// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #include <dt-bindings/regulator/qcom,rpmh-regulator-levels.h> #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/dma-map-ops.h> #include <linux/firmware.h> #include <linux/interconnect.h> #include <linux/io.h> #include <linux/kobject.h> #include <linux/of_platform.h> #include <linux/qcom-iommu-util.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/soc/qcom/llcc-qcom.h> #include <linux/sysfs.h> #include <soc/qcom/cmd-db.h> #include "adreno.h" #include "adreno_gen8.h" #include "adreno_trace.h" #include "kgsl_bus.h" #include "kgsl_device.h" #include "kgsl_trace.h" #include "kgsl_util.h" static struct gmu_vma_entry gen8_gmu_vma[] = { [GMU_ITCM] = { .start = 0x00000000, .size = SZ_16K, }, [GMU_CACHE] = { .start = SZ_16K, .size = (SZ_16M - SZ_16K), .next_va = SZ_16K, }, [GMU_DTCM] = { .start = SZ_256M + SZ_16K, .size = SZ_16K, }, [GMU_DCACHE] = { .start = 0x0, .size = 0x0, }, [GMU_NONCACHED_KERNEL] = { .start = 0x60000000, .size = SZ_512M, .next_va = 0x60000000, }, [GMU_NONCACHED_KERNEL_EXTENDED] = { .start = 0xc0000000, .size = SZ_512M, .next_va = 0xc0000000, }, }; static ssize_t log_stream_enable_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, log_kobj); bool val; int ret; ret = kstrtobool(buf, &val); if (ret) return ret; gmu->log_stream_enable = val; adreno_mark_for_coldboot(gen8_gmu_to_adreno(gmu)); return count; } static ssize_t log_stream_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, log_kobj); return scnprintf(buf, PAGE_SIZE, "%d\n", gmu->log_stream_enable); } static ssize_t log_group_mask_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, log_kobj); u32 val; int ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; gmu->log_group_mask = val; adreno_mark_for_coldboot(gen8_gmu_to_adreno(gmu)); return count; } static ssize_t log_group_mask_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, log_kobj); return scnprintf(buf, PAGE_SIZE, "%x\n", gmu->log_group_mask); } static struct kobj_attribute log_stream_enable_attr = __ATTR(log_stream_enable, 0644, log_stream_enable_show, log_stream_enable_store); static struct kobj_attribute log_group_mask_attr = __ATTR(log_group_mask, 0644, log_group_mask_show, log_group_mask_store); static struct attribute *log_attrs[] = { &log_stream_enable_attr.attr, &log_group_mask_attr.attr, NULL, }; ATTRIBUTE_GROUPS(log); static struct kobj_type log_kobj_type = { .sysfs_ops = &kobj_sysfs_ops, .default_groups = log_groups, }; static ssize_t stats_enable_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, stats_kobj); bool val; int ret; ret = kstrtobool(buf, &val); if (ret) return ret; gmu->stats_enable = val; adreno_mark_for_coldboot(gen8_gmu_to_adreno(gmu)); return count; } static ssize_t stats_enable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, stats_kobj); return scnprintf(buf, PAGE_SIZE, "%d\n", gmu->stats_enable); } static ssize_t stats_mask_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, stats_kobj); u32 val; int ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; gmu->stats_mask = val; adreno_mark_for_coldboot(gen8_gmu_to_adreno(gmu)); return count; } static ssize_t stats_mask_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, stats_kobj); return scnprintf(buf, PAGE_SIZE, "%x\n", gmu->stats_mask); } static ssize_t stats_interval_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, stats_kobj); u32 val; int ret; ret = kstrtou32(buf, 0, &val); if (ret) return ret; gmu->stats_interval = val; adreno_mark_for_coldboot(gen8_gmu_to_adreno(gmu)); return count; } static ssize_t stats_interval_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct gen8_gmu_device *gmu = container_of(kobj, struct gen8_gmu_device, stats_kobj); return scnprintf(buf, PAGE_SIZE, "%x\n", gmu->stats_interval); } static struct kobj_attribute stats_enable_attr = __ATTR(stats_enable, 0644, stats_enable_show, stats_enable_store); static struct kobj_attribute stats_mask_attr = __ATTR(stats_mask, 0644, stats_mask_show, stats_mask_store); static struct kobj_attribute stats_interval_attr = __ATTR(stats_interval, 0644, stats_interval_show, stats_interval_store); static struct attribute *stats_attrs[] = { &stats_enable_attr.attr, &stats_mask_attr.attr, &stats_interval_attr.attr, NULL, }; ATTRIBUTE_GROUPS(stats); static struct kobj_type stats_kobj_type = { .sysfs_ops = &kobj_sysfs_ops, .default_groups = stats_groups, }; static int gen8_timed_poll_check_rscc(struct gen8_gmu_device *gmu, u32 offset, u32 expected_ret, u32 timeout, u32 mask) { u32 value; return readl_poll_timeout(gmu->rscc_virt + (offset << 2), value, (value & mask) == expected_ret, 100, timeout * 1000); } struct gen8_gmu_device *to_gen8_gmu(struct adreno_device *adreno_dev) { struct gen8_device *gen8_dev = container_of(adreno_dev, struct gen8_device, adreno_dev); return &gen8_dev->gmu; } struct adreno_device *gen8_gmu_to_adreno(struct gen8_gmu_device *gmu) { struct gen8_device *gen8_dev = container_of(gmu, struct gen8_device, gmu); return &gen8_dev->adreno_dev; } /* Configure and enable GMU low power mode */ static void gen8_gmu_power_config(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); /* Disable GMU WB/RB buffer and caches at boot */ gmu_core_regwrite(device, GEN8_GMUCX_SYS_BUS_CONFIG, 0x1); gmu_core_regwrite(device, GEN8_GMUCX_ICACHE_CONFIG, 0x1); gmu_core_regwrite(device, GEN8_GMUCX_DCACHE_CONFIG, 0x1); } static void gmu_ao_sync_event(struct adreno_device *adreno_dev) { const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned long flags; u64 ticks; /* * Get the GMU always on ticks and log it in a trace message. This * will be used to map GMU ticks to ftrace time. Do this in atomic * context to ensure nothing happens between reading the always * on ticks and doing the trace. */ local_irq_save(flags); ticks = gpudev->read_alwayson(adreno_dev); trace_gmu_ao_sync(ticks); local_irq_restore(flags); } int gen8_gmu_device_start(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); gmu_core_reset_trace_header(&gmu->trace); gmu_ao_sync_event(adreno_dev); /* Bring GMU out of reset */ gmu_core_regwrite(device, GEN8_GMUCX_CM3_SYSRESET, 