/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "dp_htt.h" #include "dp_types.h" #include "dp_internal.h" #include "dp_peer.h" #include "dp_rx_defrag.h" #include "dp_rx.h" #include #include #include #include #ifdef WIFI_MONITOR_SUPPORT #include #endif #ifdef FEATURE_WDS #include "dp_txrx_wds.h" #endif #include #ifdef QCA_PEER_EXT_STATS #include "dp_hist.h" #endif #ifdef REO_QDESC_HISTORY #define REO_QDESC_HISTORY_SIZE 512 uint64_t reo_qdesc_history_idx; struct reo_qdesc_event reo_qdesc_history[REO_QDESC_HISTORY_SIZE]; #endif #ifdef FEATURE_WDS static inline bool dp_peer_ast_free_in_unmap_supported(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { /* if peer map v2 is enabled we are not freeing ast entry * here and it is supposed to be freed in unmap event (after * we receive delete confirmation from target) * * if peer_id is invalid we did not get the peer map event * for the peer free ast entry from here only in this case */ if ((ast_entry->type != CDP_TXRX_AST_TYPE_WDS_HM_SEC) && (ast_entry->type != CDP_TXRX_AST_TYPE_SELF)) return true; return false; } #else static inline bool dp_peer_ast_free_in_unmap_supported(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return false; } static void dp_soc_wds_attach(struct dp_soc *soc) { } static void dp_soc_wds_detach(struct dp_soc *soc) { } #endif #ifdef REO_QDESC_HISTORY static inline void dp_rx_reo_qdesc_history_add(struct reo_desc_list_node *free_desc, enum reo_qdesc_event_type type) { struct reo_qdesc_event *evt; struct dp_rx_tid *rx_tid = &free_desc->rx_tid; uint32_t idx; reo_qdesc_history_idx++; idx = (reo_qdesc_history_idx & (REO_QDESC_HISTORY_SIZE - 1)); evt = &reo_qdesc_history[idx]; qdf_mem_copy(evt->peer_mac, free_desc->peer_mac, QDF_MAC_ADDR_SIZE); evt->qdesc_addr = rx_tid->hw_qdesc_paddr; evt->ts = qdf_get_log_timestamp(); evt->type = type; } #ifdef WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY static inline void dp_rx_reo_qdesc_deferred_evt_add(struct reo_desc_deferred_freelist_node *desc, enum reo_qdesc_event_type type) { struct reo_qdesc_event *evt; uint32_t idx; reo_qdesc_history_idx++; idx = (reo_qdesc_history_idx & (REO_QDESC_HISTORY_SIZE - 1)); evt = &reo_qdesc_history[idx]; qdf_mem_copy(evt->peer_mac, desc->peer_mac, QDF_MAC_ADDR_SIZE); evt->qdesc_addr = desc->hw_qdesc_paddr; evt->ts = qdf_get_log_timestamp(); evt->type = type; } #define DP_RX_REO_QDESC_DEFERRED_FREE_EVT(desc) \ dp_rx_reo_qdesc_deferred_evt_add((desc), REO_QDESC_FREE) #define DP_RX_REO_QDESC_DEFERRED_GET_MAC(desc, freedesc) \ qdf_mem_copy(desc->peer_mac, freedesc->peer_mac, QDF_MAC_ADDR_SIZE) #endif /* WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY */ #define DP_RX_REO_QDESC_GET_MAC(freedesc, peer) \ qdf_mem_copy(freedesc->peer_mac, peer->mac_addr.raw, QDF_MAC_ADDR_SIZE) #define DP_RX_REO_QDESC_UPDATE_EVT(free_desc) \ dp_rx_reo_qdesc_history_add((free_desc), REO_QDESC_UPDATE_CB) #define DP_RX_REO_QDESC_FREE_EVT(free_desc) \ dp_rx_reo_qdesc_history_add((free_desc), REO_QDESC_FREE) #else #define DP_RX_REO_QDESC_GET_MAC(freedesc, peer) #define DP_RX_REO_QDESC_UPDATE_EVT(free_desc) #define DP_RX_REO_QDESC_FREE_EVT(free_desc) #define DP_RX_REO_QDESC_DEFERRED_FREE_EVT(desc) #define DP_RX_REO_QDESC_DEFERRED_GET_MAC(desc, freedesc) #endif static inline void dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params, uint8_t valid) { params->u.upd_queue_params.update_svld = 1; params->u.upd_queue_params.svld = valid; dp_peer_debug("Setting SSN valid bit to %d", valid); } static inline int dp_peer_find_mac_addr_cmp( union dp_align_mac_addr *mac_addr1, union dp_align_mac_addr *mac_addr2) { /* * Intentionally use & rather than &&. * because the operands are binary rather than generic boolean, * the functionality is equivalent. * Using && has the advantage of short-circuited evaluation, * but using & has the advantage of no conditional branching, * which is a more significant benefit. */ return !((mac_addr1->align4.bytes_abcd == mac_addr2->align4.bytes_abcd) & (mac_addr1->align4.bytes_ef == mac_addr2->align4.bytes_ef)); } static QDF_STATUS dp_peer_ast_table_attach(struct dp_soc *soc) { uint32_t max_ast_index; max_ast_index = wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx); /* allocate ast_table for ast entry to ast_index map */ dp_peer_info("\n%pK:<=== cfg max ast idx %d ====>", soc, max_ast_index); soc->ast_table = qdf_mem_malloc(max_ast_index * sizeof(struct dp_ast_entry *)); if (!soc->ast_table) { dp_peer_err("%pK: ast_table memory allocation failed", soc); return QDF_STATUS_E_NOMEM; } return QDF_STATUS_SUCCESS; /* success */ } /* * dp_peer_find_map_attach() - allocate memory for peer_id_to_obj_map * @soc: soc handle * * return: QDF_STATUS */ static QDF_STATUS dp_peer_find_map_attach(struct dp_soc *soc) { uint32_t max_peers, peer_map_size; max_peers = soc->max_peers; /* allocate the peer ID -> peer object map */ dp_peer_info("\n%pK:<=== cfg max peer id %d ====>", soc, max_peers); peer_map_size = max_peers * sizeof(soc->peer_id_to_obj_map[0]); soc->peer_id_to_obj_map = qdf_mem_malloc(peer_map_size); if (!soc->peer_id_to_obj_map) { dp_peer_err("%pK: peer map memory allocation failed", soc); return QDF_STATUS_E_NOMEM; } /* * The peer_id_to_obj_map doesn't really need to be initialized, * since elements are only used after they have been individually * initialized. * However, it is convenient for debugging to have all elements * that are not in use set to 0. */ qdf_mem_zero(soc->peer_id_to_obj_map, peer_map_size); qdf_spinlock_create(&soc->peer_map_lock); return QDF_STATUS_SUCCESS; /* success */ } static int dp_log2_ceil(unsigned int value) { unsigned int tmp = value; int log2 = -1; while (tmp) { log2++; tmp >>= 1; } if (1 << log2 != value) log2++; return log2; } #define DP_PEER_HASH_LOAD_MULT 2 #define DP_PEER_HASH_LOAD_SHIFT 0 #define DP_AST_HASH_LOAD_MULT 2 #define DP_AST_HASH_LOAD_SHIFT 0 /* * dp_peer_find_hash_attach() - allocate memory for peer_hash table * @soc: soc handle * * return: QDF_STATUS */ static QDF_STATUS dp_peer_find_hash_attach(struct dp_soc *soc) { int i, hash_elems, log2; /* allocate the peer MAC address -> peer object hash table */ hash_elems = soc->max_peers; hash_elems *= DP_PEER_HASH_LOAD_MULT; hash_elems >>= DP_PEER_HASH_LOAD_SHIFT; log2 = dp_log2_ceil(hash_elems); hash_elems = 1 << log2; soc->peer_hash.mask = hash_elems - 1; soc->peer_hash.idx_bits = log2; /* allocate an array of TAILQ peer object lists */ soc->peer_hash.bins = qdf_mem_malloc( hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_peer))); if (!soc->peer_hash.bins) return QDF_STATUS_E_NOMEM; for (i = 0; i < hash_elems; i++) TAILQ_INIT(&soc->peer_hash.bins[i]); qdf_spinlock_create(&soc->peer_hash_lock); return QDF_STATUS_SUCCESS; } /* * dp_peer_find_hash_detach() - cleanup memory for peer_hash table * @soc: soc handle * * return: none */ static void dp_peer_find_hash_detach(struct dp_soc *soc) { if (soc->peer_hash.bins) { qdf_mem_free(soc->peer_hash.bins); soc->peer_hash.bins = NULL; qdf_spinlock_destroy(&soc->peer_hash_lock); } } static inline unsigned dp_peer_find_hash_index(struct dp_soc *soc, union dp_align_mac_addr *mac_addr) { unsigned index; index = mac_addr->align2.bytes_ab ^ mac_addr->align2.bytes_cd ^ mac_addr->align2.bytes_ef; index ^= index >> soc->peer_hash.idx_bits; index &= soc->peer_hash.mask; return index; } /* * dp_peer_find_hash_add() - add peer to peer_hash_table * @soc: soc handle * @peer: peer handle * * return: none */ void dp_peer_find_hash_add(struct dp_soc *soc, struct dp_peer *peer) { unsigned index; index = dp_peer_find_hash_index(soc, &peer->mac_addr); qdf_spin_lock_bh(&soc->peer_hash_lock); if (QDF_IS_STATUS_ERROR(dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG))) { dp_err("unable to get peer ref at MAP mac: "QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); qdf_spin_unlock_bh(&soc->peer_hash_lock); return; } /* * It is important to add the new peer at the tail of the peer list * with the bin index. Together with having the hash_find function * search from head to tail, this ensures that if two entries with * the same MAC address are stored, the one added first will be * found first. */ TAILQ_INSERT_TAIL(&soc->peer_hash.bins[index], peer, hash_list_elem); qdf_spin_unlock_bh(&soc->peer_hash_lock); } /* * dp_peer_vdev_list_add() - add peer into vdev's peer list * @soc: soc handle * @vdev: vdev handle * @peer: peer handle * * return: none */ void dp_peer_vdev_list_add(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_peer *peer) { qdf_spin_lock_bh(&vdev->peer_list_lock); if (QDF_IS_STATUS_ERROR(dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG))) { dp_err("unable to get peer ref at MAP mac: "QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); qdf_spin_unlock_bh(&vdev->peer_list_lock); return; } /* add this peer into the vdev's list */ if (wlan_op_mode_sta == vdev->opmode) TAILQ_INSERT_HEAD(&vdev->peer_list, peer, peer_list_elem); else TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem); vdev->num_peers++; qdf_spin_unlock_bh(&vdev->peer_list_lock); } /* * dp_peer_vdev_list_remove() - remove peer from vdev's peer list * @soc: SoC handle * @vdev: VDEV handle * @peer: peer handle * * Return: none */ void dp_peer_vdev_list_remove(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_peer *peer) { uint8_t found = 0; struct dp_peer *tmppeer = NULL; qdf_spin_lock_bh(&vdev->peer_list_lock); TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) { if (tmppeer == peer) { found = 1; break; } } if (found) { TAILQ_REMOVE(&peer->vdev->peer_list, peer, peer_list_elem); dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG); vdev->num_peers--; } else { /*Ignoring the remove operation as peer not found*/ dp_peer_debug("%pK: peer:%pK not found in vdev:%pK peerlist:%pK" , soc, peer, vdev, &peer->vdev->peer_list); } qdf_spin_unlock_bh(&vdev->peer_list_lock); } /* * dp_peer_find_id_to_obj_add() - Add peer into peer_id table * @soc: SoC handle * @peer: peer handle * @peer_id: peer_id * * Return: None */ void dp_peer_find_id_to_obj_add(struct dp_soc *soc, struct dp_peer *peer, uint16_t peer_id) { QDF_ASSERT(peer_id <= soc->max_peers); qdf_spin_lock_bh(&soc->peer_map_lock); if (QDF_IS_STATUS_ERROR(dp_peer_get_ref(soc, peer, DP_MOD_ID_CONFIG))) { dp_err("unable to get peer ref at MAP mac: "QDF_MAC_ADDR_FMT" peer_id %u", QDF_MAC_ADDR_REF(peer->mac_addr.raw), peer_id); qdf_spin_unlock_bh(&soc->peer_map_lock); return; } if (!soc->peer_id_to_obj_map[peer_id]) { soc->peer_id_to_obj_map[peer_id] = peer; } else { /* Peer map event came for peer_id which * is already mapped, this is not expected */ QDF_ASSERT(0); } qdf_spin_unlock_bh(&soc->peer_map_lock); } /* * dp_peer_find_id_to_obj_remove() - remove peer from peer_id table * @soc: SoC handle * @peer_id: peer_id * * Return: None */ void dp_peer_find_id_to_obj_remove(struct dp_soc *soc, uint16_t peer_id) { struct dp_peer *peer = NULL; QDF_ASSERT(peer_id <= soc->max_peers); qdf_spin_lock_bh(&soc->peer_map_lock); peer = soc->peer_id_to_obj_map[peer_id]; soc->peer_id_to_obj_map[peer_id] = NULL; dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG); qdf_spin_unlock_bh(&soc->peer_map_lock); } /* * dp_peer_exist_on_pdev - check if peer with mac address exist on pdev * * @soc: Datapath SOC handle * @peer_mac_addr: peer mac address * @mac_addr_is_aligned: is mac address aligned * @pdev: Datapath PDEV handle * * Return: true if peer found else return false */ static bool dp_peer_exist_on_pdev(struct dp_soc *soc, uint8_t *peer_mac_addr, int mac_addr_is_aligned, struct dp_pdev *pdev) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; unsigned int index; struct dp_peer *peer; bool found = false; if (mac_addr_is_aligned) { mac_addr = (union dp_align_mac_addr *)peer_mac_addr; } else { qdf_mem_copy( &local_mac_addr_aligned.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE); mac_addr = &local_mac_addr_aligned; } index = dp_peer_find_hash_index(soc, mac_addr); qdf_spin_lock_bh(&soc->peer_hash_lock); TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) { if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 && (peer->vdev->pdev == pdev)) { found = true; break; } } qdf_spin_unlock_bh(&soc->peer_hash_lock); return found; } #ifdef FEATURE_MEC /** * dp_peer_mec_hash_attach() - Allocate and initialize MEC Hash Table * @soc: SoC handle * * Return: QDF_STATUS */ static QDF_STATUS dp_peer_mec_hash_attach(struct dp_soc *soc) { int log2, hash_elems, i; log2 = dp_log2_ceil(DP_PEER_MAX_MEC_IDX); hash_elems = 1 << log2; soc->mec_hash.mask = hash_elems - 1; soc->mec_hash.idx_bits = log2; dp_peer_info("%pK: max mec index: %d", soc, DP_PEER_MAX_MEC_IDX); /* allocate an array of TAILQ mec object lists */ soc->mec_hash.bins = qdf_mem_malloc(hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_mec_entry))); if (!soc->mec_hash.bins) return QDF_STATUS_E_NOMEM; for (i = 0; i < hash_elems; i++) TAILQ_INIT(&soc->mec_hash.bins[i]); return QDF_STATUS_SUCCESS; } /** * dp_peer_mec_hash_index() - Compute the MEC hash from MAC address * @soc: SoC handle * * Return: MEC hash */ static inline uint32_t dp_peer_mec_hash_index(struct dp_soc *soc, union dp_align_mac_addr *mac_addr) { uint32_t index; index = mac_addr->align2.bytes_ab ^ mac_addr->align2.bytes_cd ^ mac_addr->align2.bytes_ef; index ^= index >> soc->mec_hash.idx_bits; index &= soc->mec_hash.mask; return index; } struct dp_mec_entry *dp_peer_mec_hash_find_by_pdevid(struct dp_soc *soc, uint8_t pdev_id, uint8_t *mec_mac_addr) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; uint32_t index; struct dp_mec_entry *mecentry; qdf_mem_copy(&local_mac_addr_aligned.raw[0], mec_mac_addr, QDF_MAC_ADDR_SIZE); mac_addr = &local_mac_addr_aligned; index = dp_peer_mec_hash_index(soc, mac_addr); TAILQ_FOREACH(mecentry, &soc->mec_hash.bins[index], hash_list_elem) { if ((pdev_id == mecentry->pdev_id) && !dp_peer_find_mac_addr_cmp(mac_addr, &mecentry->mac_addr)) return mecentry; } return NULL; } /** * dp_peer_mec_hash_add() - Add MEC entry into hash table * @soc: SoC handle * * This function adds the MEC entry into SoC MEC hash table * * Return: None */ static inline void dp_peer_mec_hash_add(struct dp_soc *soc, struct dp_mec_entry *mecentry) { uint32_t index; index = dp_peer_mec_hash_index(soc, &mecentry->mac_addr); qdf_spin_lock_bh(&soc->mec_lock); TAILQ_INSERT_TAIL(&soc->mec_hash.bins[index], mecentry, hash_list_elem); qdf_spin_unlock_bh(&soc->mec_lock); } QDF_STATUS