NV124R_Y:
case UBWCP_NV124R_UV:
case UBWCP_TP10:
case UBWCP_TP10_Y:
case UBWCP_TP10_UV:
case UBWCP_P010:
case UBWCP_P010_Y:
case UBWCP_P010_UV:
case UBWCP_P016:
case UBWCP_P016_Y:
case UBWCP_P016_UV:
valid_format = true;
break;
default:
valid_format = false;
}
if (!valid_format) {
ERR("invalid image format: %d", attr->image_format);
goto err;
}
if (attr->major_ubwc_ver || attr->minor_ubwc_ver) {
ERR("major/minor ubwc ver must be 0. major: %d minor: %d",
attr->major_ubwc_ver, attr->minor_ubwc_ver);
goto err;
}
if (attr->compression_type != UBWCP_COMPRESSION_LOSSLESS) {
ERR("compression_type is not valid: %d",
attr->compression_type);
goto err;
}
if (attr->lossy_params != 0) {
ERR("lossy_params is not valid: %d", attr->lossy_params);
goto err;
}
//TBD: some upper limit for width?
if (attr->width > 10*1024) {
ERR("width is invalid (above upper limit): %d", attr->width);
goto err;
}
//TBD: some upper limit for height?
if (attr->height > 10*1024) {
ERR("height is invalid (above upper limit): %d", attr->height);
goto err;
}
/* TBD: what's the upper limit for stride? 8K is likely too high. */
if (!IS_ALIGNED(attr->stride, 64) ||
(attr->stride < attr->width) ||
(attr->stride > 4*8192)) {
ERR("stride is not valid (aligned to 64 and <= 8192): %d",
attr->stride);
goto err;
}
/* TBD: currently assume height + 10. Replace 10 with right num from camera. */
if ((attr->scanlines < attr->height) ||
(attr->scanlines > attr->height + 10)) {
ERR("scanlines is not valid - height: %d scanlines: %d",
attr->height, attr->scanlines);
goto err;
}
if (attr->planar_padding > 4096) {
ERR("planar_padding is not valid. (<= 4096): %d",
attr->planar_padding);
goto err;
}
if (attr->subsample != UBWCP_SUBSAMPLE_4_2_0) {
ERR("subsample is not valid: %d", attr->subsample);
goto err;
}
if (attr->sub_system_target & ~UBWCP_SUBSYSTEM_TARGET_CPU) {
ERR("sub_system_target other that CPU is not supported: %d",
attr->sub_system_target);
goto err;
}
if (!(attr->sub_system_target & UBWCP_SUBSYSTEM_TARGET_CPU)) {
ERR("sub_system_target is not set to CPU: %d",
attr->sub_system_target);
goto err;
}
if (attr->y_offset != 0) {
ERR("y_offset is not valid: %d", attr->y_offset);
goto err;
}
if (attr->batch_size != 1) {
ERR("batch_size is not valid: %d", attr->batch_size);
goto err;
}
dump_attributes(attr);
return true;
err:
dump_attributes(attr);
return false;
}
/* return true if image format has only Y plane*/
bool ubwcp_image_y_only(u16 format)
{
switch (format) {
case UBWCP_NV12_Y:
case UBWCP_NV124R_Y:
case UBWCP_TP10_Y:
case UBWCP_P010_Y:
case UBWCP_P016_Y:
return true;
default:
return false;
}
}
/* return true if image format has only UV plane*/
bool ubwcp_image_uv_only(u16 format)
{
switch (format) {
case UBWCP_NV12_UV:
case UBWCP_NV124R_UV:
case UBWCP_TP10_UV:
case UBWCP_P010_UV:
case UBWCP_P016_UV:
return true;
default:
return false;
}
}
/* calculate and return metadata buffer size for a given plane
* and buffer attributes
* NOTE: in this function, we will only pass in NV12 format.
* NOT NV12_Y or NV12_UV etc.
* the Y or UV information is in the "plane"
* "format" here purely means "encoding format" and no information
* if some plane data is missing.
*/
static size_t metadata_buf_sz(struct ubwcp_driver *ubwcp,
enum ubwcp_std_image_format format,
u32 width, u32 height, u8 plane)
{
size_t size;
u64 pitch;
u64 lines;
u64 tile_width;
u32 tile_height;
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("Calculating metadata buffer size: format = %d, plane = %d", format, plane);
if (plane >= f_info.planes) {
ERR("Format does not have requested plane info: format: %d, plane: %d",
format, plane);
WARN(1, "Fix this!!!!!");
return 0;
}
p_info = f_info.p_info[plane];
/* UV plane */
if (plane == 1) {
width = width/2;
height = height/2;
}
tile_width = p_info.tilesize_p.width;
tile_height = p_info.tilesize_p.height;
/* pitch: # of tiles in a row
* lines: # of tile rows
*/
pitch = UBWCP_ALIGN((width + tile_width - 1)/tile_width, META_DATA_PITCH_ALIGN);
lines = UBWCP_ALIGN((height + tile_height - 1)/tile_height, META_DATA_HEIGHT_ALIGN);
DBG_BUF_ATTR("image params : %d x %d (pixels)", width, height);
DBG_BUF_ATTR("tile params : %d x %d (pixels)", tile_width, tile_height);
DBG_BUF_ATTR("pitch : %d (%d)", pitch, width/tile_width);
DBG_BUF_ATTR("lines : %d (%d)", lines, height);
DBG_BUF_ATTR("size (p*l*bytes) : %d", pitch*lines*1);
/* x1 below is only to clarify that we are multiplying by 1 bytes/tile */
size = UBWCP_ALIGN(pitch*lines*1, META_DATA_SIZE_ALIGN);
DBG_BUF_ATTR("size (aligned 4K): %zu (0x%zx)", size, size);
return size;
}
/* calculate and return size of pixel data buffer for a given plane
* and buffer attributes
*/
static size_t pixeldata_buf_sz(struct ubwcp_driver *ubwcp,
u16 format, u32 width,
u32 height, u8 plane)
{
size_t size;
u64 pitch;
u64 lines;
u16 pixel_bytes;
u16 per_pixel;
u64 macro_tile_width_p;
u64 macro_tile_height_p;
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("Calculating Pixeldata buffer size: format = %d, plane = %d", format, plane);
if (plane >= f_info.planes) {
ERR("Format does not have requested plane info: format: %d, plane: %d",
format, plane);
WARN(1, "Fix this!!!!!");
return 0;
}
p_info = f_info.p_info[plane];
pixel_bytes = p_info.pixel_bytes;
per_pixel = p_info.per_pixel;
/* UV plane */
if (plane == 1) {
width = width/2;
height = height/2;
}
macro_tile_width_p = p_info.macrotilesize_p.width;
macro_tile_height_p = p_info.macrotilesize_p.height;
/* align pixel width and height macro tile width and height */
pitch = UBWCP_ALIGN(width, macro_tile_width_p);
lines = UBWCP_ALIGN(height, macro_tile_height_p);
DBG_BUF_ATTR("image params : %d x %d (pixels)", width, height);
DBG_BUF_ATTR("macro tile params: %d x %d (pixels)", macro_tile_width_p,
macro_tile_height_p);
DBG_BUF_ATTR("bytes_per_pixel : %d/%d", pixel_bytes, per_pixel);
DBG_BUF_ATTR("pitch : %d", pitch);
DBG_BUF_ATTR("lines : %d", lines);
DBG_BUF_ATTR("size (p*l*bytes) : %d", (pitch*lines*pixel_bytes)/per_pixel);
size = UBWCP_ALIGN((pitch*lines*pixel_bytes)/per_pixel, PIXEL_DATA_SIZE_ALIGN);
