// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include "msm_cvp_debug.h" #include "msm_cvp_resources.h" #include "msm_cvp_res_parse.h" #include "cvp_core_hfi.h" #include "soc/qcom/secure_buffer.h" enum clock_properties { CLOCK_PROP_HAS_SCALING = 1 << 0, CLOCK_PROP_HAS_MEM_RETENTION = 1 << 1, }; #define PERF_GOV "performance" static inline struct device *msm_iommu_get_ctx(const char *ctx_name) { return NULL; } static size_t get_u32_array_num_elements(struct device_node *np, char *name) { int len; size_t num_elements = 0; if (!of_get_property(np, name, &len)) { dprintk(CVP_ERR, "Failed to read %s from device tree\n", name); goto fail_read; } num_elements = len / sizeof(u32); if (num_elements <= 0) { dprintk(CVP_ERR, "%s not specified in device tree\n", name); goto fail_read; } return num_elements; fail_read: return 0; } static inline void msm_cvp_free_allowed_clocks_table( struct msm_cvp_platform_resources *res) { res->allowed_clks_tbl = NULL; } static inline void msm_cvp_free_cycles_per_mb_table( struct msm_cvp_platform_resources *res) { res->clock_freq_tbl.clk_prof_entries = NULL; } static inline void msm_cvp_free_reg_table( struct msm_cvp_platform_resources *res) { res->reg_set.reg_tbl = NULL; } static inline void msm_cvp_free_qdss_addr_table( struct msm_cvp_platform_resources *res) { res->qdss_addr_set.addr_tbl = NULL; } static inline void msm_cvp_free_bus_vectors( struct msm_cvp_platform_resources *res) { kfree(res->bus_set.bus_tbl); res->bus_set.bus_tbl = NULL; res->bus_set.count = 0; } static inline void msm_cvp_free_regulator_table( struct msm_cvp_platform_resources *res) { int c = 0; for (c = 0; c < res->regulator_set.count; ++c) { struct regulator_info *rinfo = &res->regulator_set.regulator_tbl[c]; rinfo->name = NULL; } res->regulator_set.regulator_tbl = NULL; res->regulator_set.count = 0; } static inline void msm_cvp_free_clock_table( struct msm_cvp_platform_resources *res) { res->clock_set.clock_tbl = NULL; res->clock_set.count = 0; } void msm_cvp_free_platform_resources( struct msm_cvp_platform_resources *res) { msm_cvp_free_clock_table(res); msm_cvp_free_regulator_table(res); msm_cvp_free_allowed_clocks_table(res); msm_cvp_free_reg_table(res); msm_cvp_free_qdss_addr_table(res); msm_cvp_free_bus_vectors(res); } static int msm_cvp_load_ipcc_regs(struct msm_cvp_platform_resources *res) { int ret = 0; unsigned int reg_config[2]; struct platform_device *pdev = res->pdev; ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,ipcc-reg", reg_config, 2); if (ret) { dprintk(CVP_ERR, "Failed to read ipcc reg: %d\n", ret); return ret; } res->ipcc_reg_base = reg_config[0]; res->ipcc_reg_size = reg_config[1]; dprintk(CVP_CORE, "ipcc reg_base = %x, reg_size = %x\n", res->ipcc_reg_base, res->ipcc_reg_size ); return ret; } static int msm_cvp_load_regspace_mapping(struct msm_cvp_platform_resources *res) { int ret = 0; unsigned int ipclite_mapping_config[3] = {0}; unsigned int hwmutex_mapping_config[3] = {0}; unsigned int aon_mapping_config[3] = {0}; unsigned int timer_config[3] = {0}; struct platform_device *pdev = res->pdev; ret = of_property_read_u32_array(pdev->dev.of_node, "ipclite_mappings", ipclite_mapping_config, 3); if (ret) { dprintk(CVP_ERR, "Failed to read ipclite reg: %d\n", ret); return ret; } res->reg_mappings.ipclite_iova = ipclite_mapping_config[0]; res->reg_mappings.ipclite_size = ipclite_mapping_config[1]; res->reg_mappings.ipclite_phyaddr = ipclite_mapping_config[2]; ret = of_property_read_u32_array(pdev->dev.of_node, "hwmutex_mappings", hwmutex_mapping_config, 3); if (ret) { dprintk(CVP_ERR, "Failed to read hwmutex reg: %d\n", ret); return ret; } res->reg_mappings.hwmutex_iova = hwmutex_mapping_config[0]; res->reg_mappings.hwmutex_size = hwmutex_mapping_config[1]; res->reg_mappings.hwmutex_phyaddr = hwmutex_mapping_config[2]; ret = of_property_read_u32_array(pdev->dev.of_node, "aon_mappings", aon_mapping_config, 3); if (ret) { dprintk(CVP_ERR, "Failed to read aon reg: %d\n", ret); return ret; } res->reg_mappings.aon_iova = aon_mapping_config[0]; res->reg_mappings.aon_size = aon_mapping_config[1]; res->reg_mappings.aon_phyaddr = aon_mapping_config[2]; ret = of_property_read_u32_array(pdev->dev.of_node, "aon_timer_mappings", timer_config, 3); if (ret) { dprintk(CVP_ERR, "Failed to read timer reg: %d\n", ret); return ret; } res->reg_mappings.timer_iova = timer_config[0]; res->reg_mappings.timer_size = timer_config[1]; res->reg_mappings.timer_phyaddr = timer_config[2]; dprintk(CVP_CORE, "reg mappings %#x %#x %#x %#x %#x %#X %#x %#x %#x %#x %#x %#x\n", res->reg_mappings.ipclite_iova, res->reg_mappings.ipclite_size, res->reg_mappings.ipclite_phyaddr, res->reg_mappings.hwmutex_iova, res->reg_mappings.hwmutex_size, res->reg_mappings.hwmutex_phyaddr, res->reg_mappings.aon_iova, res->reg_mappings.aon_size, res->reg_mappings.aon_phyaddr, res->reg_mappings.timer_iova, res->reg_mappings.timer_size, res->reg_mappings.timer_phyaddr); return ret; } static int msm_cvp_load_gcc_regs(struct msm_cvp_platform_resources *res) { int ret = 0; unsigned int reg_config[2]; struct platform_device *pdev = res->pdev; ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,gcc-reg", reg_config, 2); if (ret) { dprintk(CVP_WARN, "No gcc reg configured: %d\n", ret); return ret; } res->gcc_reg_base = reg_config[0]; res->gcc_reg_size = reg_config[1]; return ret; } static int msm_cvp_load_reg_table(struct msm_cvp_platform_resources *res) { struct reg_set *reg_set; struct platform_device *pdev = res->pdev; int i; int rc = 0; if (!of_find_property(pdev->dev.of_node, "qcom,reg-presets", NULL)) { /* * qcom,reg-presets is an optional property. It likely won't be * present if we don't have any register settings to program */ dprintk(CVP_CORE, "qcom,reg-presets not found\n"); return 0; } reg_set = &res->reg_set; reg_set->count = get_u32_array_num_elements(pdev->dev.of_node, "qcom,reg-presets"); reg_set->count /= sizeof(*reg_set->reg_tbl) / sizeof(u32); if (!reg_set->count) { dprintk(CVP_CORE, "no elements in reg set\n"); return rc; } reg_set->reg_tbl = devm_kzalloc(&pdev->dev, reg_set->count * sizeof(*(reg_set->reg_tbl)), GFP_KERNEL); if (!reg_set->reg_tbl) { dprintk(CVP_ERR, "%s Failed to alloc register table\n", __func__); return -ENOMEM; } if (of_property_read_u32_array(pdev->dev.of_node, "qcom,reg-presets", (u32 *)reg_set->reg_tbl, reg_set->count * 2)) { dprintk(CVP_ERR, "Failed to read register table\n"); msm_cvp_free_reg_table(res); return -EINVAL; } for (i = 0; i < reg_set->count; i++) { dprintk(CVP_CORE, "reg = %x, value = %x\n", reg_set->reg_tbl[i].reg, reg_set->reg_tbl[i].value ); } return rc; } static int msm_cvp_load_qdss_table(struct msm_cvp_platform_resources *res) { struct addr_set *qdss_addr_set; struct platform_device *pdev = res->pdev; int i; int rc = 0; if (!of_find_property(pdev->dev.of_node, "qcom,qdss-presets", NULL)) { /* * qcom,qdss-presets is an optional property. It likely won't be * present if we don't have any register settings to program */ dprintk(CVP_CORE, "qcom,qdss-presets not found\n"); return rc; } qdss_addr_set = &res->qdss_addr_set; qdss_addr_set->count = get_u32_array_num_elements(pdev->dev.of_node, "qcom,qdss-presets"); qdss_addr_set->count /= sizeof(*qdss_addr_set->addr_tbl) / sizeof(u32); if (!qdss_addr_set->count) { dprintk(CVP_CORE, "no elements in qdss reg set\n"); return rc; } qdss_addr_set->addr_tbl = devm_kzalloc(&pdev->dev, qdss_addr_set->count * sizeof(*qdss_addr_set->addr_tbl), GFP_KERNEL); if (!qdss_addr_set->addr_tbl) { dprintk(CVP_ERR, "%s Failed to alloc register table\n", __func__); rc = -ENOMEM; goto err_qdss_addr_tbl; } rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,qdss-presets", (u32 *)qdss_addr_set->addr_tbl, qdss_addr_set->count * 2); if (rc) { dprintk(CVP_ERR, "Failed to read qdss address table\n"); msm_cvp_free_qdss_addr_table(res); rc = -EINVAL; goto err_qdss_addr_tbl; } for (i = 0; i < qdss_addr_set->count; i++) { dprintk(CVP_CORE, "qdss