/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "cdp_txrx_cmn_struct.h" #include "hal_hw_headers.h" #include "dp_types.h" #include "dp_rx.h" #include "dp_tx.h" #include "dp_be_rx.h" #include "dp_peer.h" #include "hal_rx.h" #include "hal_be_rx.h" #include "hal_api.h" #include "hal_be_api.h" #include "qdf_nbuf.h" #include "hal_be_rx_tlv.h" #ifdef MESH_MODE_SUPPORT #include "if_meta_hdr.h" #endif #include "dp_internal.h" #include "dp_ipa.h" #ifdef FEATURE_WDS #include "dp_txrx_wds.h" #endif #include "dp_hist.h" #include "dp_rx_buffer_pool.h" #ifndef AST_OFFLOAD_ENABLE static void dp_rx_wds_learn(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf, struct hal_rx_msdu_metadata msdu_metadata) { /* WDS Source Port Learning */ if (qdf_likely(vdev->wds_enabled)) dp_rx_wds_srcport_learn(soc, rx_tlv_hdr, txrx_peer, nbuf, msdu_metadata); } #else #ifdef QCA_SUPPORT_WDS_EXTENDED /** * dp_wds_ext_peer_learn_be() - function to send event to control * path on receiving 1st 4-address frame from backhaul. * @soc: DP soc * @ta_txrx_peer: WDS repeater txrx peer * @rx_tlv_hdr : start address of rx tlvs * * Return: void */ static inline void dp_wds_ext_peer_learn_be(struct dp_soc *soc, struct dp_txrx_peer *ta_txrx_peer, uint8_t *rx_tlv_hdr) { uint8_t wds_ext_src_mac[QDF_MAC_ADDR_SIZE]; struct dp_peer *ta_base_peer; /* instead of checking addr4 is valid or not in per packet path * check for init bit, which will be set on reception of * first addr4 valid packet. */ if (!ta_txrx_peer->vdev->wds_ext_enabled || qdf_atomic_test_bit(WDS_EXT_PEER_INIT_BIT, &ta_txrx_peer->wds_ext.init)) return; if (hal_rx_get_mpdu_mac_ad4_valid_be(rx_tlv_hdr)) { qdf_atomic_test_and_set_bit(WDS_EXT_PEER_INIT_BIT, &ta_txrx_peer->wds_ext.init); ta_base_peer = dp_peer_get_ref_by_id(soc, ta_txrx_peer->peer_id, DP_MOD_ID_RX); if (!ta_base_peer) return; qdf_mem_copy(wds_ext_src_mac, &ta_base_peer->mac_addr.raw[0], QDF_MAC_ADDR_SIZE); dp_peer_unref_delete(ta_base_peer, DP_MOD_ID_RX); soc->cdp_soc.ol_ops->rx_wds_ext_peer_learn( soc->ctrl_psoc, ta_txrx_peer->peer_id, ta_txrx_peer->vdev->vdev_id, wds_ext_src_mac); } } #else static inline void dp_wds_ext_peer_learn_be(struct dp_soc *soc, struct dp_txrx_peer *ta_txrx_peer, uint8_t *rx_tlv_hdr) { } #endif static void dp_rx_wds_learn(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *rx_tlv_hdr, struct dp_txrx_peer *ta_txrx_peer, qdf_nbuf_t nbuf, struct hal_rx_msdu_metadata msdu_metadata) { dp_wds_ext_peer_learn_be(soc, ta_txrx_peer, rx_tlv_hdr); } #endif /** * dp_rx_process_be() - Brain of the Rx processing functionality * Called from the bottom half (tasklet/NET_RX_SOFTIRQ) * @int_ctx: per interrupt context * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring. * @quota: No. of units (packets) that can be serviced in one shot. * * This function implements the core of Rx functionality. This is * expected to handle only non-error frames. * * Return: uint32_t: No. of elements processed */ uint32_t dp_rx_process_be(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl, uint8_t reo_ring_num, uint32_t quota) { hal_ring_desc_t ring_desc; hal_soc_handle_t hal_soc; struct dp_rx_desc *rx_desc = NULL; qdf_nbuf_t nbuf, next; bool near_full; union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT]; union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT]; uint32_t num_pending; uint32_t rx_bufs_used = 0, rx_buf_cookie; uint16_t msdu_len = 0; uint16_t peer_id; uint8_t vdev_id; struct dp_txrx_peer *txrx_peer; dp_txrx_ref_handle txrx_ref_handle = NULL; struct dp_vdev *vdev; uint32_t pkt_len = 0; struct hal_rx_mpdu_desc_info mpdu_desc_info; struct hal_rx_msdu_desc_info msdu_desc_info; enum hal_reo_error_status error; uint32_t peer_mdata; uint8_t *rx_tlv_hdr; uint32_t rx_bufs_reaped[MAX_PDEV_CNT]; uint8_t mac_id = 0; struct dp_pdev *rx_pdev; bool enh_flag; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; struct dp_soc *soc = int_ctx->soc; uint8_t core_id = 0; struct cdp_tid_rx_stats *tid_stats; qdf_nbuf_t nbuf_head; qdf_nbuf_t nbuf_tail; qdf_nbuf_t deliver_list_head; qdf_nbuf_t deliver_list_tail; uint32_t num_rx_bufs_reaped = 0; uint32_t intr_id; struct hif_opaque_softc *scn; int32_t tid = 0; bool is_prev_msdu_last = true; uint32_t num_entries_avail = 0; uint32_t rx_ol_pkt_cnt = 0; uint32_t num_entries = 0; struct hal_rx_msdu_metadata msdu_metadata; QDF_STATUS status; qdf_nbuf_t ebuf_head; qdf_nbuf_t ebuf_tail; uint8_t pkt_capture_offload = 0; struct dp_srng *rx_ring = &soc->reo_dest_ring[reo_ring_num]; int max_reap_limit, ring_near_full; struct dp_soc *replenish_soc; DP_HIST_INIT(); qdf_assert_always(soc && hal_ring_hdl); hal_soc = soc->hal_soc; qdf_assert_always(hal_soc); scn = soc->hif_handle; hif_pm_runtime_mark_dp_rx_busy(scn); intr_id = int_ctx->dp_intr_id; num_entries = hal_srng_get_num_entries(hal_soc, hal_ring_hdl); more_data: /* reset local variables here to be re-used in the function */ nbuf_head = NULL; nbuf_tail = NULL; deliver_list_head = NULL; deliver_list_tail = NULL; txrx_peer = NULL; vdev = NULL; num_rx_bufs_reaped = 0; ebuf_head = NULL; ebuf_tail = NULL; ring_near_full = 0; max_reap_limit = dp_rx_get_loop_pkt_limit(soc); qdf_mem_zero(rx_bufs_reaped, sizeof(rx_bufs_reaped)); qdf_mem_zero(&mpdu_desc_info, sizeof(mpdu_desc_info)); qdf_mem_zero(&msdu_desc_info, sizeof(msdu_desc_info)); qdf_mem_zero(head, sizeof(head)); qdf_mem_zero(tail, sizeof(tail)); ring_near_full = _dp_srng_test_and_update_nf_params(soc, rx_ring, &max_reap_limit); if (qdf_unlikely(dp_rx_srng_access_start(int_ctx, soc, hal_ring_hdl))) { /* * Need API to convert from hal_ring pointer to * Ring Type / Ring Id combo */ DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("HAL RING Access Failed -- %pK"), hal_ring_hdl); goto done; } /* * start reaping the buffers from reo ring and queue * them in per vdev queue. * Process the received pkts in a different per vdev loop. */ while (qdf_likely(quota && (ring_desc = hal_srng_dst_peek(hal_soc, hal_ring_hdl)))) { error = HAL_RX_ERROR_STATUS_GET(ring_desc); if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) { dp_rx_err("%pK: HAL RING 0x%pK:error %d", soc, hal_ring_hdl, error); DP_STATS_INC(soc, rx.err.hal_reo_error[reo_ring_num], 1); /* Don't know how to deal with this -- assert */ qdf_assert(0); } dp_rx_ring_record_entry(soc, reo_ring_num, ring_desc); rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc); status = dp_rx_cookie_check_and_invalidate(ring_desc); if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) { DP_STATS_INC(soc, rx.err.stale_cookie, 1); break; } rx_desc = (struct dp_rx_desc *) hal_rx_get_reo_desc_va(ring_desc); dp_rx_desc_sw_cc_check(soc, rx_buf_cookie, &rx_desc); status = dp_rx_desc_sanity(soc, hal_soc, hal_ring_hdl, ring_desc, rx_desc); if (QDF_IS_STATUS_ERROR(status)) { if (qdf_unlikely(rx_desc && rx_desc->nbuf)) { qdf_assert_always(!rx_desc->unmapped); dp_rx_nbuf_unmap(soc, rx_desc, reo_ring_num); rx_desc->unmapped = 1; dp_rx_buffer_pool_nbuf_free(soc, rx_desc->nbuf, rx_desc->pool_id); dp_rx_add_to_free_desc_list( &head[rx_desc->pool_id], &tail[rx_desc->pool_id], rx_desc); } hal_srng_dst_get_next(hal_soc, hal_ring_hdl); continue; } /* * this is a unlikely scenario where the host is reaping * a descriptor which it already reaped just a while ago * but is yet to replenish it back to HW. * In this case host will dump the last 128 descriptors * including the software descriptor rx_desc and assert. */ if (qdf_unlikely(!rx_desc->in_use)) { DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1); dp_info_rl("Reaping rx_desc not in use!"); dp_rx_dump_info_and_assert(soc, hal_ring_hdl, ring_desc, rx_desc); /* ignore duplicate RX desc and continue to process */ /* Pop out the descriptor */ hal_srng_dst_get_next(hal_soc, hal_ring_hdl); continue; } status = dp_rx_desc_nbuf_sanity_check(soc, ring_desc, rx_desc); if (qdf_unlikely(QDF_IS_STATUS_ERROR(status))) { DP_STATS_INC(soc, rx.err.nbuf_sanity_fail, 1); dp_info_rl("Nbuf sanity check failure!"); dp_rx_dump_info_and_assert(soc, hal_ring_hdl, ring_desc, rx_desc); rx_desc->in_err_state = 1; hal_srng_dst_get_next(hal_soc, hal_ring_hdl); continue; } if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) { dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie); DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1); dp_rx_dump_info_and_assert(soc, hal_ring_hdl, ring_desc, rx_desc); } /* Get MPDU DESC info */ hal_rx_mpdu_desc_info_get_be(ring_desc, &mpdu_desc_info); /* Get MSDU DESC info */ hal_rx_msdu_desc_info_get_be(ring_desc, &msdu_desc_info); if (qdf_unlikely(msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)) { /* previous msdu has end bit set, so current one is * the new MPDU */ if (is_prev_msdu_last) { /* Get number of entries available in HW ring */ num_entries_avail = hal_srng_dst_num_valid(hal_soc, hal_ring_hdl, 1); /* For new MPDU check if we can read complete * MPDU by comparing the number of buffers * available and number of buffers needed to * reap this MPDU */ if ((msdu_desc_info.msdu_len / (RX_DATA_BUFFER_SIZE - soc->rx_pkt_tlv_size) + 1) > num_entries_avail) { DP_STATS_INC(soc, rx.msdu_scatter_wait_break, 1); dp_rx_cookie_reset_invalid_bit( ring_desc); break; } is_prev_msdu_last = false; } } core_id = smp_processor_id(); DP_STATS_INC(soc, rx.ring_packets[core_id][reo_ring_num], 1); if (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RETRY_BIT) qdf_nbuf_set_rx_retry_flag(rx_desc->nbuf, 