/* * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef _DP_RX_H #define _DP_RX_H #include "hal_rx.h" #include "dp_tx.h" #include "dp_peer.h" #include "dp_internal.h" #ifdef RXDMA_OPTIMIZATION #define RX_BUFFER_ALIGNMENT 128 #else /* RXDMA_OPTIMIZATION */ #define RX_BUFFER_ALIGNMENT 4 #endif /* RXDMA_OPTIMIZATION */ #ifdef QCA_HOST2FW_RXBUF_RING #define DP_WBM2SW_RBM HAL_RX_BUF_RBM_SW1_BM /** * For MCL cases, allocate as many RX descriptors as buffers in the SW2RXDMA * ring. This value may need to be tuned later. */ #define DP_RX_DESC_ALLOC_MULTIPLIER 1 #else #define DP_WBM2SW_RBM HAL_RX_BUF_RBM_SW3_BM /** * AP use cases need to allocate more RX Descriptors than the number of * entries avaialable in the SW2RXDMA buffer replenish ring. This is to account * for frames sitting in REO queues, HW-HW DMA rings etc. Hence using a * multiplication factor of 3, to allocate three times as many RX descriptors * as RX buffers. */ #define DP_RX_DESC_ALLOC_MULTIPLIER 3 #endif /* QCA_HOST2FW_RXBUF_RING */ #define RX_BUFFER_SIZE 2048 #define RX_BUFFER_RESERVATION 0 #define DP_PEER_METADATA_PEER_ID_MASK 0x0000ffff #define DP_PEER_METADATA_PEER_ID_SHIFT 0 #define DP_PEER_METADATA_VDEV_ID_MASK 0x00070000 #define DP_PEER_METADATA_VDEV_ID_SHIFT 16 #define DP_PEER_METADATA_PEER_ID_GET(_peer_metadata) \ (((_peer_metadata) & DP_PEER_METADATA_PEER_ID_MASK) \ >> DP_PEER_METADATA_PEER_ID_SHIFT) #define DP_PEER_METADATA_ID_GET(_peer_metadata) \ (((_peer_metadata) & DP_PEER_METADATA_VDEV_ID_MASK) \ >> DP_PEER_METADATA_VDEV_ID_SHIFT) #define DP_RX_DESC_MAGIC 0xdec0de /** * struct dp_rx_desc * * @nbuf : VA of the "skb" posted * @rx_buf_start : VA of the original Rx buffer, before * movement of any skb->data pointer * @cookie : index into the sw array which holds * the sw Rx descriptors * Cookie space is 21 bits: * lower 18 bits -- index * upper 3 bits -- pool_id * @pool_id : pool Id for which this allocated. * Can only be used if there is no flow * steering * @in_use rx_desc is in use * @unmapped used to mark rx_desc an unmapped if the corresponding * nbuf is already unmapped */ struct dp_rx_desc { qdf_nbuf_t nbuf; uint8_t *rx_buf_start; uint32_t cookie; uint8_t pool_id; #ifdef RX_DESC_DEBUG_CHECK uint32_t magic; #endif uint8_t in_use:1, unmapped:1; }; #define RX_DESC_COOKIE_INDEX_SHIFT 0 #define RX_DESC_COOKIE_INDEX_MASK 0x3ffff /* 18 bits */ #define RX_DESC_COOKIE_POOL_ID_SHIFT 18 #define RX_DESC_COOKIE_POOL_ID_MASK 0x1c0000 #define DP_RX_DESC_COOKIE_MAX \ (RX_DESC_COOKIE_INDEX_MASK | RX_DESC_COOKIE_POOL_ID_MASK) #define DP_RX_DESC_COOKIE_POOL_ID_GET(_cookie) \ (((_cookie) & RX_DESC_COOKIE_POOL_ID_MASK) >> \ RX_DESC_COOKIE_POOL_ID_SHIFT) #define DP_RX_DESC_COOKIE_INDEX_GET(_cookie) \ (((_cookie) & RX_DESC_COOKIE_INDEX_MASK) >> \ RX_DESC_COOKIE_INDEX_SHIFT) /* *dp_rx_xor_block() - xor block of data *@b: destination data block *@a: source data block *@len: length of the data to process * *Returns: None */ static inline void dp_rx_xor_block(uint8_t *b, const uint8_t *a, qdf_size_t len) { qdf_size_t i; for (i = 0; i < len; i++) b[i] ^= a[i]; } /* *dp_rx_rotl() - rotate the bits left *@val: unsigned integer input value *@bits: number of bits * *Returns: Integer with left rotated by number of 'bits' */ static inline uint32_t dp_rx_rotl(uint32_t val, int bits) { return (val << bits) | (val >> (32 - bits)); } /* *dp_rx_rotr() - rotate the bits right *@val: unsigned integer input