0); /* Make sure the write is posted before moving ahead */ wmb(); if (gmu_core_timed_poll_check(device, GEN8_GMUCX_CM3_FW_INIT_RESULT, BIT(8), 100, GENMASK(8, 0))) { dev_err(&gmu->pdev->dev, "GMU failed to come out of reset\n"); gmu_core_fault_snapshot(device); return -ETIMEDOUT; } return 0; } /* * gen8_gmu_hfi_start() - Write registers and start HFI. * @device: Pointer to KGSL device */ int gen8_gmu_hfi_start(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); gmu_core_regwrite(device, GEN8_GMUCX_HFI_CTRL_INIT, 1); if (gmu_core_timed_poll_check(device, GEN8_GMUCX_HFI_CTRL_STATUS, BIT(0), 100, BIT(0))) { dev_err(&gmu->pdev->dev, "GMU HFI init failed\n"); gmu_core_fault_snapshot(device); return -ETIMEDOUT; } return 0; } int gen8_rscc_wakeup_sequence(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct device *dev = &gmu->pdev->dev; /* Skip wakeup sequence if we didn't do the sleep sequence */ if (!test_bit(GMU_PRIV_RSCC_SLEEP_DONE, &gmu->flags)) return 0; /* RSC wake sequence */ gmu_core_regwrite(device, GEN8_GMUAO_RSCC_CONTROL_REQ, BIT(1)); /* Write request before polling */ wmb(); if (gmu_core_timed_poll_check(device, GEN8_GMUAO_RSCC_CONTROL_ACK, BIT(1), 100, BIT(1))) { dev_err(dev, "Failed to do GPU RSC power on\n"); return -ETIMEDOUT; } if (gen8_timed_poll_check_rscc(gmu, GEN8_RSCC_SEQ_BUSY_DRV0, 0x0, 100, UINT_MAX)) { dev_err(dev, "GPU RSC sequence stuck in waking up GPU\n"); return -ETIMEDOUT; } gmu_core_regwrite(device, GEN8_GMUAO_RSCC_CONTROL_REQ, 0); clear_bit(GMU_PRIV_RSCC_SLEEP_DONE, &gmu->flags); return 0; } int gen8_rscc_sleep_sequence(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; if (!test_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags)) return 0; if (test_bit(GMU_PRIV_RSCC_SLEEP_DONE, &gmu->flags)) return 0; gmu_core_regwrite(device, GEN8_GMUCX_CM3_SYSRESET, 1); /* Make sure M3 is in reset before going on */ wmb(); gmu_core_regread(device, GEN8_GMUCX_GENERAL_9, &gmu->log_wptr_retention); gmu_core_regwrite(device, GEN8_GMUAO_RSCC_CONTROL_REQ, BIT(0)); /* Make sure the request completes before continuing */ wmb(); ret = gen8_timed_poll_check_rscc(gmu, GEN8_GPU_RSCC_RSC_STATUS0_DRV0, BIT(16), 100, BIT(16)); if (ret) { dev_err(&gmu->pdev->dev, "GPU RSC power off fail\n"); return -ETIMEDOUT; } gmu_core_regwrite(device, GEN8_GMUAO_RSCC_CONTROL_REQ, 0); set_bit(GMU_PRIV_RSCC_SLEEP_DONE, &gmu->flags); return 0; } static struct kgsl_memdesc *find_gmu_memdesc(struct gen8_gmu_device *gmu, u32 addr, u32 size) { int i; for (i = 0; i < gmu->global_entries; i++) { struct kgsl_memdesc *md = &gmu->gmu_globals[i]; if ((addr >= md->gmuaddr) && (((addr + size) <= (md->gmuaddr + md->size)))) return md; } return NULL; } static int find_vma_block(struct gen8_gmu_device *gmu, u32 addr, u32 size) { int i; for (i = 0; i < GMU_MEM_TYPE_MAX; i++) { struct gmu_vma_entry *vma = &gmu->vma[i]; if ((addr >= vma->start) && ((addr + size) <= (vma->start + vma->size))) return i; } return -ENOENT; } static void load_tcm(struct adreno_device *adreno_dev, const u8 *src, u32 tcm_start, u32 base, const struct gmu_block_header *blk) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); u32 tcm_offset = tcm_start + ((blk->addr - base)/sizeof(u32)); kgsl_regmap_bulk_write(&device->regmap, tcm_offset, src, blk->size >> 2); } int gen8_gmu_load_fw(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const u8 *fw = (const u8 *)gmu->fw_image->data; while (fw < gmu->fw_image->data + gmu->fw_image->size) { const struct gmu_block_header *blk = (const struct gmu_block_header *)fw; int id; fw += sizeof(*blk); /* Don't deal with zero size blocks */ if (blk->size == 0) continue; id = find_vma_block(gmu, blk->addr, blk->size); if (id < 0) { dev_err(&gmu->pdev->dev, "Unknown block in GMU FW addr:0x%x size:0x%x\n", blk->addr, blk->size); return -EINVAL; } if (id == GMU_ITCM) { load_tcm(adreno_dev, fw, GEN8_GMU_CM3_ITCM_START, gmu->vma[GMU_ITCM].start, blk); } else if (id == GMU_DTCM) { load_tcm(adreno_dev, fw, GEN8_GMU_CM3_DTCM_START, gmu->vma[GMU_DTCM].start, blk); } else { struct kgsl_memdesc *md = find_gmu_memdesc(gmu, blk->addr, blk->size); if (!md) { dev_err(&gmu->pdev->dev, "No backing memory for GMU FW block addr:0x%x size:0x%x\n", blk->addr, blk->size); return -EINVAL; } memcpy(md->hostptr + (blk->addr - md->gmuaddr), fw, blk->size); } fw += blk->size; } /* Proceed only after the FW is written */ wmb(); return 0; } static const char *oob_to_str(enum oob_request req) { switch (req) { case oob_gpu: return "oob_gpu"; case oob_perfcntr: return "oob_perfcntr"; case oob_boot_slumber: return "oob_boot_slumber"; case oob_dcvs: return "oob_dcvs"; default: return "unknown"; } } static void trigger_reset_recovery(struct adreno_device *adreno_dev, enum oob_request req) { /* * Trigger recovery for perfcounter oob only since only * perfcounter oob can happen alongside an actively rendering gpu. */ if (req != oob_perfcntr) return; if (adreno_dev->dispatch_ops && adreno_dev->dispatch_ops->fault) adreno_dev->dispatch_ops->fault(adreno_dev, ADRENO_GMU_FAULT_SKIP_SNAPSHOT); } int gen8_gmu_oob_set(struct kgsl_device *device, enum oob_request req) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret = 0; int set, check; if (req == oob_perfcntr && gmu->num_oob_perfcntr++) return 0; if (req >= oob_boot_slumber) { dev_err(&gmu->pdev->dev, "Unsupported OOB request %s\n", oob_to_str(req)); return -EINVAL; } set = BIT(30 - req * 2); check = BIT(31 - req); gmu_core_regwrite(device, GEN8_GMUCX_HOST2GMU_INTR_SET, set); if (gmu_core_timed_poll_check(device, GEN8_GMUCX_GMU2HOST_INTR_INFO, check, 100, check)) { if (req == oob_perfcntr) gmu->num_oob_perfcntr--; gmu_core_fault_snapshot(device); ret = -ETIMEDOUT; WARN(1, "OOB request %s timed out\n", oob_to_str(req)); trigger_reset_recovery(adreno_dev, req); } gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_CLR, check); trace_kgsl_gmu_oob_set(set); return ret; } void gen8_gmu_oob_clear(struct kgsl_device *device, enum oob_request req) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int clear = BIT(31 - req * 2); if (req == oob_perfcntr && --gmu->num_oob_perfcntr) return; if (req >= oob_boot_slumber) { dev_err(&gmu->pdev->dev, "Unsupported OOB clear %s\n", oob_to_str(req)); return; } gmu_core_regwrite(device, GEN8_GMUCX_HOST2GMU_INTR_SET, clear); trace_kgsl_gmu_oob_clear(clear); } void gen8_gmu_irq_enable(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct gen8_hfi *hfi = &gmu->hfi; /* Clear pending IRQs and Unmask needed IRQs */ gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_CLR, UINT_MAX); gmu_core_regwrite(device, GEN8_GMUAO_AO_HOST_INTERRUPT_CLR, UINT_MAX); gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_MASK, (u32)~HFI_IRQ_MASK); gmu_core_regwrite(device, GEN8_GMUAO_AO_HOST_INTERRUPT_MASK, (u32)~GMU_AO_INT_MASK); /* Enable all IRQs on host */ enable_irq(hfi->irq); enable_irq(gmu->irq); if (device->cx_host_irq_num <= 0) return; /* Clear pending IRQs, unmask needed interrupts and enable CX host IRQ */ adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_INT_CLEAR_CMD, UINT_MAX); adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_INT_0_MASK, GEN8_CX_MISC_INT_MASK); enable_irq(device->cx_host_irq_num); } void gen8_gmu_irq_disable(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct gen8_hfi *hfi = &gmu->hfi; /* Disable all IRQs on host */ disable_irq(gmu->irq); disable_irq(hfi->irq); /* Mask all IRQs and clear pending IRQs */ gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_MASK, UINT_MAX); gmu_core_regwrite(device, GEN8_GMUAO_AO_HOST_INTERRUPT_MASK, UINT_MAX); gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_CLR, UINT_MAX); gmu_core_regwrite(device, GEN8_GMUAO_AO_HOST_INTERRUPT_CLR, UINT_MAX); if (device->cx_host_irq_num <= 0) return; /* Disable CX host IRQ, mask all interrupts and clear pending IRQs */ disable_irq(device->cx_host_irq_num); adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_INT_0_MASK, UINT_MAX); adreno_cx_misc_regwrite(adreno_dev, GEN8_GPU_CX_MISC_INT_CLEAR_CMD, UINT_MAX); } static int gen8_gmu_hfi_start_msg(struct adreno_device *adreno_dev) { struct hfi_start_cmd req; int ret; ret = CMD_MSG_HDR(req, H2F_MSG_START); if (ret) return ret; return gen8_hfi_send_generic_req(adreno_dev, &req, sizeof(req)); } static u32 gen8_rscc_tcsm_drv0_status_reglist[] = { GEN8_RSCC_TCS0_DRV0_STATUS, GEN8_RSCC_TCS1_DRV0_STATUS, GEN8_RSCC_TCS2_DRV0_STATUS, GEN8_RSCC_TCS3_DRV0_STATUS, GEN8_RSCC_TCS4_DRV0_STATUS, GEN8_RSCC_TCS5_DRV0_STATUS, GEN8_RSCC_TCS6_DRV0_STATUS, GEN8_RSCC_TCS7_DRV0_STATUS, GEN8_RSCC_TCS8_DRV0_STATUS, GEN8_RSCC_TCS9_DRV0_STATUS, }; static int gen8_complete_rpmh_votes(struct gen8_gmu_device *gmu, u32 timeout) { int i, ret = 0; for (i = 0; i < ARRAY_SIZE(gen8_rscc_tcsm_drv0_status_reglist); i++) ret |= gen8_timed_poll_check_rscc(gmu, gen8_rscc_tcsm_drv0_status_reglist[i], BIT(0), timeout, BIT(0)); if (ret) dev_err(&gmu->pdev->dev, "RPMH votes timedout: %d\n", ret); return ret; } #define GX_GDSC_POWER_OFF BIT(0) #define GX_CLK_OFF BIT(1) #define is_on(val) (!(val & (GX_GDSC_POWER_OFF | GX_CLK_OFF))) bool gen8_gmu_gx_is_on(struct adreno_device *adreno_dev) { u32 val; gmu_core_regread(KGSL_DEVICE(adreno_dev), GEN8_GMUCX_GFX_PWR_CLK_STATUS, &val); return is_on(val); } bool gen8_gmu_rpmh_pwr_state_is_active(struct kgsl_device *device) { u32 val; gmu_core_regread(device, GEN8_GMUCX_RPMH_POWER_STATE, &val); return (val == GPU_HW_ACTIVE) ? true : false; } static const char *idle_level_name(int level) { if (level == GPU_HW_ACTIVE) return "GPU_HW_ACTIVE"; else if (level == GPU_HW_IFPC) return "GPU_HW_IFPC"; return "(Unknown)"; } int gen8_gmu_wait_for_lowest_idle(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); u32 reg, reg1, reg2, reg3, reg4; unsigned long t; u64 ts1, ts2; ts1 = gpudev->read_alwayson(adreno_dev); t = jiffies + msecs_to_jiffies(100); do { gmu_core_regread(device, GEN8_GMUCX_RPMH_POWER_STATE, ®); gmu_core_regread(device, GEN8_GMUCX_GFX_PWR_CLK_STATUS, ®1); /* * Check that we are at lowest level. If lowest level is IFPC * double check that GFX clock is off. */ if (gmu->idle_level == reg) if (!(gmu->idle_level == GPU_HW_IFPC && is_on(reg1))) return 0; /* Wait 100us to reduce unnecessary AHB bus traffic */ usleep_range(10, 100); } while (!time_after(jiffies, t)); /* Check one last time */ gmu_core_regread(device, GEN8_GMUCX_RPMH_POWER_STATE, ®); gmu_core_regread(device, GEN8_GMUCX_GFX_PWR_CLK_STATUS, ®1); /* * Check that we are at lowest level. If lowest level is IFPC * double check that GFX clock is off. */ if (gmu->idle_level == reg) if (!(gmu->idle_level == GPU_HW_IFPC && is_on(reg1))) return 0; ts2 = gpudev->read_alwayson(adreno_dev); /* Collect abort data to help with debugging */ gmu_core_regread(device, GEN8_GMUAO_GPU_CX_BUSY_STATUS, ®2); gmu_core_regread(device, GEN8_GMUAO_RBBM_INT_UNMASKED_STATUS_SHADOW, ®3); gmu_core_regread(device, GEN8_GMUCX_PWR_COL_KEEPALIVE, ®4); dev_err(&gmu->pdev->dev, "----------------------[ GMU error ]----------------------\n"); dev_err(&gmu->pdev->dev, "Timeout waiting for lowest idle level %s\n", idle_level_name(gmu->idle_level)); dev_err(&gmu->pdev->dev, "Start: %llx (absolute ticks)\n", ts1); dev_err(&gmu->pdev->dev, "Poll: %llx (ticks relative to start)\n", ts2-ts1); dev_err(&gmu->pdev->dev, "RPMH_POWER_STATE=%x GFX_PWR_CLK_STATUS=%x\n", reg, reg1); dev_err(&gmu->pdev->dev, "CX_BUSY_STATUS=%x\n", reg2); dev_err(&gmu->pdev->dev, "RBBM_INT_UNMASKED_STATUS=%x PWR_COL_KEEPALIVE=%x\n", reg3, reg4); /* Access GX registers only when GX is ON */ if (is_on(reg1)) { gen8_regread_aperture(device, GEN8_CP_PIPE_STATUS_PIPE, ®, PIPE_BV, 0, 0); gen8_regread_aperture(device, GEN8_CP_PIPE_STATUS_PIPE, ®1, PIPE_BR, 0, 0); /* Clear aperture register */ gen8_host_aperture_set(adreno_dev, 0, 0, 0); kgsl_regread(device, GEN8_CP_CP2GMU_STATUS, ®2); kgsl_regread(device, GEN8_CP_CONTEXT_SWITCH_CNTL, ®3); dev_err(&gmu->pdev->dev, "GEN8_CP_PIPE_STATUS_PIPE BV:%x BR:%x\n", reg, reg1); dev_err(&gmu->pdev->dev, "CP2GMU_STATUS=%x CONTEXT_SWITCH_CNTL=%x\n", reg2, reg3); } WARN_ON(1); gmu_core_fault_snapshot(device); return -ETIMEDOUT; } /* Bitmask for GPU idle status check */ #define CXGXCPUBUSYIGNAHB BIT(30) int gen8_gmu_wait_for_idle(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); u32 