addr = %x, value = %x\n", qdss_addr_set->addr_tbl[i].start, qdss_addr_set->addr_tbl[i].size); } err_qdss_addr_tbl: return rc; } static int msm_cvp_load_fw_name(struct msm_cvp_platform_resources *res) { struct platform_device *pdev = res->pdev; return of_property_read_string_index(pdev->dev.of_node, "cvp,firmware-name", 0, &res->fw_name); } static int msm_cvp_load_subcache_info(struct msm_cvp_platform_resources *res) { int rc = 0, num_subcaches = 0, c; struct platform_device *pdev = res->pdev; struct subcache_set *subcaches = &res->subcache_set; num_subcaches = of_property_count_strings(pdev->dev.of_node, "cache-slice-names"); if (num_subcaches <= 0) { dprintk(CVP_CORE, "No subcaches found\n"); goto err_load_subcache_table_fail; } subcaches->subcache_tbl = devm_kzalloc(&pdev->dev, sizeof(*subcaches->subcache_tbl) * num_subcaches, GFP_KERNEL); if (!subcaches->subcache_tbl) { dprintk(CVP_ERR, "Failed to allocate memory for subcache tbl\n"); rc = -ENOMEM; goto err_load_subcache_table_fail; } subcaches->count = num_subcaches; dprintk(CVP_CORE, "Found %d subcaches\n", num_subcaches); for (c = 0; c < num_subcaches; ++c) { struct subcache_info *vsc = &res->subcache_set.subcache_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "cache-slice-names", c, &vsc->name); } res->sys_cache_present = true; return 0; err_load_subcache_table_fail: res->sys_cache_present = false; subcaches->count = 0; subcaches->subcache_tbl = NULL; return rc; } /** * msm_cvp_load_u32_table() - load dtsi table entries * @pdev: A pointer to the platform device. * @of_node: A pointer to the device node. * @table_name: A pointer to the dtsi table entry name. * @struct_size: The size of the structure which is nothing but * a single entry in the dtsi table. * @table: A pointer to the table pointer which needs to be * filled by the dtsi table entries. * @num_elements: Number of elements pointer which needs to be filled * with the number of elements in the table. * * This is a generic implementation to load single or multiple array * table from dtsi. The array elements should be of size equal to u32. * * Return: Return '0' for success else appropriate error value. */ int msm_cvp_load_u32_table(struct platform_device *pdev, struct device_node *of_node, char *table_name, int struct_size, u32 **table, u32 *num_elements) { int rc = 0, num_elemts = 0; u32 *ptbl = NULL; if (!of_find_property(of_node, table_name, NULL)) { dprintk(CVP_CORE, "%s not found\n", table_name); return 0; } num_elemts = get_u32_array_num_elements(of_node, table_name); if (!num_elemts) { dprintk(CVP_ERR, "no elements in %s\n", table_name); return 0; } num_elemts /= struct_size / sizeof(u32); ptbl = devm_kzalloc(&pdev->dev, num_elemts * struct_size, GFP_KERNEL); if (!ptbl) { dprintk(CVP_ERR, "Failed to alloc table %s\n", table_name); return -ENOMEM; } if (of_property_read_u32_array(of_node, table_name, ptbl, num_elemts * struct_size / sizeof(u32))) { dprintk(CVP_ERR, "Failed to read %s\n", table_name); return -EINVAL; } *table = ptbl; if (num_elements) *num_elements = num_elemts; return rc; } EXPORT_SYMBOL(msm_cvp_load_u32_table); /* A comparator to compare loads (needed later on) */ static int cmp(const void *a, const void *b) { return ((struct allowed_clock_rates_table *)a)->clock_rate - ((struct allowed_clock_rates_table *)b)->clock_rate; } static int msm_cvp_load_allowed_clocks_table( struct msm_cvp_platform_resources *res) { int rc = 0; struct platform_device *pdev = res->pdev; if (!of_find_property(pdev->dev.of_node, "qcom,allowed-clock-rates", NULL)) { dprintk(CVP_CORE, "qcom,allowed-clock-rates not found\n"); return 0; } rc = msm_cvp_load_u32_table(pdev, pdev->dev.of_node, "qcom,allowed-clock-rates", sizeof(*res->allowed_clks_tbl), (u32 **)&res->allowed_clks_tbl, &res->allowed_clks_tbl_size); if (rc) { dprintk(CVP_ERR, "%s: failed to read allowed clocks table\n", __func__); return rc; } sort(res->allowed_clks_tbl, res->allowed_clks_tbl_size, sizeof(*res->allowed_clks_tbl), cmp, NULL); return 