value *@bits: number of bits * *Returns: Integer with right rotated by number of 'bits' */ static inline uint32_t dp_rx_rotr(uint32_t val, int bits) { return (val >> bits) | (val << (32 - bits)); } /* * dp_set_rx_queue() - set queue_mapping in skb * @nbuf: skb * @queue_id: rx queue_id * * Return: void */ #ifdef QCA_OL_RX_MULTIQ_SUPPORT static inline void dp_set_rx_queue(qdf_nbuf_t nbuf, uint8_t queue_id) { qdf_nbuf_record_rx_queue(nbuf, queue_id); return; } #else static inline void dp_set_rx_queue(qdf_nbuf_t nbuf, uint8_t queue_id) { } #endif /* *dp_rx_xswap() - swap the bits left *@val: unsigned integer input value * *Returns: Integer with bits swapped */ static inline uint32_t dp_rx_xswap(uint32_t val) { return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8); } /* *dp_rx_get_le32_split() - get little endian 32 bits split *@b0: byte 0 *@b1: byte 1 *@b2: byte 2 *@b3: byte 3 * *Returns: Integer with split little endian 32 bits */ static inline uint32_t dp_rx_get_le32_split(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24); } /* *dp_rx_get_le32() - get little endian 32 bits *@b0: byte 0 *@b1: byte 1 *@b2: byte 2 *@b3: byte 3 * *Returns: Integer with little endian 32 bits */ static inline uint32_t dp_rx_get_le32(const uint8_t *p) { return dp_rx_get_le32_split(p[0], p[1], p[2], p[3]); } /* * dp_rx_put_le32() - put little endian 32 bits * @p: destination char array * @v: source 32-bit integer * * Returns: None */ static inline void dp_rx_put_le32(uint8_t *p, uint32_t v) { p[0] = (v) & 0xff; p[1] = (v >> 8) & 0xff; p[2] = (v >> 16) & 0xff; p[3] = (v >> 24) & 0xff; } /* Extract michal mic block of data */ #define dp_rx_michael_block(l, r) \ do { \ r ^= dp_rx_rotl(l, 17); \ l += r; \ r ^= dp_rx_xswap(l); \ l += r; \ r ^= dp_rx_rotl(l, 3); \ l += r; \ r ^= dp_rx_rotr(l, 2); \ l += r; \ } while (0) /** * struct dp_rx_desc_list_elem_t * * @next : Next pointer to form free list * @rx_desc : DP Rx descriptor */ union dp_rx_desc_list_elem_t { union dp_rx_desc_list_elem_t *next; struct dp_rx_desc rx_desc; }; /** * dp_rx_cookie_2_va_rxdma_buf() - Converts cookie to a virtual address of * the Rx descriptor on Rx DMA source ring buffer * @soc: core txrx main context * @cookie: cookie used to lookup virtual address * * Return: void *: Virtual Address of the Rx descriptor */ static inline void *dp_rx_cookie_2_va_rxdma_buf(struct dp_soc *soc, uint32_t cookie) { uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie); uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie); struct rx_desc_pool *rx_desc_pool; if (qdf_unlikely(pool_id >= MAX_RXDESC_POOLS)) return NULL; rx_desc_pool = &soc->rx_desc_buf[pool_id]; if (qdf_unlikely(index >= rx_desc_pool->pool_size)) return NULL; return &(soc->rx_desc_buf[pool_id].array[index].rx_desc); } /** * dp_rx_cookie_2_va_mon_buf() - Converts cookie to a virtual address of * the Rx descriptor on monitor ring buffer * @soc: core txrx main context * @cookie: cookie used to lookup virtual address * * Return: void *: Virtual Address of the Rx descriptor */ static inline void *dp_rx_cookie_2_va_mon_buf(struct dp_soc *soc, uint32_t cookie) { uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie); uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie); /* TODO */ /* Add sanity for pool_id & index */ return &(soc->rx_desc_mon[pool_id].array[index].rx_desc); } /** * dp_rx_cookie_2_va_mon_status() - Converts cookie to a virtual