DBG_BUF_ATTR("size (aligned 4K): %zu (0x%zx)", size, size);
return size;
}
/*
* plane: must be 0 or 1 (1st plane == 0, 2nd plane == 1)
*/
static size_t ubwcp_ula_size(struct ubwcp_driver *ubwcp, u16 format,
u32 stride_b, u32 scanlines, u8 plane)
{
size_t size;
DBG_BUF_ATTR("%s(format = %d, plane = %d)", __func__, format, plane);
/* UV plane */
if (plane == 1)
scanlines = scanlines/2;
size = stride_b*scanlines;
DBG_BUF_ATTR("Size of plane-%u: (%u * %u) = %zu (0x%zx)",
plane, stride_b, scanlines, size, size);
return size;
}
int missing_plane_from_format(u16 ioctl_image_format)
{
int missing_plane;
switch (ioctl_image_format) {
case UBWCP_NV12_Y:
missing_plane = 2;
break;
case UBWCP_NV12_UV:
missing_plane = 1;
break;
case UBWCP_NV124R_Y:
missing_plane = 2;
break;
case UBWCP_NV124R_UV:
missing_plane = 1;
break;
case UBWCP_TP10_Y:
missing_plane = 2;
break;
case UBWCP_TP10_UV:
missing_plane = 1;
break;
case UBWCP_P010_Y:
missing_plane = 2;
break;
case UBWCP_P010_UV:
missing_plane = 1;
break;
case UBWCP_P016_Y:
missing_plane = 2;
break;
case UBWCP_P016_UV:
missing_plane = 1;
break;
default:
missing_plane = 0;
}
return missing_plane;
}
int planes_in_format(enum ubwcp_std_image_format format)
{
if (format == RGBA)
return 1;
else
return 2;
}
enum ubwcp_std_image_format to_std_format(u16 ioctl_image_format)
{
switch (ioctl_image_format) {
case UBWCP_RGBA8888:
return RGBA;
case UBWCP_NV12:
case UBWCP_NV12_Y:
case UBWCP_NV12_UV:
return NV12;
case UBWCP_NV124R:
case UBWCP_NV124R_Y:
case UBWCP_NV124R_UV:
return NV124R;
case UBWCP_TP10:
case UBWCP_TP10_Y:
case UBWCP_TP10_UV:
return TP10;
case UBWCP_P010:
case UBWCP_P010_Y:
case UBWCP_P010_UV:
return P010;
case UBWCP_P016:
case UBWCP_P016_Y:
case UBWCP_P016_UV:
return P016;
default:
WARN(1, "Fix this!!!");
return STD_IMAGE_FORMAT_INVALID;
}
}
unsigned int ubwcp_get_hw_image_format_value(u16 ioctl_image_format)
{
enum ubwcp_std_image_format format;
format = to_std_format(ioctl_image_format);
switch (format) {
case RGBA:
return HW_BUFFER_FORMAT_RGBA;
case NV12:
return HW_BUFFER_FORMAT_NV12;
case NV124R:
return HW_BUFFER_FORMAT_NV124R;
case P010:
return HW_BUFFER_FORMAT_P010;
case TP10:
return HW_BUFFER_FORMAT_TP10;
case P016:
return HW_BUFFER_FORMAT_P016;
default:
WARN(1, "Fix this!!!!!");
return 0;
}
}
/* calculate ULA buffer parms
* TBD: how do we make sure uv_start address (not the offset)
* is aligned per requirement: cache line
*/
static int ubwcp_calc_ula_params(struct ubwcp_driver *ubwcp,
struct ubwcp_buffer_attrs *attr,
size_t *ula_size,
size_t *uv_start_offset)
{
size_t size;
enum ubwcp_std_image_format format;
int planes;
int missing_plane;
u32 stride;
u32 scanlines;
u32 planar_padding;
stride = attr->stride;
scanlines = attr->scanlines;
planar_padding = attr->planar_padding;
/* convert ioctl image format to standard image format */
format = to_std_format(attr->image_format);
/* Number of "expected" planes in "the standard defined" image format */
planes = planes_in_format(format);
/* any plane missing?
* valid missing_plane values:
* 0 == no plane missing
* 1 == 1st plane missing
* 2 == 2nd plane missing
*/
missing_plane = missing_plane_from_format(attr->image_format);
DBG_BUF_ATTR("ioctl_image_format : %d, std_format: %d", attr->image_format, format);
DBG_BUF_ATTR("planes_in_format : %d", planes);
DBG_BUF_ATTR("missing_plane : %d", missing_plane);
DBG_BUF_ATTR("Planar Padding : %d", planar_padding);
if (planes == 1) {
/* uv_start beyond ULA range */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 0);
*uv_start_offset = size;
} else {
if (!missing_plane) {
/* size for both planes and padding */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 0);
size += planar_padding;
*uv_start_offset = size;
size += ubwcp_ula_size(ubwcp, format, stride, scanlines, 1);
} else {
if (missing_plane == 2) {
/* Y-only image, set uv_start beyond ULA range */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 0);
*uv_start_offset = size;
} else {
/* first plane data is not there */
size = ubwcp_ula_size(ubwcp, format, stride, scanlines, 1);
*uv_start_offset = 0; /* uv data is at the beginning */
}
}
}
//TBD: cleanup
*ula_size = size;
DBG_BUF_ATTR("Before page align: Total ULA_Size: %d (0x%x) (planes + planar padding)",
*ula_size, *ula_size);
*ula_size = UBWCP_ALIGN(size, 4096);
DBG_BUF_ATTR("After page align : Total ULA_Size: %d (0x%x) (planes + planar padding)",
*ula_size, *ula_size);
return 0;
}
/* calculate UBWCP buffer parms */
static int ubwcp_calc_ubwcp_buf_params(struct ubwcp_driver *ubwcp,
struct ubwcp_buffer_attrs *attr,
size_t *md_p0, size_t *pd_p0,
size_t *md_p1, size_t *pd_p1,
size_t *stride_tp10_b)
{
int planes;
int missing_plane;
enum ubwcp_std_image_format format;
size_t stride_tp10_p;
FENTRY();
/* convert ioctl image format to standard image format */
format = to_std_format(attr->image_format);
missing_plane = missing_plane_from_format(attr->image_format);
planes = planes_in_format(format); //pass in 0 (RGB) should return 1
DBG_BUF_ATTR("ioctl_image_format : %d, std_format: %d", attr->image_format, format);
DBG_BUF_ATTR("planes_in_format : %d", planes);
DBG_BUF_ATTR("missing_plane : %d", missing_plane);
if (!missing_plane) {
*md_p0 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
*pd_p0 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
if (planes == 2) {
*md_p1 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
*pd_p1 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
}
} else {
if (missing_plane == 1) {
*md_p0 = 0;
*pd_p0 = 0;
*md_p1 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
*pd_p1 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 1);
} else {
*md_p0 = metadata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
*pd_p0 = pixeldata_buf_sz(ubwcp, format, attr->width, attr->height, 0);
*md_p1 = 0;
*pd_p1 = 0;
}
}
if (format == TP10) {
stride_tp10_p = UBWCP_ALIGN(attr->width, 192);
*stride_tp10_b = (stride_tp10_p/3) + stride_tp10_p;
} else {
*stride_tp10_b = 0;
}
return 0;
}
/* reserve ULA address space of the given size */
static phys_addr_t ubwcp_ula_alloc(struct ubwcp_driver *ubwcp, size_t size)
{