0; } static int msm_cvp_populate_mem_cdsp(struct device *dev, struct msm_cvp_platform_resources *res) { struct device_node *mem_node; int ret; mem_node = of_parse_phandle(dev->of_node, "memory-region", 0); if (mem_node) { ret = of_reserved_mem_device_init_by_idx(dev, dev->of_node, 0); of_node_put(dev->of_node); if (ret) { dprintk(CVP_ERR, "Failed to initialize reserved mem, ret %d\n", ret); return ret; } } res->mem_cdsp.dev = dev; return 0; } static int msm_cvp_populate_bus(struct device *dev, struct msm_cvp_platform_resources *res) { struct bus_set *buses = &res->bus_set; const char *temp_name = NULL; struct bus_info *bus = NULL, *temp_table; u32 range[2]; int rc = 0; temp_table = krealloc(buses->bus_tbl, sizeof(*temp_table) * (buses->count + 1), GFP_KERNEL); if (!temp_table) { dprintk(CVP_ERR, "%s: Failed to allocate memory", __func__); rc = -ENOMEM; goto err_bus; } buses->bus_tbl = temp_table; bus = &buses->bus_tbl[buses->count]; memset(bus, 0x0, sizeof(struct bus_info)); rc = of_property_read_string(dev->of_node, "label", &temp_name); if (rc) { dprintk(CVP_ERR, "'label' not found in node\n"); goto err_bus; } /* need a non-const version of name, hence copying it over */ bus->name = devm_kstrdup(dev, temp_name, GFP_KERNEL); if (!bus->name) { rc = -ENOMEM; goto err_bus; } rc = of_property_read_u32(dev->of_node, "qcom,bus-master", &bus->master); if (rc) { dprintk(CVP_ERR, "'qcom,bus-master' not found in node\n"); goto err_bus; } rc = of_property_read_u32(dev->of_node, "qcom,bus-slave", &bus->slave); if (rc) { dprintk(CVP_ERR, "'qcom,bus-slave' not found in node\n"); goto err_bus; } rc = of_property_read_string(dev->of_node, "qcom,bus-governor", &bus->governor); if (rc) { rc = 0; dprintk(CVP_CORE, "'qcom,bus-governor' not found, default to performance governor\n"); bus->governor = PERF_GOV; } if (!strcmp(bus->governor, PERF_GOV)) bus->is_prfm_gov_used = true; rc = of_property_read_u32_array(dev->of_node, "qcom,bus-range-kbps", range, ARRAY_SIZE(range)); if (rc) { rc = 0; dprintk(CVP_CORE, "'qcom,range' not found defaulting to <0 INT_MAX>\n"); range[0] = 0; range[1] = INT_MAX; } bus->range[0] = range[0]; /* min */ bus->range[1] = range[1]; /* max */ buses->count++; bus->dev = dev; dprintk(CVP_CORE, "Found bus %s [%d->%d] with governor %s\n", bus->name, bus->master, bus->slave, bus->governor); err_bus: return rc; } static int msm_cvp_load_regulator_table( struct msm_cvp_platform_resources *res) { int rc = 0; struct platform_device *pdev = res->pdev; struct regulator_set *regulators = &res->regulator_set; struct device_node *domains_parent_node = NULL; struct property *domains_property = NULL; int reg_count = 0; regulators->count = 0; regulators->regulator_tbl = NULL; domains_parent_node = pdev->dev.of_node; for_each_property_of_node(domains_parent_node, domains_property) { const char *search_string = "-supply"; char *supply; bool matched = false; /* check if current property is possibly a regulator */ supply = strnstr(domains_property->name, search_string, strlen(domains_property->name) + 1); matched = supply && (*(supply + strlen(search_string)) == '\0'); if (!matched) continue; reg_count++; } regulators->regulator_tbl = devm_kzalloc(&pdev->dev, sizeof(*regulators->regulator_tbl) * reg_count, GFP_KERNEL); if (!regulators->regulator_tbl) { rc = -ENOMEM; dprintk(CVP_ERR, "Failed to alloc memory for regulator table\n"); goto err_reg_tbl_alloc; } for_each_property_of_node(domains_parent_node, domains_property) { const char *search_string = "-supply"; char *supply; bool matched = false; struct device_node *regulator_node = NULL; struct regulator_info *rinfo = NULL; /* check if current property is possibly a regulator */ supply = strnstr(domains_property->name, search_string, strlen(domains_property->name) + 1); matched = supply && (supply[strlen(search_string)] == '\0'); if (!matched) continue; /* make sure prop isn't being misused */ regulator_node = of_parse_phandle(domains_parent_node, domains_property->name, 0); if (IS_ERR(regulator_node)) { dprintk(CVP_WARN, "%s is not a phandle\n", domains_property->name); continue; } regulators->count++; /* populate regulator info */ rinfo = ®ulators->regulator_tbl[regulators->count - 1]; rinfo->name = devm_kzalloc(&pdev->dev, (supply - domains_property->name) + 1, GFP_KERNEL); if (!rinfo->name) { rc = -ENOMEM; dprintk(CVP_ERR, "Failed to alloc memory for regulator name\n"); goto err_reg_name_alloc; } strlcpy(rinfo->name, domains_property->name, (supply - domains_property->name) + 1); rinfo->has_hw_power_collapse = of_property_read_bool( regulator_node, "qcom,support-hw-trigger"); dprintk(CVP_CORE, "Found regulator %s: h/w collapse = %s\n", rinfo->name, rinfo->has_hw_power_collapse ? "yes" : "no"); } if (!regulators->count) dprintk(CVP_CORE, "No regulators found"); return 0; err_reg_name_alloc: err_reg_tbl_alloc: msm_cvp_free_regulator_table(res); return rc; } static int msm_cvp_load_clock_table( struct msm_cvp_platform_resources *res) { int rc = 0, num_clocks = 0, c = 0; struct platform_device *pdev = res->pdev; int *clock_ids = NULL; int *clock_props = NULL; struct clock_set *clocks = &res->clock_set; num_clocks = of_property_count_strings(pdev->dev.of_node, "clock-names"); if (num_clocks <= 0) { dprintk(CVP_CORE, "No clocks found\n"); clocks->count = 0; rc = 0; goto err_load_clk_table_fail; } clock_ids = devm_kzalloc(&pdev->dev, num_clocks * sizeof(*clock_ids), GFP_KERNEL); if (!clock_ids) { dprintk(CVP_ERR, "No memory to read clock ids\n"); rc = -ENOMEM; goto err_load_clk_table_fail; } rc = of_property_read_u32_array(pdev->dev.of_node, "clock-ids", clock_ids, num_clocks); if (rc) { dprintk(CVP_CORE, "Failed to read clock ids: %d\n", rc); msm_cvp_mmrm_enabled = false; dprintk(CVP_CORE, "flag msm_cvp_mmrm_enabled disabled\n"); } clock_props = devm_kzalloc(&pdev->dev, num_clocks * sizeof(*clock_props), GFP_KERNEL); if (!clock_props) { dprintk(CVP_ERR, "No memory to read clock properties\n"); rc = -ENOMEM; goto err_load_clk_table_fail; } rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,clock-configs", clock_props, num_clocks); if (rc) { dprintk(CVP_ERR, "Failed to read clock properties: %d\n", rc); goto err_load_clk_prop_fail; } clocks->clock_tbl = devm_kzalloc(&pdev->dev, sizeof(*clocks->clock_tbl) * num_clocks, GFP_KERNEL); if (!clocks->clock_tbl) { dprintk(CVP_ERR, "Failed to allocate memory for clock tbl\n"); rc = -ENOMEM; goto err_load_clk_prop_fail; } clocks->count = num_clocks; dprintk(CVP_CORE, "Found %d clocks\n", num_clocks); for (c = 0; c < num_clocks; ++c) { struct clock_info *vc = &res->clock_set.clock_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "clock-names", c, &vc->name); if (msm_cvp_mmrm_enabled == true) vc->clk_id = clock_ids[c]; if (clock_props[c] & CLOCK_PROP_HAS_SCALING) { vc->has_scaling = true; } else { vc->count = 0; vc->has_scaling = false; } if (clock_props[c] & CLOCK_PROP_HAS_MEM_RETENTION) vc->has_mem_retention = true; else vc->has_mem_retention = false; dprintk(CVP_CORE, "Found clock %s id %d: scale-able = %s\n", vc->name, vc->clk_id, vc->count ? "yes" : "no"); } return 0; err_load_clk_prop_fail: err_load_clk_table_fail: return rc; } #define MAX_CLK_RESETS 5 static int msm_cvp_load_reset_table( struct msm_cvp_platform_resources *res) { struct platform_device *pdev = res->pdev; struct reset_set *rst = &res->reset_set; int num_clocks = 0, c = 0, ret = 0; int pwr_stats[MAX_CLK_RESETS]; num_clocks = of_property_count_strings(pdev->dev.of_node, "reset-names"); if (num_clocks <= 0 || num_clocks > MAX_CLK_RESETS) { dprintk(CVP_ERR, "Num reset clocks out of range\n"); rst->count = 0; return 0; } rst->reset_tbl = devm_kcalloc(&pdev->dev, num_clocks, sizeof(*rst->reset_tbl), GFP_KERNEL); if (!rst->reset_tbl) return -ENOMEM; rst->count = num_clocks; dprintk(CVP_CORE, "Found %d reset clocks\n", num_clocks); ret = of_property_read_u32_array(pdev->dev.of_node, "reset-power-status", pwr_stats, num_clocks); if (ret) { dprintk(CVP_ERR, "Failed to read reset pwr state: %d\n", ret); devm_kfree(&pdev->dev, rst->reset_tbl); return ret; } for (c = 0; c < num_clocks; ++c) { struct reset_info *rc = &res->reset_set.reset_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "reset-names", c, &rc->name); rc->required_stage = pwr_stats[c]; } return 0; } static int find_key_value(struct msm_cvp_platform_data *platform_data, const char *key) { int i = 0; struct msm_cvp_common_data *common_data = platform_data->common_data; int size = platform_data->common_data_length; for (i = 0; i < size; i++) { if (!strcmp(common_data[i].key, key)) return common_data[i].value; } return 0; } int cvp_read_platform_resources_from_drv_data( struct msm_cvp_core *core) { struct msm_cvp_platform_data *platform_data; struct msm_cvp_platform_resources *res; int rc = 0, i; if (!core || !core->platform_data) { dprintk(CVP_ERR, "%s Invalid data\n", __func__); return -ENOENT; } platform_data = core->platform_data; res = &core->resources; res->sku_version = platform_data->sku_version; res->dsp_enabled = find_key_value(platform_data, "qcom,dsp-enabled"); res->max_ssr_allowed = find_key_value(platform_data, "qcom,max-ssr-allowed"); res->sw_power_collapsible = find_key_value(platform_data, "qcom,sw-power-collapse"); res->debug_timeout = find_key_value(platform_data, "qcom,debug-timeout"); res->pm_qos.latency_us = find_key_value(platform_data, "qcom,pm-qos-latency-us"); res->pm_qos.silver_count = 0; for(i = 0; i < MAX_SILVER_CORE_NUM; i++) { if(topology_cluster_id(i) == 0) res->pm_qos.silver_count++; else break; } for (i = 0; i < res->pm_qos.silver_count; i++) res->pm_qos.silver_cores[i] = i; res->pm_qos.off_vote_cnt = 0; spin_lock_init(&res->pm_qos.lock); res->max_secure_inst_count = find_key_value(platform_data, "qcom,max-secure-instances"); res->thermal_mitigable = find_key_value(platform_data, "qcom,enable-thermal-mitigation"); res->msm_cvp_pwr_collapse_delay = find_key_value(platform_data, "qcom,power-collapse-delay"); res->msm_cvp_hw_rsp_timeout = find_key_value(platform_data, "qcom,hw-resp-timeout"); res->msm_cvp_dsp_rsp_timeout = find_key_value(platform_data, "qcom,dsp-resp-timeout"); res->non_fatal_pagefaults = find_key_value(platform_data, "qcom,domain-attr-non-fatal-faults"); //Address offsets for QOS setting. //There are diff between lanai and palawan for QOS register addresses res->qos_noc_rge_niu_offset = find_key_value(platform_data, "qcom,qos_noc_rge_niu_offset"); res->qos_noc_gce_vadl_tof_niu_offset = find_key_value(platform_data, "qcom,qos_noc_gce_vadl_tof_niu_offset"); res->qos_noc_cdm_niu_offset = find_key_value(platform_data, "qcom,qos_noc_cdm_niu_offset"); res->noc_core_err_offset = find_key_value(platform_data, "qcom,noc_core_err_offset"); res->noc_main_sidebandmanager_offset = find_key_value(platform_data, "qcom,noc_main_sidebandmanager_offset"); res->vpu_ver = platform_data->vpu_ver; res->ubwc_config = platform_data->ubwc_config; res->fatal_ssr = false; return rc; } int cvp_read_platform_resources_from_dt( struct msm_cvp_platform_resources *res) { struct platform_device *pdev = res->pdev; struct resource *kres = NULL; int rc = 0; uint32_t firmware_base = 0; if (!pdev->dev.of_node) { dprintk(CVP_ERR, "DT node not found\n"); return -ENOENT; } INIT_LIST_HEAD(&res->context_banks); res->firmware_base = (phys_addr_t)firmware_base; kres = platform_get_resource(pdev, IORESOURCE_MEM, 0); res->register_base = kres ? kres->start : -1; res->register_size = kres ? (kres->end + 1 - kres->start) : -1; res->irq = platform_get_irq(pdev, 0); dprintk(CVP_CORE, "%s: res->irq:%d \n", __func__, res->irq); //Parsing for WD interrupt res->irq_wd = platform_get_irq(pdev, 1); dprintk(CVP_CORE, "%s: res->irq_wd:%d \n", __func__, res->irq_wd); rc = msm_cvp_load_fw_name(res); dprintk(CVP_CORE, "Firmware filename: %s\n", res->fw_name); if (rc) dprintk(CVP_WARN, "Failed to load fw name info: %d\n", rc); rc = msm_cvp_load_subcache_info(res); if (rc) dprintk(CVP_WARN, "Failed to load subcache info: %d\n", rc); rc = msm_cvp_load_qdss_table(res); if (rc) dprintk(CVP_WARN, "Failed to load qdss reg table: %d\n", rc); rc = msm_cvp_load_reg_table(res); if (rc) { dprintk(CVP_ERR, "Failed to load reg table: %d\n", rc); goto err_load_reg_table; } rc = msm_cvp_load_ipcc_regs(res); if (rc) dprintk(CVP_ERR, "Failed to load IPCC regs: %d\n", rc); rc = msm_cvp_load_regspace_mapping(res); if (rc) dprintk(CVP_ERR, "Failed to load reg space mapping: %d\n", rc); rc = msm_cvp_load_gcc_regs(res); rc = msm_cvp_load_regulator_table(res); if (rc) { dprintk(CVP_ERR, "Failed to load list of regulators %d\n", rc); goto err_load_regulator_table; } rc = msm_cvp_load_clock_table(res); if (rc) { dprintk(CVP_ERR, "Failed to load clock table: %d\n", rc); goto err_load_clock_table; } rc = msm_cvp_load_allowed_clocks_table(res); if (rc) { dprintk(CVP_ERR, "Failed to load allowed clocks table: %d\n", rc); goto err_load_allowed_clocks_table; } rc = msm_cvp_load_reset_table(res); if (rc) { dprintk(CVP_ERR, "Failed to load reset table: %d\n", rc); goto err_load_reset_table; } res->use_non_secure_pil = of_property_read_bool(pdev->dev.of_node, "qcom,use-non-secure-pil"); if (res->use_non_secure_pil || !is_iommu_present(res)) { of_property_read_u32(pdev->dev.of_node, "qcom,fw-bias", &firmware_base); res->firmware_base = (phys_addr_t)firmware_base; dprintk(CVP_CORE, "Using fw-bias : %pa", &res->firmware_base); } return rc; err_load_reset_table: msm_cvp_free_allowed_clocks_table(res); err_load_allowed_clocks_table: msm_cvp_free_clock_table(res); err_load_clock_table: msm_cvp_free_regulator_table(res); err_load_regulator_table: msm_cvp_free_reg_table(res); err_load_reg_table: return rc; } static int msm_cvp_setup_context_bank(struct msm_cvp_platform_resources *res, struct context_bank_info *cb, struct device *dev) { int rc = 0; struct bus_type *bus; if (!dev || !cb || !res) { dprintk(CVP_ERR, "%s: Invalid Input params\n", __func__); return -EINVAL; } cb->dev = dev; bus = cb->dev->bus; if (IS_ERR_OR_NULL(bus)) { dprintk(CVP_ERR, "%s - failed to get bus type\n", __func__); rc = PTR_ERR(bus) ?: -ENODEV; goto remove_cb; } /* * configure device segment size and segment boundary to ensure * iommu mapping returns one mapping (which is required for partial * cache operations) */ if (!dev->dma_parms) dev->dma_parms = devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(dev, DMA_BIT_MASK(32)); dma_set_seg_boundary(dev, DMA_BIT_MASK(64)); dprintk(CVP_CORE, "Attached %s and created mapping\n", dev_name(dev)); dprintk(CVP_CORE, "Context bank name:%s, buffer_type: %#x, is_secure: %d, address range start: %#x, size: %#x, dev: %pK", cb->name, cb->buffer_type, cb->is_secure, cb->addr_range.start, cb->addr_range.size, cb->dev); return rc; remove_cb: return rc; } int msm_cvp_smmu_fault_handler(struct iommu_domain *domain, struct device *dev, unsigned long iova, int flags, void *token) { struct msm_cvp_core *core = token; struct iris_hfi_device *hdev; struct msm_cvp_inst *inst; bool log = false; if (!domain || !core) { dprintk(CVP_ERR, "%s - invalid param %pK %pK\n", __func__, domain, core); return -EINVAL; } dprintk(CVP_ERR, "%s - faulting address: %lx fault cnt %d\n", __func__, iova, core->smmu_fault_count); if (core->smmu_fault_count > 0) { core->smmu_fault_count++; return -ENOSYS; } mutex_lock(&core->lock); core->smmu_fault_count++; if (!core->last_fault_addr) core->last_fault_addr = iova; log = (core->log.snapshot_index > 0)? false : true; list_for_each_entry(inst, &core->instances, list) { cvp_print_inst(CVP_ERR, inst); msm_cvp_print_inst_bufs(inst, log); } hdev = core->dev_ops->hfi_device_data; if (hdev) { hdev->error = CVP_ERR_NOC_ERROR; call_hfi_op(core->dev_ops, debug_hook, hdev); } mutex_unlock(&core->lock); /* * Return -EINVAL to elicit the default behaviour of smmu driver. * If we return -ENOSYS, then smmu driver assumes page fault handler * is not installed and