address of * the Rx descriptor on monitor status ring buffer * @soc: core txrx main context * @cookie: cookie used to lookup virtual address * * Return: void *: Virtual Address of the Rx descriptor */ static inline void *dp_rx_cookie_2_va_mon_status(struct dp_soc *soc, uint32_t cookie) { uint8_t pool_id = DP_RX_DESC_COOKIE_POOL_ID_GET(cookie); uint16_t index = DP_RX_DESC_COOKIE_INDEX_GET(cookie); /* TODO */ /* Add sanity for pool_id & index */ return &(soc->rx_desc_status[pool_id].array[index].rx_desc); } void dp_rx_add_desc_list_to_free_list(struct dp_soc *soc, union dp_rx_desc_list_elem_t **local_desc_list, union dp_rx_desc_list_elem_t **tail, uint16_t pool_id, struct rx_desc_pool *rx_desc_pool); uint16_t dp_rx_get_free_desc_list(struct dp_soc *soc, uint32_t pool_id, struct rx_desc_pool *rx_desc_pool, uint16_t num_descs, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail); QDF_STATUS dp_rx_pdev_attach(struct dp_pdev *pdev); void dp_rx_pdev_detach(struct dp_pdev *pdev); uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint8_t reo_ring_num, uint32_t quota); uint32_t dp_rx_err_process(struct dp_soc *soc, void *hal_ring, uint32_t quota); uint32_t dp_rx_wbm_err_process(struct dp_soc *soc, void *hal_ring, uint32_t quota); /** * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across * multiple nbufs. * @nbuf: pointer to the first msdu of an amsdu. * @rx_tlv_hdr: pointer to the start of RX TLV headers. * * This function implements the creation of RX frag_list for cases * where an MSDU is spread across multiple nbufs. * * Return: returns the head nbuf which contains complete frag_list. */ qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr); QDF_STATUS dp_rx_desc_pool_alloc(struct dp_soc *soc, uint32_t pool_id, uint32_t pool_size, struct rx_desc_pool *rx_desc_pool); void dp_rx_desc_pool_free(struct dp_soc *soc, uint32_t pool_id, struct rx_desc_pool *rx_desc_pool); void dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list, struct dp_peer *peer); /** * dp_rx_add_to_free_desc_list() - Adds to a local free descriptor list * * @head: pointer to the head of local free list * @tail: pointer to the tail of local free list * @new: new descriptor that is added to the free list * * Return: void: */ static inline void dp_rx_add_to_free_desc_list(union dp_rx_desc_list_elem_t **head, union dp_rx_desc_list_elem_t **tail, struct dp_rx_desc *new) { qdf_assert(head && new); new->nbuf = NULL; new->in_use = 0; new->unmapped = 0; ((union dp_rx_desc_list_elem_t *)new)->next = *head; *head = (union dp_rx_desc_list_elem_t *)new; if (*tail == NULL) *tail = *head; } /** * dp_rx_wds_srcport_learn() - Add or update the STA PEER which * is behind the WDS repeater. * * @soc: core txrx main context * @rx_tlv_hdr: base address of RX TLV header * @ta_peer: WDS repeater peer * @nbuf: rx pkt * * Return: void: */ #ifdef FEATURE_WDS static inline void dp_rx_wds_srcport_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr, struct dp_peer *ta_peer, qdf_nbuf_t nbuf) { uint16_t sa_sw_peer_id = hal_rx_msdu_end_sa_sw_peer_id_get(rx_tlv_hdr); uint32_t flags = IEEE80211_NODE_F_WDS_HM; uint32_t ret = 0; uint8_t wds_src_mac[IEEE80211_ADDR_LEN]; struct dp_peer *sa_peer; struct dp_peer *wds_peer; struct dp_ast_entry *ast; uint16_t sa_idx; bool del_in_progress; uint8_t sa_is_valid; struct dp_neighbour_peer *neighbour_peer = NULL; struct dp_pdev *pdev = ta_peer->vdev->pdev; if (qdf_unlikely(!ta_peer)) return; /* For AP mode : Do wds source port learning only if it is a * 4-address mpdu * * For STA mode : Frames from RootAP backend will be in 3-address mode, * till RootAP does the WDS source port learning; Hence in repeater/STA * mode, we enable learning even in 3-address mode , to avoid RootAP * backbone getting wrongly learnt as MEC on repeater */ if (ta_peer->vdev->opmode != wlan_op_mode_sta) { if (!