// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2020, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_SPF_CORE #include #endif #include #include #define MSM_AUDIO_ION_PROBED (1 << 0) #define MSM_AUDIO_ION_PHYS_ADDR(alloc_data) \ alloc_data->table->sgl->dma_address #define MSM_AUDIO_SMMU_SID_OFFSET 32 #define TZ_PIL_PROTECT_MEM_SUBSYS_ID 0x0C #define TZ_PIL_CLEAR_PROTECT_MEM_SUBSYS_ID 0x0D #define MSM_AUDIO_ION_DRIVER_NAME "msm_audio_ion" #define MINOR_NUMBER_COUNT 1 struct msm_audio_ion_private { bool smmu_enabled; struct device *cb_dev; struct device *cb_cma_dev; u8 device_status; struct list_head alloc_list; struct mutex list_mutex; u64 smmu_sid_bits; u32 smmu_version; bool is_non_hypervisor; /*list to store fd, phy. addr and handle data */ struct list_head fd_list; /*char dev related data */ dev_t ion_major; struct class *ion_class; struct device *chardev; struct cdev cdev; }; struct msm_audio_alloc_data { size_t len; void *vaddr; struct dma_buf *dma_buf; struct dma_buf_attachment *attach; struct sg_table *table; struct list_head list; }; static struct msm_audio_ion_private msm_audio_ion_data = {0,}; struct msm_audio_fd_data { int fd; void *handle; dma_addr_t paddr; struct list_head list; }; static void msm_audio_ion_add_allocation( struct msm_audio_ion_private *msm_audio_ion_data, struct msm_audio_alloc_data *alloc_data) { /* * Since these APIs can be invoked by multiple * clients, there is need to make sure the list * of allocations is always protected */ mutex_lock(&(msm_audio_ion_data->list_mutex)); list_add_tail(&(alloc_data->list), &(msm_audio_ion_data->alloc_list)); mutex_unlock(&(msm_audio_ion_data->list_mutex)); } static void *msm_audio_ion_map_kernel(struct dma_buf *dma_buf) { int rc = 0; void *addr = NULL; struct msm_audio_alloc_data *alloc_data = NULL; rc = dma_buf_begin_cpu_access(dma_buf, DMA_BIDIRECTIONAL); if (rc) { pr_err("%s: kmap dma_buf_begin_cpu_access fail\n", __func__); goto exit; } addr = dma_buf_vmap(dma_buf); if (!addr) { pr_err("%s: kernel mapping of dma_buf failed\n", __func__); goto exit; } /* * TBD: remove the below section once new API * for mapping kernel virtual address is available. */ mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list), list) { if (alloc_data->dma_buf == dma_buf) { alloc_data->vaddr = addr; break; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); exit: return addr; } static int msm_audio_dma_buf_map(struct dma_buf *dma_buf, dma_addr_t *addr, size_t *len, bool is_iova, bool cma_mem) { struct msm_audio_alloc_data *alloc_data = NULL; struct device *cb_dev; unsigned long ionflag = 0; int rc = 0; void *vaddr = NULL; if (cma_mem) cb_dev = msm_audio_ion_data.cb_cma_dev; else cb_dev = msm_audio_ion_data.cb_dev; /* Data required per buffer mapping */ alloc_data = kzalloc(sizeof(*alloc_data), GFP_KERNEL); if (!alloc_data) return -ENOMEM; alloc_data->dma_buf = dma_buf; alloc_data->len = dma_buf->size; *len = dma_buf->size; /* Attach the dma_buf to context bank device */ alloc_data->attach = dma_buf_attach(alloc_data->dma_buf, cb_dev); if (IS_ERR(alloc_data->attach)) { rc = PTR_ERR(alloc_data->attach); dev_err(cb_dev, "%s: Fail to attach dma_buf to CB, rc = %d\n", __func__, rc); goto free_alloc_data; } /* For uncached buffers, avoid cache maintanance */ rc = dma_buf_get_flags(alloc_data->dma_buf, &ionflag); if (rc) { dev_err(cb_dev, "%s: dma_buf_get_flags failed: %d\n", __func__, rc); goto detach_dma_buf; } if (!