phys_addr_t pa;
mutex_lock(&ubwcp->ula_lock);
pa = gen_pool_alloc(ubwcp->ula_pool, size);
DBG("addr: %p, size: %zx", pa, size);
mutex_unlock(&ubwcp->ula_lock);
return pa;
}
/* free ULA address space of the given address and size */
static void ubwcp_ula_free(struct ubwcp_driver *ubwcp, phys_addr_t pa, size_t size)
{
mutex_lock(&ubwcp->ula_lock);
if (!gen_pool_has_addr(ubwcp->ula_pool, pa, size)) {
ERR("Attempt to free mem not from gen_pool: pa: %p, size: %zx", pa, size);
goto err;
}
DBG("addr: %p, size: %zx", pa, size);
gen_pool_free(ubwcp->ula_pool, pa, size);
mutex_unlock(&ubwcp->ula_lock);
return;
err:
mutex_unlock(&ubwcp->ula_lock);
}
/* free up or expand current_pa and return the new pa */
static phys_addr_t ubwcp_ula_realloc(struct ubwcp_driver *ubwcp,
phys_addr_t pa,
size_t size,
size_t new_size)
{
if (size == new_size)
return pa;
if (pa)
ubwcp_ula_free(ubwcp, pa, size);
return ubwcp_ula_alloc(ubwcp, new_size);
}
/* unmap dma buf */
static void ubwcp_dma_unmap(struct ubwcp_buf *buf)
{
FENTRY();
if (buf->dma_buf && buf->attachment) {
DBG("Calling dma_buf_unmap_attachment()");
dma_buf_unmap_attachment(buf->attachment, buf->sgt, DMA_BIDIRECTIONAL);
buf->sgt = NULL;
dma_buf_detach(buf->dma_buf, buf->attachment);
buf->attachment = NULL;
}
}
/* dma map ubwcp buffer */
static int ubwcp_dma_map(struct ubwcp_buf *buf,
struct device *dev,
size_t iova_min_size,
dma_addr_t *iova)
{
int ret = 0;
struct dma_buf *dma_buf = buf->dma_buf;
struct dma_buf_attachment *attachment;
struct sg_table *sgt;
size_t dma_len;
/* Map buffer to SMMU and get IOVA */
attachment = dma_buf_attach(dma_buf, dev);
if (IS_ERR(attachment)) {
ret = PTR_ERR(attachment);
ERR("dma_buf_attach() failed: %d", ret);
goto err;
}
dma_set_max_seg_size(dev, DMA_BIT_MASK(32));
dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64));
sgt = dma_buf_map_attachment(attachment, DMA_BIDIRECTIONAL);
if (IS_ERR_OR_NULL(sgt)) {
ret = PTR_ERR(sgt);
ERR("dma_buf_map_attachment() failed: %d", ret);
goto err_detach;
}
if (sgt->nents != 1) {
ERR("nents = %d", sgt->nents);
goto err_unmap;
}
/* ensure that dma_buf is big enough for the new attrs */
dma_len = sg_dma_len(sgt->sgl);
if (dma_len < iova_min_size) {
ERR("dma len: %d is less than min ubwcp buffer size: %d",
dma_len, iova_min_size);
goto err_unmap;
}
*iova = sg_dma_address(sgt->sgl);
buf->attachment = attachment;
buf->sgt = sgt;
return ret;
err_unmap:
dma_buf_unmap_attachment(attachment, sgt, DMA_BIDIRECTIONAL);
err_detach:
dma_buf_detach(dma_buf, attachment);
err:
if (!ret)
ret = -1;
return ret;
}
static void
ubwcp_pixel_to_bytes(struct ubwcp_driver *ubwcp,
enum ubwcp_std_image_format format,
u32 width_p, u32 height_p,
u32 *width_b, u32 *height_b)
{
u16 pixel_bytes;
u16 per_pixel;
struct ubwcp_image_format_info f_info;
struct ubwcp_plane_info p_info;
f_info = ubwcp->format_info[format];
p_info = f_info.p_info[0];
pixel_bytes = p_info.pixel_bytes;
per_pixel = p_info.per_pixel;
*width_b = (width_p*pixel_bytes)/per_pixel;
*height_b = (height_p*pixel_bytes)/per_pixel;
}
static void reset_buf_attrs(struct ubwcp_buf *buf)
{
struct ubwcp_hw_meta_metadata *mmdata;
struct ubwcp_driver *ubwcp;
ubwcp = buf->ubwcp;
mmdata = &buf->mmdata;
ubwcp_dma_unmap(buf);
/* reset ula params */
if (buf->ula_size) {
ubwcp_ula_free(ubwcp, buf->ula_pa, buf->ula_size);
buf->ula_size = 0;
buf->ula_pa = 0;
}
/* reset ubwcp params */
memset(mmdata, 0, sizeof(*mmdata));
buf->buf_attr_set = false;
}
static void print_mmdata_desc(struct ubwcp_hw_meta_metadata *mmdata)
{
DBG_BUF_ATTR("");
DBG_BUF_ATTR("--------MM_DATA DESC ---------");
DBG_BUF_ATTR("uv_start_addr : 0x%08llx (cache addr) (actual: 0x%llx)",
mmdata->uv_start_addr, mmdata->uv_start_addr << 6);
DBG_BUF_ATTR("format : 0x%08x", mmdata->format);
DBG_BUF_ATTR("stride : 0x%08x (cache addr) (actual: 0x%x)",
mmdata->stride, mmdata->stride << 6);
DBG_BUF_ATTR("stride_ubwcp : 0x%08x (cache addr) (actual: 0x%zx)",
mmdata->stride_ubwcp, mmdata->stride_ubwcp << 6);
DBG_BUF_ATTR("metadata_base_y : 0x%08x (page addr) (actual: 0x%llx)",
mmdata->metadata_base_y, mmdata->metadata_base_y << 12);
DBG_BUF_ATTR("metadata_base_uv: 0x%08x (page addr) (actual: 0x%zx)",
mmdata->metadata_base_uv, mmdata->metadata_base_uv << 12);
DBG_BUF_ATTR("buffer_y_offset : 0x%08x (page addr) (actual: 0x%zx)",
mmdata->buffer_y_offset, mmdata->buffer_y_offset << 12);
DBG_BUF_ATTR("buffer_uv_offset: 0x%08x (page addr) (actual: 0x%zx)",
mmdata->buffer_uv_offset, mmdata->buffer_uv_offset << 12);
DBG_BUF_ATTR("width_height : 0x%08x (width: 0x%x height: 0x%x)",
mmdata->width_height, mmdata->width_height >> 16, mmdata->width_height & 0xFFFF);
DBG_BUF_ATTR("");
}
/* set buffer attributes:
* Failure:
* If a call to ubwcp_set_buf_attrs() fails, any attributes set from a previously
* successful ubwcp_set_buf_attrs() will be also removed. Thus,
* ubwcp_set_buf_attrs() implicitly does "unset previous attributes" and
* then "try to set these new attributes".
*
* The result of a failed call to ubwcp_set_buf_attrs() will leave the buffer
* in a linear mode, NOT with attributes from earlier successful call.
*/
int ubwcp_set_buf_attrs(struct dma_buf *dmabuf, struct ubwcp_buffer_attrs *attr)
{
int ret = 0;
size_t ula_size = 0;
size_t uv_start_offset = 0;
phys_addr_t ula_pa = 0x0;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp;
size_t metadata_p0;
size_t pixeldata_p0;
size_t metadata_p1;
size_t pixeldata_p1;
size_t iova_min_size;
size_t stride_tp10_b;
dma_addr_t iova_base;
struct ubwcp_hw_meta_metadata *mmdata;
u64 uv_start;
u32 stride_b;
u32 width_b;
u32 height_b;
enum ubwcp_std_image_format std_image_format;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
if (!attr) {
ERR("NULL attr ptr");
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("No corresponding ubwcp_buf for the passed in dma_buf");
return -EINVAL;
}
mutex_lock(&buf->lock);
if (buf->locked) {
ERR("Cannot set attr when buffer is locked");
ret = -EBUSY;
goto err;
}
ubwcp = buf->ubwcp;
mmdata = &buf->mmdata;
//TBD: now that we have single exit point for all errors,
//we can limit this call to error only?
