// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved. */ #include #include "sde_hwio.h" #include "sde_hw_catalog.h" #include "sde_hw_intf.h" #include "sde_dbg.h" #define INTF_TIMING_ENGINE_EN 0x000 #define INTF_CONFIG 0x004 #define INTF_HSYNC_CTL 0x008 #define INTF_VSYNC_PERIOD_F0 0x00C #define INTF_VSYNC_PERIOD_F1 0x010 #define INTF_VSYNC_PULSE_WIDTH_F0 0x014 #define INTF_VSYNC_PULSE_WIDTH_F1 0x018 #define INTF_DISPLAY_V_START_F0 0x01C #define INTF_DISPLAY_V_START_F1 0x020 #define INTF_DISPLAY_V_END_F0 0x024 #define INTF_DISPLAY_V_END_F1 0x028 #define INTF_ACTIVE_V_START_F0 0x02C #define INTF_ACTIVE_V_START_F1 0x030 #define INTF_ACTIVE_V_END_F0 0x034 #define INTF_ACTIVE_V_END_F1 0x038 #define INTF_DISPLAY_HCTL 0x03C #define INTF_ACTIVE_HCTL 0x040 #define INTF_BORDER_COLOR 0x044 #define INTF_UNDERFLOW_COLOR 0x048 #define INTF_HSYNC_SKEW 0x04C #define INTF_POLARITY_CTL 0x050 #define INTF_TEST_CTL 0x054 #define INTF_TP_COLOR0 0x058 #define INTF_TP_COLOR1 0x05C #define INTF_CONFIG2 0x060 #define INTF_DISPLAY_DATA_HCTL 0x064 #define INTF_ACTIVE_DATA_HCTL 0x068 #define INTF_FRAME_LINE_COUNT_EN 0x0A8 #define INTF_FRAME_COUNT 0x0AC #define INTF_LINE_COUNT 0x0B0 #define INTF_DEFLICKER_CONFIG 0x0F0 #define INTF_DEFLICKER_STRNG_COEFF 0x0F4 #define INTF_DEFLICKER_WEAK_COEFF 0x0F8 #define INTF_REG_SPLIT_LINK 0x080 #define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084 #define INTF_PANEL_FORMAT 0x090 #define INTF_TPG_ENABLE 0x100 #define INTF_TPG_MAIN_CONTROL 0x104 #define INTF_TPG_VIDEO_CONFIG 0x108 #define INTF_TPG_COMPONENT_LIMITS 0x10C #define INTF_TPG_RECTANGLE 0x110 #define INTF_TPG_INITIAL_VALUE 0x114 #define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118 #define INTF_TPG_RGB_MAPPING 0x11C #define INTF_PROG_FETCH_START 0x170 #define INTF_PROG_ROT_START 0x174 #define INTF_MISR_CTRL 0x180 #define INTF_MISR_SIGNATURE 0x184 #define INTF_VSYNC_TIMESTAMP_CTRL 0x210 #define INTF_VSYNC_TIMESTAMP0 0x214 #define INTF_VSYNC_TIMESTAMP1 0x218 #define INTF_WD_TIMER_0_CTL 0x230 #define INTF_WD_TIMER_0_CTL2 0x234 #define INTF_WD_TIMER_0_LOAD_VALUE 0x238 #define INTF_MUX 0x25C #define INTF_UNDERRUN_COUNT 0x268 #define INTF_STATUS 0x26C #define INTF_AVR_CONTROL 0x270 #define INTF_AVR_MODE 0x274 #define INTF_AVR_TRIGGER 0x278 #define INTF_AVR_VTOTAL 0x27C #define INTF_TEAR_MDP_VSYNC_SEL 0x280 #define INTF_TEAR_TEAR_CHECK_EN 0x284 #define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288 #define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C #define INTF_TEAR_SYNC_WRCOUNT 0x290 #define INTF_TEAR_VSYNC_INIT_VAL 0x294 #define INTF_TEAR_INT_COUNT_VAL 0x298 #define INTF_TEAR_SYNC_THRESH 0x29C #define INTF_TEAR_START_POS 0x2A0 #define INTF_TEAR_RD_PTR_IRQ 0x2A4 #define INTF_TEAR_WR_PTR_IRQ 0x2A8 #define INTF_TEAR_OUT_LINE_COUNT 0x2AC #define INTF_TEAR_LINE_COUNT 0x2B0 #define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4 #define INTF_TEAR_TEAR_DETECT_CTRL 0x2B8 static struct sde_intf_cfg *_intf_offset(enum sde_intf intf, struct sde_mdss_cfg *m, void __iomem *addr, struct sde_hw_blk_reg_map *b) { int i; for (i = 0; i < m->intf_count; i++) { if ((intf == m->intf[i].id) && (m->intf[i].type != INTF_NONE)) { b->base_off = addr; b->blk_off = m->intf[i].base; b->length = m->intf[i].len; b->hwversion = m->hwversion; b->log_mask = SDE_DBG_MASK_INTF; return &m->intf[i]; } } return ERR_PTR(-EINVAL); } static void sde_hw_intf_avr_trigger(struct