// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include "msm_cvp_common.h" #include "cvp_hfi_api.h" #include "msm_cvp_debug.h" #include "msm_cvp_core.h" #include "msm_cvp_dsp.h" #include "eva_shared_def.h" #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0)) #define eva_buf_map dma_buf_map #define _buf_map_set_vaddr dma_buf_map_set_vaddr #else #define eva_buf_map iosys_map #define _buf_map_set_vaddr iosys_map_set_vaddr #endif #define CLEAR_USE_BITMAP(idx, inst) \ do { \ clear_bit(idx, &inst->dma_cache.usage_bitmap); \ dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \ hash32_ptr(inst->session), smem->bitmap_index, \ inst->dma_cache.usage_bitmap); \ } while (0) #define SET_USE_BITMAP(idx, inst) \ do { \ set_bit(idx, &inst->dma_cache.usage_bitmap); \ dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \ hash32_ptr(inst->session), idx, \ inst->dma_cache.usage_bitmap); \ } while (0) struct cvp_oob_pool wncc_buf_pool; static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst); static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt, struct eva_kmd_oob_wncc *wncc_oob, struct eva_kmd_wncc_metadata** wncc_metadata); void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log); int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst, struct msm_cvp_smem *smem) { int i; char name[PKT_NAME_LEN] = "Unknown"; if (!(tag & msm_cvp_debug)) return 0; if (!inst || !smem) { dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n", inst, smem); return -EINVAL; } if (smem->dma_buf) { i = get_pkt_index_from_type(smem->pkt_type); if (i > 0) strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN); if (!atomic_read(&smem->refcount)) dprintk(tag, " UNUSED mapping %s: 0x%llx size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d\n", str, smem->dma_buf, smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd); else dprintk(tag, "%s: %x : 0x%llx size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d\n", str, hash32_ptr(inst->session), smem->dma_buf, smem->size, smem->flags, smem->device_addr, smem->bitmap_index, atomic_read(&smem->refcount), name, smem->buf_idx, smem->fd); } return 0; } static void print_internal_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf) { if (!(tag & msm_cvp_debug) || !inst || !cbuf) return; if (cbuf->smem->dma_buf) { dprintk(tag, "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x\n", str, hash32_ptr(inst->session), cbuf->fd, cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name, cbuf->size, cbuf->smem->device_addr); } else { dprintk(tag, "%s: %x : idx %2d fd %d off %d size %d iova %#x\n", str, hash32_ptr(inst->session), cbuf->index, cbuf->fd, cbuf->offset, cbuf->size, cbuf->smem->device_addr); } } void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf) { if (!inst || !cbuf) { dprintk(CVP_ERR, "%s Invalid params inst %pK, cbuf %pK\n", str, inst, cbuf); return; } print_smem(tag, str, inst, cbuf->smem); } static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst, struct msm_cvp_smem *smem, bool logging) { if (print_smem(CVP_ERR, "bufdump", inst, smem)) return; if (!logging || !snapshot) return; if (snapshot && snapshot->smem_index < MAX_ENTRIES) { struct smem_data *s; s = &snapshot->smem_log[snapshot->smem_index]; snapshot->smem_index++; s->size = smem->size; s->flags = smem->flags; s->device_addr = smem->device_addr; s->bitmap_index = smem->bitmap_index; s->refcount = atomic_read(&smem->refcount); s->pkt_type = smem->pkt_type; s->buf_idx = smem->buf_idx; } } static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop, struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf, bool logging) { struct cvp_buf_data *buf = NULL; u32 index; print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf); if (!logging) return; if (snapshot) { if (prop == SMEM_CDSP && snapshot->dsp_index < MAX_ENTRIES) { index = snapshot->dsp_index; buf = &snapshot->dsp_buf_log[index]; snapshot->dsp_index++; } else if (prop == SMEM_PERSIST && snapshot->persist_index < MAX_ENTRIES) { index = snapshot->persist_index; buf = &snapshot->persist_buf_log[index]; snapshot->persist_index++; } if (buf) { buf->device_addr = cbuf->smem->device_addr; buf->size = cbuf->size; } } } void print_client_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf) { if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf) return; dprintk(tag, "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x reserved[0] %u\n", str, hash32_ptr(inst->session), cbuf->index, cbuf->fd, cbuf->offset, cbuf->size, cbuf->type, cbuf->flags, cbuf->reserved[0]); } static bool __is_buf_valid(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { struct cvp_hal_session *session; struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef; bool found = false; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return false; } if (buf->fd < 0) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); return false; } if (buf->offset) { dprintk(CVP_ERR, "%s: offset is deprecated, set to 0.\n", __func__); return false; } session = (struct cvp_hal_session *)inst->session; mutex_lock(&inst->cvpdspbufs.lock); list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) { if (cbuf->fd == buf->fd) { if (cbuf->size != buf->size) { dprintk(CVP_ERR, "%s: buf size mismatch\n", __func__); mutex_unlock(&inst->cvpdspbufs.lock); return false; } found = true; break; } } mutex_unlock(&inst->cvpdspbufs.lock); if (found) { print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf); return false; } return true; } static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task, fmode_t mask, unsigned int refs) { struct files_struct *files = task->files; struct file *file; if (!files) return NULL; rcu_read_lock(); loop: #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0)) file = fcheck_files(files, fd); #else file = files_lookup_fd_rcu(files, fd); #endif if (file) { /* File object ref couldn't be taken. * dup2() atomicity guarantee is the reason * we loop to catch the new file (or NULL pointer) */ if (file->f_mode & mask) file = NULL; else if (!get_file_rcu(file)) goto loop; } rcu_read_unlock(); return file; } static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd, struct task_struct *task) { if (file->f_op != gfa_cv.dmabuf_f_op) { dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n"); return ERR_PTR(-EINVAL); } return file->private_data; } int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { int rc = 0; struct cvp_internal_buf *cbuf = NULL; struct msm_cvp_smem *smem = NULL; struct dma_buf *dma_buf = NULL; struct file *file; if (!