status2; u64 ts1; ts1 = gpudev->read_alwayson(adreno_dev); if (gmu_core_timed_poll_check(device, GEN8_GMUAO_GPU_CX_BUSY_STATUS, 0, 100, CXGXCPUBUSYIGNAHB)) { gmu_core_regread(device, GEN8_GMUAO_GPU_CX_BUSY_STATUS2, &status2); dev_err(&gmu->pdev->dev, "GMU not idling: status2=0x%x %llx %llx\n", status2, ts1, gpudev->read_alwayson(adreno_dev)); gmu_core_fault_snapshot(device); return -ETIMEDOUT; } return 0; } int gen8_gmu_version_info(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev); /* GMU version info is at a fixed offset in the DTCM */ gmu_core_regread(device, GEN8_GMU_CM3_DTCM_START + 0xff8, &gmu->ver.core); gmu_core_regread(device, GEN8_GMU_CM3_DTCM_START + 0xff9, &gmu->ver.core_dev); gmu_core_regread(device, GEN8_GMU_CM3_DTCM_START + 0xffa, &gmu->ver.pwr); gmu_core_regread(device, GEN8_GMU_CM3_DTCM_START + 0xffb, &gmu->ver.pwr_dev); gmu_core_regread(device, GEN8_GMU_CM3_DTCM_START + 0xffc, &gmu->ver.hfi); /* Check if gmu fw version on device is compatible with kgsl driver */ if (gmu->ver.core < gen8_core->gmu_fw_version) { dev_err_once(&gmu->pdev->dev, "GMU FW version 0x%x error (expected 0x%x)\n", gmu->ver.core, gen8_core->gmu_fw_version); return -EINVAL; } return 0; } int gen8_gmu_itcm_shadow(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); u32 i, *dest; if (gmu->itcm_shadow) return 0; gmu->itcm_shadow = vzalloc(gmu->vma[GMU_ITCM].size); if (!gmu->itcm_shadow) return -ENOMEM; dest = (u32 *)gmu->itcm_shadow; for (i = 0; i < (gmu->vma[GMU_ITCM].size >> 2); i++) gmu_core_regread(KGSL_DEVICE(adreno_dev), GEN8_GMU_CM3_ITCM_START + i, dest++); return 0; } void gen8_gmu_register_config(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); u32 val; /* Clear any previously set cm3 fault */ atomic_set(&gmu->cm3_fault, 0); /* Init the power state register before GMU turns on GX */ gmu_core_regwrite(device, GEN8_GMUCX_RPMH_POWER_STATE, 0xF); /* Vote veto for FAL10 */ gmu_core_regwrite(device, GEN8_GMUCX_CX_FALNEXT_INTF, 0x1); gmu_core_regwrite(device, GEN8_GMUCX_CX_FAL_INTF, 0x1); /* Clear init result to make sure we are getting fresh value */ gmu_core_regwrite(device, GEN8_GMUCX_CM3_FW_INIT_RESULT, 0); gmu_core_regwrite(device, GEN8_GMUCX_CM3_BOOT_CONFIG, 0x2); gmu_core_regwrite(device, GEN8_GMUCX_HFI_QTBL_ADDR, gmu->hfi.hfi_mem->gmuaddr); gmu_core_regwrite(device, GEN8_GMUCX_HFI_QTBL_INFO, 1); gmu_core_regwrite(device, GEN8_GMUAO_AHB_FENCE_RANGE_0, BIT(31) | FIELD_PREP(GENMASK(30, 18), 0x32) | FIELD_PREP(GENMASK(17, 0), 0x8a0)); /* * Make sure that CM3 state is at reset value. Snapshot is changing * NMI bit and if we boot up GMU with NMI bit set GMU will boot * straight in to NMI handler without executing __main code */ gmu_core_regwrite(device, GEN8_GMUCX_CM3_CFG, 0x4052); /* Set up GBIF registers from the GPU core definition */ kgsl_regmap_multi_write(&device->regmap, gen8_core->gbif, gen8_core->gbif_count); /** * We may have asserted gbif halt as part of reset sequence which may * not get cleared if the gdsc was not reset. So clear it before * attempting GMU boot. */ kgsl_regwrite(device, GEN8_GBIF_HALT, BIT(3)); /* Set vrb address before starting GMU */ if (!IS_ERR_OR_NULL(gmu->vrb)) gmu_core_regwrite(device, GEN8_GMUCX_GENERAL_11, gmu->vrb->gmuaddr); /* Set the log wptr index */ gmu_core_regwrite(device, GEN8_GMUCX_GENERAL_9, gmu->log_wptr_retention); /* Pass chipid to GMU FW, must happen before starting GMU */ gmu_core_regwrite(device, GEN8_GMUCX_GENERAL_10, ADRENO_GMU_REV(ADRENO_GPUREV(adreno_dev))); /* Log size is encoded in (number of 4K units - 1) */ val = (gmu->gmu_log->gmuaddr & GENMASK(31, 12)) | ((GMU_LOG_SIZE/SZ_4K - 1) & GENMASK(7, 0)); gmu_core_regwrite(device, GEN8_GMUCX_GENERAL_8, val); /* Configure power control and bring the GMU out of reset */ gen8_gmu_power_config(adreno_dev); /* * Enable BCL throttling - * XOCLK1: countable: 0x13 (25% throttle) * XOCLK2: countable: 0x17 (58% throttle) * XOCLK3: countable: 0x19 (75% throttle) * POWER_CONTROL_SELECT_0 controls counters 0 - 3, each selector * is 8 bits wide. */ if (adreno_dev->bcl_enabled) gmu_core_regrmw(device, GEN8_GMUCX_POWER_COUNTER_SELECT_XOCLK_0, 0xffffff00, FIELD_PREP(GENMASK(31, 24), 0x19) | FIELD_PREP(GENMASK(23, 16), 0x17) | FIELD_PREP(GENMASK(15, 8), 0x13)); } static struct gmu_vma_node *find_va(struct gmu_vma_entry *vma, u32 addr, u32 size) { struct rb_node *node = vma->vma_root.rb_node; while (node != NULL) { struct gmu_vma_node *data = rb_entry(node, struct gmu_vma_node, node); if (addr + size <= data->va) node = node->rb_left; else if (addr >= data->va + data->size) node = node->rb_right; else return data; } return NULL; } /* Return true if VMA supports dynamic allocations */ static bool vma_is_dynamic(int vma_id) { /* Dynamic allocations are done in the GMU_NONCACHED_KERNEL space */ return vma_id == GMU_NONCACHED_KERNEL; } static int insert_va(struct gmu_vma_entry *vma, u32 addr, u32 size) { struct rb_node **node, *parent = NULL; struct gmu_vma_node *new = kzalloc(sizeof(*new), GFP_NOWAIT); if (new == NULL) return -ENOMEM; new->va = addr; new->size = size; node = &vma->vma_root.rb_node; while (*node != NULL) { struct gmu_vma_node *this; parent = *node; this = rb_entry(parent, struct gmu_vma_node, node); if (addr + size <= this->va) node = &parent->rb_left; else if (addr >= this->va + this->size) node = &parent->rb_right; else { kfree(new); return -EEXIST; } } /* Add new node and rebalance tree */ rb_link_node(&new->node, parent, node); rb_insert_color(&new->node, &vma->vma_root); return 0; } static u32 find_unmapped_va(struct gmu_vma_entry *vma, u32 size, u32 va_align) { struct rb_node *node = rb_first(&vma->vma_root); u32 cur = vma->start; bool found = false; cur = ALIGN(cur, va_align); while (node) { struct gmu_vma_node *data = rb_entry(node, struct gmu_vma_node, node); if (cur + size <= data->va) { found = true; break; } cur = ALIGN(data->va + data->size, va_align); node = rb_next(node); } /* Do we have space after the last node? */ if (!found && (cur + size <= vma->start + vma->size)) found = true; return found ? cur : 0; } static int _map_gmu_dynamic(struct gen8_gmu_device *gmu, struct kgsl_memdesc *md, u32 addr, u32 vma_id, int attrs, u32 align) { int ret; struct gmu_vma_entry *vma = &gmu->vma[vma_id]; struct gmu_vma_node *vma_node = NULL; u32 size = ALIGN(md->size, hfi_get_gmu_sz_alignment(align)); spin_lock(&vma->lock); if (!addr) { /* * We will end up with a hole (GMU VA range not backed by physical mapping) if * the aligned size is greater than the size of the physical mapping */ addr = find_unmapped_va(vma, size, hfi_get_gmu_va_alignment(align)); if (addr == 0) { spin_unlock(&vma->lock); dev_err(&gmu->pdev->dev, "Insufficient VA space size: %x\n", size); return -ENOMEM; } } ret = insert_va(vma, addr, size); spin_unlock(&vma->lock); if (ret < 0) { dev_err(&gmu->pdev->dev, "Could not insert va: %x size %x\n", addr, size); return ret; } ret = gmu_core_map_memdesc(gmu->domain, md, addr, attrs); if (!ret) { md->gmuaddr = addr; return 0; } /* Failed to map to GMU */ dev_err(&gmu->pdev->dev, "Unable to map GMU kernel block: addr:0x%08x size:0x%llx :%d\n", addr, md->size, ret); spin_lock(&vma->lock); vma_node = find_va(vma, md->gmuaddr, size); if (vma_node) rb_erase(&vma_node->node, &vma->vma_root); spin_unlock(&vma->lock); kfree(vma_node); return ret; } static int _map_gmu_static(struct gen8_gmu_device *gmu, struct kgsl_memdesc *md, u32 addr, u32 vma_id, int attrs, u32 align) { int ret; struct gmu_vma_entry *vma = &gmu->vma[vma_id]; u32 size = ALIGN(md->size, hfi_get_gmu_sz_alignment(align)); if (!addr) addr = ALIGN(vma->next_va, hfi_get_gmu_va_alignment(align)); ret = gmu_core_map_memdesc(gmu->domain, md, addr, attrs); if (ret) { dev_err(&gmu->pdev->dev, "Unable to map GMU kernel block: addr:0x%08x size:0x%llx :%d\n", addr, md->size, ret); return ret; } md->gmuaddr = addr; /* * We will end up with a hole (GMU VA range not backed by physical mapping) if the aligned * size is greater than the size of the physical mapping */ vma->next_va = md->gmuaddr + size; return 0; } static int _map_gmu(struct gen8_gmu_device *gmu, struct kgsl_memdesc *md, u32 addr, u32 vma_id, int attrs, u32 align) { return vma_is_dynamic(vma_id) ? _map_gmu_dynamic(gmu, md, addr, vma_id, attrs, align) : _map_gmu_static(gmu, md, addr, vma_id, attrs, align); } int gen8_gmu_import_buffer(struct gen8_gmu_device *gmu, u32 vma_id, struct kgsl_memdesc *md, u32 attrs, u32 align) { return _map_gmu(gmu, md, 0, vma_id, attrs, align); } struct kgsl_memdesc *gen8_reserve_gmu_kernel_block(struct gen8_gmu_device *gmu, u32 addr, u32 size, u32 vma_id, u32 align) { int ret; struct kgsl_memdesc *md; struct kgsl_device *device = KGSL_DEVICE(gen8_gmu_to_adreno(gmu)); int attrs = IOMMU_READ | IOMMU_WRITE | IOMMU_PRIV; if (gmu->global_entries == ARRAY_SIZE(gmu->gmu_globals)) return ERR_PTR(-ENOMEM); md = &gmu->gmu_globals[gmu->global_entries]; ret = kgsl_allocate_kernel(device, md, size, 0, KGSL_MEMDESC_SYSMEM); if (ret) { memset(md, 0x0, sizeof(*md)); return ERR_PTR(-ENOMEM); } ret = _map_gmu(gmu, md, addr, vma_id, attrs, align); if (ret) { kgsl_sharedmem_free(md); memset(md, 0x0, sizeof(*md)); return ERR_PTR(ret); } gmu->global_entries++; return md; } struct kgsl_memdesc *gen8_reserve_gmu_kernel_block_fixed(struct gen8_gmu_device *gmu, u32 addr, u32 size, u32 vma_id, const char *resource, int attrs, u32 align) { int ret; struct kgsl_memdesc *md; struct kgsl_device *device = KGSL_DEVICE(gen8_gmu_to_adreno(gmu)); if (gmu->global_entries == ARRAY_SIZE(gmu->gmu_globals)) return ERR_PTR(-ENOMEM); md = &gmu->gmu_globals[gmu->global_entries]; ret = kgsl_memdesc_init_fixed(device, gmu->pdev, resource, md); if (ret) return ERR_PTR(ret); ret = _map_gmu(gmu, md, addr, vma_id, attrs, align); sg_free_table(md->sgt); kfree(md->sgt); md->sgt = NULL; if (!ret) gmu->global_entries++; else { dev_err(&gmu->pdev->dev, "Unable to map GMU kernel block: addr:0x%08x size:0x%llx :%d\n", addr, md->size, ret); memset(md, 0x0, sizeof(*md)); md = ERR_PTR(ret); } return md; } int gen8_alloc_gmu_kernel_block(struct gen8_gmu_device *gmu, struct kgsl_memdesc *md, u32 size, u32 vma_id, int attrs) { int ret; struct kgsl_device *device = KGSL_DEVICE(gen8_gmu_to_adreno(gmu)); ret = kgsl_allocate_kernel(device, md, size, 0, KGSL_MEMDESC_SYSMEM); if (ret) return ret; ret = _map_gmu(gmu, md, 0, vma_id, attrs, 0); if (ret) kgsl_sharedmem_free(md); return ret; } void gen8_free_gmu_block(struct gen8_gmu_device *gmu, struct kgsl_memdesc *md) { int vma_id = find_vma_block(gmu, md->gmuaddr, md->size); struct gmu_vma_entry *vma; struct gmu_vma_node *vma_node; if ((vma_id < 0) || !vma_is_dynamic(vma_id)) return; vma = &gmu->vma[vma_id]; /* * Do not remove the vma node if we failed to unmap the entire buffer. This is because the * iommu driver considers remapping an already mapped iova as fatal. */ if (md->size != iommu_unmap(gmu->domain, md->gmuaddr, md->size)) goto free; spin_lock(&vma->lock); vma_node = find_va(vma, md->gmuaddr, md->size); if (vma_node) rb_erase(&vma_node->node, &vma->vma_root); spin_unlock(&vma->lock); kfree(vma_node); free: kgsl_sharedmem_free(md); } static int gen8_gmu_process_prealloc(struct gen8_gmu_device *gmu, struct gmu_block_header *blk) { struct kgsl_memdesc *md; int id = find_vma_block(gmu, blk->addr, blk->value); if (id < 0) { dev_err(&gmu->pdev->dev, "Invalid prealloc block addr: 0x%x value:%d\n", blk->addr, blk->value); return id; } /* Nothing to do for TCM blocks or user uncached */ if (id == GMU_ITCM || id == GMU_DTCM || id == GMU_NONCACHED_USER) return 0; /* Check if the block is already allocated */ md = find_gmu_memdesc(gmu, blk->addr, blk->value); if (md != NULL) return 0; md = gen8_reserve_gmu_kernel_block(gmu, blk->addr, blk->value, id, 0); return PTR_ERR_OR_ZERO(md); } int gen8_gmu_parse_fw(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev); struct gmu_block_header *blk; int ret, offset = 0; const char *gmufw_name = gen8_core->gmufw_name; /* * If GMU fw already saved and verified, do nothing new. * Skip only request_firmware and allow preallocation to * ensure in scenario where GMU request firmware succeeded * but preallocation fails, we don't return early without * successful preallocations on next open call. */ if (!gmu->fw_image) { if (gen8_core->gmufw_name == NULL) return -EINVAL; ret = request_firmware(&gmu->fw_image, gmufw_name, &gmu->pdev->dev); if (ret) { dev_err(&gmu->pdev->dev, "request_firmware (%s) failed: %d\n", gmufw_name, ret); return ret; } } /* * Zero payload fw blocks contain metadata and are * guaranteed to precede fw load data. Parse the * metadata blocks. */ while (offset < gmu->fw_image->size) { blk = (struct gmu_block_header *)&gmu->fw_image->data[offset]; if (offset + sizeof(*blk) > gmu->fw_image->size) { dev_err(&gmu->pdev->dev, "Invalid FW Block\n"); return -EINVAL; } /* Done with zero length blocks so return */ if (blk->size) break; offset += sizeof(*blk); if (blk->type == GMU_BLK_TYPE_PREALLOC_REQ || blk->type == GMU_BLK_TYPE_PREALLOC_PERSIST_REQ) { ret = gen8_gmu_process_prealloc(gmu, blk); if (ret) return ret; } } return 0; } int gen8_gmu_memory_init(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); /* GMU master log */ if (IS_ERR_OR_NULL(gmu->gmu_log)) gmu->gmu_log = gen8_reserve_gmu_kernel_block(gmu, 0, GMU_LOG_SIZE, GMU_NONCACHED_KERNEL, 0); return PTR_ERR_OR_ZERO(gmu->gmu_log); } static int gen8_gmu_init(struct adreno_device *adreno_dev) { int ret; ret = gen8_gmu_parse_fw(adreno_dev); if (ret) return ret; ret = gen8_gmu_memory_init(adreno_dev); if (ret) return ret; return gen8_hfi_init(adreno_dev); } static void _do_gbif_halt(struct kgsl_device *device, u32 reg, u32 ack_reg, u32 mask, const char *client) { u32 ack; unsigned long t; kgsl_regwrite(device, reg, mask); t = jiffies + msecs_to_jiffies(100); do { kgsl_regread(device, ack_reg, &ack); if ((ack & mask) == mask) return; /* * If we are attempting recovery in case of stall-on-fault * then the halt sequence will not complete as long as SMMU * is stalled. */ kgsl_mmu_pagefault_resume(&device->mmu, false); usleep_range(10, 100); } while (!time_after(jiffies, t)); /* Check one last time */ kgsl_mmu_pagefault_resume(&device->mmu, false); kgsl_regread(device, ack_reg, &ack); if ((ack & mask) == mask) return; dev_err(device->dev, "%s GBIF halt timed out\n", client); } static void gen8_gmu_pwrctrl_suspend(struct adreno_device *adreno_dev) { int ret = 0; struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct kgsl_pwrctrl *pwr = &device->pwrctrl; /* Disconnect GPU from BUS is not needed if CX GDSC goes off later */ /* * GEMNOC can enter power collapse state during GPU power down sequence. * This could abort CX GDSC collapse. Assert Qactive to avoid this. */ gmu_core_regwrite(device, GEN8_GMUCX_CX_FALNEXT_INTF, 0x1); /* Check no outstanding RPMh voting */ gen8_complete_rpmh_votes(gmu, 1); /* Clear the WRITEDROPPED fields and set fence to allow mode */ gmu_core_regwrite(device, GEN8_GMUAO_AHB_FENCE_STATUS_CLR, 0x7); gmu_core_regwrite(device, GEN8_GMUAO_AHB_FENCE_CTRL, 0); /* Make sure above writes are committed before we proceed to recovery */ wmb(); gmu_core_regwrite(device, GEN8_GMUCX_CM3_SYSRESET, 1); /* Halt GX traffic */ if (gen8_gmu_gx_is_on(adreno_dev)) _do_gbif_halt(device, GEN8_RBBM_GBIF_HALT, GEN8_RBBM_GBIF_HALT_ACK, GEN8_GBIF_GX_HALT_MASK, "GX"); /* Halt CX traffic */ _do_gbif_halt(device, GEN8_GBIF_HALT, GEN8_GBIF_HALT_ACK, GEN8_GBIF_ARB_HALT_MASK, "CX"); if (gen8_gmu_gx_is_on(adreno_dev)) kgsl_regwrite(device, GEN8_RBBM_SW_RESET_CMD, 0x1); /* Allow the software reset to complete */ udelay(100); /* * This is based on the assumption that GMU is the only one controlling * the GX HS. This code path is the only client voting for GX through * the regulator interface. */ if (pwr->gx_gdsc) { if (gen8_gmu_gx_is_on(adreno_dev)) { /* Switch gx gdsc control from GMU to CPU * force non-zero reference count in clk driver * so next disable call will turn * off the GDSC */ ret = regulator_enable(pwr->gx_gdsc); if (ret) dev_err(&gmu->pdev->dev, "suspend fail: gx enable %d\n", ret); ret = regulator_disable(pwr->gx_gdsc); if (ret) dev_err(&gmu->pdev->dev, "suspend fail: gx disable %d\n", ret); if (gen8_gmu_gx_is_on(adreno_dev)) dev_err(&gmu->pdev->dev, "gx is stuck on\n"); } } } /* * gen8_gmu_notify_slumber() - initiate request to GMU to prepare to slumber * @device: Pointer to KGSL device */ static int gen8_gmu_notify_slumber(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int bus_level = pwr->pwrlevels[pwr->default_pwrlevel].bus_freq; int perf_idx = gmu->dcvs_table.gpu_level_num - pwr->default_pwrlevel - 1; struct hfi_prep_slumber_cmd req = { .freq = perf_idx, .bw = bus_level, }; int ret; req.bw |= gen8_bus_ab_quantize(adreno_dev, 0); /* Disable the power counter so that the GMU is not busy */ gmu_core_regwrite(device, GEN8_GMUCX_POWER_COUNTER_ENABLE, 0); ret = CMD_MSG_HDR(req, H2F_MSG_PREPARE_SLUMBER); if (ret) return ret; ret = gen8_hfi_send_generic_req(adreno_dev, &req, sizeof(req)); /* Make sure the fence is in ALLOW mode */ gmu_core_regwrite(device, GEN8_GMUAO_AHB_FENCE_CTRL, 0); /* * GEMNOC can enter power collapse state during GPU power down sequence. * This could abort CX GDSC collapse. Assert Qactive to avoid this. */ gmu_core_regwrite(device, GEN8_GMUCX_CX_FALNEXT_INTF, 0x1); return ret; } void gen8_gmu_suspend(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); gen8_gmu_pwrctrl_suspend(adreno_dev); clk_bulk_disable_unprepare(gmu->num_clks, gmu->clks); kgsl_pwrctrl_disable_cx_gdsc(device); gen8_rdpm_cx_freq_update(gmu, 0); dev_err(&gmu->pdev->dev, "Suspended GMU\n"); kgsl_pwrctrl_set_state(device, KGSL_STATE_NONE); } static int gen8_gmu_dcvs_set(struct adreno_device *adreno_dev, int gpu_pwrlevel, int bus_level, u32 ab) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct gen8_dcvs_table *table = &gmu->dcvs_table; struct hfi_gx_bw_perf_vote_cmd req = { .ack_type = DCVS_ACK_BLOCK, .freq = INVALID_DCVS_IDX, .bw = INVALID_DCVS_IDX, }; int ret = 0; if (!test_bit(GMU_PRIV_HFI_STARTED, &gmu->flags)) return 0; /* Do not set to XO and lower GPU clock vote from GMU */ if ((gpu_pwrlevel != INVALID_DCVS_IDX) && (gpu_pwrlevel >= table->gpu_level_num - 1)) return -EINVAL; if (gpu_pwrlevel < table->gpu_level_num - 1) req.freq = table->gpu_level_num - gpu_pwrlevel - 1; if (bus_level < pwr->ddr_table_count && bus_level > 0) req.bw = bus_level; req.bw |= gen8_bus_ab_quantize(adreno_dev, ab); /* GMU will vote for slumber levels through the sleep sequence */ if ((req.freq == INVALID_DCVS_IDX) && (req.bw == INVALID_BW_VOTE)) return 0; ret = CMD_MSG_HDR(req, H2F_MSG_GX_BW_PERF_VOTE); if (ret) return ret; ret = gen8_hfi_send_generic_req(adreno_dev, &req, sizeof(req)); if (ret) { dev_err_ratelimited(&gmu->pdev->dev, "Failed to set GPU perf idx %d, bw idx %d\n", req.freq, req.bw); /* * If this was a dcvs request along side an active gpu, request * dispatcher based reset and recovery. */ if (test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) adreno_dispatcher_fault(adreno_dev, ADRENO_GMU_FAULT | ADRENO_GMU_FAULT_SKIP_SNAPSHOT); } if (req.freq != INVALID_DCVS_IDX) gen8_rdpm_mx_freq_update(gmu, gmu->dcvs_table.gx_votes[req.freq].freq); return ret; } static int gen8_gmu_clock_set(struct adreno_device *adreno_dev, u32 pwrlevel) { return gen8_gmu_dcvs_set(adreno_dev, pwrlevel, INVALID_DCVS_IDX, INVALID_AB_VALUE); } static int gen8_gmu_ifpc_store(struct kgsl_device *device, u32 val) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); u32 requested_idle_level; if (!ADRENO_FEATURE(adreno_dev, ADRENO_IFPC)) return -EINVAL; if (val) requested_idle_level = GPU_HW_IFPC; else requested_idle_level = GPU_HW_ACTIVE; if (gmu->idle_level == requested_idle_level) return 0; /* Power down the GPU before changing the idle level */ return adreno_power_cycle_u32(adreno_dev, &gmu->idle_level, requested_idle_level); } static u32 gen8_gmu_ifpc_isenabled(struct kgsl_device *device) { struct gen8_gmu_device *gmu = to_gen8_gmu(ADRENO_DEVICE(device)); return gmu->idle_level == GPU_HW_IFPC; } /* Send an NMI to the GMU */ void gen8_gmu_send_nmi(struct kgsl_device *device, bool force) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); u32 result; /* * Do not send NMI if the SMMU is stalled because GMU will not be able * to save cm3 state to DDR. */ if (gen8_gmu_gx_is_on(adreno_dev) && adreno_smmu_is_stalled(adreno_dev)) { dev_err(&gmu->pdev->dev, "Skipping NMI because SMMU is stalled\n"); return; } if (force) goto nmi; /* * We should not send NMI if there was a CM3 fault reported because we * don't want to overwrite the critical CM3 state captured by gmu before * it sent the CM3 fault interrupt. Also don't send NMI if GMU reset is * already active. We could have hit a GMU assert and NMI might have * already been triggered. */ /* make sure we're reading the latest cm3_fault */ smp_rmb(); if (atomic_read(&gmu->cm3_fault)) return; gmu_core_regread(device, GEN8_GMUCX_CM3_FW_INIT_RESULT, &result); if (result & 0xE00) return; nmi: /* Mask so there's no interrupt caused by NMI */ gmu_core_regwrite(device, GEN8_GMUCX_GMU2HOST_INTR_MASK, UINT_MAX); /* Make sure the interrupt is masked before causing it */ wmb(); /* This will cause the GMU to save it's internal state to ddr */ gmu_core_regrmw(device, GEN8_GMUCX_CM3_CFG, BIT(9), BIT(9)); /* Make sure the NMI is invoked before we proceed*/ wmb(); /* Wait for the NMI to be handled */ udelay(200); } static void gen8_gmu_cooperative_reset(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); u32 result; gmu_core_regwrite(device, GEN8_GMUCX_WDOG_CTRL, 0); gmu_core_regwrite(device, GEN8_GMUCX_HOST2GMU_INTR_SET, BIT(17)); /* * After triggering graceful death wait for snapshot ready * indication from GMU. */ if (!gmu_core_timed_poll_check(device, GEN8_GMUCX_CM3_FW_INIT_RESULT, 0x800, 2, 0x800)) return; gmu_core_regread(device, GEN8_GMUCX_CM3_FW_INIT_RESULT, &result); dev_err(&gmu->pdev->dev, "GMU cooperative reset timed out 0x%x\n", result); /* * If we dont get a snapshot ready from GMU, trigger NMI * and if we still timeout then we just continue with reset. */ gen8_gmu_send_nmi(device, true); gmu_core_regread(device, GEN8_GMUCX_CM3_FW_INIT_RESULT, &result); if ((result & 0x800) != 0x800) dev_err(&gmu->pdev->dev, "GMU cooperative reset NMI timed out 0x%x\n", result); } static int gen8_gmu_wait_for_active_transition(struct kgsl_device *device) { u32 reg; struct gen8_gmu_device *gmu = to_gen8_gmu(ADRENO_DEVICE(device)); if (gmu_core_timed_poll_check(device, GEN8_GMUCX_RPMH_POWER_STATE, GPU_HW_ACTIVE, 100, GENMASK(3, 0))) { gmu_core_regread(device, GEN8_GMUCX_RPMH_POWER_STATE, ®); dev_err(&gmu->pdev->dev, "GMU failed to move to ACTIVE state, Current state: 0x%x\n", reg); return -ETIMEDOUT; } return 0; } static bool gen8_gmu_scales_bandwidth(struct kgsl_device *device) { return true; } void gen8_gmu_handle_watchdog(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); u32 mask; /* Temporarily mask the watchdog interrupt to prevent a storm */ gmu_core_regread(device, GEN8_GMUAO_AO_HOST_INTERRUPT_MASK, &mask); gmu_core_regwrite(device, GEN8_GMUAO_AO_HOST_INTERRUPT_MASK, (mask | GMU_INT_WDOG_BITE)); gen8_gmu_send_nmi(device, false); dev_err_ratelimited(&gmu->pdev->dev, "GMU watchdog expired interrupt received\n"); } static irqreturn_t gen8_gmu_irq_handler(int irq, void *data) { struct kgsl_device *device = data; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); const struct gen8_gpudev *gen8_gpudev = to_gen8_gpudev(ADRENO_GPU_DEVICE(adreno_dev)); u32 status = 0; gmu_core_regread(device, GEN8_GMUAO_AO_HOST_INTERRUPT_STATUS, &status); gmu_core_regwrite(device, GEN8_GMUAO_AO_HOST_INTERRUPT_CLR, status); if (status & GMU_INT_HOST_AHB_BUS_ERR) dev_err_ratelimited(&gmu->pdev->dev, "AHB bus error interrupt received\n"); if (status & GMU_INT_WDOG_BITE) gen8_gpudev->handle_watchdog(adreno_dev); if (status & GMU_INT_FENCE_ERR) { u32 fence_status; gmu_core_regread(device, GEN8_GMUAO_AHB_FENCE_STATUS, &fence_status); dev_err_ratelimited(&gmu->pdev->dev, "FENCE error interrupt received %x\n", fence_status); } if (status & ~GMU_AO_INT_MASK) dev_err_ratelimited(&gmu->pdev->dev, "Unhandled GMU interrupts 0x%lx\n", status & ~GMU_AO_INT_MASK); return IRQ_HANDLED; } void gen8_gmu_aop_send_acd_state(struct gen8_gmu_device *gmu, bool flag) { char msg_buf[36]; u32 size; int ret; if (IS_ERR_OR_NULL(gmu->qmp)) return; size = scnprintf(msg_buf, sizeof(msg_buf), "{class: gpu, res: acd, val: %d}", flag); ret = qmp_send(gmu->qmp, msg_buf, ALIGN((size + 1), SZ_4)); if (ret < 