sde_hw_intf *ctx) { struct sde_hw_blk_reg_map *c; if (!ctx) return; c = &ctx->hw; SDE_REG_WRITE(c, INTF_AVR_TRIGGER, 0x1); SDE_DEBUG("AVR Triggered\n"); } static int sde_hw_intf_avr_setup(struct sde_hw_intf *ctx, const struct intf_timing_params *params, const struct intf_avr_params *avr_params) { struct sde_hw_blk_reg_map *c; u32 hsync_period, vsync_period; u32 min_fps, default_fps, diff_fps; u32 vsync_period_slow; u32 avr_vtotal; u32 add_porches = 0; if (!ctx || !params || !avr_params) { SDE_ERROR("invalid input parameter(s)\n"); return -EINVAL; } c = &ctx->hw; min_fps = avr_params->min_fps; default_fps = avr_params->default_fps; diff_fps = default_fps - min_fps; hsync_period = params->hsync_pulse_width + params->h_back_porch + params->width + params->h_front_porch; vsync_period = params->vsync_pulse_width + params->v_back_porch + params->height + params->v_front_porch; if (diff_fps) add_porches = mult_frac(vsync_period, diff_fps, min_fps); vsync_period_slow = vsync_period + add_porches; avr_vtotal = vsync_period_slow * hsync_period; SDE_REG_WRITE(c, INTF_AVR_VTOTAL, avr_vtotal); return 0; } static void sde_hw_intf_avr_ctrl(struct sde_hw_intf *ctx, const struct intf_avr_params *avr_params) { struct sde_hw_blk_reg_map *c; u32 avr_mode = 0; u32 avr_ctrl = 0; if (!ctx || !avr_params) return; c = &ctx->hw; if (avr_params->avr_mode) { avr_ctrl = BIT(0); avr_mode = (avr_params->avr_mode == SDE_RM_QSYNC_ONE_SHOT_MODE) ? (BIT(0) | BIT(8)) : 0x0; } SDE_REG_WRITE(c, INTF_AVR_CONTROL, avr_ctrl); SDE_REG_WRITE(c, INTF_AVR_MODE, avr_mode); } static inline void _check_and_set_comp_bit(struct sde_hw_intf *ctx, bool dsc_4hs_merge, bool compression_en, u32 *intf_cfg2) { if (((SDE_HW_MAJOR(ctx->mdss->hwversion) >= SDE_HW_MAJOR(SDE_HW_VER_700)) && compression_en) || (IS_SDE_MAJOR_SAME(ctx->mdss->hwversion, SDE_HW_VER_600) && dsc_4hs_merge)) (*intf_cfg2) |= BIT(12); } static void sde_hw_intf_reset_counter(struct sde_hw_intf *ctx) { struct sde_hw_blk_reg_map *c = &ctx->hw; SDE_REG_WRITE(c, INTF_LINE_COUNT, BIT(31)); } static u64 sde_hw_intf_get_vsync_timestamp(struct sde_hw_intf *ctx) { struct sde_hw_blk_reg_map *c = &ctx->hw; u32 timestamp_lo, timestamp_hi; u64 timestamp = 0; timestamp_hi = SDE_REG_READ(c, INTF_VSYNC_TIMESTAMP1); timestamp_lo = SDE_REG_READ(c, INTF_VSYNC_TIMESTAMP0); timestamp = timestamp_hi; timestamp = (timestamp << 32) | timestamp_lo; return timestamp; } static void sde_hw_intf_setup_timing_engine(struct sde_hw_intf *ctx, const struct intf_timing_params *p, const struct sde_format *fmt) { struct sde_hw_blk_reg_map *c = &ctx->hw; u32 hsync_period, vsync_period; u32 display_v_start, display_v_end; u32 hsync_start_x, hsync_end_x; u32 hsync_data_start_x, hsync_data_end_x; u32 active_h_start, active_h_end; u32 active_v_start, active_v_end; u32 active_hctl, display_hctl, hsync_ctl; u32 polarity_ctl, den_polarity, hsync_polarity, vsync_polarity; u32 panel_format; u32 intf_cfg, intf_cfg2 = 0; u32 display_data_hctl = 0, active_data_hctl = 0; u32 data_width; bool dp_intf = false; /* read interface_cfg */ intf_cfg = SDE_REG_READ(c, INTF_CONFIG); if (ctx->cap->type == INTF_EDP || ctx->cap->type == INTF_DP) dp_intf = true; hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width + p->h_front_porch; vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height + p->v_front_porch; display_v_start = ((p->vsync_pulse_width + p->v_back_porch) * hsync_period) + p->hsync_skew; display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) + p->hsync_skew - 1; hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width; hsync_start_x = p->h_back_porch + p->hsync_pulse_width; hsync_end_x = hsync_period - p->h_front_porch - 1; /* * DATA_HCTL_EN controls data timing which can be different from * video timing. It is recommended to enable it for all cases, except * if compression is enabled in 1 pixel per clock mode */ if (!p->compression_en || p->wide_bus_en) intf_cfg2 |= BIT(4); if (p->wide_bus_en) intf_cfg2 |= BIT(0); /* * If widebus is disabled: * For uncompressed stream, the data is valid for the entire active * window period. * For compressed stream, data is valid for a shorter time period * inside the active window depending on the compression ratio. * * If widebus is enabled: * For uncompressed stream, data is valid for only half the active * window, since the data rate is doubled in this mode. * p->width holds the adjusted width for DP but unadjusted width for DSI * For compressed stream, data validity window needs to be adjusted for * compression ratio and then further halved. */ data_width = p->width; if (p->compression_en) { data_width = DIV_ROUND_UP(p->dce_bytes_per_line, 3); if (p->wide_bus_en) data_width >>= 1; } else if (!dp_intf && p->wide_bus_en) { data_width = p->width >> 1; } else { data_width = p->width; } hsync_data_start_x = hsync_start_x; hsync_data_end_x = hsync_start_x + data_width - 1; display_hctl = (hsync_end_x << 16) | hsync_start_x; display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x; if (dp_intf) { // DP timing adjustment display_v_start += p->hsync_pulse_width + p->h_back_porch; display_v_end -= p->h_front_porch; } intf_cfg |= BIT(29); /* ACTIVE_H_ENABLE */ intf_cfg |= BIT(30); /* ACTIVE_V_ENABLE */ active_h_start = hsync_start_x; active_h_end = active_h_start + p->xres - 1; active_v_start = display_v_start; active_v_end = active_v_start + (p->yres * hsync_period) - 1; active_hctl = (active_h_end << 16) | active_h_start; if (dp_intf) { display_hctl = active_hctl; if (p->compression_en) { active_data_hctl = (hsync_start_x + p->extra_dto_cycles) << 16; active_data_hctl += hsync_start_x; display_data_hctl = active_data_hctl; } } _check_and_set_comp_bit(ctx, p->dsc_4hs_merge, p->compression_en, &intf_cfg2); den_polarity = 0; if (ctx->cap->type == INTF_HDMI) { hsync_polarity = p->yres >= 720 ? 0 : 1; vsync_polarity = p->yres >= 720 ? 0 : 1; } else if (ctx->cap->type == INTF_DP) { hsync_polarity = p->hsync_polarity; vsync_polarity = p->vsync_polarity; } else { hsync_polarity = 0; vsync_polarity = 0; } polarity_ctl = (den_polarity << 2) | /* DEN Polarity */ (vsync_polarity << 1) | /* VSYNC Polarity */ (hsync_polarity << 0); /* HSYNC Polarity */ if (!SDE_FORMAT_IS_YUV(fmt)) panel_format = (fmt->bits[C0_G_Y] | (fmt->bits[C1_B_Cb] << 2) | (fmt->bits[C2_R_Cr] << 4) | (0x21 << 8)); else /* Interface treats all the pixel data in RGB888 format */ panel_format = (COLOR_8BIT | (COLOR_8BIT << 2) | (COLOR_8BIT << 4) | (0x21 << 8)); if (p->wide_bus_en) intf_cfg2 |= BIT(0); /* Synchronize timing engine enable to TE */ if ((ctx->cap->features & BIT(SDE_INTF_TE_ALIGN_VSYNC)) && p->poms_align_vsync) intf_cfg2 |= BIT(16); if (ctx->cfg.split_link_en) SDE_REG_WRITE(c, INTF_REG_SPLIT_LINK, 