dp_peer_mec_add_entry(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *mac_addr) { struct dp_mec_entry *mecentry = NULL; struct dp_pdev *pdev = NULL; if (!vdev) { dp_peer_err("%pK: Peers vdev is NULL", soc); return QDF_STATUS_E_INVAL; } pdev = vdev->pdev; if (qdf_unlikely(qdf_atomic_read(&soc->mec_cnt) >= DP_PEER_MAX_MEC_ENTRY)) { dp_peer_warn("%pK: max MEC entry limit reached mac_addr: " QDF_MAC_ADDR_FMT, soc, QDF_MAC_ADDR_REF(mac_addr)); return QDF_STATUS_E_NOMEM; } qdf_spin_lock_bh(&soc->mec_lock); mecentry = dp_peer_mec_hash_find_by_pdevid(soc, pdev->pdev_id, mac_addr); if (qdf_likely(mecentry)) { mecentry->is_active = TRUE; qdf_spin_unlock_bh(&soc->mec_lock); return QDF_STATUS_E_ALREADY; } qdf_spin_unlock_bh(&soc->mec_lock); dp_peer_debug("%pK: pdevid: %u vdev: %u type: MEC mac_addr: " QDF_MAC_ADDR_FMT, soc, pdev->pdev_id, vdev->vdev_id, QDF_MAC_ADDR_REF(mac_addr)); mecentry = (struct dp_mec_entry *) qdf_mem_malloc(sizeof(struct dp_mec_entry)); if (qdf_unlikely(!mecentry)) { dp_peer_err("%pK: fail to allocate mecentry", soc); return QDF_STATUS_E_NOMEM; } qdf_copy_macaddr((struct qdf_mac_addr *)&mecentry->mac_addr.raw[0], (struct qdf_mac_addr *)mac_addr); mecentry->pdev_id = pdev->pdev_id; mecentry->vdev_id = vdev->vdev_id; mecentry->is_active = TRUE; dp_peer_mec_hash_add(soc, mecentry); qdf_atomic_inc(&soc->mec_cnt); DP_STATS_INC(soc, mec.added, 1); return QDF_STATUS_SUCCESS; } void dp_peer_mec_detach_entry(struct dp_soc *soc, struct dp_mec_entry *mecentry, void *ptr) { uint32_t index = dp_peer_mec_hash_index(soc, &mecentry->mac_addr); TAILQ_HEAD(, dp_mec_entry) * free_list = ptr; TAILQ_REMOVE(&soc->mec_hash.bins[index], mecentry, hash_list_elem); TAILQ_INSERT_TAIL(free_list, mecentry, hash_list_elem); } void dp_peer_mec_free_list(struct dp_soc *soc, void *ptr) { struct dp_mec_entry *mecentry, *mecentry_next; TAILQ_HEAD(, dp_mec_entry) * free_list = ptr; TAILQ_FOREACH_SAFE(mecentry, free_list, hash_list_elem, mecentry_next) { dp_peer_debug("%pK: MEC delete for mac_addr " QDF_MAC_ADDR_FMT, soc, QDF_MAC_ADDR_REF(&mecentry->mac_addr)); qdf_mem_free(mecentry); qdf_atomic_dec(&soc->mec_cnt); DP_STATS_INC(soc, mec.deleted, 1); } } /** * dp_peer_mec_hash_detach() - Free MEC Hash table * @soc: SoC handle * * Return: None */ static void dp_peer_mec_hash_detach(struct dp_soc *soc) { dp_peer_mec_flush_entries(soc); qdf_mem_free(soc->mec_hash.bins); soc->mec_hash.bins = NULL; } void dp_peer_mec_spinlock_destroy(struct dp_soc *soc) { qdf_spinlock_destroy(&soc->mec_lock); } void dp_peer_mec_spinlock_create(struct dp_soc *soc) { qdf_spinlock_create(&soc->mec_lock); } #else static QDF_STATUS dp_peer_mec_hash_attach(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } static void dp_peer_mec_hash_detach(struct dp_soc *soc) { } #endif #ifdef FEATURE_AST /* * dp_peer_ast_hash_attach() - Allocate and initialize AST Hash Table * @soc: SoC handle * * Return: QDF_STATUS */ static QDF_STATUS dp_peer_ast_hash_attach(struct dp_soc *soc) { int i, hash_elems, log2; unsigned int max_ast_idx = wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx); hash_elems = ((max_ast_idx * DP_AST_HASH_LOAD_MULT) >> DP_AST_HASH_LOAD_SHIFT); log2 = dp_log2_ceil(hash_elems); hash_elems = 1 << log2; soc->ast_hash.mask = hash_elems - 1; soc->ast_hash.idx_bits = log2; dp_peer_info("%pK: ast hash_elems: %d, max_ast_idx: %d", soc, hash_elems, max_ast_idx); /* allocate an array of TAILQ peer object lists */ soc->ast_hash.bins = qdf_mem_malloc( hash_elems * sizeof(TAILQ_HEAD(anonymous_tail_q, dp_ast_entry))); if (!soc->ast_hash.bins) return QDF_STATUS_E_NOMEM; for (i = 0; i < hash_elems; i++) TAILQ_INIT(&soc->ast_hash.bins[i]); return QDF_STATUS_SUCCESS; } /* * dp_peer_ast_cleanup() - cleanup the references * @soc: SoC handle * @ast: ast entry * * Return: None */ static inline void dp_peer_ast_cleanup(struct dp_soc *soc, struct dp_ast_entry *ast) { txrx_ast_free_cb cb = ast->callback; void *cookie = ast->cookie; dp_peer_debug("mac_addr: " QDF_MAC_ADDR_FMT ", cb: %pK, cookie: %pK", QDF_MAC_ADDR_REF(ast->mac_addr.raw), cb, cookie); /* Call the callbacks to free up the cookie */ if (cb) { ast->callback = NULL; ast->cookie = NULL; cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), cookie, CDP_TXRX_AST_DELETE_IN_PROGRESS); } } /* * dp_peer_ast_hash_detach() - Free AST Hash table * @soc: SoC handle * * Return: None */ static void dp_peer_ast_hash_detach(struct dp_soc *soc) { unsigned int index; struct dp_ast_entry *ast, *ast_next; if (!soc->ast_hash.mask) return; if (!soc->ast_hash.bins) return; dp_peer_debug("%pK: num_ast_entries: %u", soc, soc->num_ast_entries); qdf_spin_lock_bh(&soc->ast_lock); for (index = 0; index <= soc->ast_hash.mask; index++) { if (!TAILQ_EMPTY(&soc->ast_hash.bins[index])) { TAILQ_FOREACH_SAFE(ast, &soc->ast_hash.bins[index], hash_list_elem, ast_next) { TAILQ_REMOVE(&soc->ast_hash.bins[index], ast, hash_list_elem); dp_peer_ast_cleanup(soc, ast); soc->num_ast_entries--; qdf_mem_free(ast); } } } qdf_spin_unlock_bh(&soc->ast_lock); qdf_mem_free(soc->ast_hash.bins); soc->ast_hash.bins = NULL; } /* * dp_peer_ast_hash_index() - Compute the AST hash from MAC address * @soc: SoC handle * * Return: AST hash */ static inline uint32_t dp_peer_ast_hash_index(struct dp_soc *soc, union dp_align_mac_addr *mac_addr) { uint32_t index; index = mac_addr->align2.bytes_ab ^ mac_addr->align2.bytes_cd ^ mac_addr->align2.bytes_ef; index ^= index >> soc->ast_hash.idx_bits; index &= soc->ast_hash.mask; return index; } /* * dp_peer_ast_hash_add() - Add AST entry into hash table * @soc: SoC handle * * This function adds the AST entry into SoC AST hash table * It assumes caller has taken the ast lock to protect the access to this table * * Return: None */ static inline void dp_peer_ast_hash_add(struct dp_soc *soc, struct dp_ast_entry *ase) { uint32_t index; index = dp_peer_ast_hash_index(soc, &ase->mac_addr); TAILQ_INSERT_TAIL(&soc->ast_hash.bins[index], ase, hash_list_elem); } /* * dp_peer_ast_hash_remove() - Look up and remove AST entry from hash table * @soc: SoC handle * * This function removes the AST entry from soc AST hash table * It assumes caller has taken the ast lock to protect the access to this table * * Return: None */ void dp_peer_ast_hash_remove(struct dp_soc *soc, struct dp_ast_entry *ase) { unsigned index; struct dp_ast_entry *tmpase; int found = 0; index = dp_peer_ast_hash_index(soc, &ase->mac_addr); /* Check if tail is not empty before delete*/ QDF_ASSERT(!TAILQ_EMPTY(&soc->ast_hash.bins[index])); dp_peer_debug("ID: %u idx: %u mac_addr: " QDF_MAC_ADDR_FMT, ase->peer_id, index, QDF_MAC_ADDR_REF(ase->mac_addr.raw)); TAILQ_FOREACH(tmpase, &soc->ast_hash.bins[index], hash_list_elem) { if (tmpase == ase) { found = 1; break; } } QDF_ASSERT(found); if (found) TAILQ_REMOVE(&soc->ast_hash.bins[index], ase, hash_list_elem); } /* * dp_peer_ast_hash_find_by_vdevid() - Find AST entry by MAC address * @soc: SoC handle * * It assumes caller has taken the ast lock to protect the access to * AST hash table * * Return: AST entry */ struct dp_ast_entry *dp_peer_ast_hash_find_by_vdevid(struct dp_soc *soc, uint8_t *ast_mac_addr, uint8_t vdev_id) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; uint32_t index; struct dp_ast_entry *ase; qdf_mem_copy(&local_mac_addr_aligned.raw[0], ast_mac_addr, QDF_MAC_ADDR_SIZE); mac_addr = &local_mac_addr_aligned; index = dp_peer_ast_hash_index(soc, mac_addr); TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) { if ((vdev_id == ase->vdev_id) && !dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr)) { return ase; } } return NULL; } /* * dp_peer_ast_hash_find_by_pdevid() - Find AST entry by MAC address * @soc: SoC handle * * It assumes caller has taken the ast lock to protect the access to * AST hash table * * Return: AST entry */ struct dp_ast_entry *dp_peer_ast_hash_find_by_pdevid(struct dp_soc *soc, uint8_t *ast_mac_addr, uint8_t pdev_id) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; uint32_t index; struct dp_ast_entry *ase; qdf_mem_copy(&local_mac_addr_aligned.raw[0], ast_mac_addr, QDF_MAC_ADDR_SIZE); mac_addr = &local_mac_addr_aligned; index = dp_peer_ast_hash_index(soc, mac_addr); TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) { if ((pdev_id == ase->pdev_id) && !dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr)) { return ase; } } return NULL; } /* * dp_peer_ast_hash_find_soc() - Find AST entry by MAC address * @soc: SoC handle * * It assumes caller has taken the ast lock to protect the access to * AST hash table * * Return: AST entry */ struct dp_ast_entry *dp_peer_ast_hash_find_soc(struct dp_soc *soc, uint8_t *ast_mac_addr) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; unsigned index; struct dp_ast_entry *ase; qdf_mem_copy(&local_mac_addr_aligned.raw[0], ast_mac_addr, QDF_MAC_ADDR_SIZE); mac_addr = &local_mac_addr_aligned; index = dp_peer_ast_hash_index(soc, mac_addr); TAILQ_FOREACH(ase, &soc->ast_hash.bins[index], hash_list_elem) { if (dp_peer_find_mac_addr_cmp(mac_addr, &ase->mac_addr) == 0) { return ase; } } return NULL; } /* * dp_peer_map_ast() - Map the ast entry with HW AST Index * @soc: SoC handle * @peer: peer to which ast node belongs * @mac_addr: MAC address of ast node * @hw_peer_id: HW AST Index returned by target in peer map event * @vdev_id: vdev id for VAP to which the peer belongs to * @ast_hash: ast hash value in HW * @is_wds: flag to indicate peer map event for WDS ast entry * * Return: QDF_STATUS code */ static inline QDF_STATUS dp_peer_map_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id, uint8_t vdev_id, uint16_t ast_hash, uint8_t is_wds) { struct dp_ast_entry *ast_entry = NULL; enum cdp_txrx_ast_entry_type peer_type = CDP_TXRX_AST_TYPE_STATIC; void *cookie = NULL; txrx_ast_free_cb cb = NULL; QDF_STATUS err = QDF_STATUS_SUCCESS; if (!peer) { return QDF_STATUS_E_INVAL; } dp_peer_err("%pK: peer %pK ID %d vid %d mac " QDF_MAC_ADDR_FMT, soc, peer, hw_peer_id, vdev_id, QDF_MAC_ADDR_REF(mac_addr)); qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_by_vdevid(soc, mac_addr, vdev_id); if (is_wds) { /* * In certain cases like Auth attack on a repeater * can result in the number of ast_entries falling * in the same hash bucket to exceed the max_skid * length supported by HW in root AP. In these cases * the FW will return the hw_peer_id (ast_index) as * 0xffff indicating HW could not add the entry in * its table. Host has to delete the entry from its * table in these cases. */ if (hw_peer_id == HTT_INVALID_PEER) { DP_STATS_INC(soc, ast.map_err, 1); if (ast_entry) { if (ast_entry->is_mapped) { soc->ast_table[ast_entry->ast_idx] = NULL; } cb = ast_entry->callback; cookie = ast_entry->cookie; peer_type = ast_entry->type; dp_peer_unlink_ast_entry(soc, ast_entry, peer); dp_peer_free_ast_entry(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); if (cb) { cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), cookie, CDP_TXRX_AST_DELETED); } } else { qdf_spin_unlock_bh(&soc->ast_lock); dp_peer_alert("AST entry not found with peer %pK peer_id %u peer_mac " QDF_MAC_ADDR_FMT " mac_addr " QDF_MAC_ADDR_FMT " vdev_id %u next_hop %u", peer, peer->peer_id, QDF_MAC_ADDR_REF(peer->mac_addr.raw), QDF_MAC_ADDR_REF(mac_addr), vdev_id, is_wds); } err = QDF_STATUS_E_INVAL; dp_hmwds_ast_add_notify(peer, mac_addr, peer_type, err, true); return err; } } if (ast_entry) { ast_entry->ast_idx = hw_peer_id; soc->ast_table[hw_peer_id] = ast_entry; ast_entry->is_active = TRUE; peer_type = ast_entry->type; ast_entry->ast_hash_value = ast_hash; ast_entry->is_mapped = TRUE; qdf_assert_always(ast_entry->peer_id == HTT_INVALID_PEER); ast_entry->peer_id = peer->peer_id; TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem); } if (ast_entry || (peer->vdev && peer->vdev->proxysta_vdev)) { if (soc->cdp_soc.ol_ops->peer_map_event) { soc->cdp_soc.ol_ops->peer_map_event( soc->ctrl_psoc, peer->peer_id, hw_peer_id, vdev_id, mac_addr, peer_type, ast_hash); } } else { dp_peer_err("%pK: AST entry not found", soc); err = QDF_STATUS_E_NOENT; } qdf_spin_unlock_bh(&soc->ast_lock); dp_hmwds_ast_add_notify(peer, mac_addr, peer_type, err, true); return err; } void dp_peer_free_hmwds_cb(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, struct cdp_soc *dp_soc, void *cookie, enum cdp_ast_free_status status) { struct dp_ast_free_cb_params *param = (struct dp_ast_free_cb_params *)cookie; struct dp_soc *soc = (struct dp_soc *)dp_soc; struct dp_peer *peer = NULL; QDF_STATUS err = QDF_STATUS_SUCCESS; if (status != CDP_TXRX_AST_DELETED) { qdf_mem_free(cookie); return; } peer = dp_peer_find_hash_find(soc, ¶m->peer_mac_addr.raw[0], 0, param->vdev_id, DP_MOD_ID_AST); if (peer) { err = dp_peer_add_ast(soc, peer, ¶m->mac_addr.raw[0], param->type, param->flags); dp_hmwds_ast_add_notify(peer, ¶m->mac_addr.raw[0], param->type, err, false); dp_peer_unref_delete(peer, DP_MOD_ID_AST); } qdf_mem_free(cookie); } /* * dp_peer_add_ast() - Allocate and add AST entry into peer list * @soc: SoC handle * @peer: peer to which ast node belongs * @mac_addr: MAC address of ast node * @is_self: Is this base AST entry with peer mac address * * This API is used by WDS source port learning function to * add a new AST entry into peer AST list * * Return: QDF_STATUS code */ QDF_STATUS dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type, uint32_t flags) { struct dp_ast_entry *ast_entry = NULL; struct dp_vdev *vdev = NULL; struct dp_pdev *pdev = NULL; uint8_t next_node_mac[6]; txrx_ast_free_cb cb = NULL; void *cookie = NULL; struct dp_peer *vap_bss_peer = NULL; bool is_peer_found = false; vdev = peer->vdev; if (!vdev) { dp_peer_err("%pK: Peers vdev is NULL", soc); QDF_ASSERT(0); return QDF_STATUS_E_INVAL; } pdev = vdev->pdev; is_peer_found = dp_peer_exist_on_pdev(soc, mac_addr, 0, pdev); qdf_spin_lock_bh(&soc->ast_lock); if (!dp_peer_state_cmp(peer, DP_PEER_STATE_ACTIVE)) { if ((type != CDP_TXRX_AST_TYPE_STATIC) && (type != CDP_TXRX_AST_TYPE_SELF)) { qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_BUSY; } } dp_peer_debug("%pK: pdevid: %u vdev: %u ast_entry->type: %d flags: 0x%x peer_mac: " QDF_MAC_ADDR_FMT " peer: %pK mac " QDF_MAC_ADDR_FMT, soc, pdev->pdev_id, vdev->vdev_id, type, flags, QDF_MAC_ADDR_REF(peer->mac_addr.raw), peer, QDF_MAC_ADDR_REF(mac_addr)); /* fw supports only 2 times the max_peers ast entries */ if (soc->num_ast_entries >= wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx)) { qdf_spin_unlock_bh(&soc->ast_lock); dp_peer_err("%pK: Max ast entries reached", soc); return QDF_STATUS_E_RESOURCES; } /* If AST entry already exists , just return from here * ast entry with same mac address can exist on different radios * if ast_override support is enabled use search by pdev in this * case */ if (soc->ast_override_support) { ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev->pdev_id); if (ast_entry) { qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_ALREADY; } if (is_peer_found) { /* During WDS to static roaming, peer is added * to the list before static AST entry create. * So, allow AST entry for STATIC type * even if peer is present */ if (type != CDP_TXRX_AST_TYPE_STATIC) { qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_ALREADY; } } } else { /* For HWMWDS_SEC entries can be added for same mac address * do not check for existing entry */ if (type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) goto add_ast_entry; ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr); if (ast_entry) { if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) && !ast_entry->delete_in_progress) { qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_ALREADY; } /* Add for HMWDS entry we cannot be ignored if there * is AST entry with same mac address * * if ast entry exists with the requested mac address * send a delete command and register callback which * can take care of adding HMWDS ast enty on delete * confirmation from target */ if (type == CDP_TXRX_AST_TYPE_WDS_HM) { struct dp_ast_free_cb_params *param = NULL; if (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) goto add_ast_entry; /* save existing callback */ if (ast_entry->callback) { cb = ast_entry->callback; cookie = ast_entry->cookie; } param = qdf_mem_malloc(sizeof(*param)); if (!param) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Allocation failed"); qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_NOMEM; } qdf_mem_copy(¶m->mac_addr.raw[0], mac_addr, QDF_MAC_ADDR_SIZE); qdf_mem_copy(¶m->peer_mac_addr.raw[0], &peer->mac_addr.raw[0], QDF_MAC_ADDR_SIZE); param->type = type; param->flags = flags; param->vdev_id = vdev->vdev_id; ast_entry->callback = dp_peer_free_hmwds_cb; ast_entry->pdev_id = vdev->pdev->pdev_id; ast_entry->type = type; ast_entry->cookie = (void *)param; if (!ast_entry->delete_in_progress) dp_peer_del_ast(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); /* Call the saved callback*/ if (cb) { cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), cookie, CDP_TXRX_AST_DELETE_IN_PROGRESS); } return QDF_STATUS_E_AGAIN; } qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_ALREADY; } } add_ast_entry: ast_entry = (struct dp_ast_entry *) qdf_mem_malloc(sizeof(struct dp_ast_entry)); if (!ast_entry) { qdf_spin_unlock_bh(&soc->ast_lock); dp_peer_err("%pK: fail to allocate ast_entry", soc); QDF_ASSERT(0); return QDF_STATUS_E_NOMEM; } qdf_mem_copy(&ast_entry->mac_addr.raw[0], mac_addr, QDF_MAC_ADDR_SIZE); ast_entry->pdev_id = vdev->pdev->pdev_id; ast_entry->is_mapped = false; ast_entry->delete_in_progress = false; ast_entry->peer_id = HTT_INVALID_PEER; ast_entry->next_hop = 0; ast_entry->vdev_id = vdev->vdev_id; switch (type) { case CDP_TXRX_AST_TYPE_STATIC: peer->self_ast_entry = ast_entry; ast_entry->type = CDP_TXRX_AST_TYPE_STATIC; if (peer->vdev->opmode == wlan_op_mode_sta) ast_entry->type = CDP_TXRX_AST_TYPE_STA_BSS; break; case CDP_TXRX_AST_TYPE_SELF: peer->self_ast_entry = ast_entry; ast_entry->type = CDP_TXRX_AST_TYPE_SELF; break; case CDP_TXRX_AST_TYPE_WDS: ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_WDS; break; case CDP_TXRX_AST_TYPE_WDS_HM: ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM; break; case CDP_TXRX_AST_TYPE_WDS_HM_SEC: ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_WDS_HM_SEC; ast_entry->peer_id = peer->peer_id; TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem); break; case CDP_TXRX_AST_TYPE_DA: vap_bss_peer = dp_vdev_bss_peer_ref_n_get(soc, vdev, DP_MOD_ID_AST); if (!vap_bss_peer) { qdf_spin_unlock_bh(&soc->ast_lock); qdf_mem_free(ast_entry); return QDF_STATUS_E_FAILURE; } peer = vap_bss_peer; ast_entry->next_hop = 1; ast_entry->type = CDP_TXRX_AST_TYPE_DA; break; default: dp_peer_err("%pK: Incorrect AST entry type", soc); } ast_entry->is_active = TRUE; DP_STATS_INC(soc, ast.added, 1); soc->num_ast_entries++; dp_peer_ast_hash_add(soc, ast_entry); qdf_copy_macaddr((struct qdf_mac_addr *)next_node_mac, (struct qdf_mac_addr *)peer->mac_addr.raw); if ((ast_entry->type != CDP_TXRX_AST_TYPE_STATIC) && (ast_entry->type != CDP_TXRX_AST_TYPE_SELF) && (ast_entry->type != CDP_TXRX_AST_TYPE_STA_BSS) && (ast_entry->type != CDP_TXRX_AST_TYPE_WDS_HM_SEC)) { if (QDF_STATUS_SUCCESS == soc->cdp_soc.ol_ops->peer_add_wds_entry( soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, peer->peer_id, mac_addr, next_node_mac, flags, ast_entry->type)) { if (vap_bss_peer) dp_peer_unref_delete(vap_bss_peer, DP_MOD_ID_AST); qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_SUCCESS; } } if (vap_bss_peer) dp_peer_unref_delete(vap_bss_peer, DP_MOD_ID_AST); qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_FAILURE; } qdf_export_symbol(dp_peer_add_ast); /* * dp_peer_free_ast_entry() - Free up the ast entry memory * @soc: SoC handle * @ast_entry: Address search entry * * This API is used to free up the memory associated with * AST entry. * * Return: None */ void dp_peer_free_ast_entry(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { /* * NOTE: Ensure that call to this API is done * after soc->ast_lock is taken */ dp_peer_debug("type: %d ID: %u vid: %u mac_addr: " QDF_MAC_ADDR_FMT, ast_entry->type, ast_entry->peer_id, ast_entry->vdev_id, QDF_MAC_ADDR_REF(ast_entry->mac_addr.raw)); ast_entry->callback = NULL; ast_entry->cookie = NULL; DP_STATS_INC(soc, ast.deleted, 1); dp_peer_ast_hash_remove(soc, ast_entry); dp_peer_ast_cleanup(soc, ast_entry); qdf_mem_free(ast_entry); soc->num_ast_entries--; } /* * dp_peer_unlink_ast_entry() - Free up the ast entry memory * @soc: SoC handle * @ast_entry: Address search entry * @peer: peer * * This API is used to remove/unlink AST entry from the peer list * and hash list. * * Return: None */ void dp_peer_unlink_ast_entry(struct dp_soc *soc, struct dp_ast_entry *ast_entry, struct dp_peer *peer) { if (!peer) { dp_info_rl("NULL peer"); return; } if (ast_entry->peer_id == HTT_INVALID_PEER) { dp_info_rl("Invalid peer id in AST entry mac addr:"QDF_MAC_ADDR_FMT" type:%d", QDF_MAC_ADDR_REF(ast_entry->mac_addr.raw), ast_entry->type); return; } /* * NOTE: Ensure that call to this API is done * after soc->ast_lock is taken */ qdf_assert_always(ast_entry->peer_id == peer->peer_id); TAILQ_REMOVE(&peer->ast_entry_list, ast_entry, ase_list_elem); if (ast_entry == peer->self_ast_entry) peer->self_ast_entry = NULL; /* * release the reference only if it is mapped * to ast_table */ if (ast_entry->is_mapped) soc->ast_table[ast_entry->ast_idx] = NULL; ast_entry->peer_id = HTT_INVALID_PEER; } /* * dp_peer_del_ast() - Delete and free AST entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function removes the AST entry from peer and soc tables * It assumes caller has taken the ast lock to protect the access to these * tables * * Return: None */ void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { struct dp_peer *peer = NULL; if (!ast_entry) { dp_info_rl("NULL AST entry"); return; } if (ast_entry->delete_in_progress) { dp_info_rl("AST entry deletion in progress mac addr:"QDF_MAC_ADDR_FMT" type:%d", QDF_MAC_ADDR_REF(ast_entry->mac_addr.raw), ast_entry->type); return; } dp_peer_debug("call by %ps: ID: %u vid: %u mac_addr: " QDF_MAC_ADDR_FMT, (void *)_RET_IP_, ast_entry->peer_id, ast_entry->vdev_id, QDF_MAC_ADDR_REF(ast_entry->mac_addr.raw)); ast_entry->delete_in_progress = true; /* In teardown del ast is called after setting logical delete state * use __dp_peer_get_ref_by_id to get the reference irrespective of * state */ peer = __dp_peer_get_ref_by_id(soc, ast_entry->peer_id, DP_MOD_ID_AST); dp_peer_ast_send_wds_del(soc, ast_entry, peer); /* Remove SELF and STATIC entries in teardown itself */ if (!ast_entry->next_hop) dp_peer_unlink_ast_entry(soc, ast_entry, peer); if (ast_entry->is_mapped) soc->ast_table[ast_entry->ast_idx] = NULL; /* if peer map v2 is enabled we are not freeing ast entry * here and it is supposed to be freed in unmap event (after * we receive delete confirmation from target) * * if peer_id is invalid we did not get the peer map event * for the peer free ast entry from here only in this case */ if (dp_peer_ast_free_in_unmap_supported(soc, ast_entry)) goto end; /* for WDS secondary entry ast_entry->next_hop would be set so * unlinking has to be done explicitly here. * As this entry is not a mapped entry unmap notification from * FW wil not come. Hence unlinkling is done right here. */ if (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC) dp_peer_unlink_ast_entry(soc, ast_entry, peer); dp_peer_free_ast_entry(soc, ast_entry); end: if (peer) dp_peer_unref_delete(peer, DP_MOD_ID_AST); } /* * dp_peer_update_ast() - Delete and free AST entry * @soc: SoC handle * @peer: peer to which ast node belongs * @ast_entry: AST entry of the node * @flags: wds or hmwds * * This function update the AST entry to the roamed peer and soc tables * It assumes caller has taken the ast lock to protect the access to these * tables * * Return: 0 if ast entry is updated successfully * -1 failure */ int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer, struct dp_ast_entry *ast_entry, uint32_t flags) { int ret = -1; struct dp_peer *old_peer; dp_peer_debug("%pK: ast_entry->type: %d pdevid: %u vdevid: %u flags: 0x%x mac_addr: " QDF_MAC_ADDR_FMT " peer_mac: " QDF_MAC_ADDR_FMT "\n", soc, ast_entry->type, peer->vdev->pdev->pdev_id, peer->vdev->vdev_id, flags, QDF_MAC_ADDR_REF(ast_entry->mac_addr.raw), QDF_MAC_ADDR_REF(peer->mac_addr.raw)); /* Do not send AST update in below cases * 1) Ast entry delete has already triggered * 2) Peer delete is already triggered * 3) We did not get the HTT map for create event */ if (ast_entry->delete_in_progress || !dp_peer_state_cmp(peer, DP_PEER_STATE_ACTIVE) || !ast_entry->is_mapped) return ret; if ((ast_entry->type == CDP_TXRX_AST_TYPE_STATIC) || (ast_entry->type == CDP_TXRX_AST_TYPE_SELF) || (ast_entry->type == CDP_TXRX_AST_TYPE_STA_BSS) || (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC)) return 0; /* * Avoids flood of WMI update messages sent to FW for same peer. */ if (qdf_unlikely(ast_entry->peer_id == peer->peer_id) && (ast_entry->type == CDP_TXRX_AST_TYPE_WDS) && (ast_entry->vdev_id == peer->vdev->vdev_id) && (ast_entry->is_active)) return 0; old_peer = dp_peer_get_ref_by_id(soc, ast_entry->peer_id, DP_MOD_ID_AST); if (!old_peer) return 0; TAILQ_REMOVE(&old_peer->ast_entry_list, ast_entry, ase_list_elem); dp_peer_unref_delete(old_peer, DP_MOD_ID_AST); ast_entry->peer_id = peer->peer_id; ast_entry->type = CDP_TXRX_AST_TYPE_WDS; ast_entry->pdev_id = peer->vdev->pdev->pdev_id; ast_entry->vdev_id = peer->vdev->vdev_id; ast_entry->is_active = TRUE; TAILQ_INSERT_TAIL(&peer->ast_entry_list, ast_entry, ase_list_elem); ret = soc->cdp_soc.ol_ops->peer_update_wds_entry( soc->ctrl_psoc, peer->vdev->vdev_id, ast_entry->mac_addr.raw, peer->mac_addr.raw, flags); return ret; } /* * dp_peer_ast_get_pdev_id() - get pdev_id from the ast entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function gets the pdev_id from the ast entry. * * Return: (uint8_t) pdev_id */ uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return ast_entry->pdev_id; } /* * dp_peer_ast_get_next_hop() - get next_hop from the ast entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function gets the next hop from the ast entry. * * Return: (uint8_t) next_hop */ uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return ast_entry->next_hop; } /* * dp_peer_ast_set_type() - set type from the ast entry * @soc: SoC handle * @ast_entry: AST entry of the node * * This function sets the type in the ast entry. * * Return: */ void dp_peer_ast_set_type(struct dp_soc *soc, struct dp_ast_entry *ast_entry, enum cdp_txrx_ast_entry_type type) { ast_entry->type = type; } #else QDF_STATUS dp_peer_add_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type, uint32_t flags) { return QDF_STATUS_E_FAILURE; } void dp_peer_del_ast(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { } int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer, struct dp_ast_entry *ast_entry, uint32_t flags) { return 1; } struct dp_ast_entry *dp_peer_ast_hash_find_soc(struct dp_soc *soc, uint8_t *ast_mac_addr) { return NULL; } struct dp_ast_entry *dp_peer_ast_hash_find_by_pdevid(struct dp_soc *soc, uint8_t *ast_mac_addr, uint8_t pdev_id) { return NULL; } static QDF_STATUS dp_peer_ast_hash_attach(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } static inline QDF_STATUS dp_peer_map_ast(struct dp_soc *soc, struct dp_peer *peer, uint8_t *mac_addr, uint16_t hw_peer_id, uint8_t vdev_id, uint16_t ast_hash, uint8_t is_wds) { return QDF_STATUS_SUCCESS; } static void dp_peer_ast_hash_detach(struct dp_soc *soc) { } void dp_peer_ast_set_type(struct dp_soc *soc, struct dp_ast_entry *ast_entry, enum cdp_txrx_ast_entry_type type) { } uint8_t dp_peer_ast_get_pdev_id(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return 0xff; } uint8_t dp_peer_ast_get_next_hop(struct dp_soc *soc, struct dp_ast_entry *ast_entry) { return 0xff; } int dp_peer_update_ast(struct dp_soc *soc, struct dp_peer *peer, struct dp_ast_entry *ast_entry, uint32_t flags) { return 1; } #endif void dp_peer_ast_send_wds_del(struct dp_soc *soc, struct dp_ast_entry *ast_entry, struct dp_peer *peer) { struct cdp_soc_t *cdp_soc = &soc->cdp_soc; bool delete_in_fw = false; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_TRACE, "%s: ast_entry->type: %d pdevid: %u vdev: %u mac_addr: "QDF_MAC_ADDR_FMT" next_hop: %u peer_id: %uM\n", __func__, ast_entry->type, ast_entry->pdev_id, ast_entry->vdev_id, QDF_MAC_ADDR_REF(ast_entry->mac_addr.raw), ast_entry->next_hop, ast_entry->peer_id); /* * If peer state is logical delete, the peer is about to get * teared down with a peer delete command to firmware, * which will cleanup all the wds ast entries. * So, no need to send explicit wds ast delete to firmware. */ if (ast_entry->next_hop) { if (peer && dp_peer_state_cmp(peer, DP_PEER_STATE_LOGICAL_DELETE)) delete_in_fw = false; else delete_in_fw = true; cdp_soc->ol_ops->peer_del_wds_entry(soc->ctrl_psoc, ast_entry->vdev_id, ast_entry->mac_addr.raw, ast_entry->type, delete_in_fw); } } #ifdef FEATURE_WDS /** * dp_peer_ast_free_wds_entries() - Free wds ast entries associated with peer * @soc: soc handle * @peer: peer handle * * Free all the wds ast entries associated with peer * * Return: Number of wds ast entries freed */ static uint32_t dp_peer_ast_free_wds_entries(struct dp_soc *soc, struct dp_peer *peer) { TAILQ_HEAD(, dp_ast_entry) ast_local_list = {0}; struct dp_ast_entry *ast_entry, *temp_ast_entry; uint32_t num_ast = 0; TAILQ_INIT(&ast_local_list); qdf_spin_lock_bh(&soc->ast_lock); DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, temp_ast_entry) { if (ast_entry->next_hop) num_ast++; if (ast_entry->is_mapped) soc->ast_table[ast_entry->ast_idx] = NULL; dp_peer_unlink_ast_entry(soc, ast_entry, peer); DP_STATS_INC(soc, ast.deleted, 1); dp_peer_ast_hash_remove(soc, ast_entry); TAILQ_INSERT_TAIL(&ast_local_list, ast_entry, ase_list_elem); soc->num_ast_entries--; } qdf_spin_unlock_bh(&soc->ast_lock); TAILQ_FOREACH_SAFE(ast_entry, &ast_local_list, ase_list_elem, temp_ast_entry) { if (ast_entry->callback) ast_entry->callback(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), ast_entry->cookie, CDP_TXRX_AST_DELETED); qdf_mem_free(ast_entry); } return num_ast; } /** * dp_peer_clean_wds_entries() - Clean wds ast entries and compare * @soc: soc handle * @peer: peer handle * @free_wds_count - number of wds entries freed by FW with peer delete * * Free all the wds ast entries associated with peer and compare with * the value received from firmware * * Return: Number of wds ast entries freed */ static void dp_peer_clean_wds_entries(struct dp_soc *soc, struct dp_peer *peer, uint32_t free_wds_count) { uint32_t wds_deleted = 0; wds_deleted = dp_peer_ast_free_wds_entries(soc, peer); if ((DP_PEER_WDS_COUNT_INVALID != free_wds_count) && (free_wds_count != wds_deleted)) { DP_STATS_INC(soc, ast.ast_mismatch, 1); dp_alert("For peer %pK (mac: "QDF_MAC_ADDR_FMT")number of wds entries deleted by fw = %d during peer delete is not same as the numbers deleted by host = %d", peer, peer->mac_addr.raw, free_wds_count, wds_deleted); } } #else static void dp_peer_clean_wds_entries(struct dp_soc *soc, struct dp_peer *peer, uint32_t free_wds_count) { struct dp_ast_entry *ast_entry, *temp_ast_entry; qdf_spin_lock_bh(&soc->ast_lock); DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, temp_ast_entry) { dp_peer_unlink_ast_entry(soc, ast_entry, peer); if (ast_entry->is_mapped) soc->ast_table[ast_entry->ast_idx] = NULL; dp_peer_free_ast_entry(soc, ast_entry); } peer->self_ast_entry = NULL; qdf_spin_unlock_bh(&soc->ast_lock); } #endif /** * dp_peer_ast_free_entry_by_mac() - find ast entry by MAC address and delete * @soc: soc handle * @peer: peer handle * @vdev_id: vdev_id * @mac_addr: mac address of the AST entry to searc and delete * * find the ast entry from the peer list using the mac address and free * the entry. * * Return: SUCCESS or NOENT */ static int dp_peer_ast_free_entry_by_mac(struct dp_soc *soc, struct dp_peer *peer, uint8_t vdev_id, uint8_t *mac_addr) { struct dp_ast_entry *ast_entry; void *cookie = NULL; txrx_ast_free_cb cb = NULL; /* * release the reference only if it is mapped * to ast_table */ qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_by_vdevid(soc, mac_addr, vdev_id); if (!ast_entry) { qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_NOENT; } else if (ast_entry->is_mapped) { soc->ast_table[ast_entry->ast_idx] = NULL; } cb = ast_entry->callback; cookie = ast_entry->cookie; dp_peer_unlink_ast_entry(soc, ast_entry, peer); dp_peer_free_ast_entry(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); if (cb) { cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), cookie, CDP_TXRX_AST_DELETED); } return QDF_STATUS_SUCCESS; } /* * dp_peer_find_hash_find() - returns peer from peer_hash_table matching * vdev_id and mac_address * @soc: soc handle * @peer_mac_addr: peer mac address * @mac_addr_is_aligned: is mac addr alligned * @vdev_id: vdev_id * @mod_id: id of module requesting reference * * return: peer in sucsess * NULL in failure */ struct dp_peer *dp_peer_find_hash_find(struct dp_soc *soc, uint8_t *peer_mac_addr, int mac_addr_is_aligned, uint8_t vdev_id, enum dp_mod_id mod_id) { union dp_align_mac_addr local_mac_addr_aligned, *mac_addr; unsigned index; struct dp_peer *peer; if (!soc->peer_hash.bins) return NULL; if (mac_addr_is_aligned) { mac_addr = (union dp_align_mac_addr *) peer_mac_addr; } else { qdf_mem_copy( &local_mac_addr_aligned.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE); mac_addr = &local_mac_addr_aligned; } index = dp_peer_find_hash_index(soc, mac_addr); qdf_spin_lock_bh(&soc->peer_hash_lock); TAILQ_FOREACH(peer, &soc->peer_hash.bins[index], hash_list_elem) { if (dp_peer_find_mac_addr_cmp(mac_addr, &peer->mac_addr) == 0 && ((peer->vdev->vdev_id == vdev_id) || (vdev_id == DP_VDEV_ALL))) { /* take peer reference before returning */ if (dp_peer_get_ref(soc, peer, mod_id) != QDF_STATUS_SUCCESS) peer = NULL; qdf_spin_unlock_bh(&soc->peer_hash_lock); return peer; } } qdf_spin_unlock_bh(&soc->peer_hash_lock); return NULL; /* failure */ } qdf_export_symbol(dp_peer_find_hash_find); /* * dp_peer_find_hash_remove() - remove peer from peer_hash_table * @soc: soc handle * @peer: peer handle * * return: none */ void dp_peer_find_hash_remove(struct dp_soc *soc, struct dp_peer *peer) { unsigned index; struct dp_peer *tmppeer = NULL; int found = 0; index = dp_peer_find_hash_index(soc, &peer->mac_addr); /* Check if tail is not empty before delete*/ QDF_ASSERT(!TAILQ_EMPTY(&soc->peer_hash.bins[index])); qdf_spin_lock_bh(&soc->peer_hash_lock); TAILQ_FOREACH(tmppeer, &soc->peer_hash.bins[index], hash_list_elem) { if (tmppeer == peer) { found = 1; break; } } QDF_ASSERT(found); TAILQ_REMOVE(&soc->peer_hash.bins[index], peer, hash_list_elem); dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG); qdf_spin_unlock_bh(&soc->peer_hash_lock); } void dp_peer_find_hash_erase(struct dp_soc *soc) { int i; /* * Not really necessary to take peer_ref_mutex lock - by this point, * it's known that the soc is no longer in use. */ for (i = 0; i <= soc->peer_hash.mask; i++) { if (!TAILQ_EMPTY(&soc->peer_hash.bins[i])) { struct dp_peer *peer, *peer_next; /* * TAILQ_FOREACH_SAFE must be used here to avoid any * memory access violation after peer is freed */ TAILQ_FOREACH_SAFE(peer, &soc->peer_hash.bins[i], hash_list_elem, peer_next) { /* * Don't remove the peer from the hash table - * that would modify the list we are currently * traversing, and it's not necessary anyway. */ /* * Artificially adjust the peer's ref count to * 1, so it will get deleted by * dp_peer_unref_delete. */ /* set to zero */ qdf_atomic_init(&peer->ref_cnt); for (i = 0; i < DP_MOD_ID_MAX; i++) qdf_atomic_init(&peer->mod_refs[i]); /* incr to one */ qdf_atomic_inc(&peer->ref_cnt); qdf_atomic_inc(&peer->mod_refs [DP_MOD_ID_CONFIG]); dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG); } } } } static void dp_peer_ast_table_detach(struct dp_soc *soc) { if (soc->ast_table) { qdf_mem_free(soc->ast_table); soc->ast_table = NULL; } } /* * dp_peer_find_map_detach() - cleanup memory for peer_id_to_obj_map * @soc: soc handle * * return: none */ static void dp_peer_find_map_detach(struct dp_soc *soc) { if (soc->peer_id_to_obj_map) { qdf_mem_free(soc->peer_id_to_obj_map); soc->peer_id_to_obj_map = NULL; qdf_spinlock_destroy(&soc->peer_map_lock); } } QDF_STATUS dp_peer_find_attach(struct dp_soc *soc) { QDF_STATUS status; status = dp_peer_find_map_attach(soc); if (!QDF_IS_STATUS_SUCCESS(status)) return status; status = dp_peer_find_hash_attach(soc); if (!QDF_IS_STATUS_SUCCESS(status)) goto map_detach; status = dp_peer_ast_table_attach(soc); if (!QDF_IS_STATUS_SUCCESS(status)) goto hash_detach; status = dp_peer_ast_hash_attach(soc); if (!QDF_IS_STATUS_SUCCESS(status)) goto ast_table_detach; status = dp_peer_mec_hash_attach(soc); if (QDF_IS_STATUS_SUCCESS(status)) { dp_soc_wds_attach(soc); return status; } dp_peer_ast_hash_detach(soc); ast_table_detach: dp_peer_ast_table_detach(soc); hash_detach: dp_peer_find_hash_detach(soc); map_detach: dp_peer_find_map_detach(soc); return status; } void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; struct hal_reo_queue_status *queue_status = &(reo_status->queue_status); if (queue_status->header.status == HAL_REO_CMD_DRAIN) return; if (queue_status->header.status != HAL_REO_CMD_SUCCESS) { DP_PRINT_STATS("REO stats failure %d for TID %d\n", queue_status->header.status, rx_tid->tid); return; } DP_PRINT_STATS("REO queue stats (TID: %d):\n" "ssn: %d\n" "curr_idx : %d\n" "pn_31_0 : %08x\n" "pn_63_32 : %08x\n" "pn_95_64 : %08x\n" "pn_127_96 : %08x\n" "last_rx_enq_tstamp : %08x\n" "last_rx_deq_tstamp : %08x\n" "rx_bitmap_31_0 : %08x\n" "rx_bitmap_63_32 : %08x\n" "rx_bitmap_95_64 : %08x\n" "rx_bitmap_127_96 : %08x\n" "rx_bitmap_159_128 : %08x\n" "rx_bitmap_191_160 : %08x\n" "rx_bitmap_223_192 : %08x\n" "rx_bitmap_255_224 : %08x\n", rx_tid->tid, queue_status->ssn, queue_status->curr_idx, queue_status->pn_31_0, queue_status->pn_63_32, queue_status->pn_95_64, queue_status->pn_127_96, queue_status->last_rx_enq_tstamp, queue_status->last_rx_deq_tstamp, queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32, queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96, queue_status->rx_bitmap_159_128, queue_status->rx_bitmap_191_160, queue_status->rx_bitmap_223_192, queue_status->rx_bitmap_255_224); DP_PRINT_STATS( "curr_mpdu_cnt : %d\n" "curr_msdu_cnt : %d\n" "fwd_timeout_cnt : %d\n" "fwd_bar_cnt : %d\n" "dup_cnt : %d\n" "frms_in_order_cnt : %d\n" "bar_rcvd_cnt : %d\n" "mpdu_frms_cnt : %d\n" "msdu_frms_cnt : %d\n" "total_byte_cnt : %d\n" "late_recv_mpdu_cnt : %d\n" "win_jump_2k : %d\n" "hole_cnt : %d\n", queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt, queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt, queue_status->dup_cnt, queue_status->frms_in_order_cnt, queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt, queue_status->msdu_frms_cnt, queue_status->total_cnt, queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k, queue_status->hole_cnt); DP_PRINT_STATS("Addba Req : %d\n" "Addba Resp : %d\n" "Addba Resp success : %d\n" "Addba Resp failed : %d\n" "Delba Req received : %d\n" "Delba Tx success : %d\n" "Delba Tx Fail : %d\n" "BA window size : %d\n" "Pn size : %d\n", rx_tid->num_of_addba_req, rx_tid->num_of_addba_resp, rx_tid->num_addba_rsp_success, rx_tid->num_addba_rsp_failed, rx_tid->num_of_delba_req, rx_tid->delba_tx_success_cnt, rx_tid->delba_tx_fail_cnt, rx_tid->ba_win_size, rx_tid->pn_size); } /* * dp_peer_find_add_id() - map peer_id with peer * @soc: soc handle * @peer_mac_addr: peer mac address * @peer_id: peer id to be mapped * @hw_peer_id: HW ast index * @vdev_id: vdev_id * * return: peer in success * NULL in failure */ static inline struct dp_peer *dp_peer_find_add_id(struct dp_soc *soc, uint8_t *peer_mac_addr, uint16_t peer_id, uint16_t hw_peer_id, uint8_t vdev_id) { struct dp_peer *peer; QDF_ASSERT(peer_id <= soc->max_peers); /* check if there's already a peer object with this MAC address */ peer = dp_peer_find_hash_find(soc, peer_mac_addr, 0 /* is aligned */, vdev_id, DP_MOD_ID_CONFIG); dp_peer_err("%pK: peer %pK ID %d vid %d mac " QDF_MAC_ADDR_FMT, soc, peer, peer_id, vdev_id, QDF_MAC_ADDR_REF(peer_mac_addr)); if (peer) { /* peer's ref count was already incremented by * peer_find_hash_find */ dp_peer_info("%pK: ref_cnt: %d", soc, qdf_atomic_read(&peer->ref_cnt)); /* * if peer is in logical delete CP triggered delete before map * is received ignore this event */ if (dp_peer_state_cmp(peer, DP_PEER_STATE_LOGICAL_DELETE)) { dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG); dp_alert("Peer %pK["QDF_MAC_ADDR_FMT"] logical delete state vid %d", peer, QDF_MAC_ADDR_REF(peer_mac_addr), vdev_id); return NULL; } dp_peer_find_id_to_obj_add(soc, peer, peer_id); if (peer->peer_id == HTT_INVALID_PEER) { peer->peer_id = peer_id; dp_monitor_peer_tid_peer_id_update(soc, peer, peer->peer_id); } else { QDF_ASSERT(0); } dp_peer_update_state(soc, peer, DP_PEER_STATE_ACTIVE); return peer; } return NULL; } /** * dp_rx_peer_map_handler() - handle peer map event from firmware * @soc_handle - genereic soc handle * @peeri_id - peer_id from firmware * @hw_peer_id - ast index for this peer * @vdev_id - vdev ID * @peer_mac_addr - mac address of the peer * @ast_hash - ast hash value * @is_wds - flag to indicate peer map event for WDS ast entry * * associate the peer_id that firmware provided with peer entry * and update the ast table in the host with the hw_peer_id. * * Return: QDF_STATUS code */ QDF_STATUS dp_rx_peer_map_handler(struct dp_soc *soc, uint16_t peer_id, uint16_t hw_peer_id, uint8_t vdev_id, uint8_t *peer_mac_addr, uint16_t ast_hash, uint8_t is_wds) { struct dp_peer *peer = NULL; enum cdp_txrx_ast_entry_type type = CDP_TXRX_AST_TYPE_STATIC; QDF_STATUS err = QDF_STATUS_SUCCESS; dp_info("peer_map_event (soc:%pK): peer_id %d, hw_peer_id %d, peer_mac "QDF_MAC_ADDR_FMT", vdev_id %d", soc, peer_id, hw_peer_id, QDF_MAC_ADDR_REF(peer_mac_addr), vdev_id); /* Peer map event for WDS ast entry get the peer from * obj map */ if (is_wds) { peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT); err = dp_peer_map_ast(soc, peer, peer_mac_addr, hw_peer_id, vdev_id, ast_hash, is_wds); if (peer) dp_peer_unref_delete(peer, DP_MOD_ID_HTT); } else { /* * It's the responsibility of the CP and FW to ensure * that peer is created successfully. Ideally DP should * not hit the below condition for directly assocaited * peers. */ if ((hw_peer_id < 0) || (hw_peer_id >= wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) { dp_peer_err("%pK: invalid hw_peer_id: %d", soc, hw_peer_id); qdf_assert_always(0); } peer = dp_peer_find_add_id(soc, peer_mac_addr, peer_id, hw_peer_id, vdev_id); if (peer) { if (wlan_op_mode_sta == peer->vdev->opmode && qdf_mem_cmp(peer->mac_addr.raw, peer->vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) != 0) { dp_peer_info("%pK: STA vdev bss_peer!!!!", soc); peer->bss_peer = 1; } if (peer->vdev->opmode == wlan_op_mode_sta) { peer->vdev->bss_ast_hash = ast_hash; peer->vdev->bss_ast_idx = hw_peer_id; } /* Add ast entry incase self ast entry is * deleted due to DP CP sync issue * * self_ast_entry is modified in peer create * and peer unmap path which cannot run in * parllel with peer map, no lock need before * referring it */ if (!peer->self_ast_entry) { dp_info("Add self ast from map "QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer_mac_addr)); dp_peer_add_ast(soc, peer, peer_mac_addr, type, 0); } } err = dp_peer_map_ast(soc, peer, peer_mac_addr, hw_peer_id, vdev_id, ast_hash, is_wds); } return err; } /** * dp_rx_peer_unmap_handler() - handle peer unmap event from firmware * @soc_handle - genereic soc handle * @peeri_id - peer_id from firmware * @vdev_id - vdev ID * @mac_addr - mac address of the peer or wds entry * @is_wds - flag to indicate peer map event for WDS ast entry * @free_wds_count - number of wds entries freed by FW with peer delete * * Return: none */ void dp_rx_peer_unmap_handler(struct dp_soc *soc, uint16_t peer_id, uint8_t vdev_id, uint8_t *mac_addr, uint8_t is_wds, uint32_t free_wds_count) { struct dp_peer *peer; struct dp_vdev *vdev = NULL; peer = __dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT); /* * Currently peer IDs are assigned for vdevs as well as peers. * If the peer ID is for a vdev, then the peer pointer stored * in peer_id_to_obj_map will be NULL. */ if (!peer) { dp_err("Received unmap event for invalid peer_id %u", peer_id); return; } /* If V2 Peer map messages are enabled AST entry has to be freed here */ if (is_wds) { if (!dp_peer_ast_free_entry_by_mac(soc, peer, vdev_id, mac_addr)) { dp_peer_unref_delete(peer, DP_MOD_ID_HTT); return; } dp_alert("AST entry not found with peer %pK peer_id %u peer_mac "QDF_MAC_ADDR_FMT" mac_addr "QDF_MAC_ADDR_FMT" vdev_id %u next_hop %u", peer, peer->peer_id, QDF_MAC_ADDR_REF(peer->mac_addr.raw), QDF_MAC_ADDR_REF(mac_addr), vdev_id, is_wds); dp_peer_unref_delete(peer, DP_MOD_ID_HTT); return; } else { dp_peer_clean_wds_entries(soc, peer, free_wds_count); } dp_info("peer_unmap_event (soc:%pK) peer_id %d peer %pK", soc, peer_id, peer); dp_peer_find_id_to_obj_remove(soc, peer_id); peer->peer_id = HTT_INVALID_PEER; /* * Reset ast flow mapping table */ dp_peer_reset_flowq_map(peer); if (soc->cdp_soc.ol_ops->peer_unmap_event) { soc->cdp_soc.ol_ops->peer_unmap_event(soc->ctrl_psoc, peer_id, vdev_id); } vdev = peer->vdev; DP_UPDATE_STATS(vdev, peer); dp_peer_update_state(soc, peer, DP_PEER_STATE_INACTIVE); dp_peer_unref_delete(peer, DP_MOD_ID_HTT); /* * Remove a reference to the peer. * If there are no more references, delete the peer object. */ dp_peer_unref_delete(peer, DP_MOD_ID_CONFIG); } void dp_peer_find_detach(struct dp_soc *soc) { dp_soc_wds_detach(soc); dp_peer_find_map_detach(soc); dp_peer_find_hash_detach(soc); dp_peer_ast_hash_detach(soc); dp_peer_ast_table_detach(soc); dp_peer_mec_hash_detach(soc); } static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; if ((reo_status->rx_queue_status.header.status != HAL_REO_CMD_SUCCESS) && (reo_status->rx_queue_status.header.status != HAL_REO_CMD_DRAIN)) { /* Should not happen normally. Just print error for now */ dp_peer_err("%pK: Rx tid HW desc update failed(%d): tid %d", soc, reo_status->rx_queue_status.header.status, rx_tid->tid); } } static bool dp_get_peer_vdev_roaming_in_progress(struct dp_peer *peer) { struct ol_if_ops *ol_ops = NULL; bool is_roaming = false; uint8_t vdev_id = -1; struct cdp_soc_t *soc; if (!peer) { dp_peer_info("Peer is NULL. No roaming possible"); return false; } soc = dp_soc_to_cdp_soc_t(peer->vdev->pdev->soc); ol_ops = peer->vdev->pdev->soc->cdp_soc.ol_ops; if (ol_ops && ol_ops->is_roam_inprogress) { dp_get_vdevid(soc, peer->mac_addr.raw, &vdev_id); is_roaming = ol_ops->is_roam_inprogress(vdev_id); } dp_peer_info("peer: " QDF_MAC_ADDR_FMT ", vdev_id: %d, is_roaming: %d", QDF_MAC_ADDR_REF(peer->mac_addr.raw), vdev_id, is_roaming); return is_roaming; } QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t ba_window_size, uint32_t start_seq, bool bar_update) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_ba_window_size = 1; params.u.upd_queue_params.ba_window_size = ba_window_size; if (start_seq < IEEE80211_SEQ_MAX) { params.u.upd_queue_params.update_ssn = 1; params.u.upd_queue_params.ssn = start_seq; } else { dp_set_ssn_valid_flag(¶ms, 0); } if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_update_cb, rx_tid)) { dp_err_log("failed to send reo cmd CMD_UPDATE_RX_REO_QUEUE"); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); } rx_tid->ba_win_size = ba_window_size; if (dp_get_peer_vdev_roaming_in_progress(peer)) return QDF_STATUS_E_PERM; if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup && !bar_update) soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup( soc->ctrl_psoc, peer->vdev->pdev->pdev_id, peer->vdev->vdev_id, peer->mac_addr.raw, rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size); return QDF_STATUS_SUCCESS; } #ifdef WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY /* * dp_reo_desc_defer_free_enqueue() - enqueue REO QDESC to be freed into * the deferred list * @soc: Datapath soc handle * @free_desc: REO DESC reference that needs to be freed * * Return: true if enqueued, else false */ static bool dp_reo_desc_defer_free_enqueue(struct dp_soc *soc, struct reo_desc_list_node *freedesc) { struct reo_desc_deferred_freelist_node *desc; if (!qdf_atomic_read(&soc->cmn_init_done)) return false; desc = qdf_mem_malloc(sizeof(*desc)); if (!desc) return false; desc->hw_qdesc_paddr = freedesc->rx_tid.hw_qdesc_paddr; desc->hw_qdesc_alloc_size = freedesc->rx_tid.hw_qdesc_alloc_size; desc->hw_qdesc_vaddr_unaligned = freedesc->rx_tid.hw_qdesc_vaddr_unaligned; desc->free_ts = qdf_get_system_timestamp(); DP_RX_REO_QDESC_DEFERRED_GET_MAC(desc, freedesc); qdf_spin_lock_bh(&soc->reo_desc_deferred_freelist_lock); if (!soc->reo_desc_deferred_freelist_init) { qdf_mem_free(desc); qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock); return false; } qdf_list_insert_back(&soc->reo_desc_deferred_freelist, (qdf_list_node_t *)desc); qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock); return true; } /* * dp_reo_desc_defer_free() - free the REO QDESC in the deferred list * based on time threshold * @soc: Datapath soc handle * @free_desc: REO DESC reference that needs to be freed * * Return: true if enqueued, else false */ static void dp_reo_desc_defer_free(struct dp_soc *soc) { struct reo_desc_deferred_freelist_node *desc; unsigned long curr_ts = qdf_get_system_timestamp(); qdf_spin_lock_bh(&soc->reo_desc_deferred_freelist_lock); while ((qdf_list_peek_front(&soc->reo_desc_deferred_freelist, (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) && (curr_ts > (desc->free_ts + REO_DESC_DEFERRED_FREE_MS))) { qdf_list_remove_front(&soc->reo_desc_deferred_freelist, (qdf_list_node_t **)&desc); DP_RX_REO_QDESC_DEFERRED_FREE_EVT(desc); qdf_mem_unmap_nbytes_single(soc->osdev, desc->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, desc->hw_qdesc_alloc_size); qdf_mem_free(desc->hw_qdesc_vaddr_unaligned); qdf_mem_free(desc); curr_ts = qdf_get_system_timestamp(); } qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock); } #else static inline bool dp_reo_desc_defer_free_enqueue(struct dp_soc *soc, struct reo_desc_list_node *freedesc) { return false; } static void dp_reo_desc_defer_free(struct dp_soc *soc) { } #endif /* !WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY */ /* * dp_reo_desc_free() - Callback free reo descriptor memory after * HW cache flush * * @soc: DP SOC handle * @cb_ctxt: Callback context * @reo_status: REO command status */ static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct reo_desc_list_node *freedesc = (struct reo_desc_list_node *)cb_ctxt; struct dp_rx_tid *rx_tid = &freedesc->rx_tid; unsigned long curr_ts = qdf_get_system_timestamp(); if ((reo_status->fl_cache_status.header.status != HAL_REO_CMD_SUCCESS) && (reo_status->fl_cache_status.header.status != HAL_REO_CMD_DRAIN)) { dp_peer_err("%pK: Rx tid HW desc flush failed(%d): tid %d", soc, reo_status->rx_queue_status.header.status, freedesc->rx_tid.tid); } dp_peer_info("%pK: %lu hw_qdesc_paddr: %pK, tid:%d", soc, curr_ts, (void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid); /* REO desc is enqueued to be freed at a later point * in time, just free the freedesc alone and return */ if (dp_reo_desc_defer_free_enqueue(soc, freedesc)) goto out; DP_RX_REO_QDESC_FREE_EVT(freedesc); qdf_mem_unmap_nbytes_single(soc->osdev, rx_tid->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size); qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); out: qdf_mem_free(freedesc); } #if defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) /* Hawkeye emulation requires bus address to be >= 0x50000000 */ static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr) { if (dma_addr < 0x50000000) return QDF_STATUS_E_FAILURE; else return QDF_STATUS_SUCCESS; } #else static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr) { return QDF_STATUS_SUCCESS; } #endif /* * dp_rx_tid_setup_wifi3() – Setup receive TID state * @peer: Datapath peer handle * @tid: TID * @ba_window_size: BlockAck window size * @start_seq: Starting sequence number * * Return: QDF_STATUS code */ QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, int tid, uint32_t ba_window_size, uint32_t start_seq) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_vdev *vdev = peer->vdev; struct dp_soc *soc = vdev->pdev->soc; uint32_t hw_qdesc_size; uint32_t hw_qdesc_align; int hal_pn_type; void *hw_qdesc_vaddr; uint32_t alloc_tries = 0; QDF_STATUS err = QDF_STATUS_SUCCESS; if (!qdf_atomic_read(&peer->is_default_route_set)) return QDF_STATUS_E_FAILURE; rx_tid->ba_win_size = ba_window_size; if (rx_tid->hw_qdesc_vaddr_unaligned) return dp_rx_tid_update_wifi3(peer, tid, ba_window_size, start_seq, false); rx_tid->delba_tx_status = 0; rx_tid->ppdu_id_2k = 0; rx_tid->num_of_addba_req = 0; rx_tid->num_of_delba_req = 0; rx_tid->num_of_addba_resp = 0; rx_tid->num_addba_rsp_failed = 0; rx_tid->num_addba_rsp_success = 0; rx_tid->delba_tx_success_cnt = 0; rx_tid->delba_tx_fail_cnt = 0; rx_tid->statuscode = 0; /* TODO: Allocating HW queue descriptors based on max BA window size * for all QOS TIDs so that same descriptor can be used later when * ADDBA request is recevied. This should be changed to allocate HW * queue descriptors based on BA window size being negotiated (0 for * non BA cases), and reallocate when BA window size changes and also * send WMI message to FW to change the REO queue descriptor in Rx * peer entry as part of dp_rx_tid_update. */ if (tid != DP_NON_QOS_TID) hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, HAL_RX_MAX_BA_WINDOW, tid); else hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size, tid); hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc); /* To avoid unnecessary extra allocation for alignment, try allocating * exact size and see if we already have aligned address. */ rx_tid->hw_qdesc_alloc_size = hw_qdesc_size; try_desc_alloc: rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size); if (!rx_tid->hw_qdesc_vaddr_unaligned) { dp_peer_err("%pK: Rx tid HW desc alloc failed: tid %d", soc, tid); return QDF_STATUS_E_NOMEM; } if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) % hw_qdesc_align) { /* Address allocated above is not alinged. Allocate extra * memory for alignment */ qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size + hw_qdesc_align - 1); if (!rx_tid->hw_qdesc_vaddr_unaligned) { dp_peer_err("%pK: Rx tid HW desc alloc failed: tid %d", soc, tid); return QDF_STATUS_E_NOMEM; } hw_qdesc_vaddr = (void *)qdf_align((unsigned long) rx_tid->hw_qdesc_vaddr_unaligned, hw_qdesc_align); dp_peer_debug("%pK: Total Size %d Aligned Addr %pK", soc, rx_tid->hw_qdesc_alloc_size, hw_qdesc_vaddr); } else { hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned; } rx_tid->hw_qdesc_vaddr_aligned = hw_qdesc_vaddr; /* TODO: Ensure that sec_type is set before ADDBA is received. * Currently this is set based on htt indication * HTT_T2H_MSG_TYPE_SEC_IND from target */ switch (peer->security[dp_sec_ucast].sec_type) { case cdp_sec_type_tkip_nomic: case cdp_sec_type_aes_ccmp: case cdp_sec_type_aes_ccmp_256: case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: hal_pn_type = HAL_PN_WPA; break; case cdp_sec_type_wapi: if (vdev->opmode == wlan_op_mode_ap) hal_pn_type = HAL_PN_WAPI_EVEN; else hal_pn_type = HAL_PN_WAPI_UNEVEN; break; default: hal_pn_type = HAL_PN_NONE; break; } hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq, hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type); qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size, &(rx_tid->hw_qdesc_paddr)); if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) != QDF_STATUS_SUCCESS) { if (alloc_tries++ < 10) { qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = NULL; goto try_desc_alloc; } else { dp_peer_err("%pK: Rx tid HW desc alloc failed (lowmem): tid %d", soc, tid); err = QDF_STATUS_E_NOMEM; goto error; } } if (dp_get_peer_vdev_roaming_in_progress(peer)) { err = QDF_STATUS_E_PERM; goto error; } if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup) { if (soc->cdp_soc.ol_ops->peer_rx_reorder_queue_setup( soc->ctrl_psoc, peer->vdev->pdev->pdev_id, peer->vdev->vdev_id, peer->mac_addr.raw, rx_tid->hw_qdesc_paddr, tid, tid, 1, ba_window_size)) { dp_peer_err("%pK: Failed to send reo queue setup to FW - tid %d\n", soc, tid); err = QDF_STATUS_E_FAILURE; goto error; } } return 0; error: if (rx_tid->hw_qdesc_vaddr_unaligned) { if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) == QDF_STATUS_SUCCESS) qdf_mem_unmap_nbytes_single( soc->osdev, rx_tid->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size); qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = NULL; } return err; } #ifdef REO_DESC_DEFER_FREE /* * dp_reo_desc_clean_up() - If cmd to flush base desc fails add * desc back to freelist and defer the deletion * * @soc: DP SOC handle * @desc: Base descriptor to be freed * @reo_status: REO command status */ static void dp_reo_desc_clean_up(struct dp_soc *soc, struct reo_desc_list_node *desc, union hal_reo_status *reo_status) { desc->free_ts = qdf_get_system_timestamp(); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); qdf_list_insert_back(&soc->reo_desc_freelist, (qdf_list_node_t *)desc); } /* * dp_reo_limit_clean_batch_sz() - Limit