1); if (qdf_unlikely(mpdu_desc_info.mpdu_flags & HAL_MPDU_F_RAW_AMPDU)) qdf_nbuf_set_raw_frame(rx_desc->nbuf, 1); if (!is_prev_msdu_last && msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU) is_prev_msdu_last = true; /* Pop out the descriptor*/ hal_srng_dst_get_next(hal_soc, hal_ring_hdl); rx_bufs_reaped[rx_desc->pool_id]++; peer_mdata = mpdu_desc_info.peer_meta_data; QDF_NBUF_CB_RX_PEER_ID(rx_desc->nbuf) = dp_rx_peer_metadata_peer_id_get_be(soc, peer_mdata); QDF_NBUF_CB_RX_VDEV_ID(rx_desc->nbuf) = dp_rx_peer_metadata_vdev_id_get_be(soc, peer_mdata); /* to indicate whether this msdu is rx offload */ pkt_capture_offload = DP_PEER_METADATA_OFFLOAD_GET_BE(peer_mdata); /* * save msdu flags first, last and continuation msdu in * nbuf->cb, also save mcbc, is_da_valid, is_sa_valid and * length to nbuf->cb. This ensures the info required for * per pkt processing is always in the same cache line. * This helps in improving throughput for smaller pkt * sizes. */ if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU) qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION) qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU) qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_MCBC) qdf_nbuf_set_da_mcbc(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_DA_IS_VALID) qdf_nbuf_set_da_valid(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_SA_IS_VALID) qdf_nbuf_set_sa_valid(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_INTRA_BSS) qdf_nbuf_set_intra_bss(rx_desc->nbuf, 1); if (qdf_likely(mpdu_desc_info.mpdu_flags & HAL_MPDU_F_QOS_CONTROL_VALID)) qdf_nbuf_set_tid_val(rx_desc->nbuf, mpdu_desc_info.tid); /* set sw exception */ qdf_nbuf_set_rx_reo_dest_ind_or_sw_excpt( rx_desc->nbuf, hal_rx_sw_exception_get_be(ring_desc)); QDF_NBUF_CB_RX_PKT_LEN(rx_desc->nbuf) = msdu_desc_info.msdu_len; QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num; /* * move unmap after scattered msdu waiting break logic * in case double skb unmap happened. */ rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id]; dp_rx_nbuf_unmap(soc, rx_desc, reo_ring_num); rx_desc->unmapped = 1; DP_RX_PROCESS_NBUF(soc, nbuf_head, nbuf_tail, ebuf_head, ebuf_tail, rx_desc); /* * if continuation bit is set then we have MSDU spread * across multiple buffers, let us not decrement quota * till we reap all buffers of that MSDU. */ if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf))) quota -= 1; dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id], &tail[rx_desc->pool_id], rx_desc); num_rx_bufs_reaped++; /* * only if complete msdu is received for scatter case, * then allow break. */ if (is_prev_msdu_last && dp_rx_reap_loop_pkt_limit_hit(soc, num_rx_bufs_reaped, max_reap_limit)) break; } done: dp_rx_srng_access_end(int_ctx, soc, hal_ring_hdl); replenish_soc = dp_rx_replensih_soc_get(soc, reo_ring_num); for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) { /* * continue with next mac_id if no pkts were reaped * from that pool */ if (!rx_bufs_reaped[mac_id]) continue; dp_rxdma_srng = &replenish_soc->rx_refill_buf_ring[mac_id]; rx_desc_pool = &replenish_soc->rx_desc_buf[mac_id]; dp_rx_buffers_replenish(replenish_soc, mac_id, dp_rxdma_srng, rx_desc_pool, rx_bufs_reaped[mac_id], &head[mac_id], &tail[mac_id]); } dp_verbose_debug("replenished %u\n", rx_bufs_reaped[0]); /* Peer can be NULL is case of LFR */ if (qdf_likely(txrx_peer)) vdev = NULL; /* * BIG loop where each nbuf is dequeued from global queue, * processed and queued back on a per vdev basis. These nbufs * are sent to stack as and when we run out of nbufs * or a new nbuf dequeued from global queue has a different * vdev when compared to previous nbuf. */ nbuf = nbuf_head; while (nbuf) { next = nbuf->next; if (qdf_unlikely(dp_rx_is_raw_frame_dropped(nbuf))) { nbuf = next; DP_STATS_INC(soc, rx.err.raw_frm_drop, 1); continue; } rx_tlv_hdr = qdf_nbuf_data(nbuf); vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf); peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf); if (dp_rx_is_list_ready(deliver_list_head, vdev, txrx_peer, peer_id, vdev_id)) { dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head, deliver_list_tail); deliver_list_head = NULL; deliver_list_tail = NULL; } /* Get TID from struct cb->tid_val, save to tid */ if (qdf_nbuf_is_rx_chfrag_start(nbuf)) tid = qdf_nbuf_get_tid_val(nbuf); if (qdf_unlikely(!txrx_peer)) { txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle, DP_MOD_ID_RX); } else if (txrx_peer && txrx_peer->peer_id != peer_id) { dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle, DP_MOD_ID_RX); } if (txrx_peer) { QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false; qdf_dp_trace_set_track(nbuf, QDF_RX); QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1; QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) = QDF_NBUF_RX_PKT_DATA_TRACK; } rx_bufs_used++; if (qdf_likely(txrx_peer)) { vdev = txrx_peer->vdev; } else { nbuf->next = NULL; dp_rx_deliver_to_pkt_capture_no_peer( soc, nbuf, pkt_capture_offload); if (!pkt_capture_offload) dp_rx_deliver_to_stack_no_peer(soc, nbuf); nbuf = next; continue; } if (qdf_unlikely(!vdev)) { dp_rx_nbuf_free(nbuf); nbuf = next; DP_STATS_INC(soc, rx.err.invalid_vdev, 1); continue; } /* when hlos tid override is enabled, save tid in * skb->priority */ if (qdf_unlikely(vdev->skip_sw_tid_classification & DP_TXRX_HLOS_TID_OVERRIDE_ENABLED)) qdf_nbuf_set_priority(nbuf, tid); rx_pdev = vdev->pdev; DP_RX_TID_SAVE(nbuf, tid); if (qdf_unlikely(rx_pdev->delay_stats_flag) || qdf_unlikely(wlan_cfg_is_peer_ext_stats_enabled( soc->wlan_cfg_ctx)) || dp_rx_pkt_tracepoints_enabled()) qdf_nbuf_set_timestamp(nbuf); enh_flag = rx_pdev->enhanced_stats_en; tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[reo_ring_num][tid]; /* * Check if DMA completed -- msdu_done is the last bit * to be written */ if (qdf_unlikely(!qdf_nbuf_is_rx_chfrag_cont(nbuf) && !hal_rx_tlv_msdu_done_get_be(rx_tlv_hdr))) { dp_err("MSDU DONE failure"); DP_STATS_INC(soc, rx.err.msdu_done_fail, 1); hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr, QDF_TRACE_LEVEL_INFO); tid_stats->fail_cnt[MSDU_DONE_FAILURE]++; dp_rx_nbuf_free(nbuf); qdf_assert(0); nbuf = next; continue; } DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id); /* * First IF condition: * 802.11 Fragmented pkts are reinjected to REO * HW block as SG pkts and for these pkts we only * need to pull the RX TLVS header length. * Second IF condition: * The below condition happens when an MSDU is spread * across multiple buffers. This can happen in two cases * 1. The nbuf size is smaller then the received msdu. * ex: we have set the nbuf size to 2048 during * nbuf_alloc. but we received an msdu which is * 2304 bytes in size then this msdu is spread * across 2 nbufs. * * 2. AMSDUs when RAW mode is enabled. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread * across 1st nbuf and 2nd nbuf and last MSDU is * spread across 2nd nbuf and 3rd nbuf. * * for these scenarios let us create a skb frag_list and * append these buffers till the last MSDU of the AMSDU * Third condition: * This is the most likely case, we receive 802.3 pkts * decapsulated by HW, here we need to set the pkt length. */ hal_rx_msdu_packet_metadata_get_generic_be(rx_tlv_hdr, &msdu_metadata); if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) { bool is_mcbc, is_sa_vld, is_da_vld; is_mcbc = hal_rx_msdu_end_da_is_mcbc_get(soc->hal_soc, rx_tlv_hdr); is_sa_vld = hal_rx_msdu_end_sa_is_valid_get(soc->hal_soc, rx_tlv_hdr); is_da_vld = hal_rx_msdu_end_da_is_valid_get(soc->hal_soc, rx_tlv_hdr); qdf_nbuf_set_da_mcbc(nbuf, is_mcbc); qdf_nbuf_set_da_valid(nbuf, is_da_vld); qdf_nbuf_set_sa_valid(nbuf, is_sa_vld); qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size); } else if (qdf_nbuf_is_rx_chfrag_cont(nbuf)) { msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); nbuf = dp_rx_sg_create(soc, nbuf); next = nbuf->next; if (qdf_nbuf_is_raw_frame(nbuf)) { DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1); DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1, msdu_len); } else { dp_rx_nbuf_free(nbuf); DP_STATS_INC(soc, rx.err.scatter_msdu, 1); dp_info_rl("scatter msdu len %d, dropped", msdu_len); nbuf = next; continue; } } else { msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf); pkt_len = msdu_len + msdu_metadata.l3_hdr_pad + soc->rx_pkt_tlv_size; qdf_nbuf_set_pktlen(nbuf, pkt_len); dp_rx_skip_tlvs(soc, nbuf, msdu_metadata.l3_hdr_pad); } /* * process frame for mulitpass phrase processing */ if (qdf_unlikely(vdev->multipass_en)) { if (dp_rx_multipass_process(txrx_peer, nbuf, tid) == false) { DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.multipass_rx_pkt_drop, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } } if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, txrx_peer)) { dp_rx_err("%pK: Policy Check Drop pkt", soc); DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.policy_check_drop, 1); tid_stats->fail_cnt[POLICY_CHECK_DROP]++; /* Drop & free packet */ dp_rx_nbuf_free(nbuf); /* Statistics */ nbuf = next; continue; } if (qdf_unlikely(txrx_peer && (txrx_peer->nawds_enabled) && (qdf_nbuf_is_da_mcbc(nbuf)) && (hal_rx_get_mpdu_mac_ad4_valid_be(rx_tlv_hdr) == false))) { tid_stats->fail_cnt[NAWDS_MCAST_DROP]++; DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.nawds_mcast_drop, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } /* * Drop