(qdf_nbuf_is_rx_chfrag_start(nbuf) && hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr))) return; } else { /* For HKv2 Source port learing is not needed in STA mode * as we have support in HW */ if (soc->ast_override_support) return; } memcpy(wds_src_mac, (qdf_nbuf_data(nbuf) + IEEE80211_ADDR_LEN), IEEE80211_ADDR_LEN); sa_is_valid = hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr); if (qdf_unlikely(!sa_is_valid)) { ret = dp_peer_add_ast(soc, ta_peer, wds_src_mac, CDP_TXRX_AST_TYPE_WDS, flags); return; } /* * Get the AST entry from HW SA index and mark it as active */ sa_idx = hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr); qdf_spin_lock_bh(&soc->ast_lock); ast = soc->ast_table[sa_idx]; qdf_spin_unlock_bh(&soc->ast_lock); if (!ast) { /* * In HKv1, it is possible that HW retains the AST entry in * GSE cache on 1 radio , even after the AST entry is deleted * (on another radio). * * Due to this, host might still get sa_is_valid indications * for frames with SA not really present in AST table. * * So we go ahead and send an add_ast command to FW in such * cases where sa is reported still as valid, so that FW will * invalidate this GSE cache entry and new AST entry gets * cached. */ if (!soc->ast_override_support) { wds_peer = dp_peer_find_hash_find(soc, wds_src_mac, 0, DP_VDEV_ALL); if (wds_peer) { del_in_progress = wds_peer->delete_in_progress; dp_peer_unref_delete(wds_peer); if (!del_in_progress) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "wds peer %pM found", wds_src_mac); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "No AST no Del in progress"); } return; } ret = dp_peer_add_ast(soc, ta_peer, wds_src_mac, CDP_TXRX_AST_TYPE_WDS, flags); return; } else { /* In HKv2 smart monitor case, when NAC client is * added first and this client roams within BSS to * connect to RE, since we have an AST entry for * NAC we get sa_is_valid bit set. So we check if * smart monitor is enabled and send add_ast command * to FW. */ if (pdev->neighbour_peers_added) { qdf_spin_lock_bh(&pdev->neighbour_peer_mutex); TAILQ_FOREACH(neighbour_peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem) { if (!qdf_mem_cmp(&neighbour_peer->neighbour_peers_macaddr, wds_src_mac, DP_MAC_ADDR_LEN)) { ret = dp_peer_add_ast(soc, ta_peer, wds_src_mac, CDP_TXRX_AST_TYPE_WDS, flags); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "sa valid and nac roamed to wds"); break; } } qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); } return; } } if ((ast->type == CDP_TXRX_AST_TYPE_WDS_HM) || (ast->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC)) return; /* * Ensure we are updating the right AST entry by * validating ast_idx. * There is a possibility we might arrive here without * AST MAP event , so this check is mandatory */ if (ast->is_mapped && (ast->ast_idx == sa_idx)) ast->is_active = TRUE; if (sa_sw_peer_id != ta_peer->peer_ids[0]) { sa_peer = ast->peer; if ((ast->type != CDP_TXRX_AST_TYPE_STATIC) && (ast->type != CDP_TXRX_AST_TYPE_SELF) && (ast->type != CDP_TXRX_AST_TYPE_STA_BSS)) { if (ast->pdev_id != ta_peer->vdev->pdev->pdev_id) { /* This case is when a STA roams from one * repeater to another repeater, but these * repeaters are connected to root AP on * different radios. * Ex: rptr1 connected to ROOT AP over 5G * and rptr2 connected to ROOT AP over 2G * radio */ qdf_spin_lock_bh(&soc->ast_lock); dp_peer_del_ast(soc, ast); qdf_spin_unlock_bh(&soc->ast_lock); } else { /* this case is when a STA roams from one * reapter to another repeater, but inside * same radio. */ qdf_spin_lock_bh(&soc->ast_lock); dp_peer_update_ast(soc, ta_peer, ast, flags); qdf_spin_unlock_bh(&soc->ast_lock); return; } } /* * Do not kickout STA if it belongs to a different radio. * For DBDC repeater, it is possible to arrive here * for multicast loopback frames originated from connected * clients and looped back (intrabss) by Root AP */ if (ast->pdev_id != ta_peer->vdev->pdev->pdev_id) { return; } /* * Kickout, when direct associated peer(SA) roams * to another AP and reachable via TA peer */ if ((sa_peer->vdev->opmode == wlan_op_mode_ap) && !sa_peer->delete_in_progress) { sa_peer->delete_in_progress = true; if (soc->cdp_soc.ol_ops->peer_sta_kickout) { soc->cdp_soc.ol_ops->peer_sta_kickout( sa_peer->vdev->pdev->ctrl_pdev, wds_src_mac); } } } return; } #else static inline void dp_rx_wds_srcport_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr, struct dp_peer *ta_peer, qdf_nbuf_t nbuf) { } #endif uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t nbuf); void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc, qdf_nbuf_t mpdu, bool mpdu_done); void dp_rx_process_mic_error(struct dp_soc *soc, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_peer *peer); #define DP_RX_LIST_APPEND(head, tail, elem) \ do { \ if (!(head)) { \ (head) = (elem); \ QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(head) = 1;\ } else { \ qdf_nbuf_set_next((tail), (elem)); \ QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(head)++; \ } \ (tail) = (elem); \ qdf_nbuf_set_next((tail), NULL); \ } while (0) #ifndef BUILD_X86 static inline int check_x86_paddr(struct dp_soc *dp_soc, qdf_nbuf_t *rx_netbuf, qdf_dma_addr_t *paddr, struct dp_pdev *pdev) { return QDF_STATUS_SUCCESS; } #else #define MAX_RETRY 100 static inline int check_x86_paddr(struct dp_soc *dp_soc, qdf_nbuf_t *rx_netbuf, qdf_dma_addr_t *paddr, struct dp_pdev *pdev) { uint32_t nbuf_retry = 0; int32_t ret; const uint32_t x86_phy_addr = 0x50000000; /* * in M2M emulation platforms (x86) the memory below 0x50000000 * is reserved for target use, so any memory allocated in this * region should not be used by host */ do { if (qdf_likely(*paddr > x86_phy_addr)) return QDF_STATUS_SUCCESS; else { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "phy addr %pK exceeded 0x50000000 trying again", paddr); nbuf_retry++; if ((*rx_netbuf)) { qdf_nbuf_unmap_single(dp_soc->osdev, *rx_netbuf, QDF_DMA_BIDIRECTIONAL); /* Not freeing buffer intentionally. * Observed that same buffer is getting * re-allocated resulting in longer load time * WMI init timeout. * This buffer is anyway not useful so skip it. **/ } *rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE, RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT, FALSE); if (qdf_unlikely(!