//also see if this can be part of reset_buf_attrs()
DBG_BUF_ATTR("resetting mmap to linear");
/* remove any earlier dma buf mmap configuration */
ret = ubwcp->mmap_config_fptr(buf->dma_buf, true, 0, 0);
if (ret) {
ERR("dma_buf_mmap_config() failed: %d", ret);
goto err;
}
if (!ubwcp_buf_attrs_valid(attr)) {
ERR("Invalid buf attrs");
goto err;
}
DBG_BUF_ATTR("valid buf attrs");
if (attr->image_format == UBWCP_LINEAR) {
DBG_BUF_ATTR("Linear format requested");
/* linear format request with permanent range xlation doesn't
* make sense. need to define behavior if this happens.
* note: with perm set, desc is allocated to this buffer.
*/
//TBD: UBWCP_ASSERT(!buf->perm);
if (buf->buf_attr_set)
reset_buf_attrs(buf);
mutex_unlock(&buf->lock);
return 0;
}
std_image_format = to_std_format(attr->image_format);
if (std_image_format == STD_IMAGE_FORMAT_INVALID) {
ERR("Unable to map ioctl image format to std image format");
goto err;
}
/* Calculate uncompressed-buffer size. */
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("Calculating ula params -->");
ret = ubwcp_calc_ula_params(ubwcp, attr, &ula_size, &uv_start_offset);
if (ret) {
ERR("ubwcp_calc_ula_params() failed: %d", ret);
goto err;
}
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("Calculating ubwcp params -->");
ret = ubwcp_calc_ubwcp_buf_params(ubwcp, attr,
&metadata_p0, &pixeldata_p0,
&metadata_p1, &pixeldata_p1,
&stride_tp10_b);
if (ret) {
ERR("ubwcp_calc_buf_params() failed: %d", ret);
goto err;
}
iova_min_size = metadata_p0 + pixeldata_p0 + metadata_p1 + pixeldata_p1;
DBG_BUF_ATTR("");
DBG_BUF_ATTR("");
DBG_BUF_ATTR("------Summary ULA Calculated Params ------");
DBG_BUF_ATTR("ULA Size : %8zu (0x%8zx)", ula_size, ula_size);
DBG_BUF_ATTR("UV Start Offset : %8zu (0x%8zx)", uv_start_offset, uv_start_offset);
DBG_BUF_ATTR("------Summary UBCP Calculated Params ------");
DBG_BUF_ATTR("metadata_p0 : %8d (0x%8zx)", metadata_p0, metadata_p0);
DBG_BUF_ATTR("pixeldata_p0 : %8d (0x%8zx)", pixeldata_p0, pixeldata_p0);
DBG_BUF_ATTR("metadata_p1 : %8d (0x%8zx)", metadata_p1, metadata_p1);
DBG_BUF_ATTR("pixeldata_p1 : %8d (0x%8zx)", pixeldata_p1, pixeldata_p1);
DBG_BUF_ATTR("stride_tp10 : %8d (0x%8zx)", stride_tp10_b, stride_tp10_b);
DBG_BUF_ATTR("iova_min_size : %8d (0x%8zx)", iova_min_size, iova_min_size);
DBG_BUF_ATTR("");
if (buf->buf_attr_set) {
/* if buf attr were previously set, these must not be 0 */
/* TBD: do we need this check in production code? */
if (!buf->ula_pa) {
WARN(1, "ula_pa cannot be 0 if buf_attr_set is true!!!");
goto err;
}
if (!buf->ula_size) {
WARN(1, "ula_size cannot be 0 if buf_attr_set is true!!!");
goto err;
}
}
/* assign ULA PA with uncompressed-size range */
ula_pa = ubwcp_ula_realloc(ubwcp, buf->ula_pa, buf->ula_size, ula_size);
if (!ula_pa) {
ERR("ubwcp_ula_alloc/realloc() failed. running out of ULA PA space?");
goto err;
}
buf->ula_size = ula_size;
buf->ula_pa = ula_pa;
DBG_BUF_ATTR("Allocated ULA_PA: 0x%p of size: 0x%zx", ula_pa, ula_size);
DBG_BUF_ATTR("");
/* inform ULA-PA to dma-heap: needed for dma-heap to do CMOs later on */
DBG_BUF_ATTR("Calling mmap_config(): ULA_PA: 0x%p size: 0x%zx", ula_pa, ula_size);
ret = ubwcp->mmap_config_fptr(buf->dma_buf, false, buf->ula_pa,
buf->ula_size);
if (ret) {
ERR("dma_buf_mmap_config() failed: %d", ret);
goto err;
}
/* dma map only the first time attribute is set */
if (!buf->buf_attr_set) {
/* linear -> ubwcp. map ubwcp buffer */
ret = ubwcp_dma_map(buf, ubwcp->dev_buf_cb, iova_min_size, &iova_base);
if (ret) {
ERR("ubwcp_dma_map() failed: %d", ret);
goto err;
}
DBG_BUF_ATTR("dma_buf IOVA range: 0x%llx + min_size (0x%zx): 0x%llx",
iova_base, iova_min_size, iova_base + iova_min_size);
}
uv_start = ula_pa + uv_start_offset;
if (!IS_ALIGNED(uv_start, 64)) {
ERR("ERROR: uv_start is NOT aligned to cache line");
goto err;
}
/* Convert height and width to bytes for writing to mmdata */
if (std_image_format != TP10) {
ubwcp_pixel_to_bytes(ubwcp, std_image_format, attr->width,
attr->height, &width_b, &height_b);
} else {
/* for tp10 image compression, we need to program p010 width/height */
ubwcp_pixel_to_bytes(ubwcp, P010, attr->width,
attr->height, &width_b, &height_b);
}
stride_b = attr->stride;
/* create the mmdata descriptor */
memset(mmdata, 0, sizeof(*mmdata));
mmdata->uv_start_addr = CACHE_ADDR(uv_start);
mmdata->format = ubwcp_get_hw_image_format_value(attr->image_format);
if (std_image_format != TP10) {
mmdata->stride = CACHE_ADDR(stride_b); /* uncompressed stride */
} else {
mmdata->stride = CACHE_ADDR(stride_tp10_b); /* compressed stride */
mmdata->stride_ubwcp = CACHE_ADDR(stride_b); /* uncompressed stride */
}
mmdata->metadata_base_y = PAGE_ADDR(iova_base);
mmdata->metadata_base_uv = PAGE_ADDR(iova_base + metadata_p0 + pixeldata_p0);
mmdata->buffer_y_offset = PAGE_ADDR(metadata_p0);
mmdata->buffer_uv_offset = PAGE_ADDR(metadata_p1);
mmdata->width_height = width_b << 16 | height_b;
print_mmdata_desc(mmdata);
buf->buf_attr = *attr;
buf->buf_attr_set = true;
//TBD: UBWCP_ASSERT(!buf->perm);
mutex_unlock(&buf->lock);
return 0;
err:
reset_buf_attrs(buf);
mutex_unlock(&buf->lock);
if (!ret)
ret = -1;
return ret;
}
EXPORT_SYMBOL(ubwcp_set_buf_attrs);
/* Set buffer attributes ioctl */
static int ubwcp_set_buf_attrs_ioctl(struct ubwcp_ioctl_buffer_attrs *attr_ioctl)
{
struct dma_buf *dmabuf;
dmabuf = ubwcp_dma_buf_fd_to_dma_buf(attr_ioctl->fd);
return ubwcp_set_buf_attrs(dmabuf, &attr_ioctl->attr);
}
/* Free up the buffer descriptor */
static void ubwcp_buf_desc_free(struct ubwcp_driver *ubwcp, struct ubwcp_desc *desc)
{
int idx = desc->idx;
struct ubwcp_desc *desc_list = ubwcp->desc_list;
mutex_lock(&ubwcp->desc_lock);
desc_list[idx].idx = -1;
desc_list[idx].ptr = NULL;
DBG("freed descriptor_id: %d", idx);
mutex_unlock(&ubwcp->desc_lock);
}
/* Allocate next available buffer descriptor. */
static struct ubwcp_desc *ubwcp_buf_desc_allocate(struct ubwcp_driver *ubwcp)
{
int idx;
struct ubwcp_desc *desc_list = ubwcp->desc_list;
mutex_lock(&ubwcp->desc_lock);
for (idx = 0; idx < UBWCP_BUFFER_DESC_COUNT; idx++) {
if (desc_list[idx].idx == -1) {
desc_list[idx].idx = idx;
desc_list[idx].ptr = ubwcp->buffer_desc_base +
idx*UBWCP_BUFFER_DESC_OFFSET;
DBG("allocated descriptor_id: %d", idx);
mutex_unlock(&ubwcp->desc_lock);
return &desc_list[idx];
}
}
mutex_unlock(&ubwcp->desc_lock);
return NULL;
}
#define FLUSH_WA_SIZE 64
#define FLUSH_WA_UDELAY 89
void ubwcp_flush_cache_wa(struct device *dev, phys_addr_t paddr, size_t size)
{
phys_addr_t cline = paddr;
int num_line = size / FLUSH_WA_SIZE;
int i;
for (i = 0; i < num_line; i++) {
dma_sync_single_for_cpu(dev, cline, FLUSH_WA_SIZE, 0);
udelay(FLUSH_WA_UDELAY);
cline += FLUSH_WA_SIZE;
}
}
/**
* Lock buffer for CPU access. This prepares ubwcp hw to allow
* CPU access to the compressed buffer. It will perform
* necessary address translation configuration and cache maintenance ops
* so that CPU can safely access ubwcp buffer, if this call is
* successful.