(ionflag & ION_FLAG_CACHED)) alloc_data->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC; /* * Get the scatter-gather list. * There is no info as this is a write buffer or * read buffer, hence the request is bi-directional * to accommodate both read and write mappings. */ alloc_data->table = dma_buf_map_attachment(alloc_data->attach, DMA_BIDIRECTIONAL); if (IS_ERR(alloc_data->table)) { rc = PTR_ERR(alloc_data->table); dev_err(cb_dev, "%s: Fail to map attachment, rc = %d\n", __func__, rc); goto detach_dma_buf; } /* physical address from mapping */ if (!is_iova) { *addr = sg_phys(alloc_data->table->sgl); vaddr = msm_audio_ion_map_kernel((void *)dma_buf); if (IS_ERR_OR_NULL(vaddr)) { pr_err("%s: ION memory mapping for AUDIO failed\n", __func__); rc = -ENOMEM; goto detach_dma_buf; } alloc_data->vaddr = vaddr; } else { *addr = MSM_AUDIO_ION_PHYS_ADDR(alloc_data); } msm_audio_ion_add_allocation(&msm_audio_ion_data, alloc_data); return rc; detach_dma_buf: dma_buf_detach(alloc_data->dma_buf, alloc_data->attach); free_alloc_data: kfree(alloc_data); alloc_data = NULL; return rc; } static int msm_audio_dma_buf_unmap(struct dma_buf *dma_buf, bool cma_mem) { int rc = 0; struct msm_audio_alloc_data *alloc_data = NULL; struct list_head *ptr, *next; struct device *cb_dev; bool found = false; if (cma_mem) cb_dev = msm_audio_ion_data.cb_cma_dev; else cb_dev = msm_audio_ion_data.cb_dev; /* * Though list_for_each_safe is delete safe, lock * should be explicitly acquired to avoid race condition * on adding elements to the list. */ mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_safe(ptr, next, &(msm_audio_ion_data.alloc_list)) { alloc_data = list_entry(ptr, struct msm_audio_alloc_data, list); if (alloc_data->dma_buf == dma_buf) { found = true; dma_buf_unmap_attachment(alloc_data->attach, alloc_data->table, DMA_BIDIRECTIONAL); dma_buf_detach(alloc_data->dma_buf, alloc_data->attach); dma_buf_put(alloc_data->dma_buf); list_del(&(alloc_data->list)); kfree(alloc_data); alloc_data = NULL; break; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); if (!found) { dev_err(cb_dev, "%s: cannot find allocation, dma_buf %pK", __func__, dma_buf); rc = -EINVAL; } return rc; } static int msm_audio_ion_get_phys(struct dma_buf *dma_buf, dma_addr_t *addr, size_t *len, bool is_iova) { int rc = 0; rc = msm_audio_dma_buf_map(dma_buf, addr, len, is_iova, false); if (rc) { pr_err("%s: failed to map DMA buf, err = %d\n", __func__, rc); goto err; } if (msm_audio_ion_data.smmu_enabled && is_iova) { /* Append the SMMU SID information to the IOVA address */ *addr |= msm_audio_ion_data.smmu_sid_bits; } pr_debug("phys=%pK, len=%zd, rc=%d\n", &(*addr), *len, rc); err: return rc; } int msm_audio_ion_get_smmu_info(struct device **cb_dev, u64 *smmu_sid) { if (!cb_dev || !smmu_sid) { pr_err("%s: Invalid params\n", __func__); return -EINVAL; } if (!msm_audio_ion_data.cb_dev || !msm_audio_ion_data.smmu_sid_bits) { pr_err("%s: Params not initialized\n", __func__); return -EINVAL; } *cb_dev = msm_audio_ion_data.cb_dev; *smmu_sid = msm_audio_ion_data.smmu_sid_bits; return 0; } static int msm_audio_ion_unmap_kernel(struct dma_buf *dma_buf) { int rc = 0; void *vaddr = NULL; struct msm_audio_alloc_data *alloc_data = NULL; struct device *cb_dev = msm_audio_ion_data.cb_dev; /* * TBD: remove the below section once new API * for unmapping kernel virtual address is available. */ mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list), list) { if (alloc_data->dma_buf == dma_buf) { vaddr = alloc_data->vaddr; break; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); if (!vaddr) { dev_err(cb_dev, "%s: cannot find allocation for dma_buf %pK", __func__, dma_buf); rc = -EINVAL; goto err; } dma_buf_vunmap(dma_buf, vaddr); rc = dma_buf_end_cpu_access(dma_buf, DMA_BIDIRECTIONAL); if (rc) { dev_err(cb_dev, "%s: kmap dma_buf_end_cpu_access fail\n", __func__); goto err; } err: return rc; } static int msm_audio_ion_map_buf(struct dma_buf *dma_buf, dma_addr_t *paddr, size_t *plen, void **vaddr) { int rc = 0; bool is_iova = true; if (!dma_buf || !paddr || !vaddr || !plen) { pr_err("%s: Invalid params\n", __func__); return -EINVAL; } rc = msm_audio_ion_get_phys(dma_buf, paddr, plen, is_iova); if (rc) { pr_err("%s: ION Get Physical for AUDIO failed, rc = %d\n", __func__, rc); dma_buf_put(dma_buf); goto err; } *vaddr = msm_audio_ion_map_kernel(dma_buf); if (IS_ERR_OR_NULL(*vaddr)) { pr_err("%s: ION memory mapping for AUDIO failed\n", __func__); rc = -ENOMEM; msm_audio_dma_buf_unmap(dma_buf, false); goto err; } err: return rc; } static u32 msm_audio_ion_get_smmu_sid_mode32(void) { if (msm_audio_ion_data.smmu_enabled) return upper_32_bits(msm_audio_ion_data.smmu_sid_bits); else return 0; } /** * msm_audio_ion_alloc - * Allocs ION memory for given client name * * @dma_buf: dma_buf for the ION memory * @bufsz: buffer size * @paddr: Physical address to be assigned with allocated region * @plen: length of allocated region to be assigned * vaddr: virtual address to be assigned * * Returns 0 on success or error on failure */ int msm_audio_ion_alloc(struct dma_buf **dma_buf, size_t bufsz, dma_addr_t *paddr, size_t *plen, void **vaddr) { int rc = -EINVAL; unsigned long err_ion_ptr = 0; if (!(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) { pr_debug("%s:probe is not done, deferred\n", __func__); return -EPROBE_DEFER; } if (!dma_buf || !paddr || !vaddr || !bufsz || !plen) { pr_err("%s: Invalid params\n", __func__); return -EINVAL; } if (msm_audio_ion_data.smmu_enabled == true) { pr_debug("%s: system heap is used\n", __func__); *dma_buf = ion_alloc(bufsz, ION_HEAP(ION_SYSTEM_HEAP_ID), 0); } else { pr_debug("%s: audio heap is used\n", __func__); *dma_buf = ion_alloc(bufsz, ION_HEAP(ION_AUDIO_HEAP_ID), 0); } if (IS_ERR_OR_NULL((void *)(*dma_buf))) { if (IS_ERR((void *)(*dma_buf))) err_ion_ptr = PTR_ERR((int *)(*dma_buf)); pr_err("%s: ION alloc fail err ptr=%ld, smmu_enabled=%d\n", __func__, err_ion_ptr, msm_audio_ion_data.smmu_enabled); rc = -ENOMEM; goto err; } rc = msm_audio_ion_map_buf(*dma_buf, paddr, plen, vaddr); if (rc) { pr_err("%s: failed to map ION buf, rc = %d\n", __func__, rc); goto err; } pr_debug("%s: mapped address = %pK, size=%zd\n", __func__, *vaddr, bufsz); memset(*vaddr, 0, bufsz); // Cleanp dmabuf if error? err: return rc; } EXPORT_SYMBOL(msm_audio_ion_alloc); int msm_audio_ion_phys_free(void *handle, dma_addr_t *paddr, size_t *pa_len, u8 assign_type, int id, int key) { handle = NULL; return 0; } EXPORT_SYMBOL(msm_audio_ion_phys_free); int msm_audio_ion_phys_assign(void **handle, int fd, dma_addr_t *paddr, size_t *pa_len, u8 assign_type, int id) { *handle = NULL; return 0; } EXPORT_SYMBOL(msm_audio_ion_phys_assign); bool msm_audio_is_hypervisor_supported(void) { return !(msm_audio_ion_data.is_non_hypervisor); } EXPORT_SYMBOL(msm_audio_is_hypervisor_supported); /** * msm_audio_ion_dma_map - * Memory maps for a given DMA buffer * * @phys_addr: Physical address of DMA buffer to be mapped * @iova_base: IOVA address of memory mapped DMA buffer * @size: buffer size * @dir: DMA direction * Returns 0 on success or error on failure */ int msm_audio_ion_dma_map(dma_addr_t *phys_addr, dma_addr_t *iova_base, u32 size, enum dma_data_direction dir) { dma_addr_t iova; struct device *cb_dev = msm_audio_ion_data.cb_dev; if (!phys_addr || !iova_base || !size) return -EINVAL; iova = dma_map_resource(cb_dev, *phys_addr, size, dir, 0); if (dma_mapping_error(cb_dev, iova)) { pr_err("%s: dma_mapping_error\n", __func__); return -EIO; } pr_debug("%s: dma_mapping_success iova:0x%lx\n", __func__, (unsigned long)iova); if (msm_audio_ion_data.smmu_enabled) /* Append the SMMU SID information