prints a list of useful debug information like * FAR, SID etc. This information is not printed if we return 0. */ return -ENOSYS; } static int msm_cvp_populate_context_bank(struct device *dev, struct msm_cvp_core *core) { int rc = 0; struct context_bank_info *cb = NULL; struct device_node *np = NULL; if (!dev || !core) { dprintk(CVP_ERR, "%s - invalid inputs\n", __func__); return -EINVAL; } np = dev->of_node; cb = devm_kzalloc(dev, sizeof(*cb), GFP_KERNEL); if (!cb) { dprintk(CVP_ERR, "%s - Failed to allocate cb\n", __func__); return -ENOMEM; } rc = of_property_read_string(np, "label", &cb->name); if (rc) { dprintk(CVP_CORE, "Failed to read cb label from device tree\n"); rc = 0; } INIT_LIST_HEAD(&cb->list); list_add_tail(&cb->list, &core->resources.context_banks); dprintk(CVP_CORE, "%s: context bank has name %s\n", __func__, cb->name); if (!strcmp(cb->name, "cvp_camera")) { cb->is_secure = true; rc = msm_cvp_setup_context_bank(&core->resources, cb, dev); if (rc) { dprintk(CVP_ERR, "Cannot setup context bank %s %d\n", cb->name, rc); goto err_setup_cb; } return 0; } rc = of_property_read_u32_array(np, "qcom,iommu-dma-addr-pool", (u32 *)&cb->addr_range, 2); if (rc) { dprintk(CVP_CORE, "Could not read addr pool for context bank : %s %d\n", cb->name, rc); } cb->is_secure = of_property_read_bool(np, "qcom,iommu-vmid"); dprintk(CVP_CORE, "context bank %s : secure = %d\n", cb->name, cb->is_secure); /* setup buffer type for each sub device*/ rc = of_property_read_u32(np, "buffer-types", &cb->buffer_type); if (rc) { dprintk(CVP_ERR, "failed to load buffer_type info %d\n", rc); rc = -ENOENT; goto err_setup_cb; } dprintk(CVP_CORE, "context bank %s address start = %x address size = %x buffer_type = %x\n", cb->name, cb->addr_range.start, cb->addr_range.size, cb->buffer_type); cb->domain = iommu_get_domain_for_dev(dev); if (IS_ERR_OR_NULL(cb->domain)) { dprintk(CVP_ERR, "Create domain failed\n"); rc = -ENODEV; goto err_setup_cb; } rc = msm_cvp_setup_context_bank(&core->resources, cb, dev); if (rc) { dprintk(CVP_ERR, "Cannot setup context bank %d\n", rc); goto err_setup_cb; } iommu_set_fault_handler(cb->domain, msm_cvp_smmu_fault_handler, (void *)core); return 0; err_setup_cb: list_del(&cb->list); return rc; } int cvp_read_context_bank_resources_from_dt(struct platform_device *pdev) { struct msm_cvp_core *core; int rc = 0; if (!pdev) { dprintk(CVP_ERR, "Invalid platform device\n"); return -EINVAL; } else if (!pdev->dev.parent) { dprintk(CVP_ERR, "Failed to find a parent for %s\n", dev_name(&pdev->dev)); return -ENODEV; } core = dev_get_drvdata(pdev->dev.parent); if (!core) { dprintk(CVP_ERR, "Failed to find cookie in parent device %s", dev_name(pdev->dev.parent)); return -EINVAL; } rc = msm_cvp_populate_context_bank(&pdev->dev, core); if (rc) dprintk(CVP_ERR, "Failed to probe context bank\n"); else dprintk(CVP_CORE, "Successfully probed context bank\n"); return rc; } int cvp_read_bus_resources_from_dt(struct platform_device *pdev) { struct msm_cvp_core *core; if (!pdev) { dprintk(CVP_ERR, "Invalid platform device\n"); return -EINVAL; } else if (!pdev->dev.parent) { dprintk(CVP_ERR, "Failed to find a parent for %s\n", dev_name(&pdev->dev)); return -ENODEV; } core = dev_get_drvdata(pdev->dev.parent); if (!core) { dprintk(CVP_ERR, "Failed to find cookie in parent device %s", dev_name(pdev->dev.parent)); return -EINVAL; } return msm_cvp_populate_bus(&pdev->dev, &core->resources); } int cvp_read_mem_cdsp_resources_from_dt(struct platform_device *pdev) { struct msm_cvp_core *core; if (!pdev) { dprintk(CVP_ERR, "%s: invalid platform device\n", __func__); return -EINVAL; } else if (!pdev->dev.parent) { dprintk(CVP_ERR, "Failed to find a parent for %s\n", dev_name(&pdev->dev)); return -ENODEV; } core = dev_get_drvdata(pdev->dev.parent); if (!core) { dprintk(CVP_ERR, "Failed to find cookie in parent device %s", dev_name(pdev->dev.parent)); return -EINVAL; } return msm_cvp_populate_mem_cdsp(&pdev->dev, &core->resources); }