* Allocate descriptor if not already,
* perform CMO and then enable range check
*
* @param dmabuf : ptr to the dma buf
* @param direction : direction of access
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_lock(struct dma_buf *dmabuf, enum dma_data_direction dir)
{
int ret = 0;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
if (!valid_dma_direction(dir)) {
ERR("invalid direction: %d", dir);
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf ptr not found");
return -1;
}
mutex_lock(&buf->lock);
if (!buf->buf_attr_set) {
ERR("lock() called on buffer, but attr not set");
goto err;
}
if (buf->buf_attr.image_format == UBWCP_LINEAR) {
ERR("lock() called on linear buffer");
goto err;
}
if (!buf->locked) {
DBG("first lock on buffer");
ubwcp = buf->ubwcp;
/* buf->desc could already be allocated because of perm range xlation */
if (!buf->desc) {
/* allocate a buffer descriptor */
buf->desc = ubwcp_buf_desc_allocate(buf->ubwcp);
if (!buf->desc) {
ERR("ubwcp_allocate_buf_desc() failed");
goto err;
}
memcpy(buf->desc->ptr, &buf->mmdata, sizeof(buf->mmdata));
/* Flushing of updated mmdata:
* mmdata is iocoherent and ubwcp will get it from CPU cache -
* *as long as* it has not cached that itself during previous
* access to the same descriptor.
*
* During unlock of previous use of this descriptor,
* we do hw flush, which will get rid of this mmdata from
* ubwcp cache.
*
* In addition, we also do a hw flush after enable_range_ck().
* That will also get rid of any speculative fetch of mmdata
* by the ubwcp hw. At this time, the assumption is that ubwcp
* will cache mmdata only for active descriptor. But if ubwcp
* is speculatively fetching mmdata for all descriptors
* (irrespetive of enabled or not), the flush during lock
* will be necessary to make sure ubwcp sees updated mmdata
* that we just updated
*/
/* program ULA range for this buffer */
DBG("setting range check: descriptor_id: %d, addr: %p, size: %zx",
buf->desc->idx, buf->ula_pa, buf->ula_size);
ubwcp_hw_set_range_check(ubwcp->base, buf->desc->idx, buf->ula_pa,
buf->ula_size);
}
/* enable range check */
DBG("enabling range check, descriptor_id: %d", buf->desc->idx);
mutex_lock(&ubwcp->hw_range_ck_lock);
ubwcp_hw_enable_range_check(ubwcp->base, buf->desc->idx);
mutex_unlock(&ubwcp->hw_range_ck_lock);
/* Flush/invalidate UBWCP caches */
/* Why: cpu could have done a speculative fetch before
* enable_range_ck() and ubwcp in process of returning "default" data
* we don't want that stashing of default data pending.
* we force completion of that and then we also cpu invalidate which
* will get rid of that line.
*/
ubwcp_flush(ubwcp);
/* Flush/invalidate ULA PA from CPU caches
* TBD: if (dir == READ or BIDIRECTION) //NOT for write
* -- Confirm with Chris if this can be skipped for write
*/
dma_sync_single_for_cpu(ubwcp->dev, buf->ula_pa, buf->ula_size, dir);
buf->lock_dir = dir;
buf->locked = true;
} else {
DBG("buf already locked");
/* TBD: what if new buffer direction is not same as previous?
* must update the dir.
*/
}
buf->lock_count++;
DBG("new lock_count: %d", buf->lock_count);
mutex_unlock(&buf->lock);
return ret;
err:
mutex_unlock(&buf->lock);
if (!ret)
ret = -1;
return ret;
}
/* This can be called as a result of external unlock() call or
* internally if free() is called without unlock().
* It can fail only for 1 reason: ubwcp_flush fails. currently we are ignoring the flush failure
* because it is hardware failure and no recovery path is defined.
*/
static int unlock_internal(struct ubwcp_buf *buf, enum dma_data_direction dir, bool free_buffer)
{
struct ubwcp_driver *ubwcp;
DBG("current lock_count: %d", buf->lock_count);
if (free_buffer) {
buf->lock_count = 0;
DBG("Forced lock_count: %d", buf->lock_count);
} else {
buf->lock_count--;
DBG("new lock_count: %d", buf->lock_count);
if (buf->lock_count) {
DBG("more than 1 lock on buffer. waiting until last unlock");
return 0;
}
}
ubwcp = buf->ubwcp;
/* Flush/invalidate ULA PA from CPU caches */
//TBD: if (dir == WRITE or BIDIRECTION)
//dma_sync_single_for_device(ubwcp->dev, buf->ula_pa, buf->ula_size, dir);
/* TODO: Use flush work around, remove when no longer needed */
ubwcp_flush_cache_wa(ubwcp->dev, buf->ula_pa, buf->ula_size);
/* TBD: confirm with HW if this should be done before or
* after disable_range_ck()
*/
ubwcp_flush(ubwcp);
/* disable range check */
DBG("disabling range check");
mutex_lock(&ubwcp->hw_range_ck_lock);
ubwcp_hw_disable_range_check(ubwcp->base, buf->desc->idx);
mutex_unlock(&ubwcp->hw_range_ck_lock);
/* release descriptor if perm range xlation is not set */
if (!buf->perm) {
ubwcp_buf_desc_free(buf->ubwcp, buf->desc);
buf->desc = NULL;
}
buf->locked = false;
return 0;
}
/**
* Unlock buffer from CPU access. This prepares ubwcp hw to
* safely allow for device access to the compressed buffer including any
* necessary cache maintenance ops. It may also free up certain ubwcp
* resources that could result in error when accessed by CPU in
* unlocked state.