__is_buf_valid(inst, buf)) return -EINVAL; if (!inst->task) return -EINVAL; file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1); if (file == NULL) { dprintk(CVP_WARN, "%s fail to get file from fd %d %s\n", __func__, buf->fd, inst->proc_name); return -EINVAL; } dma_buf = cvp_dma_buf_get( file, buf->fd, inst->task); if (dma_buf == ERR_PTR(-EINVAL)) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); rc = -EINVAL; goto exit; } if (dma_buf->size < buf->size) { dprintk(CVP_ERR, "%s DSP client buffer too large %d > %d\n", __func__, buf->size, dma_buf->size); rc = -EINVAL; goto exit; } dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf); cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL); if (!cbuf) { rc = -ENOMEM; goto exit; } smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL); if (!smem) { rc = -ENOMEM; goto exit; } smem->dma_buf = dma_buf; smem->bitmap_index = MAX_DMABUF_NUMS; smem->pkt_type = 0; smem->buf_idx = 0; smem->fd = buf->fd; dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf); rc = msm_cvp_map_smem(inst, smem, "map dsp"); if (rc) { print_client_buffer(CVP_ERR, "map failed", inst, buf); goto exit; } atomic_inc(&smem->refcount); cbuf->smem = smem; cbuf->fd = buf->fd; cbuf->size = buf->size; cbuf->offset = buf->offset; cbuf->ownership = CLIENT; cbuf->index = buf->index; buf->reserved[0] = (uint32_t)smem->device_addr; mutex_lock(&inst->cvpdspbufs.lock); list_add_tail(&cbuf->list, &inst->cvpdspbufs.list); mutex_unlock(&inst->cvpdspbufs.lock); return rc; exit: fput(file); if (smem) { if (smem->device_addr) msm_cvp_unmap_smem(inst, smem, "unmap dsp"); msm_cvp_smem_put_dma_buf(smem->dma_buf); cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); } if (cbuf) cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); return rc; } int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { int rc = 0; bool found; struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef; struct cvp_hal_session *session; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } session = (struct cvp_hal_session *)inst->session; if (!session) { dprintk(CVP_ERR, "%s: invalid session\n", __func__); return -EINVAL; } mutex_lock(&inst->cvpdspbufs.lock); found = false; list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) { if (cbuf->fd == buf->fd) { found = true; break; } } if (!found) { mutex_unlock(&inst->cvpdspbufs.lock); print_client_buffer(CVP_ERR, "invalid", inst, buf); return -EINVAL; } if (cbuf->smem->device_addr) { u64 idx = inst->unused_dsp_bufs.ktid; inst->unused_dsp_bufs.smem[idx] = *(cbuf->smem); inst->unused_dsp_bufs.nr++; inst->unused_dsp_bufs.nr = (inst->unused_dsp_bufs.nr > MAX_FRAME_BUFFER_NUMS)? MAX_FRAME_BUFFER_NUMS : inst->unused_dsp_bufs.nr; inst->unused_dsp_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS; msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp"); msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf); atomic_dec(&cbuf->smem->refcount); } list_del(&cbuf->list); mutex_unlock(&inst->cvpdspbufs.lock); cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem); cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); return rc; } int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { int rc = 0, i; bool found = false; struct cvp_internal_buf* cbuf = (struct cvp_internal_buf *)0xdeadbeef; struct msm_cvp_smem* smem = NULL; struct dma_buf* dma_buf = NULL; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } if (!inst->session) { dprintk(CVP_ERR, "%s: invalid session", __func__); return -EINVAL; } if (buf->index) { dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d", __func__, buf->fd); return -EINVAL; } if (buf->fd < 0) { dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd); return -EINVAL; } if (buf->offset) { dprintk(CVP_ERR, "%s: offset is not supported, set to 0.", __func__); return -EINVAL; } mutex_lock(&inst->cvpwnccbufs.lock); list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) { if (cbuf->fd == buf->fd) { if (cbuf->size != buf->size) { dprintk(CVP_ERR, "%s: buf size mismatch", __func__); mutex_unlock(&inst->cvpwnccbufs.lock); return -EINVAL; } found = true; break; } } mutex_unlock(&inst->cvpwnccbufs.lock); if (found) { print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf); return -EINVAL; } dma_buf = msm_cvp_smem_get_dma_buf(buf->fd); if (!dma_buf) { dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd); return -EINVAL; } cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL); if (!cbuf) { msm_cvp_smem_put_dma_buf(dma_buf); return -ENOMEM; } smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL); if (!smem) { cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); msm_cvp_smem_put_dma_buf(dma_buf); return -ENOMEM; } smem->dma_buf = dma_buf; smem->bitmap_index = MAX_DMABUF_NUMS; smem->pkt_type = 0; smem->buf_idx = 0; smem->fd = buf->fd; dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf); rc = msm_cvp_map_smem(inst, smem, "map wncc"); if (rc) { dprintk(CVP_ERR, "%s: map failed", __func__); print_client_buffer(CVP_ERR, __func__, inst, buf); goto exit; } cbuf->smem = smem; cbuf->fd = buf->fd; cbuf->size = buf->size; cbuf->offset = buf->offset; cbuf->ownership = CLIENT; cbuf->index = buf->index; /* Added for PreSil/RUMI testing */ #ifdef USE_PRESIL dprintk(CVP_DBG, "wncc buffer is %x for cam_presil_send_buffer" " with MAP_ADDR_OFFSET %x", (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET); cam_presil_send_buffer((u64)smem->dma_buf, 0, (u32)cbuf->offset, (u32)cbuf->size, (u64)(smem->device_addr) - MAP_ADDR_OFFSET); #endif mutex_lock(&inst->cvpwnccbufs.lock); if (inst->cvpwnccbufs_table == NULL) { inst->cvpwnccbufs_table = (struct msm_cvp_wncc_buffer*) kzalloc( sizeof(struct msm_cvp_wncc_buffer) * EVA_KMD_WNCC_MAX_SRC_BUFS, GFP_KERNEL); if (!inst->cvpwnccbufs_table) { mutex_unlock(&inst->cvpwnccbufs.lock); goto exit; } } for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++) { if (inst->cvpwnccbufs_table[i].iova == 0) { list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list); inst->cvpwnccbufs_num++; inst->cvpwnccbufs_table[i].fd = buf->fd; inst->cvpwnccbufs_table[i].iova = smem->device_addr; inst->cvpwnccbufs_table[i].size = smem->size; /* buf reserved[0] used to store wncc src buf id */ buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET; /* cbuf ktid used to store wncc src buf id */ cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET; dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X", __func__, inst->cvpwnccbufs_table[i].iova); break; } } if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) { dprintk(CVP_ERR, "%s: wncc buf table full - max (%u) already registered", __func__, EVA_KMD_WNCC_MAX_SRC_BUFS); /* _wncc_print_cvpwnccbufs_table(inst); */ mutex_unlock(&inst->cvpwnccbufs.lock); rc = -EDQUOT; goto exit; } mutex_unlock(&inst->cvpwnccbufs.lock); return rc; exit: if (smem->device_addr) msm_cvp_unmap_smem(inst, smem, "unmap wncc"); msm_cvp_smem_put_dma_buf(smem->dma_buf); cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); cbuf = NULL; cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); smem = NULL; return rc; } int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { int rc = 0; bool found; struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef; uint32_t buf_id, buf_idx; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } if (!inst->session) { dprintk(CVP_ERR, "%s: invalid session", __func__); return -EINVAL; } if (buf->index) { dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d", __func__, buf->fd); return -EINVAL; } buf_id = buf->reserved[0]; if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >= (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) { dprintk(CVP_ERR, "%s: invalid buffer id %d", __func__, buf->reserved[0]); return -EINVAL; } mutex_lock(&inst->cvpwnccbufs.lock); if (inst->cvpwnccbufs_num == 0) { dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__); mutex_unlock(&inst->cvpwnccbufs.lock); return -EINVAL; } buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET; if (inst->cvpwnccbufs_table[buf_idx].iova == 0) { dprintk(CVP_ERR, "%s: buffer id %d not found", __func__, buf_id); mutex_unlock(&inst->cvpwnccbufs.lock); return -EINVAL; } buf->fd = inst->cvpwnccbufs_table[buf_idx].fd; found = false; list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) { if (cbuf->fd == buf->fd) { found = true; break; } } if (!found) { dprintk(CVP_ERR, "%s: buffer id %d not found", __func__, buf_id); print_client_buffer(CVP_ERR, __func__, inst, buf); _wncc_print_cvpwnccbufs_table(inst); mutex_unlock(&inst->cvpwnccbufs.lock); return -EINVAL; } if (cbuf->smem->device_addr) { u64 idx = inst->unused_wncc_bufs.ktid; inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem); inst->unused_wncc_bufs.nr++; inst->unused_wncc_bufs.nr = (inst->unused_wncc_bufs.nr > NUM_WNCC_BUFS)? NUM_WNCC_BUFS : inst->unused_wncc_bufs.nr; inst->unused_wncc_bufs.ktid = ++idx % NUM_WNCC_BUFS; } if (cbuf->smem->device_addr) { msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc"); msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf); } list_del(&cbuf->list); inst->cvpwnccbufs_table[buf_idx].fd = 0; inst->cvpwnccbufs_table[buf_idx].iova = 0; inst->cvpwnccbufs_table[buf_idx].size = 0; inst->cvpwnccbufs_num--; if (inst->cvpwnccbufs_num == 0) { kfree(inst->cvpwnccbufs_table); inst->cvpwnccbufs_table = NULL; } mutex_unlock(&inst->cvpwnccbufs.lock); cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem); cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); return rc; } static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob) { u32 i, j; if (!wncc_oob) { dprintk(CVP_ERR, "%s: invalid params", __func__); return; } dprintk(CVP_DBG, "%s: wncc OOB --", __func__); dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers); for (i = 0; i < wncc_oob->num_layers; i++) { dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u", __func__, i, wncc_oob->layers[i].num_addrs); for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) { dprintk(CVP_DBG, "%s: layers[%u].addrs[%u]: %04u 0x%08x", __func__, i, j, wncc_oob->layers[i].addrs[j].buffer_id, wncc_oob->layers[i].addrs[j].offset); } } } static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst) { u32 i, entries = 0; if (!inst) { dprintk(CVP_ERR, "%s: invalid params", __func__); return; } if (inst->cvpwnccbufs_num == 0) { dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty", __func__); return; } if (!inst->cvpwnccbufs_table) { dprintk(CVP_ERR, "%s: invalid params", __func__); return; } dprintk(CVP_DBG, "%s: wncc buffer table:", __func__); for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS && entries < inst->cvpwnccbufs_num; i++) { if (inst->cvpwnccbufs_table[i].iova != 0) { dprintk(CVP_DBG, "%s: buf_idx=%04d --> " "fd=%03d, iova=0x%08x, size=%d", __func__, i, inst->cvpwnccbufs_table[i].fd, inst->cvpwnccbufs_table[i].iova, inst->cvpwnccbufs_table[i].size); entries++; } } } static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs, struct eva_kmd_wncc_metadata** wncc_metadata) { u32 i, j, iova; if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS || !wncc_metadata) { dprintk(CVP_ERR, "%s: invalid params", __func__); return; } dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__); dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers); dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs); for (i = 0; i < num_layers; i++) { for (j = 0; j < num_addrs; j++) { iova = (wncc_metadata[i][j].iova_msb << 22) | wncc_metadata[i][j].iova_lsb; dprintk(CVP_DBG, "%s: wncc_metadata[%u][%u]: " "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d", __func__, i, j, wncc_metadata[i][j].loc_x_dec, wncc_metadata[i][j].loc_x_frac, wncc_metadata[i][j].loc_y_dec, wncc_metadata[i][j].loc_y_frac, iova, wncc_metadata[i][j].scale_idx, wncc_metadata[i][j].aff_coeff_3, wncc_metadata[i][j].aff_coeff_2, wncc_metadata[i][j].aff_coeff_1, wncc_metadata[i][j].aff_coeff_0); } } } static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt, struct eva_kmd_oob_wncc* wncc_oob) { int rc = 0; u32 oob_type = 0; struct eva_kmd_oob_buf* oob_buf_u; struct eva_kmd_oob_wncc* wncc_oob_u; struct eva_kmd_oob_wncc* wncc_oob_k; unsigned int i; u32 num_addrs; if (!in_pkt || !wncc_oob) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } oob_buf_u = in_pkt->oob_buf; if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) { dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__); return -EINVAL; } if (!access_ok(&oob_buf_u->oob_type, sizeof(oob_buf_u->oob_type))) { dprintk(CVP_ERR, "%s: bad OOB buf pointer, oob_type inaccessible", __func__); return -EINVAL; } rc = get_user(oob_type, &oob_buf_u->oob_type); if (rc) return rc; if (oob_type != EVA_KMD_OOB_WNCC) { dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc", __func__, oob_type); return -EINVAL; } wncc_oob_u = &oob_buf_u->wncc; wncc_oob_k = wncc_oob; if (!access_ok(&wncc_oob_u->metadata_bufs_offset, sizeof(wncc_oob_u->metadata_bufs_offset))) { dprintk(CVP_ERR, "%s: bad OOB buf pointer, wncc.metadata_bufs_offset inaccessible", __func__); return -EINVAL; } rc = get_user(wncc_oob_k->metadata_bufs_offset, &wncc_oob_u->metadata_bufs_offset); if (rc) return rc; if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data) - sizeof(struct cvp_buf_type)) / sizeof(__u32))) { dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset", __func__); return -EINVAL; } if (!access_ok(&wncc_oob_u->num_layers, sizeof(wncc_oob_u->num_layers))) { dprintk(CVP_ERR, "%s: bad OOB buf pointer, wncc.num_layers inaccessible", __func__); return -EINVAL; } rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers); if (rc) return rc; if (wncc_oob_k->num_layers < 1 || wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) { dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__); return -EINVAL; } for (i = 0; i < wncc_oob_k->num_layers; i++) { if (!access_ok(&wncc_oob_u->layers[i].num_addrs, sizeof(wncc_oob_u->layers[i].num_addrs))) { dprintk(CVP_ERR, "%s: bad OOB buf pointer, wncc.layers[%u].num_addrs inaccessible", __func__, i); return -EINVAL; } rc = get_user(wncc_oob_k->layers[i].num_addrs, &wncc_oob_u->layers[i].num_addrs); if (rc) break; num_addrs = wncc_oob_k->layers[i].num_addrs; if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) { dprintk(CVP_ERR, "%s: invalid wncc num addrs for layer %u", __func__, i); rc = -EINVAL; break; } if (!access_ok(wncc_oob_u->layers[i].addrs, num_addrs * sizeof(struct eva_kmd_wncc_addr)) || !access_ok(&wncc_oob_u->layers[i].addrs[num_addrs - 1], sizeof(struct eva_kmd_wncc_addr))) { dprintk(CVP_ERR, "%s: bad OOB buf pointer, wncc.layers[%u].addrs inaccessible", __func__, i); return -EINVAL; } rc = copy_from_user(wncc_oob_k->layers[i].addrs, wncc_oob_u->layers[i].addrs, num_addrs * sizeof(struct eva_kmd_wncc_addr)); if (rc) break; } if (false) _wncc_print_oob(wncc_oob); return rc; } static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt, struct eva_kmd_oob_wncc *wncc_oob, struct eva_kmd_wncc_metadata** wncc_metadata) { int rc = 0, i; struct cvp_buf_type* wncc_metadata_bufs; struct dma_buf* dmabuf; struct eva_buf_map map; __u32 num_layers, metadata_bufs_offset; _buf_map_set_vaddr(&map, (void *)0xdeadbeaf); if (!in_pkt || !wncc_metadata || !wncc_oob) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } num_layers = wncc_oob->num_layers; metadata_bufs_offset = wncc_oob->metadata_bufs_offset; if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) { dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__); return -EINVAL; } if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data) - num_layers * sizeof(struct cvp_buf_type)) / sizeof(__u32))) { dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset", __func__); return -EINVAL; } wncc_metadata_bufs = (struct cvp_buf_type*) &in_pkt->pkt_data[metadata_bufs_offset]; for (i = 0; i < num_layers; i++) { dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd); if (IS_ERR(dmabuf)) { rc = PTR_ERR(dmabuf); dprintk(CVP_ERR, "%s: dma_buf_get() failed for " "wncc_metadata_bufs[%d], rc %d", __func__, i, rc); break; } if (dmabuf->size < wncc_oob->layers[i].num_addrs * sizeof(struct eva_kmd_wncc_metadata)) { dprintk(CVP_ERR, "%s: wncc_metadata_bufs[%d] size insufficient for num addrs in oob", __func__, i); dma_buf_put(dmabuf); rc = -EINVAL; break; } rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE); if (rc) { dprintk(CVP_ERR, "%s: dma_buf_begin_cpu_access() failed " "for wncc_metadata_bufs[%d], rc %d", __func__, i, rc); dma_buf_put(dmabuf); break; } rc = dma_buf_vmap(dmabuf, &map); if (rc) { dprintk(CVP_ERR, "%s: dma_buf_vmap() failed for " "wncc_metadata_bufs[%d]", __func__, i); dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE); dma_buf_put(dmabuf); break; } dprintk(CVP_DBG, "%s: wncc_metadata_bufs[%d] map.is_iomem is %d", __func__, i, map.is_iomem); wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr; dma_buf_put(dmabuf); } if (rc) _wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata); return rc; } static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt, struct eva_kmd_oob_wncc *wncc_oob, struct eva_kmd_wncc_metadata** wncc_metadata) { int rc = 0, i; struct cvp_buf_type* wncc_metadata_bufs; struct dma_buf* dmabuf; struct eva_buf_map map; __u32 num_layers, metadata_bufs_offset; if (!in_pkt || !wncc_metadata || !wncc_oob) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } num_layers = wncc_oob->num_layers; metadata_bufs_offset = wncc_oob->metadata_bufs_offset; if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) { dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__); return -EINVAL; } if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data) - num_layers * sizeof(struct cvp_buf_type)) / sizeof(__u32))) { dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset", __func__); return -EINVAL; } wncc_metadata_bufs = (struct cvp_buf_type*) &in_pkt->pkt_data[metadata_bufs_offset]; for (i = 0; i < num_layers; i++) { if (!wncc_metadata[i]) { continue; } dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd); if (IS_ERR(dmabuf)) { rc = -PTR_ERR(dmabuf); dprintk(CVP_ERR, "%s: dma_buf_get() failed for " "wncc_metadata_bufs[%d], rc %d", __func__, i, rc); break; } _buf_map_set_vaddr(&map, wncc_metadata[i]); dma_buf_vunmap(dmabuf, &map); wncc_metadata[i] = NULL; rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE); dma_buf_put(dmabuf); if (rc) { dprintk(CVP_ERR, "%s: dma_buf_end_cpu_access() failed " "for wncc_metadata_bufs[%d], rc %d", __func__, i, rc); break; } } return rc; } static int init_wncc_bufs(void) { int i; for (i = 0; i < NUM_WNCC_BUFS; i++) { wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc( sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL); if (!wncc_buf_pool.bufs[i]) { i--; goto exit_fail; } } wncc_buf_pool.used_bitmap = 0; wncc_buf_pool.allocated = true; return 0; exit_fail: while (i >= 0) { kfree(wncc_buf_pool.bufs[i]); i--; } return -ENOMEM; } static int alloc_wncc_buf(struct wncc_oob_buf *wob) { int rc, i; mutex_lock(&wncc_buf_pool.lock); if (!wncc_buf_pool.allocated) { rc = init_wncc_bufs(); if (rc) { mutex_unlock(&wncc_buf_pool.lock); return rc; } } for (i = 0; i < NUM_WNCC_BUFS; i++) { if (!(wncc_buf_pool.used_bitmap & BIT(i))) { wncc_buf_pool.used_bitmap |= BIT(i); wob->bitmap_idx = i; wob->buf = wncc_buf_pool.bufs[i]; mutex_unlock(&wncc_buf_pool.lock); return 0; } } mutex_unlock(&wncc_buf_pool.lock); wob->bitmap_idx = 0xff; wob->buf = (struct eva_kmd_oob_wncc*)kzalloc( sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL); if (!wob->buf) rc = -ENOMEM; else rc = 0; return rc; } static void free_wncc_buf(struct wncc_oob_buf *wob) { if (!wob) return; if (wob->bitmap_idx == 0xff) { kfree(wob->buf); return; } if (wob->bitmap_idx < NUM_WNCC_BUFS) { mutex_lock(&wncc_buf_pool.lock); wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx); memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc)); wob->buf = NULL; mutex_unlock(&wncc_buf_pool.lock); } } static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst, struct eva_kmd_hfi_packet* in_pkt) { int rc = 0; struct eva_kmd_oob_wncc* wncc_oob; struct wncc_oob_buf wob; struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS]; unsigned int i, j; bool empty = false; u32 buf_id, buf_idx, buf_offset, iova; if (!inst || !inst->core || !in_pkt) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } rc = alloc_wncc_buf(&wob); if (rc) return -ENOMEM; wncc_oob = wob.buf; rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob); if (rc) { dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__); goto exit; } memset(wncc_metadata, 0, sizeof(*wncc_metadata) * EVA_KMD_WNCC_MAX_LAYERS); rc = _wncc_map_metadata_bufs(in_pkt, wncc_oob, wncc_metadata); if (rc) { dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs", __func__); goto exit; } mutex_lock(&inst->cvpwnccbufs.lock); if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) { dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__); empty = true; rc = -EINVAL; } for (i = 0; !empty && i < wncc_oob->num_layers; i++) { for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) { buf_id = wncc_oob->layers[i].addrs[j].buffer_id; if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET + EVA_KMD_WNCC_MAX_SRC_BUFS)) { dprintk(CVP_ERR, "%s: invalid wncc buf id %u " "in layer #%u address #%u", __func__, buf_id, i, j); rc = -EINVAL; break; } buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET; if (inst->cvpwnccbufs_table[buf_idx].iova == 0) { dprintk(CVP_ERR, "%s: unmapped wncc buf id %u " "in layer #%u address #%u", __func__, buf_id, i, j); /* _wncc_print_cvpwnccbufs_table(inst); */ rc = -EINVAL; break; } buf_offset = wncc_oob->layers[i].addrs[j].offset; if (buf_offset >= inst->cvpwnccbufs_table[buf_idx].size) { /* NOTE: This buffer offset validation is * not comprehensive since wncc src image * resolution information is not known to * KMD. UMD is responsible for comprehensive * validation. */ dprintk(CVP_ERR, "%s: invalid wncc buf offset %u " "in layer #%u address #%u", __func__, buf_offset, i, j); rc = -EINVAL; break; } iova = inst->cvpwnccbufs_table[buf_idx].iova + buf_offset; wncc_metadata[i][j].iova_lsb = iova; wncc_metadata[i][j].iova_msb = iova >> 22; } } mutex_unlock(&inst->cvpwnccbufs.lock); if (false) _wncc_print_metadata_buf(wncc_oob->num_layers, wncc_oob->layers[0].num_addrs, wncc_metadata); if (_wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata)) { dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs", __func__); } exit: free_wncc_buf(&wob); return rc; } int msm_cvp_proc_oob(struct msm_cvp_inst* inst, struct eva_kmd_hfi_packet* in_pkt) { int rc = 0; struct cvp_hfi_cmd_session_hdr* cmd_hdr = (struct cvp_hfi_cmd_session_hdr*)in_pkt; if (!inst || !inst->core || !in_pkt) { dprintk(CVP_ERR, "%s: invalid params", __func__); return -EINVAL; } switch (cmd_hdr->packet_type) { case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME: rc = msm_cvp_proc_oob_wncc(inst, in_pkt); break; default: break; } return rc; } void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type, u32 offset, u32 size) { enum smem_cache_ops cache_op; if (msm_cvp_cacheop_disabled) return; if (!smem) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return; } switch (type) { case EVA_KMD_BUFTYPE_INPUT: cache_op = SMEM_CACHE_CLEAN; break; case EVA_KMD_BUFTYPE_OUTPUT: cache_op = SMEM_CACHE_INVALIDATE; break; default: cache_op = SMEM_CACHE_CLEAN_INVALIDATE; } dprintk(CVP_MEM, "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n", __func__, smem->dma_buf, cache_op, offset, size); msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size); } static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst, struct dma_buf *dma_buf, u32 pkt_type) { struct msm_cvp_smem *smem; struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef; struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef; int i; if (inst->dma_cache.nr > MAX_DMABUF_NUMS) return NULL; mutex_lock(&inst->dma_cache.lock); for (i = 0; i < inst->dma_cache.nr; i++) if (inst->dma_cache.entries[i]->dma_buf == dma_buf) { SET_USE_BITMAP(i, inst); smem = inst->dma_cache.entries[i]; smem->bitmap_index = i; smem->pkt_type = pkt_type; atomic_inc(&smem->refcount); /* * If we find it, it means we already increased * refcount before, so we put it to avoid double * incremental. */ msm_cvp_smem_put_dma_buf(smem->dma_buf); mutex_unlock(&inst->dma_cache.lock); print_smem(CVP_MEM, "found in cache", inst, smem); return smem; } mutex_unlock(&inst->dma_cache.lock); /* earch persist list */ mutex_lock(&inst->persistbufs.lock); list_for_each_entry(buf, &inst->persistbufs.list, list) { smem = buf->smem; if (smem && smem->dma_buf == dma_buf) { atomic_inc(&smem->refcount); mutex_unlock(&inst->persistbufs.lock); print_smem(CVP_MEM, "found in persist", inst, smem); return smem; } } mutex_unlock(&inst->persistbufs.lock); /* Search frame list */ mutex_lock(&inst->frames.lock); list_for_each_entry(frame, &inst->frames.list, list) { for (i = 0; i < frame->nr; i++) { smem = frame->bufs[i].smem; if (smem && smem->dma_buf == dma_buf) { atomic_inc(&smem->refcount); mutex_unlock(&inst->frames.lock); print_smem(CVP_MEM, "found in frame", inst, smem); return smem; } } } mutex_unlock(&inst->frames.lock); return NULL; } static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst, struct msm_cvp_smem *smem) { unsigned int i; struct msm_cvp_smem *smem2; mutex_lock(&inst->dma_cache.lock); if (inst->dma_cache.nr < MAX_DMABUF_NUMS) { inst->dma_cache.entries[inst->dma_cache.nr] = smem; SET_USE_BITMAP(inst->dma_cache.nr, inst); smem->bitmap_index = inst->dma_cache.nr; inst->dma_cache.nr++; i = smem->bitmap_index; } else { i = find_first_zero_bit(&inst->dma_cache.usage_bitmap, MAX_DMABUF_NUMS); if (i < MAX_DMABUF_NUMS) { smem2 = inst->dma_cache.entries[i]; msm_cvp_unmap_smem(inst, smem2, "unmap cpu"); msm_cvp_smem_put_dma_buf(smem2->dma_buf); cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2); inst->dma_cache.entries[i] = smem; smem->bitmap_index = i; SET_USE_BITMAP(i, inst); } else { dprintk(CVP_WARN, "%s: reached limit, fallback to buf mapping list\n" , __func__); atomic_inc(&smem->refcount); mutex_unlock(&inst->dma_cache.lock); return -ENOMEM; } } atomic_inc(&smem->refcount); mutex_unlock(&inst->dma_cache.lock); dprintk(CVP_MEM, "Add entry %d into cache\n", i); return 0; } static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst, struct cvp_buf_type *buf, bool is_persist, u32 pkt_type) { int rc = 0, found = 1; struct msm_cvp_smem *smem = NULL; struct dma_buf *dma_buf = NULL; if (buf->fd < 0) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); return NULL; } dma_buf = msm_cvp_smem_get_dma_buf(buf->fd); if (!dma_buf) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); return NULL; } if (is_persist) { smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL); if (!smem) return NULL; smem->dma_buf = dma_buf; smem->bitmap_index = MAX_DMABUF_NUMS; smem->pkt_type = pkt_type; smem->flags |= SMEM_PERSIST; smem->fd = buf->fd; atomic_inc(&smem->refcount); rc = msm_cvp_map_smem(inst, smem, "map cpu"); if (rc) goto exit; if (!IS_CVP_BUF_VALID(buf, smem)) { dprintk(CVP_ERR, "%s: invalid offset %d or size %d persist\n", __func__, buf->offset, buf->size); goto exit2; } return smem; } smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type); if (!smem) { found = 0; smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL); if (!smem) return NULL; smem->dma_buf = dma_buf; smem->bitmap_index = MAX_DMABUF_NUMS; smem->pkt_type = pkt_type; smem->fd = buf->fd; if (is_params_pkt(pkt_type)) smem->flags |= SMEM_PERSIST; rc = msm_cvp_map_smem(inst, smem, "map cpu"); if (rc) goto exit; if (!IS_CVP_BUF_VALID(buf, smem)) { dprintk(CVP_ERR, "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n", __func__, buf->offset, buf->size, buf->fd, dma_buf, dma_buf->name, dma_buf->size, pkt_type); goto exit2; } rc = msm_cvp_session_add_smem(inst, smem); if (rc && rc != -ENOMEM) goto exit2; return smem; } if (!IS_CVP_BUF_VALID(buf, smem)) { dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n", __func__, buf->offset, buf->size); if (found) { mutex_lock(&inst->dma_cache.lock); atomic_dec(&smem->refcount); mutex_unlock(&inst->dma_cache.lock); return NULL; } goto exit2; } return smem; exit2: msm_cvp_unmap_smem(inst, smem, "unmap cpu"); exit: msm_cvp_smem_put_dma_buf(dma_buf); cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); smem = NULL; return smem; } static int msm_cvp_unmap_user_persist_buf(struct msm_cvp_inst *inst, struct cvp_buf_type *buf, u32 pkt_type, u32 buf_idx, u32 *iova) { struct msm_cvp_smem *smem = NULL; struct list_head *ptr; struct list_head *next; struct cvp_internal_buf *pbuf; struct dma_buf *dma_buf; if (!inst) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } dma_buf = msm_cvp_smem_get_dma_buf(buf->fd); if (!dma_buf) return -EINVAL; mutex_lock(&inst->persistbufs.lock); list_for_each_safe(ptr, next, &inst->persistbufs.list) { if (!ptr) { mutex_unlock(&inst->persistbufs.lock); return -EINVAL; } pbuf = list_entry(ptr, struct cvp_internal_buf, list); if (dma_buf == pbuf->smem->dma_buf && (pbuf->smem->flags & SMEM_PERSIST)) { *iova = pbuf->smem->device_addr; dprintk(CVP_MEM, "Unmap persist fd %d, dma_buf %#llx iova %#x\n", pbuf->fd, pbuf->smem->dma_buf, *iova); list_del(&pbuf->list); if (*iova) { msm_cvp_unmap_smem(inst, pbuf->smem, "unmap user persist"); msm_cvp_smem_put_dma_buf(pbuf->smem->dma_buf); pbuf->smem->device_addr = 0; } cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); pbuf->smem = NULL; cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf); mutex_unlock(&inst->persistbufs.lock); dma_buf_put(dma_buf); return 0; } } mutex_unlock(&inst->persistbufs.lock); dma_buf_put(dma_buf); return -EINVAL; } static int msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst, struct cvp_buf_type *buf, u32 pkt_type, u32 buf_idx, u32 *iova) { struct msm_cvp_smem *smem = NULL; struct list_head *ptr; struct list_head *next; struct cvp_internal_buf *pbuf; struct dma_buf *dma_buf; int ret; if (!inst) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } dma_buf = msm_cvp_smem_get_dma_buf(buf->fd); if (!dma_buf) return -EINVAL; mutex_lock(&inst->persistbufs.lock); if (!inst->persistbufs.list.next) { mutex_unlock(&inst->persistbufs.lock); return -EINVAL; } list_for_each_safe(ptr, next, &inst->persistbufs.list) { if (!ptr) return -EINVAL; pbuf = list_entry(ptr, struct cvp_internal_buf, list); if (dma_buf == pbuf->smem->dma_buf) { pbuf->size = (pbuf->size >= buf->size) ? pbuf->size : buf->size; *iova = pbuf->smem->device_addr + buf->offset; mutex_unlock(&inst->persistbufs.lock); atomic_inc(&pbuf->smem->refcount); dma_buf_put(dma_buf); dprintk(CVP_MEM, "map persist Reuse fd %d, dma_buf %#llx\n", pbuf->fd, pbuf->smem->dma_buf); return 0; } } mutex_unlock(&inst->persistbufs.lock); dma_buf_put(dma_buf); pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL); if (!pbuf) { dprintk(CVP_ERR, "%s failed to allocate kmem obj\n", __func__); return -ENOMEM; } if (is_params_pkt(pkt_type)) smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type); else smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type); if (!smem) { ret = -ENOMEM; goto exit; } smem->pkt_type = pkt_type; smem->buf_idx = buf_idx; smem->fd = buf->fd; pbuf->smem = smem; pbuf->fd = buf->fd; pbuf->size = buf->size; pbuf->offset = buf->offset; pbuf->ownership = CLIENT; mutex_lock(&inst->persistbufs.lock); list_add_tail(&pbuf->list, &inst->persistbufs.list); mutex_unlock(&inst->persistbufs.lock); print_internal_buffer(CVP_MEM, "map persist", inst, pbuf); *iova = smem->device_addr + buf->offset; return 0; exit: cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf); return ret; } static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst, struct cvp_buf_type *buf, struct msm_cvp_frame *frame, u32 pkt_type, u32 buf_idx) { u32 iova = 0; struct msm_cvp_smem *smem = NULL; u32 nr; u32 type; if (!inst || !frame) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return 0; } nr = frame->nr; if (nr == MAX_FRAME_BUFFER_NUMS) { dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__); return 0; } smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type); if (!smem) return 0; smem->buf_idx = buf_idx; frame->bufs[nr].fd = buf->fd; frame->bufs[nr].smem = smem; frame->bufs[nr].size = buf->size; frame->bufs[nr].offset = buf->offset; print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]); frame->nr++; type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT; msm_cvp_cache_operations(smem, type, buf->offset, buf->size); iova = smem->device_addr + buf->offset; return iova; } static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst, struct msm_cvp_frame *frame) { u32 i; u32 type; struct msm_cvp_smem *smem = NULL; struct cvp_internal_buf *buf; type = EVA_KMD_BUFTYPE_OUTPUT; for (i = 0; i < frame->nr; ++i) { buf = &frame->bufs[i]; smem = buf->smem; msm_cvp_cache_operations(smem, type, buf->offset, buf->size); if (smem->bitmap_index >= MAX_DMABUF_NUMS) { /* smem not in dmamap cache */ if (atomic_dec_and_test(&smem->refcount)) { msm_cvp_unmap_smem(inst, smem, "unmap cpu"); dma_heap_buffer_free(smem->dma_buf); smem->buf_idx |= 0xdead0000; cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); buf->smem = NULL; } } else { mutex_lock(&inst->dma_cache.lock); if (atomic_dec_and_test(&smem->refcount)) { CLEAR_USE_BITMAP(smem->bitmap_index, inst); print_smem(CVP_MEM, "Map dereference", inst, smem); smem->buf_idx |= 0x10000000; } mutex_unlock(&inst->dma_cache.lock); } } cvp_kmem_cache_free(&cvp_driver->frame_cache, frame); } static void backup_frame_buffers(struct msm_cvp_inst *inst, struct msm_cvp_frame *frame) { /* Save frame buffers before unmap them */ int i = frame->nr; if (i == 0 || i > MAX_FRAME_BUFFER_NUMS) return; inst->last_frame.ktid = frame->ktid; inst->last_frame.nr = frame->nr; do { i--; if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) { /* * Frame buffer info can be found in dma_cache table, * Skip saving */ inst->last_frame.nr = 0; return; } inst->last_frame.smem[i] = *(frame->bufs[i].smem); } while (i); } void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid) { struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1; bool found; if (!inst) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return; } ktid &= (FENCE_BIT - 1); dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n", __func__, hash32_ptr(inst->session), ktid); found = false; mutex_lock(&inst->frames.lock); list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) { if (frame->ktid == ktid) { found = true; list_del(&frame->list); dprintk(CVP_CMD, "%s: " "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n", __func__, frame->pkt_type, hash32_ptr(inst->session), frame->ktid); /* Save the previous frame mappings for debug */ backup_frame_buffers(inst, frame); msm_cvp_unmap_frame_buf(inst, frame); break; } } mutex_unlock(&inst->frames.lock); if (!found) dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid); } /* * Unmap persistent buffer before sending RELEASE_PERSIST_BUFFERS to FW * This packet is sent after SESSION_STOP. The assumption is FW/HW will * NOT access any of the 3 persist buffer. */ int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_buf_type *buf; struct cvp_hfi_cmd_session_hdr *cmd_hdr; int i, ret; u32 iova; if (!offset || !buf_num) return 0; if (offset < (sizeof(struct cvp_hfi_cmd_session_hdr)/sizeof(u32))) { dprintk(CVP_ERR, "%s: Incorrect offset in cmd %d\n", __func__, offset); return -EINVAL; } cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt; for (i = 0; i < buf_num; i++) { buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset]; offset += sizeof(*buf) >> 2; if (buf->fd < 0 || !buf->size) continue; ret = msm_cvp_unmap_user_persist_buf(inst, buf, cmd_hdr->packet_type, i, &iova); if (ret) { dprintk(CVP_ERR, "%s: buf %d unmap failed.\n", __func__, i); return ret; } buf->fd = iova; } return 0; } int msm_cvp_map_user_persist(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_buf_type *buf; struct cvp_hfi_cmd_session_hdr *cmd_hdr; int i, ret; u32 iova; if (!offset || !buf_num) return 0; if (offset < (sizeof(struct cvp_hfi_cmd_session_hdr)/sizeof(u32))) { dprintk(CVP_ERR, "%s: Incorrect offset in cmd %d\n", __func__, offset); return -EINVAL; } cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt; for (i = 0; i < buf_num; i++) { buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset]; offset += sizeof(*buf) >> 2; if (buf->fd < 0 || !buf->size) continue; ret = msm_cvp_map_user_persist_buf(inst, buf, cmd_hdr->packet_type, i, &iova); if (ret) { dprintk(CVP_ERR, "%s: buf %d map failed.\n", __func__, i); return ret; } buf->fd = iova; } return 0; } int msm_cvp_map_frame(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_buf_type *buf; int i; u32 iova; u64 ktid; struct msm_cvp_frame *frame; struct cvp_hfi_cmd_session_hdr *cmd_hdr; struct msm_cvp_inst *instance = (struct msm_cvp_inst *)0xdeadbeef; struct msm_cvp_core *core = NULL; core = cvp_driver->cvp_core; if (!core) return -EINVAL; if (!offset || !buf_num) return 0; if (offset < (sizeof(struct cvp_hfi_cmd_session_hdr)/sizeof(u32))) { dprintk(CVP_ERR, "%s: Incorrect offset in cmd %d\n", __func__, offset); return -EINVAL; } cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt; ktid = atomic64_inc_return(&inst->core->kernel_trans_id); ktid &= (FENCE_BIT - 1); cmd_hdr->client_data.kdata = ktid; dprintk(CVP_CMD, "%s: " "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n", __func__, cmd_hdr->packet_type, cmd_hdr->session_id, cmd_hdr->client_data.transaction_id, cmd_hdr->client_data.kdata & (FENCE_BIT - 1)); frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL); if (!frame) return -ENOMEM; frame->ktid = ktid; frame->nr = 0; frame->pkt_type = cmd_hdr->packet_type; for (i = 0; i < buf_num; i++) { buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset]; offset += sizeof(*buf) >> 2; if (buf->fd < 0 || !buf->size) { buf->fd = 0; buf->size = 0; continue; } iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i); if (!iova) { dprintk(CVP_ERR, "%s: buf %d register failed.