non-EAPOL frames from unauthorized peer. */ if (qdf_likely(txrx_peer) && qdf_unlikely(!txrx_peer->authorize) && !qdf_nbuf_is_raw_frame(nbuf)) { bool is_eapol = qdf_nbuf_is_ipv4_eapol_pkt(nbuf) || qdf_nbuf_is_ipv4_wapi_pkt(nbuf); if (!is_eapol) { DP_PEER_PER_PKT_STATS_INC(txrx_peer, rx.peer_unauth_rx_pkt_drop, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } } if (soc->process_rx_status) dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr); /* Update the protocol tag in SKB based on CCE metadata */ dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr, reo_ring_num, false, true); /* Update the flow tag in SKB based on FSE metadata */ dp_rx_update_flow_tag(soc, vdev, nbuf, rx_tlv_hdr, true); dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer, reo_ring_num, tid_stats); if (qdf_unlikely(vdev->mesh_vdev)) { if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr) == QDF_STATUS_SUCCESS) { dp_rx_info("%pK: mesh pkt filtered", soc); tid_stats->fail_cnt[MESH_FILTER_DROP]++; DP_STATS_INC(vdev->pdev, dropped.mesh_filter, 1); dp_rx_nbuf_free(nbuf); nbuf = next; continue; } dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, txrx_peer); } if (qdf_likely(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet) && qdf_likely(!vdev->mesh_vdev)) { dp_rx_wds_learn(soc, vdev, rx_tlv_hdr, txrx_peer, nbuf, msdu_metadata); /* Intrabss-fwd */ if (dp_rx_check_ap_bridge(vdev)) if (dp_rx_intrabss_fwd_be(soc, txrx_peer, rx_tlv_hdr, nbuf, msdu_metadata)) { nbuf = next; tid_stats->intrabss_cnt++; continue; /* Get next desc */ } } dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf, &rx_ol_pkt_cnt); dp_rx_mark_first_packet_after_wow_wakeup(vdev->pdev, rx_tlv_hdr, nbuf); dp_rx_update_stats(soc, nbuf); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); DP_PEER_TO_STACK_INCC_PKT(txrx_peer, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf), enh_flag); if (qdf_unlikely(txrx_peer->in_twt)) DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.to_stack_twt, 1, QDF_NBUF_CB_RX_PKT_LEN(nbuf)); tid_stats->delivered_to_stack++; nbuf = next; } if (qdf_likely(deliver_list_head)) { if (qdf_likely(txrx_peer)) { dp_rx_deliver_to_pkt_capture(soc, vdev->pdev, peer_id, pkt_capture_offload, deliver_list_head); if (!pkt_capture_offload) dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head, deliver_list_tail); } else { nbuf = deliver_list_head; while (nbuf) { next = nbuf->next; nbuf->next = NULL; dp_rx_deliver_to_stack_no_peer(soc, nbuf); nbuf = next; } } } if (qdf_likely(txrx_peer)) dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); /* * If we are processing in near-full condition, there are 3 scenario * 1) Ring entries has reached critical state * 2) Ring entries are still near high threshold * 3) Ring entries are below the safe level * * One more loop will move the state to normal processing and yield */ if (ring_near_full && quota) goto more_data; if (dp_rx_enable_eol_data_check(soc) && rx_bufs_used) { if (quota) { num_pending = dp_rx_srng_get_num_pending(hal_soc, hal_ring_hdl, num_entries, &near_full); if (num_pending) { DP_STATS_INC(soc, rx.hp_oos2, 1); if (!hif_exec_should_yield(scn, intr_id)) goto more_data; if (qdf_unlikely(near_full)) { DP_STATS_INC(soc, rx.near_full, 1); goto more_data; } } } if (vdev && vdev->osif_fisa_flush) vdev->osif_fisa_flush(soc, reo_ring_num); if (vdev && vdev->osif_gro_flush && rx_ol_pkt_cnt) { vdev->osif_gro_flush(vdev->osif_vdev, reo_ring_num); } } /* Update histogram statistics by looping through pdev's */ DP_RX_HIST_STATS_PER_PDEV(); return rx_bufs_used; /* Assume no scale factor for now */ } #ifdef RX_DESC_MULTI_PAGE_ALLOC /** * dp_rx_desc_pool_init_be_cc() - initial RX desc pool for cookie conversion * @soc: Handle to DP Soc structure * @rx_desc_pool: Rx descriptor pool handler * @pool_id: Rx descriptor pool ID * * Return: QDF_STATUS_SUCCESS - succeeded, others - failed */ static QDF_STATUS dp_rx_desc_pool_init_be_cc(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { struct dp_hw_cookie_conversion_t *cc_ctx; struct dp_soc_be *be_soc; union dp_rx_desc_list_elem_t *rx_desc_elem; struct dp_spt_page_desc *page_desc; uint32_t ppt_idx = 0; uint32_t avail_entry_index = 0; if (!rx_desc_pool->pool_size) { dp_err("desc_num 0 !!"); return QDF_STATUS_E_FAILURE; } be_soc = dp_get_be_soc_from_dp_soc(soc); cc_ctx = &be_soc->rx_cc_ctx[pool_id]; page_desc = &cc_ctx->page_desc_base[0]; rx_desc_elem = rx_desc_pool->freelist; while (rx_desc_elem) { if (avail_entry_index == 0) { if (ppt_idx >= cc_ctx->total_page_num) { dp_alert("insufficient secondary page tables"); qdf_assert_always(0); } page_desc = &cc_ctx->page_desc_base[ppt_idx++]; } /* put