0x3); SDE_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl); SDE_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period); SDE_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0, p->vsync_pulse_width * hsync_period); SDE_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl); SDE_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start); SDE_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end); SDE_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl); SDE_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start); SDE_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end); SDE_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr); SDE_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr); SDE_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew); SDE_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl); SDE_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3); SDE_REG_WRITE(c, INTF_CONFIG, intf_cfg); SDE_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format); SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2); SDE_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl); SDE_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl); } static void sde_hw_intf_enable_timing_engine( struct sde_hw_intf *intf, u8 enable) { struct sde_hw_blk_reg_map *c = &intf->hw; /* Note: Display interface select is handled in top block hw layer */ SDE_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0); if (enable && (intf->cap->features & BIT(SDE_INTF_VSYNC_TIMESTAMP))) SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, BIT(0)); } static void sde_hw_intf_setup_prg_fetch( struct sde_hw_intf *intf, const struct intf_prog_fetch *fetch) { struct sde_hw_blk_reg_map *c = &intf->hw; int fetch_enable; /* * Fetch should always be outside the active lines. If the fetching * is programmed within active region, hardware behavior is unknown. */ fetch_enable = SDE_REG_READ(c, INTF_CONFIG); if (fetch->enable) { fetch_enable |= BIT(31); SDE_REG_WRITE(c, INTF_PROG_FETCH_START, fetch->fetch_start); } else { fetch_enable &= ~BIT(31); } SDE_REG_WRITE(c, INTF_CONFIG, fetch_enable); } static void sde_hw_intf_setup_vsync_source(struct sde_hw_intf *intf, u32 frame_rate) { struct sde_hw_blk_reg_map *c; u32 reg; if (!intf) return; c = &intf->hw; SDE_REG_WRITE(c, INTF_WD_TIMER_0_LOAD_VALUE, CALCULATE_WD_LOAD_VALUE(frame_rate)); SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL, BIT(0)); /* clear timer */ reg = SDE_REG_READ(c, INTF_WD_TIMER_0_CTL2); reg |= BIT(8); /* enable heartbeat timer */ reg |= BIT(0); /* enable WD timer */ SDE_REG_WRITE(c, INTF_WD_TIMER_0_CTL2, reg); /* make sure that timers are enabled/disabled for vsync state */ wmb(); } static void sde_hw_intf_bind_pingpong_blk( struct sde_hw_intf *intf, bool enable, const enum sde_pingpong pp) { struct sde_hw_blk_reg_map *c; u32 mux_cfg; if (!intf) return; c = &intf->hw; mux_cfg = SDE_REG_READ(c, INTF_MUX); mux_cfg &= ~0xf; if (enable) { mux_cfg |= (pp - PINGPONG_0) & 0x7; if (intf->cfg.split_link_en) mux_cfg = 0x60000; } else { mux_cfg = 0xf000f; } SDE_REG_WRITE(c, INTF_MUX, mux_cfg); } static void sde_hw_intf_get_status( struct sde_hw_intf *intf, struct intf_status *s) { struct sde_hw_blk_reg_map *c = &intf->hw; s->is_en = SDE_REG_READ(c, INTF_TIMING_ENGINE_EN); if (s->is_en) { s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT); s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff; } else { s->line_count = 0; s->frame_count = 0; } } static void