number REO CMD queued to cmd * ring in aviod of REO hang * * @list_size: REO desc list size to be cleaned */ static inline void dp_reo_limit_clean_batch_sz(uint32_t *list_size) { unsigned long curr_ts = qdf_get_system_timestamp(); if ((*list_size) > REO_DESC_FREELIST_SIZE) { dp_err_log("%lu:freedesc number %d in freelist", curr_ts, *list_size); /* limit the batch queue size */ *list_size = REO_DESC_FREELIST_SIZE; } } #else /* * dp_reo_desc_clean_up() - If send cmd to REO inorder to flush * cache fails free the base REO desc anyway * * @soc: DP SOC handle * @desc: Base descriptor to be freed * @reo_status: REO command status */ static void dp_reo_desc_clean_up(struct dp_soc *soc, struct reo_desc_list_node *desc, union hal_reo_status *reo_status) { if (reo_status) { qdf_mem_zero(reo_status, sizeof(*reo_status)); reo_status->fl_cache_status.header.status = 0; dp_reo_desc_free(soc, (void *)desc, reo_status); } } /* * dp_reo_limit_clean_batch_sz() - Limit number REO CMD queued to cmd * ring in aviod of REO hang * * @list_size: REO desc list size to be cleaned */ static inline void dp_reo_limit_clean_batch_sz(uint32_t *list_size) { } #endif /* * dp_resend_update_reo_cmd() - Resend the UPDATE_REO_QUEUE * cmd and re-insert desc into free list if send fails. * * @soc: DP SOC handle * @desc: desc with resend update cmd flag set * @rx_tid: Desc RX tid associated with update cmd for resetting * valid field to 0 in h/w * * Return: QDF status */ static QDF_STATUS dp_resend_update_reo_cmd(struct dp_soc *soc, struct reo_desc_list_node *desc, struct dp_rx_tid *rx_tid) { struct hal_reo_cmd_params params; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_vld = 1; params.u.upd_queue_params.vld = 0; desc->resend_update_reo_cmd = false; /* * If the cmd send fails then set resend_update_reo_cmd flag * and insert the desc at the end of the free list to retry. */ if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_delete_cb, (void *)desc) != QDF_STATUS_SUCCESS) { desc->resend_update_reo_cmd = true; desc->free_ts = qdf_get_system_timestamp(); qdf_list_insert_back(&soc->reo_desc_freelist, (qdf_list_node_t *)desc); dp_err_log("failed to send reo cmd CMD_UPDATE_RX_REO_QUEUE"); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } /* * dp_rx_tid_delete_cb() - Callback to flush reo descriptor HW cache * after deleting the entries (ie., setting valid=0) * * @soc: DP SOC handle * @cb_ctxt: Callback context * @reo_status: REO command status */ void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct reo_desc_list_node *freedesc = (struct reo_desc_list_node *)cb_ctxt; uint32_t list_size; struct reo_desc_list_node *desc; unsigned long curr_ts = qdf_get_system_timestamp(); uint32_t desc_size, tot_desc_size; struct hal_reo_cmd_params params; bool flush_failure = false; DP_RX_REO_QDESC_UPDATE_EVT(freedesc); if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) { qdf_mem_zero(reo_status, sizeof(*reo_status)); reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN; dp_reo_desc_free(soc, (void *)freedesc, reo_status); DP_STATS_INC(soc, rx.err.reo_cmd_send_drain, 1); return; } else if (reo_status->rx_queue_status.header.status != HAL_REO_CMD_SUCCESS) { /* Should not happen normally. Just print error for now */ dp_info_rl("Rx tid HW desc deletion failed(%d): tid %d", reo_status->rx_queue_status.header.status, freedesc->rx_tid.tid); } dp_peer_info("%pK: rx_tid: %d status: %d", soc, freedesc->rx_tid.tid, reo_status->rx_queue_status.header.status); qdf_spin_lock_bh(&soc->reo_desc_freelist_lock); freedesc->free_ts = curr_ts; qdf_list_insert_back_size(&soc->reo_desc_freelist, (qdf_list_node_t *)freedesc, &list_size); /* MCL path add the desc back to reo_desc_freelist when REO FLUSH * failed. it may cause the number of REO queue pending in free * list is even larger than REO_CMD_RING max size and lead REO CMD * flood then cause REO HW in an unexpected condition. So it's * needed to limit the number REO cmds in a batch operation. */ dp_reo_limit_clean_batch_sz(&list_size); while ((qdf_list_peek_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) && ((list_size >= REO_DESC_FREELIST_SIZE) || (curr_ts > (desc->free_ts + REO_DESC_FREE_DEFER_MS)) || (desc->resend_update_reo_cmd && list_size))) { struct dp_rx_tid *rx_tid; qdf_list_remove_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc); list_size--; rx_tid = &desc->rx_tid; /* First process descs with resend_update_reo_cmd set */ if (desc->resend_update_reo_cmd) { if (dp_resend_update_reo_cmd(soc, desc, rx_tid) != QDF_STATUS_SUCCESS) break; else continue; } /* Flush and invalidate REO descriptor from HW cache: Base and * extension descriptors should be flushed separately */ if (desc->pending_ext_desc_size) tot_desc_size = desc->pending_ext_desc_size; else tot_desc_size = rx_tid->hw_qdesc_alloc_size; /* Get base descriptor size by passing non-qos TID */ desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0, DP_NON_QOS_TID); /* Flush reo extension descriptors */ while ((tot_desc_size -= desc_size) > 0) { qdf_mem_zero(¶ms, sizeof(params)); params.std.addr_lo = ((uint64_t)(rx_tid->hw_qdesc_paddr) + tot_desc_size) & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL)) { dp_info_rl("fail to send CMD_CACHE_FLUSH:" "tid %d desc %pK", rx_tid->tid, (void *)(rx_tid->hw_qdesc_paddr)); desc->pending_ext_desc_size = tot_desc_size + desc_size; dp_reo_desc_clean_up(soc, desc, reo_status); flush_failure = true; break; } } if (flush_failure) break; else desc->pending_ext_desc_size = desc_size; /* Flush base descriptor */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = (uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, dp_reo_desc_free, (void *)desc)) { union hal_reo_status reo_status; /* * If dp_reo_send_cmd return failure, related TID queue desc * should be unmapped. Also locally reo_desc, together with * TID queue desc also need to be freed accordingly. * * Here invoke desc_free function directly to do clean up. * * In case of MCL path add the desc back to the free * desc list and defer deletion. */ dp_info_rl("fail to send REO cmd to flush cache: tid %d", rx_tid->tid); dp_reo_desc_clean_up(soc, desc, &reo_status); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); break; } } qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock); dp_reo_desc_defer_free(soc); } /* * dp_rx_tid_delete_wifi3() – Delete receive TID queue * @peer: Datapath peer handle * @tid: TID * * Return: 0 on success, error code on failure */ static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid) { struct dp_rx_tid *rx_tid = &(peer->rx_tid[tid]); struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; struct reo_desc_list_node *freedesc = qdf_mem_malloc(sizeof(*freedesc)); if (!freedesc) { dp_peer_err("%pK: malloc failed for freedesc: tid %d", soc, tid); return -ENOMEM; } freedesc->rx_tid = *rx_tid; freedesc->resend_update_reo_cmd = false; qdf_mem_zero(¶ms, sizeof(params)); DP_RX_REO_QDESC_GET_MAC(freedesc, peer); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_vld = 1; params.u.upd_queue_params.vld = 0; if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_delete_cb, (void *)freedesc) != QDF_STATUS_SUCCESS) { /* Defer the clean up to the call back context */ qdf_spin_lock_bh(&soc->reo_desc_freelist_lock); freedesc->free_ts = qdf_get_system_timestamp(); freedesc->resend_update_reo_cmd = true; qdf_list_insert_front(&soc->reo_desc_freelist, (qdf_list_node_t *)freedesc); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock); dp_info("Failed to send CMD_UPDATE_RX_REO_QUEUE"); } rx_tid->hw_qdesc_vaddr_unaligned = NULL; rx_tid->hw_qdesc_alloc_size = 0; rx_tid->hw_qdesc_paddr = 0; return 0; } #ifdef DP_LFR static void dp_peer_setup_remaining_tids(struct dp_peer *peer) { int tid; for (tid = 1; tid < DP_MAX_TIDS-1; tid++) { dp_rx_tid_setup_wifi3(peer, tid, 1, 0); dp_peer_debug("Setting up TID %d for peer %pK peer->local_id %d", tid, peer, peer->local_id); } } #else static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {}; #endif /* * dp_peer_rx_init() – Initialize receive TID state * @pdev: Datapath pdev * @peer: Datapath peer * */ void dp_peer_rx_init(struct dp_pdev *pdev, struct dp_peer *peer) { int tid; struct dp_rx_tid *rx_tid; for (tid = 0; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; rx_tid->array = &rx_tid->base; rx_tid->base.head = rx_tid->base.tail = NULL; rx_tid->tid = tid; rx_tid->defrag_timeout_ms = 0; rx_tid->ba_win_size = 0; rx_tid->ba_status = DP_RX_BA_INACTIVE; rx_tid->defrag_waitlist_elem.tqe_next = NULL; rx_tid->defrag_waitlist_elem.tqe_prev = NULL; } peer->active_ba_session_cnt = 0; peer->hw_buffer_size = 0; peer->kill_256_sessions = 0; /* Setup default (non-qos) rx tid queue */ dp_rx_tid_setup_wifi3(peer, DP_NON_QOS_TID, 1, 0); /* Setup rx tid queue for TID 0. * Other queues will be setup on receiving first packet, which will cause * NULL REO queue error */ dp_rx_tid_setup_wifi3(peer, 0, 1, 0); /* * Setup the rest of TID's to handle LFR */ dp_peer_setup_remaining_tids(peer); /* * Set security defaults: no PN check, no security. The target may * send a HTT SEC_IND message to overwrite these defaults. */ peer->security[dp_sec_ucast].sec_type = peer->security[dp_sec_mcast].sec_type = cdp_sec_type_none; } /* * dp_peer_rx_cleanup() – Cleanup receive TID state * @vdev: Datapath vdev * @peer: Datapath peer * */ void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer) { int tid; uint32_t tid_delete_mask = 0; dp_info("Remove tids for peer: %pK", peer); for (tid = 0; tid < DP_MAX_TIDS; tid++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (!peer->bss_peer || peer->vdev->opmode == wlan_op_mode_sta) { /* Cleanup defrag related resource */ dp_rx_defrag_waitlist_remove(peer, tid); dp_rx_reorder_flush_frag(peer, tid); } if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned) { dp_rx_tid_delete_wifi3(peer, tid); tid_delete_mask |= (1 << tid); } qdf_spin_unlock_bh(&rx_tid->tid_lock); } #ifdef notyet /* See if FW can remove queues as part of peer cleanup */ if (soc->ol_ops->peer_rx_reorder_queue_remove) { soc->ol_ops->peer_rx_reorder_queue_remove(soc->ctrl_psoc, peer->vdev->pdev->pdev_id, peer->vdev->vdev_id, peer->mac_addr.raw, tid_delete_mask); } #endif } /* * dp_peer_cleanup() – Cleanup peer information * @vdev: Datapath vdev * @peer: Datapath peer * */ void dp_peer_cleanup(struct dp_vdev *vdev, struct dp_peer *peer) { enum wlan_op_mode vdev_opmode; uint8_t vdev_mac_addr[QDF_MAC_ADDR_SIZE]; struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; /* save vdev related member in case vdev freed */ vdev_opmode = vdev->opmode; dp_monitor_peer_tx_cleanup(vdev, peer); if (vdev_opmode != wlan_op_mode_monitor) /* cleanup the Rx reorder queues for this peer */ dp_peer_rx_cleanup(vdev, peer); qdf_mem_copy(vdev_mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE); if (soc->cdp_soc.ol_ops->peer_unref_delete) soc->cdp_soc.ol_ops->peer_unref_delete( soc->ctrl_psoc, vdev->pdev->pdev_id, peer->mac_addr.raw, vdev_mac_addr, vdev_opmode); } /* dp_teardown_256_ba_session() - Teardown sessions using 256 * window size when a request with * 64 window size is received. * This is done as a WAR since HW can * have only one setting per peer (64 or 256). * For HKv2, we use per tid buffersize setting * for 0 to per_tid_basize_max_tid. For tid * more than per_tid_basize_max_tid we use HKv1 * method. * @peer: Datapath peer * * Return: void */ static void dp_teardown_256_ba_sessions(struct dp_peer *peer) { uint8_t delba_rcode = 0; int tid; struct dp_rx_tid *rx_tid = NULL; tid = peer->vdev->pdev->soc->per_tid_basize_max_tid; for (; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->ba_win_size <= 64) { qdf_spin_unlock_bh(&rx_tid->tid_lock); continue; } else { if (rx_tid->ba_status == DP_RX_BA_ACTIVE || rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { /* send delba */ if (!rx_tid->delba_tx_status) { rx_tid->delba_tx_retry++; rx_tid->delba_tx_status = 1; rx_tid->delba_rcode = IEEE80211_REASON_QOS_SETUP_REQUIRED; delba_rcode = rx_tid->delba_rcode; qdf_spin_unlock_bh(&rx_tid->tid_lock); if (peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba) peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba( peer->vdev->pdev->soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, tid, delba_rcode, CDP_DELBA_REASON_NONE); } else { qdf_spin_unlock_bh(&rx_tid->tid_lock); } } else { qdf_spin_unlock_bh(&rx_tid->tid_lock); } } } } /* * dp_rx_addba_resp_tx_completion_wifi3() – Update Rx Tid State * * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @tid: TID number * @status: tx completion status * Return: 0 on success, error code on failure */ int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, int status) { struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); struct dp_rx_tid *rx_tid = NULL; if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", cdp_soc); goto fail; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (status) { rx_tid->num_addba_rsp_failed++; dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_err("RxTid- %d addba rsp tx completion failed", tid); goto success; } rx_tid->num_addba_rsp_success++; if (rx_tid->ba_status == DP_RX_BA_INACTIVE) { qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_err("%pK: Rx Tid- %d hw qdesc is not in IN_PROGRESS", cdp_soc, tid); goto fail; } if (!qdf_atomic_read(&peer->is_default_route_set)) { qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_debug("%pK: default route is not set for peer: " QDF_MAC_ADDR_FMT, cdp_soc, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); goto fail; } if (dp_rx_tid_update_wifi3(peer, tid, rx_tid->ba_win_size, rx_tid->startseqnum, false)) { dp_err("Failed update REO SSN"); } dp_info("tid %u window_size %u start_seq_num %u", tid, rx_tid->ba_win_size, rx_tid->startseqnum); /* First Session */ if (peer->active_ba_session_cnt == 0) { if (rx_tid->ba_win_size > 64 && rx_tid->ba_win_size <= 256) peer->hw_buffer_size = 256; else peer->hw_buffer_size = 64; } rx_tid->ba_status = DP_RX_BA_ACTIVE; peer->active_ba_session_cnt++; qdf_spin_unlock_bh(&rx_tid->tid_lock); /* Kill any session having 256 buffer size * when 64 buffer size request is received. * Also, latch on to 64 as new buffer size. */ if (peer->kill_256_sessions) { dp_teardown_256_ba_sessions(peer); peer->kill_256_sessions = 0; } success: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; fail: if (peer) dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_E_FAILURE; } /* * dp_rx_addba_responsesetup_wifi3() – Process ADDBA request from peer * * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @tid: TID number * @dialogtoken: output dialogtoken * @statuscode: output dialogtoken * @buffersize: Output BA window size * @batimeout: Output BA timeout */ QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, uint8_t *dialogtoken, uint16_t *statuscode, uint16_t *buffersize, uint16_t *batimeout) { struct dp_rx_tid *rx_tid = NULL; QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->num_of_addba_resp++; /* setup ADDBA response parameters */ *dialogtoken = rx_tid->dialogtoken; *statuscode = rx_tid->statuscode; *buffersize = rx_tid->ba_win_size; *batimeout = 0; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return status; } /* dp_check_ba_buffersize() - Check buffer size in request * and latch onto this size based on * size used in first active session. * @peer: Datapath peer * @tid: Tid * @buffersize: Block ack window size * * Return: void */ static void dp_check_ba_buffersize(struct dp_peer *peer, uint16_t tid, uint16_t buffersize) { struct dp_rx_tid *rx_tid = NULL; rx_tid = &peer->rx_tid[tid]; if (peer->vdev->pdev->soc->per_tid_basize_max_tid && tid < peer->vdev->pdev->soc->per_tid_basize_max_tid) { rx_tid->ba_win_size = buffersize; return; } else { if (peer->active_ba_session_cnt == 0) { rx_tid->ba_win_size = buffersize; } else { if (peer->hw_buffer_size == 64) { if (buffersize <= 64) rx_tid->ba_win_size = buffersize; else rx_tid->ba_win_size = peer->hw_buffer_size; } else if (peer->hw_buffer_size == 256) { if (buffersize > 64) { rx_tid->ba_win_size = buffersize; } else { rx_tid->ba_win_size = buffersize; peer->hw_buffer_size = 64; peer->kill_256_sessions = 1; } } } } } #define DP_RX_BA_SESSION_DISABLE 1 /* * dp_addba_requestprocess_wifi3() - Process ADDBA request from peer * * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @dialogtoken: dialogtoken from ADDBA frame * @tid: TID number * @batimeout: BA timeout * @buffersize: BA window size * @startseqnum: Start seq. number received in BA sequence control * * Return: 0 on success, error code on failure */ int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t dialogtoken, uint16_t tid, uint16_t batimeout, uint16_t buffersize, uint16_t startseqnum) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_rx_tid *rx_tid = NULL; struct dp_soc *soc = (struct dp_soc *)cdp_soc; struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->num_of_addba_req++; if ((rx_tid->ba_status == DP_RX_BA_ACTIVE && rx_tid->hw_qdesc_vaddr_unaligned)) { dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; peer->active_ba_session_cnt--; dp_peer_debug("%pK: Rx Tid- %d hw qdesc is already setup", cdp_soc, tid); } if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { qdf_spin_unlock_bh(&rx_tid->tid_lock); status = QDF_STATUS_E_FAILURE; goto fail; } if (wlan_cfg_is_dp_force_rx_64_ba(soc->wlan_cfg_ctx)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "force use BA64 scheme"); buffersize = qdf_min((uint16_t)64, buffersize); } if (rx_tid->rx_ba_win_size_override == DP_RX_BA_SESSION_DISABLE) { dp_peer_info("%pK: disable BA session", cdp_soc); buffersize = 1; } else if (rx_tid->rx_ba_win_size_override) { dp_peer_info("%pK: override BA win to %d", cdp_soc, rx_tid->rx_ba_win_size_override); buffersize = rx_tid->rx_ba_win_size_override; } else { dp_peer_info("%pK: restore BA win %d based on addba req", cdp_soc, buffersize); } dp_check_ba_buffersize(peer, tid, buffersize); if (dp_rx_tid_setup_wifi3(peer, tid, rx_tid->ba_win_size, startseqnum)) { rx_tid->ba_status = DP_RX_BA_INACTIVE; qdf_spin_unlock_bh(&rx_tid->tid_lock); status = QDF_STATUS_E_FAILURE; goto fail; } rx_tid->ba_status = DP_RX_BA_IN_PROGRESS; rx_tid->dialogtoken = dialogtoken; rx_tid->startseqnum = startseqnum; if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS) rx_tid->statuscode = rx_tid->userstatuscode; else rx_tid->statuscode = IEEE80211_STATUS_SUCCESS; if (rx_tid->rx_ba_win_size_override == DP_RX_BA_SESSION_DISABLE) rx_tid->statuscode = IEEE80211_STATUS_REFUSED; qdf_spin_unlock_bh(&rx_tid->tid_lock); fail: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return status; } /* * dp_set_addba_response() – Set a user defined ADDBA response status code * * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @tid: TID number * @statuscode: response status code to be set */ QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, uint16_t statuscode) { struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); struct dp_rx_tid *rx_tid; if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->userstatuscode = statuscode; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } /* * dp_rx_delba_process_wifi3() – Process DELBA from peer * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @tid: TID number * @reasoncode: Reason code received in DELBA frame * * Return: 0 on success, error code on failure */ int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, int tid, uint16_t reasoncode) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_rx_tid *rx_tid; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->ba_status == DP_RX_BA_INACTIVE || rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { qdf_spin_unlock_bh(&rx_tid->tid_lock); status = QDF_STATUS_E_FAILURE; goto fail; } /* TODO: See if we can delete the existing REO queue descriptor and * replace with a new one without queue extenstion descript to save * memory */ rx_tid->delba_rcode = reasoncode; rx_tid->num_of_delba_req++; dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; peer->active_ba_session_cnt--; qdf_spin_unlock_bh(&rx_tid->tid_lock); fail: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return status; } /* * dp_rx_delba_tx_completion_wifi3() – Send Delba Request * * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @tid: TID number * @status: tx completion status * Return: 0 on success, error code on failure */ int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, int status) { QDF_STATUS ret = QDF_STATUS_SUCCESS; struct dp_rx_tid *rx_tid = NULL; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (status) { rx_tid->delba_tx_fail_cnt++; if (rx_tid->delba_tx_retry >= DP_MAX_DELBA_RETRY) { rx_tid->delba_tx_retry = 0; rx_tid->delba_tx_status = 0; qdf_spin_unlock_bh(&rx_tid->tid_lock); } else { rx_tid->delba_tx_retry++; rx_tid->delba_tx_status = 1; qdf_spin_unlock_bh(&rx_tid->tid_lock); if (peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba) peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba( peer->vdev->pdev->soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, tid, rx_tid->delba_rcode, CDP_DELBA_REASON_NONE); } goto end; } else { rx_tid->delba_tx_success_cnt++; rx_tid->delba_tx_retry = 0; rx_tid->delba_tx_status = 0; } if (rx_tid->ba_status == DP_RX_BA_ACTIVE) { dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; peer->active_ba_session_cnt--; } if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; } qdf_spin_unlock_bh(&rx_tid->tid_lock); end: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return ret; } /** * dp_set_pn_check_wifi3() - enable PN check in REO for security * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @vdev: Datapath vdev * @pdev - data path device instance * @sec_type - security type * @rx_pn - Receive pn starting number * */ QDF_STATUS dp_set_pn_check_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, enum cdp_sec_type sec_type, uint32_t *rx_pn) { struct dp_pdev *pdev; int i; uint8_t pn_size; struct hal_reo_cmd_params params; struct dp_peer *peer = NULL; struct dp_vdev *vdev = NULL; peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", soc); return QDF_STATUS_E_FAILURE; } vdev = peer->vdev; if (!vdev) { dp_peer_debug("%pK: VDEV is NULL!\n", soc); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_E_FAILURE; } pdev = vdev->pdev; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.u.upd_queue_params.update_pn_valid = 1; params.u.upd_queue_params.update_pn_size = 1; params.u.upd_queue_params.update_pn = 1; params.u.upd_queue_params.update_pn_check_needed = 1; params.u.upd_queue_params.update_svld = 1; params.u.upd_queue_params.svld = 0; switch (sec_type) { case cdp_sec_type_tkip_nomic: case cdp_sec_type_aes_ccmp: case cdp_sec_type_aes_ccmp_256: case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: params.u.upd_queue_params.pn_check_needed = 1; params.u.upd_queue_params.pn_size = 48; pn_size = 48; break; case cdp_sec_type_wapi: params.u.upd_queue_params.pn_check_needed = 1; params.u.upd_queue_params.pn_size = 128; pn_size = 128; if (vdev->opmode == wlan_op_mode_ap) { params.u.upd_queue_params.pn_even = 1; params.u.upd_queue_params.update_pn_even = 1; } else { params.u.upd_queue_params.pn_uneven = 1; params.u.upd_queue_params.update_pn_uneven = 1; } break; default: params.u.upd_queue_params.pn_check_needed = 0; pn_size = 0; break; } for (i = 0; i < DP_MAX_TIDS; i++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[i]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->hw_qdesc_vaddr_unaligned) { params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (pn_size) { dp_peer_info("%pK: PN set for TID:%d pn:%x:%x:%x:%x", soc, i, rx_pn[3], rx_pn[2], rx_pn[1], rx_pn[0]); params.u.upd_queue_params.update_pn_valid = 1; params.u.upd_queue_params.pn_31_0 = rx_pn[0]; params.u.upd_queue_params.pn_63_32 = rx_pn[1]; params.u.upd_queue_params.pn_95_64 = rx_pn[2]; params.u.upd_queue_params.pn_127_96 = rx_pn[3]; } rx_tid->pn_size = pn_size; if (dp_reo_send_cmd(cdp_soc_t_to_dp_soc(soc), CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_update_cb, rx_tid)) { dp_err_log("fail to send CMD_UPDATE_RX_REO_QUEUE" "tid %d desc %pK", rx_tid->tid, (void *)(rx_tid->hw_qdesc_paddr)); DP_STATS_INC(cdp_soc_t_to_dp_soc(soc), rx.err.reo_cmd_send_fail, 1); } } else { dp_peer_info("%pK: PN Check not setup for TID :%d ", soc, i); } qdf_spin_unlock_bh(&rx_tid->tid_lock); } dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } /** * dp_set_key_sec_type_wifi3() - set security mode of key * @soc: Datapath soc handle * @peer_mac: Datapath peer mac address * @vdev_id: id of atapath vdev * @vdev: Datapath vdev * @pdev - data path device instance * @sec_type - security type * #is_unicast - key type * */ QDF_STATUS dp_set_key_sec_type_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, enum cdp_sec_type sec_type, bool is_unicast) { struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); int sec_index; if (!peer) { dp_peer_debug("%pK: Peer is NULL!\n", soc); return QDF_STATUS_E_FAILURE; } dp_peer_info("%pK: key sec spec for peer %pK " QDF_MAC_ADDR_FMT ": %s key of type %d", soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw), is_unicast ? "ucast" : "mcast", sec_type); sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast; peer->security[sec_index].sec_type = sec_type; dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } void dp_rx_sec_ind_handler(struct dp_soc *soc, uint16_t peer_id, enum cdp_sec_type sec_type, int is_unicast, u_int32_t *michael_key, u_int32_t *rx_pn) { struct dp_peer *peer; int sec_index; peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT); if (!peer) { dp_peer_err("Couldn't find peer from ID %d - skipping security inits", peer_id); return; } dp_peer_info("%pK: sec spec for peer %pK " QDF_MAC_ADDR_FMT ": %s key of type %d", soc, peer, QDF_MAC_ADDR_REF(peer->mac_addr.raw), is_unicast ? "ucast" : "mcast", sec_type); sec_index = is_unicast ? dp_sec_ucast : dp_sec_mcast; peer->security[sec_index].sec_type = sec_type; #ifdef notyet /* TODO: See if this is required for defrag support */ /* michael key only valid for TKIP, but for simplicity, * copy it anyway */ qdf_mem_copy( &peer->security[sec_index].michael_key[0], michael_key, sizeof(peer->security[sec_index].michael_key)); #ifdef BIG_ENDIAN_HOST OL_IF_SWAPBO(peer->security[sec_index].michael_key[0], sizeof(peer->security[sec_index].michael_key)); #endif /* BIG_ENDIAN_HOST */ #endif #ifdef notyet /* TODO: Check if this is required for wifi3.0 */ if (sec_type != cdp_sec_type_wapi) { qdf_mem_zero(peer->tids_last_pn_valid, _EXT_TIDS); } else { for (i = 0; i < DP_MAX_TIDS; i++) { /* * Setting PN valid bit for WAPI sec_type, * since WAPI PN has to be started with predefined value */ peer->tids_last_pn_valid[i] = 1; qdf_mem_copy( (u_int8_t *) &peer->tids_last_pn[i], (u_int8_t *) rx_pn, sizeof(union htt_rx_pn_t)); peer->tids_last_pn[i].pn128[1] = qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[1]); peer->tids_last_pn[i].pn128[0] = qdf_cpu_to_le64(peer->tids_last_pn[i].pn128[0]); } } #endif /* TODO: Update HW TID queue with PN check parameters (pn type for * all security types and last pn for WAPI) once REO command API * is available */ dp_peer_unref_delete(peer, DP_MOD_ID_HTT); } #ifdef QCA_PEER_EXT_STATS /* * dp_peer_ext_stats_ctx_alloc() - Allocate peer ext * stats content * @soc: DP SoC context * @peer: DP peer context * * Allocate the peer extended stats context * * Return: QDF_STATUS_SUCCESS if allocation is * successful */ QDF_STATUS dp_peer_ext_stats_ctx_alloc(struct dp_soc *soc, struct dp_peer *peer) { uint8_t tid, ctx_id; if (!soc || !peer) { dp_warn("Null soc%pK or peer%pK", soc, peer); return QDF_STATUS_E_INVAL; } if (!wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx)) return QDF_STATUS_SUCCESS; /* * Allocate memory for peer extended stats. */ peer->pext_stats = qdf_mem_malloc(sizeof(struct cdp_peer_ext_stats)); if (!peer->pext_stats) { dp_err("Peer extended stats obj alloc failed!!"); return QDF_STATUS_E_NOMEM; } for (tid = 0; tid < CDP_MAX_DATA_TIDS; tid++) { for (ctx_id = 0; ctx_id < CDP_MAX_TXRX_CTX; ctx_id++) { struct cdp_delay_tx_stats *tx_delay = &peer->pext_stats->delay_stats[tid][ctx_id].tx_delay; struct cdp_delay_rx_stats *rx_delay = &peer->pext_stats->delay_stats[tid][ctx_id].rx_delay; dp_hist_init(&tx_delay->tx_swq_delay, CDP_HIST_TYPE_SW_ENQEUE_DELAY); dp_hist_init(&tx_delay->hwtx_delay, CDP_HIST_TYPE_HW_COMP_DELAY); dp_hist_init(&rx_delay->to_stack_delay, CDP_HIST_TYPE_REAP_STACK); } } return QDF_STATUS_SUCCESS; } /* * dp_peer_ext_stats_ctx_dealloc() - Dealloc the peer context * @peer: DP peer context * * Free the peer extended stats context * * Return: Void */ void dp_peer_ext_stats_ctx_dealloc(struct dp_soc *soc, struct dp_peer *peer) { if (!peer) { dp_warn("peer_ext dealloc failed due to NULL peer object"); return; } if (!wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx)) return; if (!peer->pext_stats) return; qdf_mem_free(peer->pext_stats); peer->pext_stats = NULL; } #endif QDF_STATUS dp_rx_delba_ind_handler(void *soc_handle, uint16_t peer_id, uint8_t tid, uint16_t win_sz) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_peer *peer; struct dp_rx_tid *rx_tid; QDF_STATUS status = QDF_STATUS_SUCCESS; peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT); if (!peer) { dp_peer_err("%pK: Couldn't find peer from ID %d", soc, peer_id); return QDF_STATUS_E_FAILURE; } qdf_assert_always(tid < DP_MAX_TIDS); rx_tid = &peer->rx_tid[tid]; if (rx_tid->hw_qdesc_vaddr_unaligned) { if (!rx_tid->delba_tx_status) { dp_peer_info("%pK: PEER_ID: %d TID: %d, BA win: %d ", soc, peer_id, tid, win_sz); qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->delba_tx_status = 1; rx_tid->rx_ba_win_size_override = qdf_min((uint16_t)63, win_sz); rx_tid->delba_rcode = IEEE80211_REASON_QOS_SETUP_REQUIRED; qdf_spin_unlock_bh(&rx_tid->tid_lock); if (soc->cdp_soc.ol_ops->send_delba) soc->cdp_soc.ol_ops->send_delba( peer->vdev->pdev->soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, tid, rx_tid->delba_rcode, CDP_DELBA_REASON_NONE); } } else { dp_peer_err("%pK: BA session is not setup for TID:%d ", soc, tid); status = QDF_STATUS_E_FAILURE; } dp_peer_unref_delete(peer, DP_MOD_ID_HTT); return status; } #ifdef DP_PEER_EXTENDED_API QDF_STATUS dp_register_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, struct ol_txrx_desc_type *sta_desc) { struct dp_peer *peer; struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); peer = dp_peer_find_hash_find(soc, sta_desc->peer_addr.bytes, 0, DP_VDEV_ALL, DP_MOD_ID_CDP); if (!peer) return QDF_STATUS_E_FAULT; qdf_spin_lock_bh(&peer->peer_info_lock); peer->state = OL_TXRX_PEER_STATE_CONN; qdf_spin_unlock_bh(&peer->peer_info_lock); dp_rx_flush_rx_cached(peer, false); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } QDF_STATUS dp_clear_peer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, struct qdf_mac_addr peer_addr) { struct dp_peer *peer; struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); peer = dp_peer_find_hash_find(soc, peer_addr.bytes, 0, DP_VDEV_ALL, DP_MOD_ID_CDP); if (!peer || !peer->valid) return QDF_STATUS_E_FAULT; dp_clear_peer_internal(soc, peer); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } QDF_STATUS dp_peer_state_update(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac, enum ol_txrx_peer_state state) { struct dp_peer *peer; struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); peer = dp_peer_find_hash_find(soc, peer_mac, 0, DP_VDEV_ALL, DP_MOD_ID_CDP); if (!peer) { dp_peer_err("%pK: Failed to find peer for: [" QDF_MAC_ADDR_FMT "]", soc, QDF_MAC_ADDR_REF(peer_mac)); return QDF_STATUS_E_FAILURE; } peer->state = state; peer->authorize = (state == OL_TXRX_PEER_STATE_AUTH) ? 1 : 0; dp_info("peer %pK state %d", peer, peer->state); /* ref_cnt is incremented inside dp_peer_find_hash_find(). * Decrement it here. */ dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } QDF_STATUS dp_get_vdevid(struct cdp_soc_t *soc_hdl, uint8_t *peer_mac, uint8_t *vdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, DP_VDEV_ALL, DP_MOD_ID_CDP); if (!peer) return QDF_STATUS_E_FAILURE; dp_info("peer %pK vdev %pK vdev id %d", peer, peer->vdev, peer->vdev->vdev_id); *vdev_id = peer->vdev->vdev_id; /* ref_cnt is incremented inside dp_peer_find_hash_find(). * Decrement it here. */ dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } struct cdp_vdev * dp_get_vdev_by_peer_addr(struct cdp_pdev *pdev_handle, struct qdf_mac_addr peer_addr) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; struct dp_peer *peer = NULL; struct cdp_vdev *vdev = NULL; if (!pdev) { dp_peer_info("PDEV not found for peer_addr: " QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer_addr.bytes)); return NULL; } peer = dp_peer_find_hash_find(pdev->soc, peer_addr.bytes, 0, DP_VDEV_ALL, DP_MOD_ID_CDP); if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH, "PDEV not found for peer_addr: "QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer_addr.bytes)); return NULL; } vdev = (struct cdp_vdev *)peer->vdev; dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return vdev; } /** * dp_get_vdev_for_peer() - Get virtual interface instance which peer belongs * @peer - peer instance * * Get virtual interface instance which peer belongs * * Return: virtual interface instance pointer * NULL in case cannot find */ struct cdp_vdev *dp_get_vdev_for_peer(void *peer_handle) { struct dp_peer *peer = peer_handle; DP_TRACE(DEBUG, "peer %pK vdev %pK", peer, peer->vdev); return (struct cdp_vdev *)peer->vdev; } /** * dp_peer_get_peer_mac_addr() - Get peer mac address * @peer - peer instance * * Get peer mac address * * Return: peer mac address pointer * NULL in case cannot find */ uint8_t *dp_peer_get_peer_mac_addr(void *peer_handle) { struct dp_peer *peer = peer_handle; uint8_t *mac; mac = peer->mac_addr.raw; dp_info("peer %pK mac 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x", peer, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); return peer->mac_addr.raw; } int dp_get_peer_state(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac) { enum ol_txrx_peer_state peer_state; struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) return QDF_STATUS_E_FAILURE; DP_TRACE(DEBUG, "peer %pK stats %d", peer, peer->state); peer_state = peer->state; dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return peer_state; } /** * dp_local_peer_id_pool_init() - local peer id pool alloc for physical device * @pdev - data path device instance * * local peer id pool alloc for physical device * * Return: none */ void dp_local_peer_id_pool_init(struct dp_pdev *pdev) { int i; /* point the freelist to the first ID */ pdev->local_peer_ids.freelist = 0; /* link each ID to the next one */ for (i = 0; i < OL_TXRX_NUM_LOCAL_PEER_IDS; i++) { pdev->local_peer_ids.pool[i] = i + 1; pdev->local_peer_ids.map[i] = NULL; } /* link the last ID to itself, to mark the end of the list */ i = OL_TXRX_NUM_LOCAL_PEER_IDS; pdev->local_peer_ids.pool[i] = i; qdf_spinlock_create(&pdev->local_peer_ids.lock); DP_TRACE(INFO, "Peer pool init"); } /** * dp_local_peer_id_alloc() - allocate local peer id * @pdev - data path device instance * @peer - new peer instance * * allocate local peer id * * Return: none */ void dp_local_peer_id_alloc(struct dp_pdev *pdev, struct dp_peer *peer) { int i; qdf_spin_lock_bh(&pdev->local_peer_ids.lock); i = pdev->local_peer_ids.freelist; if (pdev->local_peer_ids.pool[i] == i) { /* the list is empty, except for the list-end marker */ peer->local_id = OL_TXRX_INVALID_LOCAL_PEER_ID; } else { /* take the head ID and advance the freelist */ peer->local_id = i; pdev->local_peer_ids.freelist = pdev->local_peer_ids.pool[i]; pdev->local_peer_ids.map[i] = peer; } qdf_spin_unlock_bh(&pdev->local_peer_ids.lock); dp_info("peer %pK, local id %d", peer, peer->local_id); } /** * dp_local_peer_id_free() - remove local peer id * @pdev - data path device instance * @peer - peer instance should be removed * * remove local peer id * * Return: none */ void dp_local_peer_id_free(struct dp_pdev *pdev, struct dp_peer *peer) { int i = peer->local_id; if ((i == OL_TXRX_INVALID_LOCAL_PEER_ID) || (i >= OL_TXRX_NUM_LOCAL_PEER_IDS)) { return; } /* put this ID on the head of the freelist */ qdf_spin_lock_bh(&pdev->local_peer_ids.lock); pdev->local_peer_ids.pool[i] = pdev->local_peer_ids.freelist; pdev->local_peer_ids.freelist = i; pdev->local_peer_ids.map[i] = NULL; qdf_spin_unlock_bh(&pdev->local_peer_ids.lock); } bool dp_find_peer_exist_on_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_addr) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_peer *peer = NULL; peer = dp_peer_find_hash_find(soc, peer_addr, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) return false; dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return true; } bool dp_find_peer_exist_on_other_vdev(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_addr, uint16_t max_bssid) { int i; struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_peer *peer = NULL; for (i = 0; i < max_bssid; i++) { /* Need to check vdevs other than the vdev_id */ if (vdev_id == i) continue; peer = dp_peer_find_hash_find(soc, peer_addr, 0, i, DP_MOD_ID_CDP); if (peer) { dp_err("Duplicate peer "QDF_MAC_ADDR_FMT" already exist on vdev %d", QDF_MAC_ADDR_REF(peer_addr), i); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return true; } } return false; } bool dp_find_peer_exist(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, uint8_t *peer_addr) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_peer *peer = NULL; peer = dp_peer_find_hash_find(soc, peer_addr, 0, DP_VDEV_ALL, DP_MOD_ID_CDP); if (peer) { dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return true; } return false; } #endif /** * dp_peer_rxtid_stats: Retried Rx TID (REO queue) stats from HW * @peer: DP peer handle * @dp_stats_cmd_cb: REO command callback function * @cb_ctxt: Callback context * * Return: count of tid stats cmd send succeeded */ int dp_peer_rxtid_stats(struct dp_peer *peer, dp_rxtid_stats_cmd_cb dp_stats_cmd_cb, void *cb_ctxt) { struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; int i; int stats_cmd_sent_cnt = 0; QDF_STATUS status; if (!dp_stats_cmd_cb) return stats_cmd_sent_cnt; qdf_mem_zero(¶ms, sizeof(params)); for (i = 0; i < DP_MAX_TIDS; i++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[i]; if (rx_tid->hw_qdesc_vaddr_unaligned) { params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (cb_ctxt) { status = dp_reo_send_cmd( soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, cb_ctxt); } else { status = dp_reo_send_cmd( soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, rx_tid); } if (QDF_IS_STATUS_SUCCESS(status)) stats_cmd_sent_cnt++; /* Flush REO descriptor from HW cache to update stats * in descriptor memory. This is to help debugging */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 0; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.fl_cache_params.flush_no_inval = 1; dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL); } } return stats_cmd_sent_cnt; } QDF_STATUS dp_set_michael_key(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, bool is_unicast, uint32_t *key) { uint8_t sec_index = is_unicast ? 1 : 0; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_err("%pK: peer not found ", soc); return QDF_STATUS_E_FAILURE; } qdf_mem_copy(&peer->security[sec_index].michael_key[0], key, IEEE80211_WEP_MICLEN); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } /** * dp_vdev_bss_peer_ref_n_get: Get bss peer of a vdev * @soc: DP soc * @vdev: vdev * @mod_id: id of module requesting reference * * Return: VDEV BSS peer */ struct dp_peer *dp_vdev_bss_peer_ref_n_get(struct dp_soc *soc, struct dp_vdev *vdev, enum dp_mod_id mod_id) { struct dp_peer *peer = NULL; qdf_spin_lock_bh(&vdev->peer_list_lock); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (peer->bss_peer) break; } if (!peer) { qdf_spin_unlock_bh(&vdev->peer_list_lock); return NULL; } if (dp_peer_get_ref(soc, peer, mod_id) == QDF_STATUS_SUCCESS) { qdf_spin_unlock_bh(&vdev->peer_list_lock); return peer; } qdf_spin_unlock_bh(&vdev->peer_list_lock); return peer; } /** * dp_sta_vdev_self_peer_ref_n_get: Get self peer of sta vdev * @soc: DP soc * @vdev: vdev * @mod_id: id of module requesting reference * * Return: VDEV self peer */ struct dp_peer *dp_sta_vdev_self_peer_ref_n_get(struct dp_soc *soc, struct dp_vdev *vdev, enum dp_mod_id mod_id) { struct dp_peer *peer; if (vdev->opmode != wlan_op_mode_sta) return NULL; qdf_spin_lock_bh(&vdev->peer_list_lock); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (peer->sta_self_peer) break; } if (!peer) { qdf_spin_unlock_bh(&vdev->peer_list_lock); return NULL; } if (dp_peer_get_ref(soc, peer, mod_id) == QDF_STATUS_SUCCESS) { qdf_spin_unlock_bh(&vdev->peer_list_lock); return peer; } qdf_spin_unlock_bh(&vdev->peer_list_lock); return peer; } #ifdef DUMP_REO_QUEUE_INFO_IN_DDR void dp_dump_rx_reo_queue_info( struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; if (!rx_tid) return; if (reo_status->fl_cache_status.header.status != HAL_REO_CMD_SUCCESS) { dp_err_rl("Rx tid REO HW desc flush failed(%d)", reo_status->rx_queue_status.header.status); return; } qdf_spin_lock_bh(&rx_tid->tid_lock); hal_dump_rx_reo_queue_desc(rx_tid->hw_qdesc_vaddr_aligned); qdf_spin_unlock_bh(&rx_tid->tid_lock); } void dp_send_cache_flush_for_rx_tid( struct dp_soc *soc, struct dp_peer *peer) { int i; struct dp_rx_tid *rx_tid; struct hal_reo_cmd_params params; if (!peer) { dp_err_rl("Peer is NULL"); return; } for (i = 0; i < DP_MAX_TIDS; i++) { rx_tid = &peer->rx_tid[i]; if (!rx_tid) continue; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->hw_qdesc_vaddr_aligned) { qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.fl_cache_params.flush_no_inval = 0; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd( soc, CMD_FLUSH_CACHE, ¶ms, dp_dump_rx_reo_queue_info, (void *)rx_tid)) { dp_err_rl("cache flush send failed tid %d", rx_tid->tid); qdf_spin_unlock_bh(&rx_tid->tid_lock); break; } } qdf_spin_unlock_bh(&rx_tid->tid_lock); } } void dp_get_rx_reo_queue_info( struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_GENERIC_STATS); struct dp_peer *peer = NULL; if (!vdev) { dp_err_rl("vdev is null for vdev_id: %u", vdev_id); goto failed; } peer = dp_vdev_bss_peer_ref_n_get(soc, vdev, DP_MOD_ID_GENERIC_STATS); if (!peer) { dp_err_rl("Peer is NULL"); goto failed; } dp_send_cache_flush_for_rx_tid(soc, peer); failed: if (peer) dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS); if (vdev) dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_GENERIC_STATS); } #endif /* DUMP_REO_QUEUE_INFO_IN_DDR */ void dp_peer_flush_frags(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); struct dp_rx_tid *rx_tid; uint8_t tid; if (!peer) return; dp_info("Flushing fragments for peer " QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); for (tid = 0; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); dp_rx_defrag_waitlist_remove(peer, tid); dp_rx_reorder_flush_frag(peer, tid); qdf_spin_unlock_bh(&rx_tid->tid_lock); } dp_peer_unref_delete(peer, DP_MOD_ID_CDP); }