*
* @param dmabuf : ptr to the dma buf
* @param direction : direction of access
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_unlock(struct dma_buf *dmabuf, enum dma_data_direction dir)
{
struct ubwcp_buf *buf;
int ret;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
if (!valid_dma_direction(dir)) {
ERR("invalid direction: %d", dir);
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf not found");
return -1;
}
if (!buf->locked) {
ERR("unlock() called on buffer which not in locked state");
return -1;
}
error_print_count = 0;
mutex_lock(&buf->lock);
ret = unlock_internal(buf, dir, false);
mutex_unlock(&buf->lock);
return ret;
}
/* Return buffer attributes for the given buffer */
int ubwcp_get_buf_attrs(struct dma_buf *dmabuf, struct ubwcp_buffer_attrs *attr)
{
int ret = 0;
struct ubwcp_buf *buf;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
if (!attr) {
ERR("NULL attr ptr");
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf ptr not found");
return -1;
}
mutex_lock(&buf->lock);
if (!buf->buf_attr_set) {
ERR("buffer attributes not set");
mutex_unlock(&buf->lock);
return -1;
}
*attr = buf->buf_attr;
mutex_unlock(&buf->lock);
return ret;
}
EXPORT_SYMBOL(ubwcp_get_buf_attrs);
/* Set permanent range translation.
* enable: Descriptor will be reserved for this buffer until disabled,
* making lock/unlock quicker.
* disable: Descriptor will not be reserved for this buffer. Instead,
* descriptor will be allocated and released for each lock/unlock.
* If currently allocated but not being used, descriptor will be
* released.
*/
int ubwcp_set_perm_range_translation(struct dma_buf *dmabuf, bool enable)
{
int ret = 0;
struct ubwcp_buf *buf;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf not found");
return -1;
}
/* not implemented */
if (1) {
ERR("API not implemented yet");
return -1;
}
/* TBD: make sure we acquire buf lock while setting this so there is
* no race condition with attr_set/lock/unlock
*/
buf->perm = enable;
/* if "disable" and we have allocated a desc and it is not being
* used currently, release it
*/
if (!enable && buf->desc && !buf->locked) {
ubwcp_buf_desc_free(buf->ubwcp, buf->desc);
buf->desc = NULL;
/* Flush/invalidate UBWCP caches */
//TBD: need to do anything?
}
return ret;
}
EXPORT_SYMBOL(ubwcp_set_perm_range_translation);
/**
* Free up ubwcp resources for this buffer.
*
* @param dmabuf : ptr to the dma buf
*
* @return int : 0 on success, otherwise error code
*/
static int ubwcp_free_buffer(struct dma_buf *dmabuf)
{
int ret = 0;
struct ubwcp_buf *buf;
struct ubwcp_driver *ubwcp;
FENTRY();
if (!dmabuf) {
ERR("NULL dmabuf input ptr");
return -EINVAL;
}
buf = dma_buf_to_ubwcp_buf(dmabuf);
if (!buf) {
ERR("ubwcp_buf ptr not found");
return -1;
}
mutex_lock(&buf->lock);
ubwcp = buf->ubwcp;
if (buf->locked) {
DBG("free() called without unlock. unlock()'ing first...");
ret = unlock_internal(buf, buf->lock_dir, true);
if (ret)
ERR("unlock_internal(): failed : %d, but continuing free()", ret);
}
/* if we are still holding a desc, release it. this can happen only if perm == true */
if (buf->desc) {
WARN_ON(!buf->perm); /* TBD: change to BUG() later...*/
ubwcp_buf_desc_free(buf->ubwcp, buf->desc);
buf->desc = NULL;
}
if (buf->buf_attr_set)
reset_buf_attrs(buf);
mutex_lock(&ubwcp->buf_table_lock);
hash_del(&buf->hnode);
kfree(buf);
/* If this is the last buffer being freed, power off ubwcp */
if (hash_empty(ubwcp->buf_table)) {
DBG("last buffer: ~~~~~~~~~~~");
/* TBD: If everything is working fine, ubwcp_flush() should not
* be needed here. Each buffer free logic should be taking
* care of flush. Just a note for now. Might need to add the
* flush here for debug purpose.
*/
DBG("Calling remove_memory() for ULA PA pool");
ret = remove_memory(ubwcp->ula_pool_base, ubwcp->ula_pool_size);
if (ret) {
ERR("remove_memory failed st:0x%lx sz:0x%lx err: %d",
ubwcp->ula_pool_base,
ubwcp->ula_pool_size, ret);
goto err_remove_mem;
} else {
DBG("DONE: calling remove_memory() for ULA PA pool");
}
DBG("Calling power OFF ...");
ubwcp_power(ubwcp, false);
}
mutex_unlock(&ubwcp->buf_table_lock);
return ret;
err_remove_mem:
mutex_unlock(&ubwcp->buf_table_lock);
if (!ret)
ret = -1;
DBG("returning error: %d", ret);
return ret;
}
/* file open: TBD: increment ref count? */
static int ubwcp_open(struct inode *i, struct file *f)
{
return 0;
}
/* file open: TBD: decrement ref count? */
static int ubwcp_close(struct inode *i, struct file *f)
{
return 0;
}
/* handle IOCTLs */
static long ubwcp_ioctl(struct file *file, unsigned int ioctl_num, unsigned long ioctl_param)
{
struct ubwcp_ioctl_buffer_attrs buf_attr_ioctl;
struct ubwcp_ioctl_hw_version hw_ver;
switch (ioctl_num) {
case UBWCP_IOCTL_SET_BUF_ATTR:
if (copy_from_user(&buf_attr_ioctl, (const void __user *) ioctl_param,
sizeof(buf_attr_ioctl))) {
ERR("ERROR: copy_from_user() failed");
return -EFAULT;
}
DBG("IOCTL : SET_BUF_ATTR: fd = %d", buf_attr_ioctl.fd);
return ubwcp_set_buf_attrs_ioctl(&buf_attr_ioctl);
case UBWCP_IOCTL_GET_HW_VER:
DBG("IOCTL : GET_HW_VER");
ubwcp_get_hw_version(&hw_ver);
if (copy_to_user((void __user *)ioctl_param, &hw_ver, sizeof(hw_ver))) {
ERR("ERROR: copy_to_user() failed");
return -EFAULT;
}
break;
default:
ERR("Invalid ioctl_num = %d", ioctl_num);
return -EINVAL;
}
return 0;
}
static const struct file_operations ubwcp_fops = {
.owner = THIS_MODULE,
.open = ubwcp_open,
.release = ubwcp_close,
.unlocked_ioctl = ubwcp_ioctl,
};
static int ubwcp_debugfs_init(struct ubwcp_driver *ubwcp)
{
struct dentry *debugfs_root;
debugfs_root = debugfs_create_dir("ubwcp", NULL);
if (!debugfs_root) {
pr_warn("Failed to create debugfs for ubwcp\n");
return -1;
}
debugfs_create_u32("debug_trace_enable", 0644, debugfs_root, &ubwcp_debug_trace_enable);
ubwcp->debugfs_root = debugfs_root;
return 0;
}
static void ubwcp_debugfs_deinit(struct ubwcp_driver *ubwcp)
{
debugfs_remove_recursive(ubwcp->debugfs_root);
}
/* ubwcp char device initialization */
static int ubwcp_cdev_init(struct ubwcp_driver *ubwcp)
{
int ret;
dev_t devt;
struct class *dev_class;
struct device *dev_sys;
/* allocate major device number (/proc/devices -> major_num ubwcp) */
ret = alloc_chrdev_region(&devt, 0, UBWCP_NUM_DEVICES, UBWCP_DEVICE_NAME);
if (ret) {
ERR("alloc_chrdev_region() failed: %d", ret);
return ret;
}
/* create device class (/sys/class/ubwcp_class) */
dev_class = class_create(THIS_MODULE, "ubwcp_class");
if (IS_ERR(dev_class)) {
ERR("class_create() failed");
return -1;
}
/* Create device and register with sysfs
* (/sys/class/ubwcp_class/ubwcp/... -> dev/power/subsystem/uevent)
*/
dev_sys = device_create(dev_class, NULL, devt, NULL,
UBWCP_DEVICE_NAME);
if (IS_ERR(dev_sys)) {
ERR("device_create() failed");
return -1;
}
/* register file operations and get cdev */
cdev_init(&ubwcp->cdev, &ubwcp_fops);
/* associate cdev and device major/minor with file system
* can do file ops on /dev/ubwcp after this
*/
ret = cdev_add(&ubwcp->cdev, devt, 1);
if (ret) {
ERR("cdev_add() failed");
return -1;
}
ubwcp->devt = devt;
ubwcp->dev_class = dev_class;
ubwcp->dev_sys = dev_sys;
return 0;
}
static void ubwcp_cdev_deinit(struct ubwcp_driver *ubwcp)
{
device_destroy(ubwcp->dev_class, ubwcp->devt);