each RX Desc VA to SPT pages and * get corresponding ID */ DP_CC_SPT_PAGE_UPDATE_VA(page_desc->page_v_addr, avail_entry_index, &rx_desc_elem->rx_desc); rx_desc_elem->rx_desc.cookie = dp_cc_desc_id_generate(page_desc->ppt_index, avail_entry_index); rx_desc_elem->rx_desc.pool_id = pool_id; rx_desc_elem->rx_desc.in_use = 0; rx_desc_elem = rx_desc_elem->next; avail_entry_index = (avail_entry_index + 1) & DP_CC_SPT_PAGE_MAX_ENTRIES_MASK; } return QDF_STATUS_SUCCESS; } #else static QDF_STATUS dp_rx_desc_pool_init_be_cc(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { struct dp_hw_cookie_conversion_t *cc_ctx; struct dp_soc_be *be_soc; struct dp_spt_page_desc *page_desc; uint32_t ppt_idx = 0; uint32_t avail_entry_index = 0; int i = 0; if (!rx_desc_pool->pool_size) { dp_err("desc_num 0 !!"); return QDF_STATUS_E_FAILURE; } be_soc = dp_get_be_soc_from_dp_soc(soc); cc_ctx = &be_soc->rx_cc_ctx[pool_id]; page_desc = &cc_ctx->page_desc_base[0]; for (i = 0; i <= rx_desc_pool->pool_size - 1; i++) { if (i == rx_desc_pool->pool_size - 1) rx_desc_pool->array[i].next = NULL; else rx_desc_pool->array[i].next = &rx_desc_pool->array[i + 1]; if (avail_entry_index == 0) { if (ppt_idx >= cc_ctx->total_page_num) { dp_alert("insufficient secondary page tables"); qdf_assert_always(0); } page_desc = &cc_ctx->page_desc_base[ppt_idx++]; } /* put each RX Desc VA to SPT pages and * get corresponding ID */ DP_CC_SPT_PAGE_UPDATE_VA(page_desc->page_v_addr, avail_entry_index, &rx_desc_pool->array[i].rx_desc); rx_desc_pool->array[i].rx_desc.cookie = dp_cc_desc_id_generate(page_desc->ppt_index, avail_entry_index); rx_desc_pool->array[i].rx_desc.pool_id = pool_id; rx_desc_pool->array[i].rx_desc.in_use = 0; avail_entry_index = (avail_entry_index + 1) & DP_CC_SPT_PAGE_MAX_ENTRIES_MASK; } return QDF_STATUS_SUCCESS; } #endif static void dp_rx_desc_pool_deinit_be_cc(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { struct dp_spt_page_desc *page_desc; struct dp_soc_be *be_soc; int i = 0; struct dp_hw_cookie_conversion_t *cc_ctx; be_soc = dp_get_be_soc_from_dp_soc(soc); cc_ctx = &be_soc->rx_cc_ctx[pool_id]; for (i = 0; i < cc_ctx->total_page_num; i++) { page_desc = &cc_ctx->page_desc_base[i]; qdf_mem_zero(page_desc->page_v_addr, qdf_page_size); } } QDF_STATUS dp_rx_desc_pool_init_be(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { QDF_STATUS status = QDF_STATUS_SUCCESS; /* Only regular RX buffer desc pool use HW cookie conversion */ if (rx_desc_pool->desc_type == DP_RX_DESC_BUF_TYPE) { dp_info("rx_desc_buf pool init"); status = dp_rx_desc_pool_init_be_cc(soc, rx_desc_pool, pool_id); } else { dp_info("non_rx_desc_buf_pool init"); status = dp_rx_desc_pool_init_generic(soc, rx_desc_pool, pool_id); } return status; } void dp_rx_desc_pool_deinit_be(struct dp_soc *soc, struct rx_desc_pool *rx_desc_pool, uint32_t pool_id) { if (rx_desc_pool->desc_type == DP_RX_DESC_BUF_TYPE) dp_rx_desc_pool_deinit_be_cc(soc, rx_desc_pool, pool_id); } #ifdef DP_FEATURE_HW_COOKIE_CONVERSION #ifdef DP_HW_COOKIE_CONVERT_EXCEPTION QDF_STATUS dp_wbm_get_rx_desc_from_hal_desc_be(struct dp_soc *soc, void *ring_desc, struct dp_rx_desc **r_rx_desc) { if (hal_rx_wbm_get_cookie_convert_done(ring_desc)) { /* HW cookie conversion done */ *r_rx_desc = (struct dp_rx_desc *) hal_rx_wbm_get_desc_va(ring_desc); } else { /* SW do cookie conversion */ uint32_t cookie = HAL_RX_BUF_COOKIE_GET(ring_desc); *r_rx_desc = (struct dp_rx_desc *) dp_cc_desc_find(soc, cookie); } return QDF_STATUS_SUCCESS; } #else QDF_STATUS dp_wbm_get_rx_desc_from_hal_desc_be(struct dp_soc *soc, void *ring_desc, struct dp_rx_desc **r_rx_desc) { *r_rx_desc = (struct dp_rx_desc *) hal_rx_wbm_get_desc_va(ring_desc); return QDF_STATUS_SUCCESS; } #endif /* DP_HW_COOKIE_CONVERT_EXCEPTION */ #else QDF_STATUS dp_wbm_get_rx_desc_from_hal_desc_be(struct dp_soc *soc, void *ring_desc, struct dp_rx_desc **r_rx_desc) { /* SW do cookie conversion */ uint32_t cookie = HAL_RX_BUF_COOKIE_GET(ring_desc); *r_rx_desc = (struct dp_rx_desc *) dp_cc_desc_find(soc, cookie); return QDF_STATUS_SUCCESS; } #endif /* DP_FEATURE_HW_COOKIE_CONVERSION */ struct dp_rx_desc *dp_rx_desc_cookie_2_va_be(struct dp_soc *soc, uint32_t cookie) { return (struct dp_rx_desc *)dp_cc_desc_find(soc, cookie); } #if defined(WLAN_FEATURE_11BE_MLO) #if defined(WLAN_MLO_MULTI_CHIP) && defined(WLAN_MCAST_MLO) static inline void dp_rx_dummy_src_mac(qdf_nbuf_t nbuf) { qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf); eh->ether_shost[0] = 0x4d; /* M */ eh->ether_shost[1] = 0x4c; /* L */ eh->ether_shost[2] = 0x4d; /* M */ eh->ether_shost[3] = 0x43; /* C */ eh->ether_shost[4] = 0x41; /* A */ eh->ether_shost[5] = 0x53; /* S */ } bool dp_rx_mlo_igmp_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_txrx_peer *peer, qdf_nbuf_t nbuf) { struct dp_vdev *mcast_primary_vdev = NULL; struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(vdev); struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(soc); if (!