/* SPDX-License-Identifier: GPL-2.0-only * * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved. */ #include "msm_cvp.h" #include "cvp_power.h" static inline int find_max(unsigned long *array, unsigned int num) { int i, max = 0; for (i = 0; i < num; i++) max = array[i] > max ? array[i] : max; return max; } static bool is_subblock_profile_existed(struct msm_cvp_inst *inst) { return (inst->prop.cycles[HFI_HW_OD] || inst->prop.cycles[HFI_HW_MPU] || inst->prop.cycles[HFI_HW_FDU] || inst->prop.cycles[HFI_HW_ICA] || inst->prop.cycles[HFI_HW_VADL] || inst->prop.cycles[HFI_HW_TOF] || inst->prop.cycles[HFI_HW_RGE] || inst->prop.cycles[HFI_HW_XRA] || inst->prop.cycles[HFI_HW_LSR]); } static char hw_names[HFI_MAX_HW_THREADS][8] = {{"FDU"}, {"MPU"}, {"OD"}, {"ICA"}, {"VADL"}, {"TOF"}, {"RGE"}, {"XRA"}, {"LSR"}}; static void aggregate_power_update(struct msm_cvp_core *core, struct cvp_power_level *nrt_pwr, struct cvp_power_level *rt_pwr, unsigned int max_clk_rate) { struct msm_cvp_inst *inst; int i, j; unsigned long blocks_sum[2][HFI_MAX_HW_THREADS] = {0}; unsigned long fw_sum[2] = {0}, max_cycle[2] = {0}, op_max_cycle[2] = {0}; unsigned long op_blocks_max[2][HFI_MAX_HW_THREADS] = {0}; unsigned long op_fw_max[2] = {0}, bw_sum[2] = {0}, op_bw_max[2] = {0}; list_for_each_entry(inst, &core->instances, list) { if (inst->state == MSM_CVP_CORE_INVALID || inst->state == MSM_CVP_CORE_UNINIT || !is_subblock_profile_existed(inst)) continue; if (inst->prop.priority <= CVP_RT_PRIO_THRESHOLD) { /* Non-realtime session use index 0 */ i = 0; } else { i = 1; } for (j = 0; j < HFI_MAX_HW_THREADS; j++) if (inst->prop.cycles[j]) dprintk(CVP_PWR, "pwrUpdate %s %u\n", hw_names[j], inst->prop.cycles[j]); for (j = 0; j < HFI_MAX_HW_THREADS; j++) if (inst->prop.op_cycles[j]) dprintk(CVP_PWR, "pwrUpdate_OP %s %u\n", hw_names[j], inst->prop.op_cycles[j]); dprintk(CVP_PWR, " fw %u fw_o %u\n", inst->prop.fw_cycles, inst->prop.fw_op_cycles); for (j = 0; j < HFI_MAX_HW_THREADS; j++) blocks_sum[i][j] += inst->prop.cycles[j]; fw_sum[i] += inst->prop.fw_cycles; for (j = 0; j < HFI_MAX_HW_THREADS; j++) op_blocks_max[i][j] = (op_blocks_max[i][j] >= inst->prop.op_cycles[j]) ? op_blocks_max[i][j] : inst->prop.op_cycles[j]; op_fw_max[i] = (op_fw_max[i] >= inst->prop.fw_op_cycles) ? op_fw_max[i] : inst->prop.fw_op_cycles; bw_sum[i] += inst->prop.ddr_bw; op_bw_max[i] = (op_bw_max[i] >= inst->prop.ddr_op_bw) ? op_bw_max[i] : inst->prop.ddr_op_bw; for (j = 0; j < HFI_MAX_HW_THREADS; j++) { if (inst->prop.fps[j]) dprintk(CVP_PWR, "fps %s %d ", hw_names[j], inst->prop.fps[j]); } } for (i = 0; i < 2; i++) { max_cycle[i] = find_max(&blocks_sum[i][0], HFI_MAX_HW_THREADS); op_max_cycle[i] = find_max(&op_blocks_max[i][0], HFI_MAX_HW_THREADS); op_max_cycle[i] = (op_max_cycle[i] > max_clk_rate) ? max_clk_rate : op_max_cycle[i]; bw_sum[i] = (bw_sum[i] >= op_bw_max[i]) ? bw_sum[i] : op_bw_max[i]; } nrt_pwr->core_sum += max_cycle[0]; nrt_pwr->op_core_sum = (nrt_pwr->op_core_sum >= op_max_cycle[0]) ? nrt_pwr->op_core_sum : op_max_cycle[0]; nrt_pwr->bw_sum += bw_sum[0]; rt_pwr->core_sum += max_cycle[1]; rt_pwr->op_core_sum = (rt_pwr->op_core_sum >= op_max_cycle[1]) ? rt_pwr->op_core_sum : op_max_cycle[1]; rt_pwr->bw_sum += bw_sum[1]; } /** * adjust_bw_freqs(): calculate CVP clock freq and bw required to sustain * required use case. * Bandwidth vote will be best-effort, not returning error if the request * b/w exceeds max limit. * Clock vote from non-realtime sessions will be best effort, not returning * error if the aggreated session clock request exceeds max limit. * Clock vote from realtime session will be hard request. If aggregated * session clock request exceeds max limit, the function will return * error. * * Ensure caller acquires clk_lock! */ static int adjust_bw_freqs(unsigned int max_bw, unsigned int min_bw) { struct msm_cvp_core *core; struct iris_hfi_device *hdev; struct allowed_clock_rates_table *tbl = NULL; unsigned int tbl_size; unsigned int cvp_min_rate, cvp_max_rate; struct cvp_power_level rt_pwr = {0}, nrt_pwr = {0}; unsigned long tmp, core_sum, op_core_sum, bw_sum; int i; core = cvp_driver->cvp_core; hdev = core->dev_ops->hfi_device_data; tbl = core->resources.allowed_clks_tbl; tbl_size = core->resources.allowed_clks_tbl_size; cvp_min_rate = tbl[0].clock_rate; cvp_max_rate = tbl[tbl_size - 1].clock_rate; aggregate_power_update(core, &nrt_pwr, &rt_pwr, cvp_max_rate); dprintk(CVP_PWR, "PwrUpdate nrt %u %u rt %u %u\n", nrt_pwr.core_sum, nrt_pwr.op_core_sum, rt_pwr.core_sum, rt_pwr.op_core_sum); if (rt_pwr.core_sum > cvp_max_rate) { dprintk(CVP_WARN, "%s clk vote out of range %lld\n", __func__, rt_pwr.core_sum); return -ENOTSUPP; } core_sum = rt_pwr.core_sum + nrt_pwr.core_sum; op_core_sum = (rt_pwr.op_core_sum >= nrt_pwr.op_core_sum) ? rt_pwr.op_core_sum : nrt_pwr.op_core_sum; core_sum = (core_sum >= op_core_sum) ? core_sum : op_core_sum; if (core_sum > cvp_max_rate) { core_sum = cvp_max_rate; } else if (core_sum <= cvp_min_rate) { core_sum = cvp_min_rate; } else { for (i = 1; i < tbl_size; i++) if (core_sum <= tbl[i].clock_rate) break; core_sum = tbl[i].clock_rate; } bw_sum = rt_pwr.bw_sum + nrt_pwr.bw_sum; bw_sum = bw_sum >> 10; bw_sum = (bw_sum > max_bw) ? max_bw : bw_sum; bw_sum = (bw_sum < min_bw) ? min_bw : bw_sum; dprintk(CVP_PWR, "%s %lld %lld\n", __func__, core_sum, bw_sum); tmp = core->curr_freq; core->curr_freq = core_sum; core->orig_core_sum = tmp; hdev->clk_freq = core->curr_freq; core->bw_sum = bw_sum; return 0; } int