class_destroy(ubwcp->dev_class);
cdev_del(&ubwcp->cdev);
unregister_chrdev_region(ubwcp->devt, UBWCP_NUM_DEVICES);
}
#define ERR_PRINT_COUNT_MAX 21
/* TBD: use proper rate limit for debug prints */
irqreturn_t ubwcp_irq_handler(int irq, void *ptr)
{
struct ubwcp_driver *ubwcp;
void __iomem *base;
u64 src;
error_print_count++;
ubwcp = (struct ubwcp_driver *) ptr;
base = ubwcp->base;
if (irq == ubwcp->irq_range_ck_rd) {
if (error_print_count < ERR_PRINT_COUNT_MAX) {
src = ubwcp_hw_interrupt_src_address(base, 0);
ERR("check range read error: src: 0x%llx", src << 6);
}
ubwcp_hw_interrupt_clear(ubwcp->base, 0);
} else if (irq == ubwcp->irq_range_ck_wr) {
if (error_print_count < ERR_PRINT_COUNT_MAX) {
src = ubwcp_hw_interrupt_src_address(base, 1);
ERR("check range write error: src: 0x%llx", src << 6);
}
ubwcp_hw_interrupt_clear(ubwcp->base, 1);
} else if (irq == ubwcp->irq_encode) {
if (error_print_count < ERR_PRINT_COUNT_MAX) {
src = ubwcp_hw_interrupt_src_address(base, 3);
ERR("encode error: src: 0x%llx", src << 6);
}
ubwcp_hw_interrupt_clear(ubwcp->base, 3); //TBD: encode is bit-3 instead of bit-2
} else if (irq == ubwcp->irq_decode) {
if (error_print_count < ERR_PRINT_COUNT_MAX) {
src = ubwcp_hw_interrupt_src_address(base, 2);
ERR("decode error: src: 0x%llx", src << 6);
}
ubwcp_hw_interrupt_clear(ubwcp->base, 2); //TBD: decode is bit-2 instead of bit-3
} else {
ERR("unknown irq: %d", irq);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static int ubwcp_interrupt_register(struct platform_device *pdev, struct ubwcp_driver *ubwcp)
{
int ret = 0;
struct device *dev = &pdev->dev;
FENTRY();
ubwcp->irq_range_ck_rd = platform_get_irq(pdev, 0);
if (ubwcp->irq_range_ck_rd < 0)
return ubwcp->irq_range_ck_rd;
ubwcp->irq_range_ck_wr = platform_get_irq(pdev, 1);
if (ubwcp->irq_range_ck_wr < 0)
return ubwcp->irq_range_ck_wr;
ubwcp->irq_encode = platform_get_irq(pdev, 2);
if (ubwcp->irq_encode < 0)
return ubwcp->irq_encode;
ubwcp->irq_decode = platform_get_irq(pdev, 3);
if (ubwcp->irq_decode < 0)
return ubwcp->irq_decode;
DBG("got irqs: %d %d %d %d", ubwcp->irq_range_ck_rd,
ubwcp->irq_range_ck_wr,
ubwcp->irq_encode,
ubwcp->irq_decode);
ret = devm_request_irq(dev, ubwcp->irq_range_ck_rd, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_range_ck_rd, ret);
return ret;
}
ret = devm_request_irq(dev, ubwcp->irq_range_ck_wr, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_range_ck_wr, ret);
return ret;
}
ret = devm_request_irq(dev, ubwcp->irq_encode, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_encode, ret);
return ret;
}
ret = devm_request_irq(dev, ubwcp->irq_decode, ubwcp_irq_handler, 0, "ubwcp", ubwcp);
if (ret) {
ERR("request_irq() failed. irq: %d ret: %d",
ubwcp->irq_decode, ret);
return ret;
}
return ret;
}
/* ubwcp device probe */
static int qcom_ubwcp_probe(struct platform_device *pdev)
{
int ret = 0;
struct ubwcp_driver *ubwcp;
struct device *ubwcp_dev = &pdev->dev;
FENTRY();
ubwcp = devm_kzalloc(ubwcp_dev, sizeof(*ubwcp), GFP_KERNEL);
if (!ubwcp) {
ERR("devm_kzalloc() failed");
return -ENOMEM;
}
ubwcp->dev = &pdev->dev;
ret = dma_set_mask_and_coherent(ubwcp->dev, DMA_BIT_MASK(64));
#ifdef UBWCP_USE_SMC
{
struct resource res;
of_address_to_resource(ubwcp_dev->of_node, 0, &res);
ubwcp->base = (void __iomem *) res.start;
DBG("Using SMC calls. base: %p", ubwcp->base);
}
#else
ubwcp->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ubwcp->base)) {
ERR("devm ioremap() failed: %d", PTR_ERR(ubwcp->base));
return PTR_ERR(ubwcp->base);
}
DBG("ubwcp->base: %p", ubwcp->base);
#endif
ret = of_property_read_u64_index(ubwcp_dev->of_node, "ula_range", 0, &ubwcp->ula_pool_base);
if (ret) {
ERR("failed reading ula_range (base): %d", ret);
return ret;
}
DBG("ubwcp: ula_range: base = 0x%lx", ubwcp->ula_pool_base);
ret = of_property_read_u64_index(ubwcp_dev->of_node, "ula_range", 1, &ubwcp->ula_pool_size);
if (ret) {
ERR("failed reading ula_range (size): %d", ret);
return ret;
}
DBG("ubwcp: ula_range: size = 0x%lx", ubwcp->ula_pool_size);
/*TBD: remove later. reducing size for quick testing...*/
ubwcp->ula_pool_size = 0x20000000; //500MB instead of 8GB
if (ubwcp_interrupt_register(pdev, ubwcp))
return -1;
/* Regulator */
ubwcp->vdd = devm_regulator_get(ubwcp_dev, "vdd");
if (IS_ERR(ubwcp->vdd)) {
ret = PTR_ERR(ubwcp->vdd);
ERR("devm_regulator_get() failed: %d", ret);
return ret;
}
mutex_init(&ubwcp->desc_lock);
mutex_init(&ubwcp->buf_table_lock);
mutex_init(&ubwcp->ula_lock);
mutex_init(&ubwcp->ubwcp_flush_lock);
mutex_init(&ubwcp->hw_range_ck_lock);
if (ubwcp_power(ubwcp, true))
return -1;
if (ubwcp_cdev_init(ubwcp))
return -1;
if (ubwcp_debugfs_init(ubwcp))
return -1;
/* create ULA pool */
ubwcp->ula_pool = gen_pool_create(12, -1);
if (!ubwcp->ula_pool) {
ERR("failed gen_pool_create()");
ret = -1;
goto err_pool_create;
}
ret = gen_pool_add(ubwcp->ula_pool, ubwcp->ula_pool_base, ubwcp->ula_pool_size, -1);
if (ret) {
ERR("failed gen_pool_add(): %d", ret);
ret = -1;
goto err_pool_add;
}
/* register the default config mmap function. */
ubwcp->mmap_config_fptr = msm_ubwcp_dma_buf_configure_mmap;
hash_init(ubwcp->buf_table);
ubwcp_buf_desc_list_init(ubwcp);
image_format_init(ubwcp);
/* one time hw init */
ubwcp_hw_one_time_init(ubwcp->base);
ubwcp_hw_version(ubwcp->base, &ubwcp->hw_ver_major, &ubwcp->hw_ver_minor);
DBG("read version: major %d, minor %d",
ubwcp->hw_ver_major, ubwcp->hw_ver_minor);
if (ubwcp->hw_ver_major == 0) {
ERR("Failed to read HW version");
ret = -1;
goto err_pool_add;
}
/* set pdev->dev->driver_data = ubwcp */
platform_set_drvdata(pdev, ubwcp);
me = ubwcp;
/* enable all 4 interrupts */
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, true);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, true);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, true);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, true);
/* Turn OFF until buffers are allocated */
if (ubwcp_power(ubwcp, false)) {
ret = -1;
goto err_power_off;
}
ret = msm_ubwcp_set_ops(ubwcp_init_buffer, ubwcp_free_buffer, ubwcp_lock, ubwcp_unlock);
if (ret) {
ERR("msm_ubwcp_set_ops() failed: %d", ret);
goto err_power_off;
} else {
DBG("msm_ubwcp_set_ops(): success"); }
return ret;
err_power_off:
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, false);
err_pool_add:
gen_pool_destroy(ubwcp->ula_pool);
err_pool_create:
ubwcp_cdev_deinit(ubwcp);
return ret;
}
/* buffer context bank device probe */
static int ubwcp_probe_cb_buf(struct platform_device *pdev)
{
struct ubwcp_driver *ubwcp;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
/* save the buffer cb device */
ubwcp->dev_buf_cb = &pdev->dev;
return 0;
}
/* descriptor context bank device probe */
static int ubwcp_probe_cb_desc(struct platform_device *pdev)
{
int ret = 0;
struct ubwcp_driver *ubwcp;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
ubwcp->buffer_desc_size = UBWCP_BUFFER_DESC_OFFSET *
UBWCP_BUFFER_DESC_COUNT;
ubwcp->dev_desc_cb = &pdev->dev;
dma_set_max_seg_size(ubwcp->dev_desc_cb, DMA_BIT_MASK(32));
dma_set_seg_boundary(ubwcp->dev_desc_cb, (unsigned long)DMA_BIT_MASK(64));
/* Allocate buffer descriptors. UBWCP is iocoherent device.