(qdf_nbuf_is_ipv4_igmp_pkt(buf) || qdf_nbuf_is_ipv6_igmp_pkt(buf))) return false; if (vdev->mcast_enhancement_en || be_vdev->mcast_primary) goto send_pkt; mcast_primary_vdev = dp_mlo_get_mcast_primary_vdev(be_soc, be_vdev, DP_MOD_ID_RX); if (!mcast_primary_vdev) { dp_rx_debug("Non mlo vdev"); goto send_pkt; } dp_rx_dummy_src_mac(nbuf); dp_rx_deliver_to_stack(mcast_primary_vdev->pdev->soc, mcast_primary_vdev, peer, nbuf, NULL); dp_vdev_unref_delete(mcast_primary_vdev->pdev->soc, mcast_primary_vdev, DP_MOD_ID_RX); return true; send_pkt: dp_rx_deliver_to_stack(be_vdev->vdev.pdev->soc, &be_vdev->vdev, peer, nbuf, NULL); return true; } #else bool dp_rx_mlo_igmp_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_peer *peer, qdf_nbuf_t nbuf) { return false; } #endif #endif #ifdef WLAN_FEATURE_NEAR_FULL_IRQ uint32_t dp_rx_nf_process(struct dp_intr *int_ctx, hal_ring_handle_t hal_ring_hdl, uint8_t reo_ring_num, uint32_t quota) { struct dp_soc *soc = int_ctx->soc; struct dp_srng *rx_ring = &soc->reo_dest_ring[reo_ring_num]; uint32_t work_done = 0; if (dp_srng_get_near_full_level(soc, rx_ring) < DP_SRNG_THRESH_NEAR_FULL) return 0; qdf_atomic_set(&rx_ring->near_full, 1); work_done++; return work_done; } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef WLAN_FEATURE_11BE_MLO /** * dp_rx_intrabss_fwd_mlo_allow() - check if MLO forwarding is allowed * @ta_peer: transmitter peer handle * @da_peer: destination peer handle * * Return: true - MLO forwarding case, false: not */ static inline bool dp_rx_intrabss_fwd_mlo_allow(struct dp_txrx_peer *ta_peer, struct dp_txrx_peer *da_peer) { /* one of TA/DA peer should belong to MLO connection peer, * only MLD peer type is as expected */ if (!IS_MLO_DP_MLD_TXRX_PEER(ta_peer) && !IS_MLO_DP_MLD_TXRX_PEER(da_peer)) return false; /* TA peer and DA peer's vdev should be partner MLO vdevs */ if (dp_peer_find_mac_addr_cmp(&ta_peer->vdev->mld_mac_addr, &da_peer->vdev->mld_mac_addr)) return false; return true; } #else static inline bool dp_rx_intrabss_fwd_mlo_allow(struct dp_txrx_peer *ta_peer, struct dp_txrx_peer *da_peer) { return false; } #endif #ifdef INTRA_BSS_FWD_OFFLOAD /** * dp_rx_intrabss_ucast_check_be() - Check if intrabss is allowed for unicast frame * @soc: SOC hanlde * @nbuf: RX packet buffer * @ta_peer: transmitter DP peer handle * @msdu_metadata: MSDU meta data info * @p_tx_vdev_id: get vdev id for Intra-BSS TX * * Return: true - intrabss allowed false - not allow */ static bool dp_rx_intrabss_ucast_check_be(qdf_nbuf_t nbuf, struct dp_txrx_peer *ta_peer, struct hal_rx_msdu_metadata *msdu_metadata, struct dp_be_intrabss_params *params) { uint16_t da_peer_id; struct dp_txrx_peer *da_peer; dp_txrx_ref_handle txrx_ref_handle = NULL; if (!qdf_nbuf_is_intra_bss(nbuf)) return false; da_peer_id = dp_rx_peer_metadata_peer_id_get_be( params->dest_soc, msdu_metadata->da_idx); da_peer = dp_txrx_peer_get_ref_by_id(params->dest_soc, da_peer_id, &txrx_ref_handle, DP_MOD_ID_RX); if (!da_peer) return false; params->tx_vdev_id = da_peer->vdev->vdev_id; dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); return true; } #else #ifdef WLAN_MLO_MULTI_CHIP static bool dp_rx_intrabss_ucast_check_be(qdf_nbuf_t nbuf, struct dp_txrx_peer *ta_peer, struct hal_rx_msdu_metadata *msdu_metadata, struct dp_be_intrabss_params *params) { uint16_t da_peer_id; struct dp_txrx_peer *da_peer; bool ret = false; uint8_t dest_chip_id; uint8_t soc_idx; dp_txrx_ref_handle txrx_ref_handle = NULL; struct dp_vdev_be *be_vdev = dp_get_be_vdev_from_dp_vdev(ta_peer->vdev); struct dp_soc_be *be_soc = dp_get_be_soc_from_dp_soc(params->dest_soc); if (!(qdf_nbuf_is_da_valid(nbuf) || qdf_nbuf_is_da_mcbc(nbuf))) return false; dest_chip_id = HAL_RX_DEST_CHIP_ID_GET(msdu_metadata); qdf_assert_always(dest_chip_id <= (DP_MLO_MAX_DEST_CHIP_ID - 1)); if (be_soc->mlo_enabled) { /* validate chip_id, get a ref, and re-assign soc */ params->dest_soc = dp_mlo_get_soc_ref_by_chip_id(be_soc->ml_ctxt, dest_chip_id); if (!params->dest_soc) return false; } da_peer_id = dp_rx_peer_metadata_peer_id_get_be(params->dest_soc, msdu_metadata->da_idx); da_peer = dp_txrx_peer_get_ref_by_id(params->dest_soc, da_peer_id, &txrx_ref_handle, DP_MOD_ID_RX); if (!da_peer) return false; /* soc unref if needed */ params->tx_vdev_id = da_peer->vdev->vdev_id; /* If the source or destination peer in the isolation * list then dont forward instead push to bridge stack. */ if (dp_get_peer_isolation(ta_peer) || dp_get_peer_isolation(da_peer)) goto rel_da_peer; if (da_peer->bss_peer || da_peer == ta_peer) goto rel_da_peer; /* Same vdev, support Inra-BSS */ if (da_peer->vdev == ta_peer->vdev) { ret = true; goto rel_da_peer; } /* MLO specific Intra-BSS check */ if (dp_rx_intrabss_fwd_mlo_allow(ta_peer, da_peer)) { /* index of soc in the array */ soc_idx = dest_chip_id << DP_MLO_DEST_CHIP_ID_SHIFT; if (!