sde_hw_intf_v1_get_status( struct sde_hw_intf *intf, struct intf_status *s) { struct sde_hw_blk_reg_map *c = &intf->hw; s->is_en = SDE_REG_READ(c, INTF_STATUS) & BIT(0); s->is_prog_fetch_en = (SDE_REG_READ(c, INTF_CONFIG) & BIT(31)); if (s->is_en) { s->frame_count = SDE_REG_READ(c, INTF_FRAME_COUNT); s->line_count = SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff; } else { s->line_count = 0; s->frame_count = 0; } } static void sde_hw_intf_setup_misr(struct sde_hw_intf *intf, bool enable, u32 frame_count) { struct sde_hw_blk_reg_map *c = &intf->hw; u32 config = 0; SDE_REG_WRITE(c, INTF_MISR_CTRL, MISR_CTRL_STATUS_CLEAR); /* clear misr data */ wmb(); if (enable) config = (frame_count & MISR_FRAME_COUNT_MASK) | MISR_CTRL_ENABLE | INTF_MISR_CTRL_FREE_RUN_MASK | INTF_MISR_CTRL_INPUT_SEL_DATA; SDE_REG_WRITE(c, INTF_MISR_CTRL, config); } static int sde_hw_intf_collect_misr(struct sde_hw_intf *intf, bool nonblock, u32 *misr_value) { struct sde_hw_blk_reg_map *c = &intf->hw; u32 ctrl = 0; if (!misr_value) return -EINVAL; ctrl = SDE_REG_READ(c, INTF_MISR_CTRL); if (!nonblock) { if (ctrl & MISR_CTRL_ENABLE) { int rc; rc = readl_poll_timeout(c->base_off + c->blk_off + INTF_MISR_CTRL, ctrl, (ctrl & MISR_CTRL_STATUS) > 0, 500, 84000); if (rc) return rc; } else { return -EINVAL; } } *misr_value = SDE_REG_READ(c, INTF_MISR_SIGNATURE); return 0; } static u32 sde_hw_intf_get_line_count(struct sde_hw_intf *intf) { struct sde_hw_blk_reg_map *c; if (!intf) return 0; c = &intf->hw; return SDE_REG_READ(c, INTF_LINE_COUNT) & 0xffff; } static u32 sde_hw_intf_get_underrun_line_count(struct sde_hw_intf *intf) { struct sde_hw_blk_reg_map *c; u32 hsync_period; if (!intf) return 0; c = &intf->hw; hsync_period = SDE_REG_READ(c, INTF_HSYNC_CTL); hsync_period = ((hsync_period & 0xffff0000) >> 16); return hsync_period ? SDE_REG_READ(c, INTF_UNDERRUN_COUNT) / hsync_period : 0xebadebad; } static u32 sde_hw_intf_get_intr_status(struct sde_hw_intf *intf) { if (!intf) return -EINVAL; return SDE_REG_READ(&intf->hw, INTF_INTR_STATUS); } static int sde_hw_intf_setup_te_config(struct sde_hw_intf *intf, struct sde_hw_tear_check *te) { struct sde_hw_blk_reg_map *c; int cfg; if (!intf) return -EINVAL; c = &intf->hw; cfg = BIT(19); /* VSYNC_COUNTER_EN */ if (te->hw_vsync_mode) cfg |= BIT(20); cfg |= te->vsync_count; SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg); SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height); SDE_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val); SDE_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq); SDE_REG_WRITE(c, INTF_TEAR_WR_PTR_IRQ, te->wr_ptr_irq); SDE_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos); SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, ((te->sync_threshold_continue << 16) | te->sync_threshold_start)); SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, (te->start_pos + te->sync_threshold_start + 1)); return 0; } static int sde_hw_intf_setup_autorefresh_config(struct sde_hw_intf *intf, struct sde_hw_autorefresh *cfg) { struct sde_hw_blk_reg_map *c; u32 refresh_cfg; if (!intf || !cfg) return -EINVAL; c = &intf->hw; refresh_cfg = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG); if (cfg->enable) refresh_cfg = BIT(31) | cfg->frame_count; else refresh_cfg &= ~BIT(31); SDE_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg); return 0; } static int sde_hw_intf_get_autorefresh_config(struct sde_hw_intf *intf, struct sde_hw_autorefresh *cfg) { struct sde_hw_blk_reg_map *c; u32 val; if (!intf || !cfg) return -EINVAL; c = &intf->hw; val = SDE_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG); cfg->enable = (val & BIT(31)) >> 31; cfg->frame_count = val & 0xffff; return 0; } static int sde_hw_intf_poll_timeout_wr_ptr(struct sde_hw_intf *intf, u32 timeout_us) { struct sde_hw_blk_reg_map *c; u32 val; int rc; if (!intf) return -EINVAL; c = &intf->hw; rc = readl_poll_timeout(c->base_off + c->blk_off + INTF_TEAR_LINE_COUNT, val, (val & 0xffff) >= 1, 10, timeout_us); return rc; } static int sde_hw_intf_enable_te(struct sde_hw_intf *intf, bool enable) { struct sde_hw_blk_reg_map *c; if (!intf) return -EINVAL; c = &intf->hw; SDE_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, enable); if (enable && (intf->cap->features & BIT(SDE_INTF_VSYNC_TIMESTAMP))) SDE_REG_WRITE(c, INTF_VSYNC_TIMESTAMP_CTRL, BIT(0)); return 0; } static void sde_hw_intf_update_te(struct sde_hw_intf *intf, struct sde_hw_tear_check *te) { struct sde_hw_blk_reg_map *c; int cfg; if (!intf || !te) return; c = &intf->hw; cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_THRESH); cfg &= ~0xFFFF; cfg |= te->sync_threshold_start; SDE_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, cfg); } static int sde_hw_intf_connect_external_te(struct sde_hw_intf *intf, bool enable_external_te) { struct sde_hw_blk_reg_map *c = &intf->hw; u32 cfg; int orig; if (!intf) return -EINVAL; c = &intf->hw; cfg = SDE_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC); orig = (bool)(cfg & BIT(20)); if (enable_external_te) cfg |= BIT(20); else cfg &= ~BIT(20); SDE_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg); return orig; } static int sde_hw_intf_get_vsync_info(struct sde_hw_intf *intf, struct sde_hw_pp_vsync_info *info) { struct sde_hw_blk_reg_map *c = &intf->hw; u32 val; if (!intf || !info) return -EINVAL; c = &intf->hw; val = SDE_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL); info->rd_ptr_init_val = val & 0xffff; val = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL); info->rd_ptr_frame_count = (val & 0xffff0000) >> 16; info->rd_ptr_line_count = val & 0xffff; val = SDE_REG_READ(c, INTF_TEAR_LINE_COUNT); info->wr_ptr_line_count = val & 0xffff; val = SDE_REG_READ(c, INTF_FRAME_COUNT); info->intf_frame_count = val; return 0; } static int sde_hw_intf_v1_check_and_reset_tearcheck(struct sde_hw_intf *intf, struct intf_tear_status *status) { struct sde_hw_blk_reg_map *c = &intf->hw; u32 start_pos; if (!intf || !status) return -EINVAL; c = &intf->hw; status->read_count = SDE_REG_READ(c, INTF_TEAR_INT_COUNT_VAL); start_pos = SDE_REG_READ(c, INTF_TEAR_START_POS); status->write_count = SDE_REG_READ(c, INTF_TEAR_SYNC_WRCOUNT); status->write_count &= 0xffff0000; status->write_count |= start_pos; SDE_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, status->write_count); return 0; } static void sde_hw_intf_vsync_sel(struct sde_hw_intf *intf, u32 vsync_source) { struct sde_hw_blk_reg_map *c; if (!intf) return; c = &intf->hw; SDE_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf)); } static void sde_hw_intf_enable_compressed_input(struct sde_hw_intf *intf, bool compression_en, bool dsc_4hs_merge) { struct sde_hw_blk_reg_map *c; u32 intf_cfg2; if (!intf) return; /* * callers can either call this function to enable/disable the 64 bit * compressed input or this