\n", __func__, i); dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count); mutex_lock(&core->lock); list_for_each_entry(instance, &core->instances, list) { msm_cvp_print_inst_bufs(instance, false); } mutex_unlock(&core->lock); msm_cvp_unmap_frame_buf(inst, frame); return -EINVAL; } buf->fd = iova; } mutex_lock(&inst->frames.lock); list_add_tail(&frame->list, &inst->frames.list); mutex_unlock(&inst->frames.lock); dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid); return 0; } int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst) { int rc = 0, i; struct cvp_internal_buf *cbuf, *dummy; struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1; struct msm_cvp_smem *smem; struct cvp_hal_session *session; struct eva_kmd_buffer buf; struct list_head *ptr = (struct list_head *)0xdead; struct list_head *next = (struct list_head *)0xdead; session = (struct cvp_hal_session *)inst->session; mutex_lock(&inst->frames.lock); list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) { list_del(&frame->list); msm_cvp_unmap_frame_buf(inst, frame); } mutex_unlock(&inst->frames.lock); mutex_lock(&inst->persistbufs.lock); list_for_each_safe(ptr, next, &inst->persistbufs.list) { if (!ptr) return -EINVAL; cbuf = list_entry(ptr, struct cvp_internal_buf, list); smem = cbuf->smem; if (!smem) { dprintk(CVP_ERR, "%s invalid persist smem\n", __func__); mutex_unlock(&inst->persistbufs.lock); return -EINVAL; } if (cbuf->ownership != DRIVER) { dprintk(CVP_MEM, "%s: %x : fd %d %pK size %d", "free user persistent", hash32_ptr(inst->session), cbuf->fd, smem->dma_buf, cbuf->size); list_del(&cbuf->list); if (smem->bitmap_index >= MAX_DMABUF_NUMS) { /* * don't care refcount, has to remove mapping * this is user persistent buffer */ if (smem->device_addr) { msm_cvp_unmap_smem(inst, smem, "unmap persist"); msm_cvp_smem_put_dma_buf( cbuf->smem->dma_buf); smem->device_addr = 0; } cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); cbuf->smem = NULL; cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); } else { /* * DMM_PARAMS and WAP_NCC_PARAMS cases * Leave dma_cache cleanup to unmap */ cbuf->smem = NULL; cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); } } } mutex_unlock(&inst->persistbufs.lock); mutex_lock(&inst->dma_cache.lock); for (i = 0; i < inst->dma_cache.nr; i++) { smem = inst->dma_cache.entries[i]; if (atomic_read(&smem->refcount) == 0) { print_smem(CVP_MEM, "free", inst, smem); } else if (!(smem->flags & SMEM_PERSIST)) { print_smem(CVP_WARN, "in use", inst, smem); } msm_cvp_unmap_smem(inst, smem, "unmap cpu"); msm_cvp_smem_put_dma_buf(smem->dma_buf); cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); inst->dma_cache.entries[i] = NULL; } mutex_unlock(&inst->dma_cache.lock); cbuf = (struct cvp_internal_buf *)0xdeadbeef; mutex_lock(&inst->cvpdspbufs.lock); list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) { print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf); if (cbuf->ownership == CLIENT) { msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp"); msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf); } else if (cbuf->ownership == DSP) { rc = cvp_dsp_fastrpc_unmap(inst->dsp_handle, cbuf); if (rc) dprintk(CVP_ERR, "%s: failed to unmap buf from DSP\n", __func__); rc = cvp_release_dsp_buffers(inst, cbuf); if (rc) dprintk(CVP_ERR, "%s Fail to free buffer 0x%x\n", __func__, rc); } list_del(&cbuf->list); cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf); } mutex_unlock(&inst->cvpdspbufs.lock); mutex_lock(&inst->cvpwnccbufs.lock); if (inst->cvpwnccbufs_num != 0) dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs", __func__, inst->cvpwnccbufs_num); list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) { print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf); buf.fd = cbuf->fd; buf.reserved[0] = cbuf->ktid; mutex_unlock(&inst->cvpwnccbufs.lock); msm_cvp_unmap_buf_wncc(inst, &buf); mutex_lock(&inst->cvpwnccbufs.lock); } mutex_unlock(&inst->cvpwnccbufs.lock); return rc; } void msm_cvp_populate_dsp_buf_info(struct cvp_internal_buf *buf, struct cvp_hal_session *session, u32 session_id, struct msm_cvp_core *core) { struct cvp_hfi_ops *dev_ops = (struct cvp_hfi_ops *) core->dev_ops; struct iris_hfi_device *cvp_device = (struct iris_hfi_device *) dev_ops->hfi_device_data; struct cvp_iface_q_info dsp_debugQ_info = cvp_device->dsp_iface_queues[DEBUG_Q]; struct cvp_dsp_trace_buf *trace_buf; struct cvp_dsp_trace *dsp_debug_trace; dsp_debug_trace = (struct cvp_dsp_trace *) dsp_debugQ_info.q_array.align_virtual_addr; if (!dsp_debug_trace) { dprintk(CVP_ERR, "dsp trace is NULL\n"); return; } for (int session_idx = 0; session_idx < EVA_TRACE_MAX_SESSION_NUM; session_idx++) { if (dsp_debug_trace->sessions[session_idx].session_id == session_id) { u32 buf_cnt = dsp_debug_trace->sessions[session_idx].buf_cnt; for (int buf_idx = 0; buf_idx < buf_cnt; buf_idx++) { trace_buf = &dsp_debug_trace->sessions[session_idx].buf[buf_idx]; if (buf->smem->device_addr == trace_buf->iova) { buf->smem->buf_idx = trace_buf->buf_idx; buf->smem->pkt_type = trace_buf->pkt_type; buf->smem->fd = trace_buf->fd; return; } } } } } #define MAX_NUM_FRAMES_DUMP 4 void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log) { struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef; struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef; struct msm_cvp_core *core; struct inst_snapshot *snap = NULL; int i = 0, c = 0; // DSP trace related variables struct cvp_hal_session *session; u32 session_id; session = (struct cvp_hal_session *)inst->session; session_id = hash32_ptr(session); core = cvp_driver->cvp_core; if (log && core->log.snapshot_index < 16) { snap = &core->log.snapshot[core->log.snapshot_index]; snap->session = inst->session; core->log.snapshot_index++; } if (!inst) { dprintk(CVP_ERR, "%s - invalid param %pK\n", __func__, inst); return; } dprintk(CVP_ERR, "---Buffer details for inst: %pK %s of type: %d---\n", inst, inst->proc_name, inst->session_type); dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr); mutex_lock(&inst->dma_cache.lock); if (inst->dma_cache.nr <= MAX_DMABUF_NUMS) for (i = 0; i < inst->dma_cache.nr; i++) _log_smem(snap, inst, inst->dma_cache.entries[i], log); mutex_unlock(&inst->dma_cache.lock); i = 0; dprintk(CVP_ERR, "frame buffer list\n"); mutex_lock(&inst->frames.lock); list_for_each_entry(frame, &inst->frames.list, list) { i++; if (i <= MAX_NUM_FRAMES_DUMP) { dprintk(CVP_ERR, "frame no %d tid %llx bufs\n", i, frame->ktid); for (c = 0; c < frame->nr; c++) _log_smem(snap, inst, frame->bufs[c].smem, log); } } if (i > MAX_NUM_FRAMES_DUMP) dprintk(CVP_ERR, "Skipped %d frames' buffers\n", (i - MAX_NUM_FRAMES_DUMP)); mutex_unlock(&inst->frames.lock); mutex_lock(&inst->cvpdspbufs.lock); dprintk(CVP_ERR, "dsp buffer list:\n"); list_for_each_entry(buf, &inst->cvpdspbufs.list, list) { // Populate DSP buffer info from debug queue to kernel instance msm_cvp_populate_dsp_buf_info(buf, session, session_id, core); // Log print buffer info _log_buf(snap, SMEM_CDSP, inst, buf, log); } mutex_unlock(&inst->cvpdspbufs.lock); mutex_lock(&inst->cvpwnccbufs.lock); dprintk(CVP_ERR, "wncc buffer list:\n"); list_for_each_entry(buf, &inst->cvpwnccbufs.list, list) print_cvp_buffer(CVP_ERR, "bufdump", inst, buf); mutex_unlock(&inst->cvpwnccbufs.lock); mutex_lock(&inst->persistbufs.lock); dprintk(CVP_ERR, "persist