(*rx_netbuf))) return QDF_STATUS_E_FAILURE; ret = qdf_nbuf_map_single(dp_soc->osdev, *rx_netbuf, QDF_DMA_BIDIRECTIONAL); if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) { qdf_nbuf_free(*rx_netbuf); *rx_netbuf = NULL; continue; } *paddr = qdf_nbuf_get_frag_paddr(*rx_netbuf, 0); } } while (nbuf_retry < MAX_RETRY); if ((*rx_netbuf)) { qdf_nbuf_unmap_single(dp_soc->osdev, *rx_netbuf, QDF_DMA_BIDIRECTIONAL); qdf_nbuf_free(*rx_netbuf); } return QDF_STATUS_E_FAILURE; } #endif /** * dp_rx_cookie_2_link_desc_va() - Converts cookie to a virtual address of * the MSDU Link Descriptor * @soc: core txrx main context * @buf_info: buf_info include cookie that used to lookup virtual address of * link descriptor Normally this is just an index into a per SOC array. * * This is the VA of the link descriptor, that HAL layer later uses to * retrieve the list of MSDU's for a given MPDU. * * Return: void *: Virtual Address of the Rx descriptor */ static inline void *dp_rx_cookie_2_link_desc_va(struct dp_soc *soc, struct hal_buf_info *buf_info) { void *link_desc_va; uint32_t bank_id = LINK_DESC_COOKIE_BANK_ID(buf_info->sw_cookie); /* TODO */ /* Add sanity for cookie */ link_desc_va = soc->link_desc_banks[bank_id].base_vaddr + (buf_info->paddr - soc->link_desc_banks[bank_id].base_paddr); return link_desc_va; } /** * dp_rx_cookie_2_mon_link_desc_va() - Converts cookie to a virtual address of * the MSDU Link Descriptor * @pdev: core txrx pdev context * @buf_info: buf_info includes cookie that used to lookup virtual address of * link descriptor. Normally this is just an index into a per pdev array. * * This is the VA of the link descriptor in monitor mode destination ring, * that HAL layer later uses to retrieve the list of MSDU's for a given MPDU. * * Return: void *: Virtual Address of the Rx descriptor */ static inline void *dp_rx_cookie_2_mon_link_desc_va(struct dp_pdev *pdev, struct hal_buf_info *buf_info, int mac_id) { void *link_desc_va; int mac_for_pdev = dp_get_mac_id_for_mac(pdev->soc, mac_id); /* TODO */ /* Add sanity for cookie */ link_desc_va = pdev->link_desc_banks[mac_for_pdev][buf_info->sw_cookie].base_vaddr + (buf_info->paddr - pdev->link_desc_banks[mac_for_pdev][buf_info->sw_cookie].base_paddr); return link_desc_va; } /** * dp_rx_defrag_concat() - Concatenate the fragments * * @dst: destination pointer to the buffer * @src: source pointer from where the fragment payload is to be copied * * Return: QDF_STATUS */ static inline QDF_STATUS dp_rx_defrag_concat(qdf_nbuf_t dst, qdf_nbuf_t src) { /* * Inside qdf_nbuf_cat, if it is necessary to reallocate dst * to provide space for src, the headroom portion is copied from * the original dst buffer to the larger new dst buffer. * (This is needed, because the headroom of the dst buffer * contains the rx desc.) */ if (qdf_nbuf_cat(dst, src)) return QDF_STATUS_E_DEFRAG_ERROR; return QDF_STATUS_SUCCESS; } /* * dp_rx_ast_set_active() - set the active flag of the astentry * corresponding to a hw index. * @soc: core txrx main context * @sa_idx: hw idx * @is_active: active flag * */ #ifdef FEATURE_WDS static inline QDF_STATUS dp_rx_ast_set_active(struct dp_soc *soc, uint16_t sa_idx, bool is_active) { struct dp_ast_entry *ast; qdf_spin_lock_bh(&soc->ast_lock); ast = soc->ast_table[sa_idx]; /* * Ensure we are updating the right AST entry by * validating ast_idx. * There is a possibility we might arrive here without * AST MAP event , so this check is mandatory */ if (ast && ast->is_mapped && (ast->ast_idx == sa_idx)) { ast->is_active = is_active; qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_SUCCESS; } qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_FAILURE; } #else static inline QDF_STATUS dp_rx_ast_set_active(struct dp_soc *soc, uint16_t sa_idx, bool is_active) { return QDF_STATUS_SUCCESS; } #endif /* * check_qwrap_multicast_loopback() - Check if rx packet is a loopback packet. * In qwrap mode, packets originated from * any vdev should not loopback and * should be dropped. * @vdev: vdev on which rx packet is received * @nbuf: rx pkt * */ #if ATH_SUPPORT_WRAP static inline bool check_qwrap_multicast_loopback(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { struct dp_vdev *psta_vdev; struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; uint8_t *data = qdf_nbuf_data(nbuf); uint8_t i; for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) { pdev = soc->pdev_list[i]; if (qdf_unlikely(vdev->proxysta_vdev)) { /* In qwrap isolation mode, allow loopback packets as all * packets go to RootAP and Loopback on the mpsta. */ if (vdev->isolation_vdev) return false; TAILQ_FOREACH(psta_vdev, &pdev->vdev_list, vdev_list_elem) { if (qdf_unlikely(psta_vdev->proxysta_vdev && !qdf_mem_cmp(psta_vdev->mac_addr.raw, &data[DP_MAC_ADDR_LEN], DP_MAC_ADDR_LEN))) { /* Drop packet if source address is equal to * any of the vdev addresses. */ return true; } } } } return false; } #else static inline bool check_qwrap_multicast_loopback(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { return false; } #endif /* * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs * called during dp rx initialization * and at the end of dp_rx_process. * * @soc: core txrx main context * @mac_id: mac_id which is one of 3 mac_ids * @dp_rxdma_srng: dp rxdma circular ring * @rx_desc_pool: Pointer to free Rx descriptor pool * @num_req_buffers: number of buffer to be replenished * @desc_list: list of descs if called from dp_rx_process * or NULL during dp rx initialization or out of buffer * interrupt. * @tail: tail of descs list * Return: return success or failure */ QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail); /** * dp_rx_link_desc_return() - Return a MPDU link descriptor to HW * (WBM), following error handling * * @soc: core DP main context * @buf_addr_info: opaque pointer to the REO error ring descriptor * @buf_addr_info: void pointer to the buffer_addr_info * @bm_action: put to idle_list or release to msdu_list * Return: QDF_STATUS */ QDF_STATUS dp_rx_link_desc_return(struct dp_soc *soc, void *ring_desc, uint8_t bm_action); QDF_STATUS dp_rx_link_desc_buf_return(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng, void *buf_addr_info, uint8_t bm_action); /** * dp_rx_link_desc_return_by_addr - Return a MPDU link descriptor to * (WBM) by address * * @soc: core DP main context * @link_desc_addr: link descriptor addr * * Return: QDF_STATUS */ QDF_STATUS dp_rx_link_desc_return_by_addr(struct dp_soc *soc, void *link_desc_addr, uint8_t bm_action); uint32_t dp_rxdma_err_process(struct dp_soc *soc, uint32_t mac_id, uint32_t quota); void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr, struct dp_peer *peer); QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr); int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr, struct dp_vdev *vdev, struct dp_peer *peer, int rx_mcast); qdf_nbuf_t dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev); #endif /* _DP_RX_H */