to the IOVA address */ iova |= msm_audio_ion_data.smmu_sid_bits; *iova_base = iova; return 0; } EXPORT_SYMBOL(msm_audio_ion_dma_map); void msm_audio_fd_list_debug(void) { struct msm_audio_fd_data *msm_audio_fd_data = NULL; list_for_each_entry(msm_audio_fd_data, &msm_audio_ion_data.fd_list, list) { pr_debug("%s fd %d handle %pK phy. addr %pK\n", __func__, msm_audio_fd_data->fd, msm_audio_fd_data->handle, (void *)msm_audio_fd_data->paddr); } } void msm_audio_update_fd_list(struct msm_audio_fd_data *msm_audio_fd_data) { struct msm_audio_fd_data *msm_audio_fd_data1 = NULL; mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_entry(msm_audio_fd_data1, &msm_audio_ion_data.fd_list, list) { if (msm_audio_fd_data1->fd == msm_audio_fd_data->fd) { pr_err("%s fd already present, not updating the list", __func__); mutex_unlock(&(msm_audio_ion_data.list_mutex)); return; } } list_add_tail(&msm_audio_fd_data->list, &msm_audio_ion_data.fd_list); mutex_unlock(&(msm_audio_ion_data.list_mutex)); } void msm_audio_delete_fd_entry(void *handle) { struct msm_audio_fd_data *msm_audio_fd_data = NULL; struct list_head *ptr, *next; mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_safe(ptr, next, &msm_audio_ion_data.fd_list) { msm_audio_fd_data = list_entry(ptr, struct msm_audio_fd_data, list); if (msm_audio_fd_data->handle == handle) { pr_debug("%s deleting handle %pK entry from list\n", __func__, handle); list_del(&(msm_audio_fd_data->list)); kfree(msm_audio_fd_data); break; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); } int msm_audio_get_phy_addr(int fd, dma_addr_t *paddr) { struct msm_audio_fd_data *msm_audio_fd_data = NULL; int status = -EINVAL; if (!paddr) { pr_err("%s Invalid paddr param status %d\n", __func__, status); return status; } pr_debug("%s, fd %d\n", __func__, fd); mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_entry(msm_audio_fd_data, &msm_audio_ion_data.fd_list, list) { if (msm_audio_fd_data->fd == fd) { *paddr = msm_audio_fd_data->paddr; status = 0; pr_debug("%s Found fd %d paddr %pK\n", __func__, fd, paddr); mutex_unlock(&(msm_audio_ion_data.list_mutex)); return status; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); return status; } EXPORT_SYMBOL(msm_audio_get_phy_addr); void msm_audio_get_handle(int fd, void **handle) { struct msm_audio_fd_data *msm_audio_fd_data = NULL; pr_debug("%s fd %d\n", __func__, fd); mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_entry(msm_audio_fd_data, &msm_audio_ion_data.fd_list, list) { if (msm_audio_fd_data->fd == fd) { *handle = (struct dma_buf *)msm_audio_fd_data->handle; pr_debug("%s handle %pK\n", __func__, *handle); break; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); } /** * msm_audio_ion_import- * Import ION buffer with given file descriptor * * @dma_buf: dma_buf for the ION memory * @fd: file descriptor for the ION memory * @ionflag: flags associated with ION buffer * @bufsz: buffer size * @paddr: Physical address to be assigned with allocated region * @plen: length of allocated region to be assigned * @vaddr: virtual address to be assigned * * Returns 0 on success or error on failure */ int msm_audio_ion_import(struct dma_buf **dma_buf, int fd, unsigned long *ionflag, size_t bufsz, dma_addr_t *paddr, size_t *plen, void **vaddr) { int rc = 0; if (!