/****************************************************************************** * Copyright (C) 2015, The Linux Foundation. All rights reserved. * Copyright (C) 2013-2022 NXP * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ******************************************************************************/ /* * Copyright (C) 2010 Trusted Logic S.A. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * ****************************************************************************/ /* * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved. * ****************************************************************************/ #include #include #include #include #include #ifdef CONFIG_COMPAT #include #endif #include "common.h" /** * i2c_disable_irq() * * Check if interrupt is disabled or not * and disable interrupt * * Return: int */ int i2c_disable_irq(struct nfc_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->i2c_dev.irq_enabled_lock, flags); if (dev->i2c_dev.irq_enabled) { disable_irq_nosync(dev->i2c_dev.client->irq); dev->i2c_dev.irq_enabled = false; } spin_unlock_irqrestore(&dev->i2c_dev.irq_enabled_lock, flags); return 0; } /** * i2c_enable_irq() * * Check if interrupt is enabled or not * and enable interrupt * * Return: int */ int i2c_enable_irq(struct nfc_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->i2c_dev.irq_enabled_lock, flags); if (!dev->i2c_dev.irq_enabled) { dev->i2c_dev.irq_enabled = true; enable_irq(dev->i2c_dev.client->irq); } spin_unlock_irqrestore(&dev->i2c_dev.irq_enabled_lock, flags); return 0; } static irqreturn_t i2c_irq_handler(int irq, void *dev_id) { struct nfc_dev *nfc_dev = dev_id; struct i2c_dev *i2c_dev = &nfc_dev->i2c_dev; if (device_may_wakeup(&i2c_dev->client->dev)) pm_wakeup_event(&i2c_dev->client->dev, WAKEUP_SRC_TIMEOUT); i2c_disable_irq(nfc_dev); wake_up(&nfc_dev->read_wq); return IRQ_HANDLED; } int i2c_read(struct nfc_dev *nfc_dev, char *buf, size_t count, int timeout) { int ret; struct i2c_dev *i2c_dev = &nfc_dev->i2c_dev; struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; uint16_t i = 0; uint16_t disp_len = GET_IPCLOG_MAX_PKT_LEN(count); pr_debug("NxpDrv: %s: reading %zu bytes.\n", __func__, count); if (timeout > NCI_CMD_RSP_TIMEOUT_MS) timeout = NCI_CMD_RSP_TIMEOUT_MS; if (count > MAX_NCI_BUFFER_SIZE) count = MAX_NCI_BUFFER_SIZE; if (!gpio_get_value(nfc_gpio->irq)) { while (1) { ret = 0; if (!i2c_dev->irq_enabled) { i2c_dev->irq_enabled = true; enable_irq(i2c_dev->client->irq); } if (!gpio_get_value(nfc_gpio->irq)) { if (timeout) { ret = wait_event_interruptible_timeout( nfc_dev->read_wq, !i2c_dev->irq_enabled, msecs_to_jiffies(timeout)); if (ret <= 0) { pr_err("NxpDrv: %s: timeout error\n", __func__); goto err; } } else { ret = wait_event_interruptible( nfc_dev->read_wq, !i2c_dev->irq_enabled); if (ret) { pr_err("NxpDrv: %s: err wakeup of wq\n", __func__); goto err; } } } i2c_disable_irq(nfc_dev); if (gpio_get_value(nfc_gpio->irq)) break; if(!nfc_dev->secure_zone) { if (!gpio_get_value(nfc_gpio->ven)) { pr_info("NxpDrv: %s: releasing read\n", __func__); ret = -EIO; goto err; } } /* * NFC service wanted to close the driver so, * release the calling reader thread asap. * * This can happen in case of nfc node close call from * eSE HAL in that case the NFC HAL reader thread * will again call read system call */ if (nfc_dev->release_read) { pr_debug("NxpDrv: %s: releasing read\n", __func__); return 0; } pr_warn("NxpDrv: %s: spurious interrupt detected\n", __func__); } } memset(buf, 0x00, count); /* Read data */ ret = i2c_master_recv(nfc_dev->i2c_dev.client, buf, count); NFCLOG_IPC(nfc_dev, false, "%s of %d bytes, ret %d", __func__, count, ret); if (ret <= 0) { pr_err("NxpDrv: %s: returned %d\n", __func__, ret); goto err; } for (i = 0; i < disp_len; i++) NFCLOG_IPC(nfc_dev, false, " %02x", buf[i]); /* check if it's response of cold reset command * NFC HAL process shouldn't receive this data as * command was sent by esepowermanager */ if (nfc_dev->cold_reset.rsp_pending && nfc_dev->cold_reset.cmd_buf && (buf[0] == PROP_NCI_RSP_GID) && (buf[1] == nfc_dev->cold_reset.cmd_buf[1])) { read_cold_reset_rsp(nfc_dev, buf); nfc_dev->cold_reset.rsp_pending = false; wake_up_interruptible(&nfc_dev->cold_reset.read_wq); /* * NFC process doesn't know about cold reset command * being sent as it was initiated by eSE process * we shouldn't return any data to NFC process */ return 0; } err: return ret; } int i2c_write(struct nfc_dev *nfc_dev, const char *buf, size_t count, int max_retry_cnt) { int ret = -EINVAL; int retry_cnt; uint16_t i = 0; uint16_t disp_len = GET_IPCLOG_MAX_PKT_LEN(count); struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; if (count > MAX_DL_BUFFER_SIZE) count = MAX_DL_BUFFER_SIZE; pr_debug("NxpDrv: %s: writing %zu bytes.\n", __func__, count); NFCLOG_IPC(nfc_dev, false, "%s sending %d B", __func__, count); for (i = 0; i < disp_len; i++) NFCLOG_IPC(nfc_dev, false, " %02x", buf[i]); /* * Wait for any pending read for max 15ms before write * This is to avoid any packet corruption during read, when * the host cmds resets NFCC during any parallel read operation */ for (retry_cnt = 1; retry_cnt <= MAX_WRITE_IRQ_COUNT; retry_cnt++) { if (gpio_get_value(nfc_gpio->irq)) { pr_warn("NxpDrv: %s: irq high during write, wait\n", __func__); usleep_range(WRITE_RETRY_WAIT_TIME_US, WRITE_RETRY_WAIT_TIME_US + 100); } else { break; } if (retry_cnt == MAX_WRITE_IRQ_COUNT && gpio_get_value(nfc_gpio->irq)) { pr_warn("NxpDrv: %s: allow after maximum wait\n", __func__); } } for (retry_cnt = 1; retry_cnt <= max_retry_cnt; retry_cnt++) { ret = i2c_master_send(nfc_dev->i2c_dev.client, buf, count); NFCLOG_IPC(nfc_dev, false, "%s ret %d", __func__, ret); if (ret <= 0) { pr_warn("NxpDrv: %s: write failed ret(%d), maybe in standby\n", __func__, ret); usleep_range(WRITE_RETRY_WAIT_TIME_US, WRITE_RETRY_WAIT_TIME_US + 100); } else if (ret != count) { pr_err("NxpDrv: %s: failed to write %d\n", __func__, ret); ret = -EIO; } else if (ret == count) break; } return ret; } ssize_t nfc_i2c_dev_read(struct file *filp, char __user *buf, size_t count, loff_t *offset) { int ret; struct nfc_dev *nfc_dev = (struct nfc_dev *)filp->private_data; if (!nfc_dev) { pr_err("NxpDrv: %s: device doesn't exist anymore\n", __func__); return -ENODEV; } mutex_lock(&nfc_dev->read_mutex); if (count > MAX_NCI_BUFFER_SIZE) count = MAX_NCI_BUFFER_SIZE; if (filp->f_flags & O_NONBLOCK) { ret = i2c_master_recv(nfc_dev->i2c_dev.client, nfc_dev->read_kbuf, count); pr_debug("NxpDrv: %s: NONBLOCK read ret = %d\n", __func__, ret); } else { ret = i2c_read(nfc_dev, nfc_dev->read_kbuf, count, 0); } if (ret > 0) { if (copy_to_user(buf, nfc_dev->read_kbuf, ret)) { pr_warn("NxpDrv: %s: failed to copy to user space\n", __func__); ret = -EFAULT; } } mutex_unlock(&nfc_dev->read_mutex); return ret; } ssize_t nfc_i2c_dev_write(struct file *filp, const char __user *buf, size_t count, loff_t *offset) { int ret; struct nfc_dev *nfc_dev = (struct nfc_dev *)filp->private_data; if (count > MAX_DL_BUFFER_SIZE) count = MAX_DL_BUFFER_SIZE; if (!nfc_dev) { pr_err("NxpDrv: %s: device doesn't exist anymore\n", __func__); return -ENODEV; } mutex_lock(&nfc_dev->write_mutex); if (copy_from_user(nfc_dev->write_kbuf, buf, count)) { pr_err("NxpDrv: %s: failed to copy from user space\n", __func__); mutex_unlock(&nfc_dev->write_mutex); return -EFAULT; } ret = i2c_write(nfc_dev, nfc_dev->write_kbuf, count, NO_RETRY); mutex_unlock(&nfc_dev->write_mutex); return ret; } static const struct file_operations nfc_i2c_dev_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = nfc_i2c_dev_read, .write = nfc_i2c_dev_write, .open = nfc_dev_open, .flush = nfc_dev_flush, .release = nfc_dev_close, .unlocked_ioctl = nfc_dev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = nfc_dev_compat_ioctl, #endif }; int nfc_i2c_dev_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret = 0; struct nfc_dev *nfc_dev = NULL; struct i2c_dev *i2c_dev = NULL; struct platform_configs *nfc_configs = NULL; struct platform_gpio *nfc_gpio = NULL; pr_debug("NxpDrv: %s: enter\n", __func__); nfc_dev = kzalloc(sizeof(struct nfc_dev), GFP_KERNEL); if (nfc_dev == NULL) { ret = -ENOMEM; goto err; } nfc_configs = &nfc_dev->configs; nfc_gpio = &nfc_configs->gpio; /* retrieve details of gpios from dt */ ret = nfc_parse_dt(&client->dev,nfc_configs, PLATFORM_IF_I2C); if (ret) { pr_err("NxpDrv: %s: failed to parse dt\n", __func__); goto err_free_nfc_dev; } if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { pr_err("NxpDrv: %s: need I2C_FUNC_I2C\n", __func__); ret = -ENODEV; goto err_free_nfc_dev; } nfc_dev->read_kbuf = kzalloc(MAX_NCI_BUFFER_SIZE, GFP_DMA | GFP_KERNEL); if (!nfc_dev->read_kbuf) { ret = -ENOMEM; goto err_free_nfc_dev; } nfc_dev->write_kbuf = kzalloc(MAX_DL_BUFFER_SIZE, GFP_DMA | GFP_KERNEL); if (!nfc_dev->write_kbuf) { ret = -ENOMEM; goto err_free_read_kbuf; } nfc_dev->interface = PLATFORM_IF_I2C; nfc_dev->nfc_state = NFC_STATE_NCI; nfc_dev->i2c_dev.client = client; i2c_dev = &nfc_dev->i2c_dev; nfc_dev->nfc_read = i2c_read; nfc_dev->nfc_write = i2c_write; nfc_dev->nfc_enable_intr = i2c_enable_irq; nfc_dev->nfc_disable_intr = i2c_disable_irq; ret = configure_gpio(nfc_gpio->irq, GPIO_IRQ); if (ret <= 0) { pr_err("NxpDrv: %s: unable to request nfc irq gpio [%d]\n", __func__, nfc_gpio->irq); goto err_free_gpio; } client->irq = ret; /* init mutex and queues */ init_waitqueue_head(&nfc_dev->read_wq); mutex_init(&nfc_dev->read_mutex); mutex_init(&nfc_dev->write_mutex); mutex_init(&nfc_dev->dev_ref_mutex); spin_lock_init(&i2c_dev->irq_enabled_lock); ret = nfc_misc_register(nfc_dev, &nfc_i2c_dev_fops, DEV_COUNT, NFC_CHAR_DEV_NAME, CLASS_NAME); if (ret) { pr_err("NxpDrv: %s: nfc_misc_register failed\n", __func__); goto err_mutex_destroy; } /* interrupt initializations */ pr_info("NxpDrv: %s: requesting IRQ %d\n", __func__, client->irq); i2c_dev->irq_enabled = true; ret = request_irq(client->irq, i2c_irq_handler, IRQF_TRIGGER_HIGH, client->name, nfc_dev); if (ret) { pr_err("NxpDrv: %s: request_irq failed\n", __func__); goto err_nfc_misc_unregister; } i2c_disable_irq(nfc_dev); ret = nfc_ldo_config(&client->dev, nfc_dev); if (ret) { pr_err("NxpDrv: LDO config failed\n"); goto err_ldo_config_failed; } #ifdef NFC_SECURE_PERIPHERAL_ENABLED if( nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) { /*Check NFC Secure Zone status*/ if(!nfc_hw_secure_check()) { nfc_post_init(nfc_dev); nfc_dev->secure_zone = false; } else { nfc_dev->secure_zone = true; } pr_info("NxpDrv: %s:nfc secure_zone = %s", __func__, nfc_dev->secure_zone ? "true" : "false"); }else { nfc_post_init(nfc_dev); } #else nfc_dev->secure_zone = false; nfc_post_init(nfc_dev); #endif if (nfc_dev->configs.clk_pin_voting) nfc_dev->clk_run = false; else nfc_dev->clk_run = true; device_init_wakeup(&client->dev, true); i2c_set_clientdata(client, nfc_dev); i2c_dev->irq_wake_up = false; nfc_dev->is_ese_session_active = false; pr_info("NxpDrv: %s: probing nfc i2c success\n", __func__); return 0; err_ldo_config_failed: free_irq(client->irq, nfc_dev); err_nfc_misc_unregister: nfc_misc_unregister(nfc_dev, DEV_COUNT); err_mutex_destroy: mutex_destroy(&nfc_dev->dev_ref_mutex); mutex_destroy(&nfc_dev->read_mutex); mutex_destroy(&nfc_dev->write_mutex); err_free_gpio: gpio_free_all(nfc_dev); kfree(nfc_dev->write_kbuf); err_free_read_kbuf: kfree(nfc_dev->read_kbuf); err_free_nfc_dev: kfree(nfc_dev); err: pr_err("NxpDrv: %s: probing not successful, check hardware\n", __func__); return ret; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(6, 1, 0)) void nfc_i2c_dev_remove(struct i2c_client *client) #else int nfc_i2c_dev_remove(struct i2c_client *client) #endif { struct nfc_dev *nfc_dev = NULL; pr_info("NxpDrv: %s: remove device\n", __func__); nfc_dev = i2c_get_clientdata(client); if (!nfc_dev) { pr_err("NxpDrv: %s: device doesn't exist anymore\n", __func__); #if (LINUX_VERSION_CODE < KERNEL_VERSION(6, 1, 0)) return -ENODEV; #endif } if (nfc_dev->dev_ref_count > 0) { pr_err("NxpDrv: %s: device already in use\n", __func__); #if (LINUX_VERSION_CODE < KERNEL_VERSION(6, 1, 0)) return -EBUSY; #endif } gpio_set_value(nfc_dev->configs.gpio.ven, 0); // HW dependent delay before LDO goes into LPM mode usleep_range(10000, 10100); if (nfc_dev->reg) { nfc_ldo_unvote(nfc_dev); regulator_put(nfc_dev->reg); } device_init_wakeup(&client->dev, false); free_irq(client->irq, nfc_dev); nfc_misc_unregister(nfc_dev, DEV_COUNT); mutex_destroy(&nfc_dev->dev_ref_mutex); mutex_destroy(&nfc_dev->read_mutex); mutex_destroy(&nfc_dev->write_mutex); gpio_free_all(nfc_dev); kfree(nfc_dev->read_kbuf); kfree(nfc_dev->write_kbuf); kfree(nfc_dev); #if (LINUX_VERSION_CODE < KERNEL_VERSION(6, 1, 0)) return 0; #endif } int nfc_i2c_dev_suspend(struct device *device) { struct i2c_client *client = to_i2c_client(device); struct nfc_dev *nfc_dev = i2c_get_clientdata(client); struct i2c_dev *i2c_dev = NULL; if (!nfc_dev) { pr_err("NxpDrv: %s: device doesn't exist anymore\n", __func__); return -ENODEV; } i2c_dev = &nfc_dev->i2c_dev; NFCLOG_IPC(nfc_dev, false, "%s: irq_enabled = %d", __func__, i2c_dev->irq_enabled); if (device_may_wakeup(&client->dev) && i2c_dev->irq_enabled) { if (!enable_irq_wake(client->irq)) i2c_dev->irq_wake_up = true; } pr_debug("NxpDrv: %s: irq_wake_up = %d", __func__, i2c_dev->irq_wake_up); return 0; } int nfc_i2c_dev_resume(struct device *device) { struct i2c_client *client = to_i2c_client(device); struct nfc_dev *nfc_dev = i2c_get_clientdata(client); struct i2c_dev *i2c_dev = NULL; if (!nfc_dev) { pr_err("NxpDrv: %s: device doesn't exist anymore\n", __func__); return -ENODEV; } i2c_dev = &nfc_dev->i2c_dev; NFCLOG_IPC(nfc_dev, false, "%s: irq_wake_up = %d", __func__, i2c_dev->irq_wake_up); if (device_may_wakeup(&client->dev) && i2c_dev->irq_wake_up) { if (!disable_irq_wake(client->irq)) i2c_dev->irq_wake_up = false; } pr_debug("NxpDrv: %s: irq_wake_up = %d", __func__, i2c_dev->irq_wake_up); return 0; } static const struct i2c_device_id nfc_i2c_dev_id[] = { { NFC_I2C_DEV_ID, 0 }, {} }; static const struct of_device_id nfc_i2c_dev_match_table[] = { { .compatible = NFC_I2C_DRV_STR, }, {} }; static const struct dev_pm_ops nfc_i2c_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS( nfc_i2c_dev_suspend, nfc_i2c_dev_resume) }; static struct i2c_driver nfc_i2c_dev_driver = { .id_table = nfc_i2c_dev_id, .probe = nfc_i2c_dev_probe, .remove = nfc_i2c_dev_remove, .driver = { .name = NFC_I2C_DRV_STR, .pm = &nfc_i2c_dev_pm_ops, .of_match_table = nfc_i2c_dev_match_table, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; MODULE_DEVICE_TABLE(of, nfc_i2c_dev_match_table); static int __init nfc_i2c_dev_init(void) { int ret = 0; pr_info("NxpDrv: %s: Loading NXP NFC I2C driver\n", __func__); ret = i2c_add_driver(&nfc_i2c_dev_driver); if (ret != 0) pr_err("NxpDrv: %s: NFC I2C add driver error ret %d\n", __func__, ret); return ret; } module_init(nfc_i2c_dev_init); static void __exit nfc_i2c_dev_exit(void) { pr_info("NxpDrv: %s: Unloading NXP NFC I2C driver\n", __func__); i2c_del_driver(&nfc_i2c_dev_driver); } module_exit(nfc_i2c_dev_exit); MODULE_DESCRIPTION("NXP NFC I2C driver"); MODULE_LICENSE("GPL");