msm_cvp_update_power(struct msm_cvp_inst *inst) { int rc = 0; struct msm_cvp_core *core; struct msm_cvp_inst *s; struct bus_info *bus = NULL; struct clock_set *clocks; struct clock_info *cl; int bus_count = 0; unsigned int max_bw = 0, min_bw = 0; if (!inst) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } s = cvp_get_inst_validate(inst->core, inst); if (!s) return -ECONNRESET; core = inst->core; if (!core || core->state == CVP_CORE_UNINIT) { rc = -ECONNRESET; goto adjust_exit; } clocks = &core->resources.clock_set; cl = &clocks->clock_tbl[clocks->count - 1]; if (!cl->has_scaling) { dprintk(CVP_ERR, "Cannot scale CVP clock\n"); rc = -EINVAL; goto adjust_exit; } for (bus_count = 0; bus_count < core->resources.bus_set.count; bus_count++) { if (!strcmp(core->resources.bus_set.bus_tbl[bus_count].name, "cvp-ddr")) { bus = &core->resources.bus_set.bus_tbl[bus_count]; max_bw = bus->range[1]; min_bw = max_bw/10; } } if (!bus) { dprintk(CVP_ERR, "bus node is NULL for cvp-ddr\n"); rc = -EINVAL; goto adjust_exit; } mutex_lock(&core->clk_lock); rc = adjust_bw_freqs(max_bw, min_bw); mutex_unlock(&core->clk_lock); if (rc) goto adjust_exit; rc = msm_cvp_set_clocks(core); if (rc) { dprintk(CVP_ERR, "Failed to set clock rate %u %s: %d %s\n", core->curr_freq, cl->name, rc, __func__); core->curr_freq = core->orig_core_sum; goto adjust_exit; } rc = msm_cvp_set_bw(core, bus, core->bw_sum); adjust_exit: cvp_put_inst(s); return rc; } unsigned int msm_cvp_get_hw_aggregate_cycles(enum hfi_hw_thread hwblk) { struct msm_cvp_core *core; struct msm_cvp_inst *inst; unsigned long cycles_sum = 0; core = cvp_driver->cvp_core; if (!core) { dprintk(CVP_ERR, "%s: invalid core\n", __func__); return -EINVAL; } mutex_lock(&core->clk_lock); list_for_each_entry(inst, &core->instances, list) { if (inst->state == MSM_CVP_CORE_INVALID || inst->state == MSM_CVP_CORE_UNINIT || !is_subblock_profile_existed(inst)) continue; switch (hwblk) { case HFI_HW_FDU: { cycles_sum += inst->prop.cycles[HFI_HW_FDU]; break; } case HFI_HW_ICA: { cycles_sum += inst->prop.cycles[HFI_HW_ICA]; break; } case HFI_HW_MPU: { cycles_sum += inst->prop.cycles[HFI_HW_MPU]; break; } case HFI_HW_OD: { cycles_sum += inst->prop.cycles[HFI_HW_OD]; break; } case HFI_HW_VADL: { cycles_sum += inst->prop.cycles[HFI_HW_VADL]; break; } case HFI_HW_TOF: { cycles_sum += inst->prop.cycles[HFI_HW_TOF]; break; } case HFI_HW_RGE: { cycles_sum += inst->prop.cycles[HFI_HW_RGE]; break; } case HFI_HW_XRA: { cycles_sum += inst->prop.cycles[HFI_HW_XRA]; break; } case HFI_HW_LSR: { cycles_sum += inst->prop.cycles[HFI_HW_LSR]; break; } default: dprintk(CVP_ERR, "unrecognized hw block %d\n", hwblk); break; } } mutex_unlock(&core->clk_lock); cycles_sum = cycles_sum&0xFFFFFFFF; return (unsigned int)cycles_sum; }