(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) { pr_debug("%s: probe is not done, deferred\n", __func__); return -EPROBE_DEFER; } if (!dma_buf || !paddr || !vaddr || !plen) { pr_err("%s: Invalid params\n", __func__); return -EINVAL; } /* bufsz should be 0 and fd shouldn't be 0 as of now */ *dma_buf = dma_buf_get(fd); pr_debug("%s: dma_buf =%pK, fd=%d\n", __func__, *dma_buf, fd); if (IS_ERR_OR_NULL((void *)(*dma_buf))) { pr_err("%s: dma_buf_get failed\n", __func__); rc = -EINVAL; goto err; } if (ionflag != NULL) { rc = dma_buf_get_flags(*dma_buf, ionflag); if (rc) { pr_err("%s: could not get flags for the dma_buf\n", __func__); goto err_ion_flag; } } rc = msm_audio_ion_map_buf(*dma_buf, paddr, plen, vaddr); if (rc) { pr_err("%s: failed to map ION buf, rc = %d\n", __func__, rc); goto err; } pr_debug("%s: mapped address = %pK, size=%zd\n", __func__, *vaddr, bufsz); return 0; err_ion_flag: dma_buf_put(*dma_buf); err: *dma_buf = NULL; return rc; } EXPORT_SYMBOL(msm_audio_ion_import); /** * msm_audio_ion_import_cma- * Import ION buffer with given file descriptor * * @dma_buf: dma_buf for the ION memory * @fd: file descriptor for the ION memory * @ionflag: flags associated with ION buffer * @bufsz: buffer size * @paddr: Physical address to be assigned with allocated region * @plen: length of allocated region to be assigned * vaddr: virtual address to be assigned * * Returns 0 on success or error on failure */ int msm_audio_ion_import_cma(struct dma_buf **dma_buf, int fd, unsigned long *ionflag, size_t bufsz, dma_addr_t *paddr, size_t *plen, void **vaddr) { int rc = 0; if (!(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) { pr_debug("%s: probe is not done, deferred\n", __func__); return -EPROBE_DEFER; } if (!dma_buf || !paddr || !vaddr || !plen || !msm_audio_ion_data.cb_cma_dev) { pr_err("%s: Invalid params\n", __func__); return -EINVAL; } /* bufsz should be 0 and fd shouldn't be 0 as of now */ *dma_buf = dma_buf_get(fd); pr_debug("%s: dma_buf =%pK, fd=%d\n", __func__, *dma_buf, fd); if (IS_ERR_OR_NULL((void *)(*dma_buf))) { pr_err("%s: dma_buf_get failed\n", __func__); rc = -EINVAL; goto err; } if (ionflag != NULL) { rc = dma_buf_get_flags(*dma_buf, ionflag); if (rc) { pr_err("%s: could not get flags for the dma_buf\n", __func__); goto err_ion_flag; } } msm_audio_dma_buf_map(*dma_buf, paddr, plen, true, true); return 0; err_ion_flag: dma_buf_put(*dma_buf); err: *dma_buf = NULL; return rc; } EXPORT_SYMBOL(msm_audio_ion_import_cma); /** * msm_audio_ion_free - * fress ION memory for given client and handle * * @dma_buf: dma_buf for the ION memory * * Returns 0 on success or error on failure */ int msm_audio_ion_free(struct dma_buf *dma_buf) { int ret = 0; if (!dma_buf) { pr_err("%s: dma_buf invalid\n", __func__); return -EINVAL; } ret = msm_audio_ion_unmap_kernel(dma_buf); if (ret) return ret; msm_audio_dma_buf_unmap(dma_buf, false); return 0; } EXPORT_SYMBOL(msm_audio_ion_free); /** * msm_audio_ion_crash_handler - * handles cleanup after userspace crashes. * * To be called from machine driver. */ void msm_audio_ion_crash_handler(void) { struct msm_audio_fd_data *msm_audio_fd_data = NULL; struct list_head *ptr, *next; void *handle = NULL; pr_debug("Inside %s\n", __func__); list_for_each_entry(msm_audio_fd_data, &msm_audio_ion_data.fd_list, list) { handle = msm_audio_fd_data->handle; msm_audio_ion_free(handle); } list_for_each_safe(ptr, next, &msm_audio_ion_data.fd_list) { msm_audio_fd_data = list_entry(ptr, struct msm_audio_fd_data, list); list_del(&(msm_audio_fd_data->list)); kfree(msm_audio_fd_data); } } EXPORT_SYMBOL(msm_audio_ion_crash_handler); /** * msm_audio_ion_free_cma - * fress ION memory for given client and handle * * @dma_buf: dma_buf for the ION memory * * Returns 0 on success or error on failure */ int msm_audio_ion_free_cma(struct dma_buf *dma_buf) { if (!dma_buf) { pr_err("%s: dma_buf invalid\n", __func__); return -EINVAL; } msm_audio_dma_buf_unmap(dma_buf, true); return 0; } EXPORT_SYMBOL(msm_audio_ion_free_cma); /** * msm_audio_ion_mmap - * Audio ION memory map * * @abuff: audio buf pointer * @vma: virtual mem