(be_vdev->partner_vdev_list[soc_idx][0] == params->tx_vdev_id) && !(be_vdev->partner_vdev_list[soc_idx][1] == params->tx_vdev_id)) { /*dp_soc_unref_delete(soc);*/ goto rel_da_peer; } ret = true; } rel_da_peer: dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); return ret; } #else static bool dp_rx_intrabss_ucast_check_be(qdf_nbuf_t nbuf, struct dp_txrx_peer *ta_peer, struct hal_rx_msdu_metadata *msdu_metadata, struct dp_be_intrabss_params *params) { uint16_t da_peer_id; struct dp_txrx_peer *da_peer; bool ret = false; dp_txrx_ref_handle txrx_ref_handle = NULL; if (!qdf_nbuf_is_da_valid(nbuf) || qdf_nbuf_is_da_mcbc(nbuf)) return false; da_peer_id = dp_rx_peer_metadata_peer_id_get_be( params->dest_soc, msdu_metadata->da_idx); da_peer = dp_txrx_peer_get_ref_by_id(params->dest_soc, da_peer_id, &txrx_ref_handle, DP_MOD_ID_RX); if (!da_peer) return false; params->tx_vdev_id = da_peer->vdev->vdev_id; /* If the source or destination peer in the isolation * list then dont forward instead push to bridge stack. */ if (dp_get_peer_isolation(ta_peer) || dp_get_peer_isolation(da_peer)) goto rel_da_peer; if (da_peer->bss_peer || da_peer == ta_peer) goto rel_da_peer; /* Same vdev, support Inra-BSS */ if (da_peer->vdev == ta_peer->vdev) { ret = true; goto rel_da_peer; } /* MLO specific Intra-BSS check */ if (dp_rx_intrabss_fwd_mlo_allow(ta_peer, da_peer)) { ret = true; goto rel_da_peer; } rel_da_peer: dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX); return ret; } #endif /* WLAN_MLO_MULTI_CHIP */ #endif /* INTRA_BSS_FWD_OFFLOAD */ /* * dp_rx_intrabss_handle_nawds_be() - Forward mcbc intrabss pkts in nawds case * @soc: core txrx main context * @ta_txrx_peer: source txrx_peer entry * @nbuf_copy: nbuf that has to be intrabss forwarded * @tid_stats: tid_stats structure * * Return: true if it is forwarded else false */ bool dp_rx_intrabss_handle_nawds_be(struct dp_soc *soc, struct dp_txrx_peer *ta_txrx_peer, qdf_nbuf_t nbuf_copy, struct cdp_tid_rx_stats *tid_stats) { if (qdf_unlikely(ta_txrx_peer->vdev->nawds_enabled)) { struct cdp_tx_exception_metadata tx_exc_metadata = {0}; uint16_t len = QDF_NBUF_CB_RX_PKT_LEN(nbuf_copy); tx_exc_metadata.peer_id = ta_txrx_peer->peer_id; tx_exc_metadata.is_intrabss_fwd = 1; tx_exc_metadata.tid = HTT_TX_EXT_TID_INVALID; if (dp_tx_send_exception((struct cdp_soc_t *)soc, ta_txrx_peer->vdev->vdev_id, nbuf_copy, &tx_exc_metadata)) { DP_PEER_PER_PKT_STATS_INC_PKT(ta_txrx_peer, rx.intra_bss.fail, 1, len); tid_stats->fail_cnt[INTRABSS_DROP]++; qdf_nbuf_free(nbuf_copy); } else { DP_PEER_PER_PKT_STATS_INC_PKT(ta_txrx_peer, rx.intra_bss.pkts, 1, len); tid_stats->intrabss_cnt++; } return true; } return false; } /* * dp_rx_intrabss_fwd_be() - API for intrabss fwd. For EAPOL * pkt with DA not equal to vdev mac addr, fwd is not allowed. * @soc: core txrx main context * @ta_peer: source peer entry * @rx_tlv_hdr: start address of rx tlvs * @nbuf: nbuf that has to be intrabss forwarded * @msdu_metadata: msdu metadata * * Return: true if it is forwarded else false */ bool dp_rx_intrabss_fwd_be(struct dp_soc *soc, struct dp_txrx_peer *ta_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf, struct hal_rx_msdu_metadata msdu_metadata) { uint8_t tid = qdf_nbuf_get_tid_val(nbuf); uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf); struct cdp_tid_rx_stats *tid_stats = &ta_peer->vdev->pdev->stats. tid_stats.tid_rx_stats[ring_id][tid]; bool ret = false; struct dp_be_intrabss_params params; /* if it is a broadcast pkt (eg: ARP) and it is not its own * source, then clone the pkt and send the cloned pkt for * intra BSS forwarding and original pkt up the network stack * Note: how do we handle multicast pkts. do we forward * all multicast pkts as is or let a higher layer module * like igmpsnoop decide whether to forward or not with * Mcast enhancement. */ if (qdf_nbuf_is_da_mcbc(nbuf) && !ta_peer->bss_peer) { return dp_rx_intrabss_mcbc_fwd(soc, ta_peer, rx_tlv_hdr, nbuf, tid_stats); } if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr, nbuf)) return true; params.dest_soc = soc; if (dp_rx_intrabss_ucast_check_be(nbuf, ta_peer, &msdu_metadata, ¶ms)) { ret = dp_rx_intrabss_ucast_fwd(params.dest_soc, ta_peer, params.tx_vdev_id, rx_tlv_hdr, nbuf, tid_stats); } return ret; } #endif