* Thus we don't need to flush after updates to buffer descriptors.
*/
ubwcp->buffer_desc_base = dma_alloc_coherent(ubwcp->dev_desc_cb,
ubwcp->buffer_desc_size,
&ubwcp->buffer_desc_dma_handle,
GFP_KERNEL);
if (!ubwcp->buffer_desc_base) {
ERR("failed to allocate desc buffer");
return -ENOMEM;
}
DBG("desc_base = %p size = %zu", ubwcp->buffer_desc_base,
ubwcp->buffer_desc_size);
//TBD:
ubwcp_power(ubwcp, true);
ubwcp_hw_set_buf_desc(ubwcp->base, (u64) ubwcp->buffer_desc_dma_handle,
UBWCP_BUFFER_DESC_OFFSET);
ubwcp_power(ubwcp, false);
return ret;
}
/* buffer context bank device remove */
static int ubwcp_remove_cb_buf(struct platform_device *pdev)
{
struct ubwcp_driver *ubwcp;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
/* remove buf_cb reference */
ubwcp->dev_buf_cb = NULL;
return 0;
}
/* descriptor context bank device remove */
static int ubwcp_remove_cb_desc(struct platform_device *pdev)
{
struct ubwcp_driver *ubwcp;
FENTRY();
ubwcp = dev_get_drvdata(pdev->dev.parent);
if (!ubwcp) {
ERR("failed to get ubwcp ptr");
return -EINVAL;
}
if (!ubwcp->dev_desc_cb) {
ERR("ubwcp->dev_desc_cb == NULL");
return -1;
}
ubwcp_power(ubwcp, true);
ubwcp_hw_set_buf_desc(ubwcp->base, 0x0, 0x0);
ubwcp_power(ubwcp, false);
dma_free_coherent(ubwcp->dev_desc_cb,
ubwcp->buffer_desc_size,
ubwcp->buffer_desc_base,
ubwcp->buffer_desc_dma_handle);
ubwcp->buffer_desc_base = NULL;
ubwcp->buffer_desc_dma_handle = 0;
return 0;
}
/* ubwcp device remove */
static int qcom_ubwcp_remove(struct platform_device *pdev)
{
size_t avail;
size_t psize;
struct ubwcp_driver *ubwcp;
FENTRY();
/* get pdev->dev->driver_data = ubwcp */
ubwcp = platform_get_drvdata(pdev);
if (!ubwcp) {
ERR("ubwcp == NULL");
return -1;
}
ubwcp_power(ubwcp, true);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_READ_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_WRITE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_ENCODE_ERROR, false);
ubwcp_hw_interrupt_enable(ubwcp->base, INTERRUPT_DECODE_ERROR, false);
ubwcp_power(ubwcp, false);
/* before destroying, make sure pool is empty. otherwise pool_destroy() panics.
* TBD: remove this check for production code and let it panic
*/
avail = gen_pool_avail(ubwcp->ula_pool);
psize = gen_pool_size(ubwcp->ula_pool);
if (psize != avail) {
ERR("gen_pool is not empty! avail: %zx size: %zx", avail, psize);
ERR("skipping pool destroy....cause it will PANIC. Fix this!!!!");
WARN(1, "Fix this!");
} else {
gen_pool_destroy(ubwcp->ula_pool);
}
ubwcp_debugfs_deinit(ubwcp);
ubwcp_cdev_deinit(ubwcp);
return 0;
}
/* top level ubwcp device probe function */
static int ubwcp_probe(struct platform_device *pdev)
{
const char *compatible = "";
FENTRY();
if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp"))
return qcom_ubwcp_probe(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-desc"))
return ubwcp_probe_cb_desc(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-buf"))
return ubwcp_probe_cb_buf(pdev);
of_property_read_string(pdev->dev.of_node, "compatible", &compatible);
ERR("unknown device: %s", compatible);
WARN_ON(1);
return -EINVAL;
}
/* top level ubwcp device remove function */
static int ubwcp_remove(struct platform_device *pdev)
{
const char *compatible = "";
FENTRY();
/* TBD: what if buffers are still allocated? locked? etc.
* also should turn off power?
*/
if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp"))
return qcom_ubwcp_remove(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-desc"))
return ubwcp_remove_cb_desc(pdev);
else if (of_device_is_compatible(pdev->dev.of_node, "qcom,ubwcp-context-bank-buf"))
return ubwcp_remove_cb_buf(pdev);
of_property_read_string(pdev->dev.of_node, "compatible", &compatible);
ERR("unknown device: %s", compatible);
WARN_ON(1);
return -EINVAL;
}
static const struct of_device_id ubwcp_dt_match[] = {
{.compatible = "qcom,ubwcp"},
{.compatible = "qcom,ubwcp-context-bank-desc"},
{.compatible = "qcom,ubwcp-context-bank-buf"},
{}
};
struct platform_driver ubwcp_platform_driver = {
.probe = ubwcp_probe,
.remove = ubwcp_remove,
.driver = {
.name = "qcom,ubwcp",
.of_match_table = ubwcp_dt_match,
},
};
int ubwcp_init(void)
{
int ret = 0;
DBG("+++++++++++");
ret = platform_driver_register(&ubwcp_platform_driver);
if (ret)
ERR("platform_driver_register() failed: %d", ret);
return ret;
}
void ubwcp_exit(void)
{
platform_driver_unregister(&ubwcp_platform_driver);
DBG("-----------");
}
module_init(ubwcp_init);
module_exit(ubwcp_exit);
MODULE_LICENSE("GPL");