area * * Returns 0 on success or error on failure */ int msm_audio_ion_mmap(struct audio_buffer *abuff, struct vm_area_struct *vma) { struct msm_audio_alloc_data *alloc_data = NULL; struct sg_table *table; unsigned long addr = vma->vm_start; unsigned long offset = vma->vm_pgoff * PAGE_SIZE; struct scatterlist *sg; unsigned int i; struct page *page; int ret = 0; bool found = false; struct device *cb_dev = msm_audio_ion_data.cb_dev; mutex_lock(&(msm_audio_ion_data.list_mutex)); list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list), list) { if (alloc_data->dma_buf == abuff->dma_buf) { found = true; table = alloc_data->table; break; } } mutex_unlock(&(msm_audio_ion_data.list_mutex)); if (!found) { dev_err(cb_dev, "%s: cannot find allocation, dma_buf %pK", __func__, abuff->dma_buf); return -EINVAL; } /* uncached */ vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); /* We need to check if a page is associated with this sg list because: * If the allocation came from a carveout we currently don't have * pages associated with carved out memory. This might change in the * future and we can remove this check and the else statement. */ page = sg_page(table->sgl); if (page) { pr_debug("%s: page is NOT null\n", __func__); for_each_sg(table->sgl, sg, table->nents, i) { unsigned long remainder = vma->vm_end - addr; unsigned long len = sg->length; page = sg_page(sg); if (offset >= len) { offset -= len; continue; } else if (offset) { page += offset / PAGE_SIZE; len -= offset; offset = 0; } len = min(len, remainder); pr_debug("vma=%pK, addr=%x len=%ld vm_start=%x vm_end=%x vm_page_prot=%lu\n", vma, (unsigned int)addr, len, (unsigned int)vma->vm_start, (unsigned int)vma->vm_end, (unsigned long)pgprot_val(vma->vm_page_prot)); remap_pfn_range(vma, addr, page_to_pfn(page), len, vma->vm_page_prot); addr += len; if (addr >= vma->vm_end) return 0; } } else { pr_debug("%s: page is NULL\n", __func__); ret = -EINVAL; } return ret; } EXPORT_SYMBOL(msm_audio_ion_mmap); /** * msm_audio_ion_cache_operations- * Cache operations on cached Audio ION buffers * * @abuff: audio buf pointer * @cache_op: cache operation to be performed * * Returns 0 on success or error on failure */ int msm_audio_ion_cache_operations(struct audio_buffer *abuff, int cache_op) { unsigned long ionflag = 0; int rc = 0; if (!abuff) { pr_err("%s: Invalid params: %pK\n", __func__, abuff); return -EINVAL; } rc = dma_buf_get_flags(abuff->dma_buf, &ionflag); if (rc) { pr_err("%s: dma_buf_get_flags failed: %d\n", __func__, rc); goto cache_op_failed; } /* Has to be CACHED */ if (ionflag & ION_FLAG_CACHED) { /* MSM_AUDIO_ION_INV_CACHES or MSM_AUDIO_ION_CLEAN_CACHES */ switch (cache_op) { case MSM_AUDIO_ION_INV_CACHES: case MSM_AUDIO_ION_CLEAN_CACHES: dma_buf_begin_cpu_access(abuff->dma_buf, DMA_BIDIRECTIONAL); dma_buf_end_cpu_access(abuff->dma_buf, DMA_BIDIRECTIONAL); break; default: pr_err("%s: Invalid cache operation %d\n", __func__, cache_op); } } else { pr_err("%s: Cache ops called on uncached buffer: %pK\n", __func__, abuff->dma_buf); rc = -EINVAL; } cache_op_failed: return rc; } EXPORT_SYMBOL(msm_audio_ion_cache_operations); /** * msm_audio_populate_upper_32_bits - * retrieve upper 32bits of 64bit address * * @pa: 64bit physical address * */ u32 msm_audio_populate_upper_32_bits(dma_addr_t pa) { if (sizeof(dma_addr_t) == sizeof(u32)) return msm_audio_ion_get_smmu_sid_mode32(); else return upper_32_bits(pa); } EXPORT_SYMBOL(msm_audio_populate_upper_32_bits); static int msm_audio_ion_open(struct inode *inode, struct file *file) { int ret = 0; struct msm_audio_ion_private *ion_data = container_of(inode->i_cdev, struct msm_audio_ion_private, cdev); struct device *dev = ion_data->chardev; pr_debug("Inside %s\n", __func__); get_device(dev); return ret; } static int msm_audio_ion_release(struct inode *inode, struct file *file) { struct msm_audio_ion_private *ion_data = container_of(inode->i_cdev, struct msm_audio_ion_private, cdev); struct device *dev = ion_data->chardev; pr_debug("Inside %s\n", __func__); put_device(dev); return 0; } static long msm_audio_ion_ioctl(struct file *file, unsigned int ioctl_num, unsigned long __user ioctl_param) { void *mem_handle; dma_addr_t paddr; size_t pa_len = 0; void *vaddr; int ret = 0; struct msm_audio_fd_data *msm_audio_fd_data = NULL; pr_debug("%s ioctl num %u\n", __func__, ioctl_num); switch (ioctl_num) { case IOCTL_MAP_PHYS_ADDR: msm_audio_fd_data = kzalloc((sizeof(struct msm_audio_fd_data)), GFP_KERNEL); if (!msm_audio_fd_data) { ret = -ENOMEM; pr_err("%s : Out of memory ret %d\n", __func__, ret); return ret; } ret = msm_audio_ion_import((struct dma_buf **)&mem_handle, (int)ioctl_param, NULL, 0, &paddr, &pa_len, &vaddr); if (ret < 0) { pr_err("%s Memory map Failed %d\n", __func__, ret); kfree(msm_audio_fd_data); return ret; } msm_audio_fd_data->fd = (int)ioctl_param; msm_audio_fd_data->handle = mem_handle; msm_audio_fd_data->paddr = paddr; msm_audio_update_fd_list(msm_audio_fd_data); break; case IOCTL_UNMAP_PHYS_ADDR: msm_audio_get_handle((int)ioctl_param, &mem_handle); ret = msm_audio_ion_free(mem_handle); if (ret < 0) { pr_err("%s Ion free failed %d\n", __func__, ret); return ret; } msm_audio_delete_fd_entry(mem_handle); break; default: pr_err("%s Entered default. Invalid ioctl num %u", __func__, ioctl_num); ret = -EINVAL; break; } return ret; } static int msm_audio_smmu_init(struct device *dev) { INIT_LIST_HEAD(&msm_audio_ion_data.alloc_list); mutex_init(&(msm_audio_ion_data.list_mutex)); return 0; } static const struct of_device_id msm_audio_ion_dt_match[] = { { .compatible = "qcom,msm-audio-ion" }, { .compatible = "qcom,msm-audio-ion-cma"}, { } }; MODULE_DEVICE_TABLE(of, msm_audio_ion_dt_match); static const struct file_operations msm_audio_ion_fops = { .owner = THIS_MODULE, .open = msm_audio_ion_open, .release = msm_audio_ion_release, .unlocked_ioctl = msm_audio_ion_ioctl, }; static int msm_audio_ion_reg_chrdev(struct msm_audio_ion_private *ion_data) { int ret = 0; ret = alloc_chrdev_region(&ion_data->ion_major, 0, MINOR_NUMBER_COUNT, MSM_AUDIO_ION_DRIVER_NAME); if (ret < 0) { pr_err("%s alloc_chr_dev_region failed ret : %d\n", __func__, ret); return ret; } pr_debug("%s major number %d", __func__, MAJOR(ion_data->ion_major)); ion_data->ion_class = class_create(THIS_MODULE, MSM_AUDIO_ION_DRIVER_NAME); if (IS_ERR(ion_data->ion_class)) { ret = PTR_ERR(ion_data->ion_class); pr_err("%s class create failed. ret : %d", __func__, ret); goto err_class; } ion_data->chardev = device_create(ion_data->ion_class, NULL, ion_data->ion_major, NULL, MSM_AUDIO_ION_DRIVER_NAME); if (IS_ERR(ion_data->chardev)) { ret = PTR_ERR(ion_data->chardev); pr_err("%s device create failed ret : %d\n", __func__, ret); goto err_device; } cdev_init(&ion_data->cdev, &msm_audio_ion_fops); ret = cdev_add(&ion_data->cdev, ion_data->ion_major, 1); if (ret) { pr_err("%s cdev add failed, ret : %d\n", __func__, ret); goto err_cdev; } return ret; err_cdev: device_destroy(ion_data->ion_class, ion_data->ion_major); err_device: class_destroy(ion_data->ion_class); err_class: unregister_chrdev_region(0, MINOR_NUMBER_COUNT); return ret; } static int msm_audio_ion_unreg_chrdev(struct msm_audio_ion_private *ion_data) { cdev_del(&ion_data->cdev); device_destroy(ion_data->ion_class, ion_data->ion_major); class_destroy(ion_data->ion_class); unregister_chrdev_region(0, MINOR_NUMBER_COUNT); return 0; } static int