buffer list:\n"); list_for_each_entry(buf, &inst->persistbufs.list, list) _log_buf(snap, SMEM_PERSIST, inst, buf, log); mutex_unlock(&inst->persistbufs.lock); dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid); for (i = 0; i < inst->last_frame.nr; i++) _log_smem(snap, inst, &inst->last_frame.smem[i], log); dprintk(CVP_ERR, "unmapped wncc bufs\n"); for (i = 0; i < inst->unused_wncc_bufs.nr; i++) _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log); dprintk(CVP_ERR, "unmapped dsp bufs\n"); for (i = 0; i < inst->unused_dsp_bufs.nr; i++) _log_smem(snap, inst, &inst->unused_dsp_bufs.smem[i], log); } struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst, u32 buffer_size) { struct cvp_internal_buf *buf; struct msm_cvp_list *buf_list; u32 smem_flags = SMEM_UNCACHED; int rc = 0; if (!inst) { dprintk(CVP_ERR, "%s Invalid input\n", __func__); return NULL; } buf_list = &inst->persistbufs; if (!buffer_size) return NULL; /* If PERSIST buffer requires secure mapping, uncomment * below flags setting * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL; */ buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL); if (!buf) { dprintk(CVP_ERR, "%s Out of memory\n", __func__); goto fail_kzalloc; } buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL); if (!buf->smem) { dprintk(CVP_ERR, "%s Out of memory\n", __func__); goto err_no_smem; } buf->smem->flags = smem_flags; rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */ &(inst->core->resources), buf->smem); if (rc) { dprintk(CVP_ERR, "Failed to allocate ARP memory\n"); goto err_no_mem; } buf->smem->pkt_type = buf->smem->buf_idx = 0; atomic_inc(&buf->smem->refcount); buf->size = buf->smem->size; buf->type = HFI_BUFFER_INTERNAL_PERSIST_1; buf->ownership = DRIVER; mutex_lock(&buf_list->lock); list_add_tail(&buf->list, &buf_list->list); mutex_unlock(&buf_list->lock); return buf; err_no_mem: cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem); err_no_smem: cvp_kmem_cache_free(&cvp_driver->buf_cache, buf); fail_kzalloc: return NULL; } int cvp_release_arp_buffers(struct msm_cvp_inst *inst) { struct msm_cvp_smem *smem; struct list_head *ptr = (struct list_head *)0xdead; struct list_head *next = (struct list_head *)0xdead; struct cvp_internal_buf *buf; int rc = 0; struct msm_cvp_core *core; struct cvp_hfi_ops *ops_tbl; if (!inst) { dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst); return -EINVAL; } core = inst->core; if (!core) { dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core); return -EINVAL; } ops_tbl = core->dev_ops; if (!ops_tbl) { dprintk(CVP_ERR, "Invalid device pointer = %pK\n", ops_tbl); return -EINVAL; } dprintk(CVP_MEM, "release persist buffer!\n"); mutex_lock(&inst->persistbufs.lock); /* Workaround for FW: release buffer means release all */ if (inst->state > MSM_CVP_CORE_INIT_DONE && inst->state <= MSM_CVP_CLOSE_DONE) { rc = call_hfi_op(ops_tbl, session_release_buffers, (void *)inst->session); if (!rc) { mutex_unlock(&inst->persistbufs.lock); rc = wait_for_sess_signal_receipt(inst, HAL_SESSION_RELEASE_BUFFER_DONE); if (rc) dprintk(CVP_WARN, "%s: wait release_arp signal failed, rc %d\n", __func__, rc); mutex_lock(&inst->persistbufs.lock); } else { dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n"); } } list_for_each_safe(ptr, next, &inst->persistbufs.list) { if (!ptr) return -EINVAL; buf = list_entry(ptr, struct cvp_internal_buf, list); smem = buf->smem; if (!smem) { dprintk(CVP_ERR, "%s invalid smem\n", __func__); mutex_unlock(&inst->persistbufs.lock); return -EINVAL; } if (buf->ownership == DRIVER) { dprintk(CVP_MEM, "%s: %x : fd %d %pK size %d", "free arp", hash32_ptr(inst->session), buf->fd, smem->dma_buf, buf->size); list_del(&buf->list); atomic_dec(&smem->refcount); msm_cvp_smem_free(smem); cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); buf->smem = NULL; cvp_kmem_cache_free(&cvp_driver->buf_cache, buf); } } mutex_unlock(&inst->persistbufs.lock); return rc; } int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst, struct cvp_internal_buf *buf, u32 buffer_size, u32 secure_type) { u32 smem_flags = SMEM_UNCACHED; int rc = 0; if (!inst) { dprintk(CVP_ERR, "%s Invalid input\n", __func__); return -EINVAL; } if (!buf) return -EINVAL; if (!buffer_size) return -EINVAL; switch (secure_type) { case 0: break; case 1: smem_flags |= SMEM_SECURE | SMEM_PIXEL; break; case 2: smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL; break; default: dprintk(CVP_ERR, "%s Invalid secure_type %d\n", __func__, secure_type); return -EINVAL; } dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags); buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL); if (!buf->smem) { dprintk(CVP_ERR, "%s Out of memory\n", __func__); goto fail_kzalloc_smem_cache; } buf->smem->flags = smem_flags; rc = msm_cvp_smem_alloc(buffer_size, 1, 0, &(inst->core->resources), buf->smem); if (rc) { dprintk(CVP_ERR, "Failed to allocate DSP buf\n"); goto err_no_mem; } buf->smem->pkt_type = buf->smem->buf_idx = 0; atomic_inc(&buf->smem->refcount); dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf); buf->size = buf->smem->size; buf->type = HFI_BUFFER_INTERNAL_PERSIST_1; buf->ownership = DSP; return rc; err_no_mem: cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem); fail_kzalloc_smem_cache: return rc; } int cvp_release_dsp_buffers(struct msm_cvp_inst *inst, struct cvp_internal_buf *buf) { struct msm_cvp_smem *smem; int rc = 0; if (!inst) { dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst); return -EINVAL; } if (!buf) { dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst); return -EINVAL; } smem = buf->smem; if (!smem) { dprintk(CVP_ERR, "%s invalid smem\n", __func__); return -EINVAL; } if (buf->ownership == DSP) { dprintk(CVP_MEM, "%s: %x : fd %x %s size %d", __func__, hash32_ptr(inst->session), buf->fd, smem->dma_buf->name, buf->size); if (atomic_dec_and_test(&smem->refcount)) { msm_cvp_smem_free(smem); cvp_kmem_cache_free(&cvp_driver->smem_cache, smem); } } else { dprintk(CVP_ERR, "%s: wrong owner %d %x : fd %x %s size %d", __func__, buf->ownership, hash32_ptr(inst->session), buf->fd, smem->dma_buf->name, buf->size); } return rc; } int msm_cvp_register_buffer(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { struct cvp_hfi_ops *ops_tbl; struct cvp_hal_session *session; struct msm_cvp_inst *s; int rc = 0; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } s = cvp_get_inst_validate(inst->core, inst); if (!s) return -ECONNRESET; session = (struct cvp_hal_session *)inst->session; if (!session) { dprintk(CVP_ERR, "%s: invalid session\n", __func__); rc = -EINVAL; goto exit; } ops_tbl = inst->core->dev_ops; print_client_buffer(CVP_HFI, "register", inst, buf); if (buf->index) rc = msm_cvp_map_buf_dsp(inst, buf); else rc = msm_cvp_map_buf_wncc(inst, buf); dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__, buf->fd, buf->reserved[0]); exit: cvp_put_inst(s); return rc; } int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { struct msm_cvp_inst *s; int rc = 0; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } s = cvp_get_inst_validate(inst->core, inst); if (!s) return -ECONNRESET; print_client_buffer(CVP_HFI, "unregister", inst, buf); if (buf->index) rc = msm_cvp_unmap_buf_dsp(inst, buf); else rc = msm_cvp_unmap_buf_wncc(inst, buf); cvp_put_inst(s); return rc; }