configuration can be applied along * with timing generation parameters */ c = &intf->hw; intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2); _check_and_set_comp_bit(intf, dsc_4hs_merge, compression_en, &intf_cfg2); SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2); } static void sde_hw_intf_enable_wide_bus(struct sde_hw_intf *intf, bool enable) { struct sde_hw_blk_reg_map *c; u32 intf_cfg2; if (!intf) return; c = &intf->hw; intf_cfg2 = SDE_REG_READ(c, INTF_CONFIG2); intf_cfg2 &= ~BIT(0); intf_cfg2 |= enable ? BIT(0) : 0; SDE_REG_WRITE(c, INTF_CONFIG2, intf_cfg2); } static void _setup_intf_ops(struct sde_hw_intf_ops *ops, unsigned long cap) { ops->setup_timing_gen = sde_hw_intf_setup_timing_engine; ops->setup_prg_fetch = sde_hw_intf_setup_prg_fetch; ops->enable_timing = sde_hw_intf_enable_timing_engine; ops->setup_misr = sde_hw_intf_setup_misr; ops->collect_misr = sde_hw_intf_collect_misr; ops->get_line_count = sde_hw_intf_get_line_count; ops->get_underrun_line_count = sde_hw_intf_get_underrun_line_count; ops->get_intr_status = sde_hw_intf_get_intr_status; ops->avr_setup = sde_hw_intf_avr_setup; ops->avr_trigger = sde_hw_intf_avr_trigger; ops->avr_ctrl = sde_hw_intf_avr_ctrl; ops->enable_compressed_input = sde_hw_intf_enable_compressed_input; ops->enable_wide_bus = sde_hw_intf_enable_wide_bus; if (cap & BIT(SDE_INTF_STATUS)) ops->get_status = sde_hw_intf_v1_get_status; else ops->get_status = sde_hw_intf_get_status; if (cap & BIT(SDE_INTF_INPUT_CTRL)) ops->bind_pingpong_blk = sde_hw_intf_bind_pingpong_blk; if (cap & BIT(SDE_INTF_WD_TIMER)) ops->setup_vsync_source = sde_hw_intf_setup_vsync_source; if (cap & BIT(SDE_INTF_TE)) { ops->setup_tearcheck = sde_hw_intf_setup_te_config; ops->enable_tearcheck = sde_hw_intf_enable_te; ops->update_tearcheck = sde_hw_intf_update_te; ops->connect_external_te = sde_hw_intf_connect_external_te; ops->get_vsync_info = sde_hw_intf_get_vsync_info; ops->setup_autorefresh = sde_hw_intf_setup_autorefresh_config; ops->get_autorefresh = sde_hw_intf_get_autorefresh_config; ops->poll_timeout_wr_ptr = sde_hw_intf_poll_timeout_wr_ptr; ops->vsync_sel = sde_hw_intf_vsync_sel; ops->check_and_reset_tearcheck = sde_hw_intf_v1_check_and_reset_tearcheck; } if (cap & BIT(SDE_INTF_RESET_COUNTER)) ops->reset_counter = sde_hw_intf_reset_counter; if (cap & BIT(SDE_INTF_VSYNC_TIMESTAMP)) ops->get_vsync_timestamp = sde_hw_intf_get_vsync_timestamp; } static struct sde_hw_blk_ops sde_hw_ops = { .start = NULL, .stop = NULL, }; struct sde_hw_intf *sde_hw_intf_init(enum sde_intf idx, void __iomem *addr, struct sde_mdss_cfg *m) { struct sde_hw_intf *c; struct sde_intf_cfg *cfg; int rc; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return ERR_PTR(-ENOMEM); cfg = _intf_offset(idx, m, addr, &c->hw); if (IS_ERR_OR_NULL(cfg)) { kfree(c); pr_err("failed to create sde_hw_intf %d\n", idx); return ERR_PTR(-EINVAL); } /* * Assign ops */ c->idx = idx; c->cap = cfg; c->mdss = m; _setup_intf_ops(&c->ops, c->cap->features); rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_INTF, idx, &sde_hw_ops); if (rc) { SDE_ERROR("failed to init hw blk %d\n", rc); goto blk_init_error; } sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off, c->hw.blk_off + c->hw.length, c->hw.xin_id); return c; blk_init_error: kfree(c); return ERR_PTR(rc); } void sde_hw_intf_destroy(struct sde_hw_intf *intf) { if (intf) sde_hw_blk_destroy(&intf->base); kfree(intf); }