msm_audio_ion_probe(struct platform_device *pdev) { int rc = 0; u64 smmu_sid = 0; u64 smmu_sid_mask = 0; const char *msm_audio_ion_dt = "qcom,smmu-enabled"; const char *msm_audio_ion_non_hyp = "qcom,non-hyp-assign"; const char *msm_audio_ion_smmu = "qcom,smmu-version"; const char *msm_audio_ion_smmu_sid_mask = "qcom,smmu-sid-mask"; bool smmu_enabled; bool is_non_hypervisor_en; struct device *dev = &pdev->dev; struct of_phandle_args iommuspec; #ifndef CONFIG_SPF_CORE enum apr_subsys_state q6_state; #endif dev_err(dev, "%s: msm_audio_ion_probe\n", __func__); if (dev->of_node == NULL) { dev_err(dev, "%s: device tree is not found\n", __func__); msm_audio_ion_data.smmu_enabled = 0; return 0; } is_non_hypervisor_en = of_property_read_bool(dev->of_node, msm_audio_ion_non_hyp); msm_audio_ion_data.is_non_hypervisor = is_non_hypervisor_en; if (of_device_is_compatible(dev->of_node, "qcom,msm-audio-ion-cma")) { msm_audio_ion_data.cb_cma_dev = dev; return 0; } smmu_enabled = of_property_read_bool(dev->of_node, msm_audio_ion_dt); msm_audio_ion_data.smmu_enabled = smmu_enabled; if (!smmu_enabled) { dev_dbg(dev, "%s: SMMU is Disabled\n", __func__); goto exit; } #ifndef CONFIG_SPF_CORE q6_state = apr_get_q6_state(); if (q6_state == APR_SUBSYS_DOWN) { dev_info(dev, "defering %s, adsp_state %d\n", __func__, q6_state); return -EPROBE_DEFER; } #endif dev_dbg(dev, "%s: adsp is ready\n", __func__); rc = of_property_read_u32(dev->of_node, msm_audio_ion_smmu, &msm_audio_ion_data.smmu_version); if (rc) { dev_err(dev, "%s: qcom,smmu_version missing in DT node\n", __func__); return rc; } dev_dbg(dev, "%s: SMMU is Enabled. SMMU version is (%d)", __func__, msm_audio_ion_data.smmu_version); /* Get SMMU SID information from Devicetree */ rc = of_property_read_u64(dev->of_node, msm_audio_ion_smmu_sid_mask, &smmu_sid_mask); if (rc) { dev_err(dev, "%s: qcom,smmu-sid-mask missing in DT node, using default\n", __func__); smmu_sid_mask = 0xFFFFFFFFFFFFFFFF; } rc = of_parse_phandle_with_args(dev->of_node, "iommus", "#iommu-cells", 0, &iommuspec); if (rc) dev_err(dev, "%s: could not get smmu SID, ret = %d\n", __func__, rc); else smmu_sid = (iommuspec.args[0] & smmu_sid_mask); msm_audio_ion_data.smmu_sid_bits = smmu_sid << MSM_AUDIO_SMMU_SID_OFFSET; if (msm_audio_ion_data.smmu_version == 0x2) { rc = msm_audio_smmu_init(dev); } else { dev_err(dev, "%s: smmu version invalid %d\n", __func__, msm_audio_ion_data.smmu_version); rc = -EINVAL; } if (rc) dev_err(dev, "%s: smmu init failed, err = %d\n", __func__, rc); exit: if (!rc) msm_audio_ion_data.device_status |= MSM_AUDIO_ION_PROBED; msm_audio_ion_data.cb_dev = dev; INIT_LIST_HEAD(&msm_audio_ion_data.fd_list); rc = msm_audio_ion_reg_chrdev(&msm_audio_ion_data); if (rc) { pr_err("%s register char dev failed, rc : %d", __func__, rc); return rc; } return rc; } static int msm_audio_ion_remove(struct platform_device *pdev) { struct device *audio_cb_dev; audio_cb_dev = msm_audio_ion_data.cb_dev; msm_audio_ion_data.smmu_enabled = 0; msm_audio_ion_data.device_status = 0; msm_audio_ion_unreg_chrdev(&msm_audio_ion_data); return 0; } static struct platform_driver msm_audio_ion_driver = { .driver = { .name = "msm-audio-ion", .owner = THIS_MODULE, .of_match_table = msm_audio_ion_dt_match, .suppress_bind_attrs = true, }, .probe = msm_audio_ion_probe, .remove = msm_audio_ion_remove, }; int __init msm_audio_ion_init(void) { pr_debug("%s: msm_audio_ion_init called \n",__func__); return platform_driver_register(&msm_audio_ion_driver); } void msm_audio_ion_exit(void) { platform_driver_unregister(&msm_audio_ion_driver); } module_init(msm_audio_ion_init); module_exit(msm_audio_ion_exit); MODULE_DESCRIPTION("MSM Audio ION module"); MODULE_LICENSE("GPL v2");