0) dev_err(&gmu->pdev->dev, "AOP qmp send message failed: %d\n", ret); } int gen8_gmu_enable_clks(struct adreno_device *adreno_dev, u32 level) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; gen8_rdpm_cx_freq_update(gmu, gmu->freqs[level] / 1000); ret = kgsl_clk_set_rate(gmu->clks, gmu->num_clks, "gmu_clk", gmu->freqs[level]); if (ret) { dev_err(&gmu->pdev->dev, "GMU clock:%d set failed:%d\n", gmu->freqs[level], ret); return ret; } ret = kgsl_clk_set_rate(gmu->clks, gmu->num_clks, "hub_clk", adreno_dev->gmu_hub_clk_freq); if (ret && ret != -ENODEV) { dev_err(&gmu->pdev->dev, "Unable to set the HUB clock\n"); return ret; } ret = clk_bulk_prepare_enable(gmu->num_clks, gmu->clks); if (ret) { dev_err(&gmu->pdev->dev, "Cannot enable GMU clocks\n"); return ret; } device->state = KGSL_STATE_AWARE; return 0; } static int gen8_gmu_first_boot(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int level, ret; kgsl_pwrctrl_request_state(device, KGSL_STATE_AWARE); gen8_gmu_aop_send_acd_state(gmu, adreno_dev->acd_enabled); ret = kgsl_pwrctrl_enable_cx_gdsc(device); if (ret) return ret; ret = gen8_gmu_enable_clks(adreno_dev, 0); if (ret) goto gdsc_off; /* * Enable AHB timeout detection to catch any register access taking longer * time before NOC timeout gets detected. Enable this logic before any * register access which happens to be just after enabling clocks. */ gen8_enable_ahb_timeout_detection(adreno_dev); /* Initialize the CX timer */ gen8_cx_timer_init(adreno_dev); ret = gen8_gmu_load_fw(adreno_dev); if (ret) goto clks_gdsc_off; ret = gen8_gmu_version_info(adreno_dev); if (ret) goto clks_gdsc_off; ret = gen8_gmu_itcm_shadow(adreno_dev); if (ret) goto clks_gdsc_off; ret = gen8_scm_gpu_init_cx_regs(adreno_dev); if (ret) goto clks_gdsc_off; gen8_gmu_register_config(adreno_dev); gen8_gmu_irq_enable(adreno_dev); /* Vote for minimal DDR BW for GMU to init */ level = pwr->pwrlevels[pwr->default_pwrlevel].bus_min; icc_set_bw(pwr->icc_path, 0, kBps_to_icc(pwr->ddr_table[level])); /* Clear any GPU faults that might have been left over */ adreno_clear_gpu_fault(adreno_dev); ret = gen8_gmu_device_start(adreno_dev); if (ret) goto err; ret = gen8_gmu_hfi_start(adreno_dev); if (ret) goto err; gen8_get_gpu_feature_info(adreno_dev); ret = gen8_hfi_start(adreno_dev); if (ret) goto err; if (gen8_hfi_send_get_value(adreno_dev, HFI_VALUE_GMU_AB_VOTE, 0) == 1 && !WARN_ONCE(!adreno_dev->gpucore->num_ddr_channels, "Number of DDR channel is not specified in gpu core")) { adreno_dev->gmu_ab = true; set_bit(ADRENO_DEVICE_GMU_AB, &adreno_dev->priv); } icc_set_bw(pwr->icc_path, 0, 0); device->gmu_fault = false; kgsl_pwrctrl_set_state(device, KGSL_STATE_AWARE); return 0; err: gen8_gmu_irq_disable(adreno_dev); if (device->gmu_fault) { gen8_gmu_suspend(adreno_dev); return ret; } clks_gdsc_off: clk_bulk_disable_unprepare(gmu->num_clks, gmu->clks); gdsc_off: kgsl_pwrctrl_disable_cx_gdsc(device); gen8_rdpm_cx_freq_update(gmu, 0); return ret; } static int gen8_gmu_boot(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret = 0; kgsl_pwrctrl_request_state(device, KGSL_STATE_AWARE); ret = kgsl_pwrctrl_enable_cx_gdsc(device); if (ret) return ret; ret = gen8_gmu_enable_clks(adreno_dev, 0); if (ret) goto gdsc_off; /* * Enable AHB timeout detection to catch any register access taking longer * time before NOC timeout gets detected. Enable this logic before any * register access which happens to be just after enabling clocks. */ gen8_enable_ahb_timeout_detection(adreno_dev); /* Initialize the CX timer */ gen8_cx_timer_init(adreno_dev); ret = gen8_rscc_wakeup_sequence(adreno_dev); if (ret) goto clks_gdsc_off; ret = gen8_gmu_load_fw(adreno_dev); if (ret) goto clks_gdsc_off; gen8_gmu_register_config(adreno_dev); gen8_gmu_irq_enable(adreno_dev); /* Clear any GPU faults that might have been left over */ adreno_clear_gpu_fault(adreno_dev); ret = gen8_gmu_device_start(adreno_dev); if (ret) goto err; ret = gen8_gmu_hfi_start(adreno_dev); if (ret) goto err; ret = gen8_hfi_start(adreno_dev); if (ret) goto err; device->gmu_fault = false; kgsl_pwrctrl_set_state(device, KGSL_STATE_AWARE); return 0; err: gen8_gmu_irq_disable(adreno_dev); if (device->gmu_fault) { gen8_gmu_suspend(adreno_dev); return ret; } clks_gdsc_off: clk_bulk_disable_unprepare(gmu->num_clks, gmu->clks); gdsc_off: kgsl_pwrctrl_disable_cx_gdsc(device); gen8_rdpm_cx_freq_update(gmu, 0); return ret; } static void set_acd(struct adreno_device *adreno_dev, void *priv) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); adreno_dev->acd_enabled = *((bool *)priv); gen8_gmu_aop_send_acd_state(gmu, adreno_dev->acd_enabled); } static int gen8_gmu_acd_set(struct kgsl_device *device, bool val) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); if (IS_ERR_OR_NULL(gmu->qmp)) return -EINVAL; /* Don't do any unneeded work if ACD is already in the correct state */ if (adreno_dev->acd_enabled == val) return 0; /* Power cycle the GPU for changes to take effect */ return adreno_power_cycle(adreno_dev, set_acd, &val); } #define BCL_RESP_TYPE_MASK BIT(0) #define BCL_SID0_MASK GENMASK(7, 1) #define BCL_SID1_MASK GENMASK(14, 8) #define BCL_SID2_MASK GENMASK(21, 15) static int gen8_bcl_sid_set(struct kgsl_device *device, u32 sid_id, u64 sid_val) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); u32 bcl_data, val = (u32) sid_val; if (!ADRENO_FEATURE(adreno_dev, ADRENO_BCL) || !FIELD_GET(BCL_RESP_TYPE_MASK, adreno_dev->bcl_data)) return -EINVAL; switch (sid_id) { case 0: adreno_dev->bcl_data &= ~BCL_SID0_MASK; bcl_data = adreno_dev->bcl_data | FIELD_PREP(BCL_SID0_MASK, val); break; case 1: adreno_dev->bcl_data &= ~BCL_SID1_MASK; bcl_data = adreno_dev->bcl_data | FIELD_PREP(BCL_SID1_MASK, val); break; case 2: adreno_dev->bcl_data &= ~BCL_SID2_MASK; bcl_data = adreno_dev->bcl_data | FIELD_PREP(BCL_SID2_MASK, val); break; default: return -EINVAL; } return adreno_power_cycle_u32(adreno_dev, &adreno_dev->bcl_data, bcl_data); } static u64 gen8_bcl_sid_get(struct kgsl_device *device, u32 sid_id) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); if (!ADRENO_FEATURE(adreno_dev, ADRENO_BCL) || !FIELD_GET(BCL_RESP_TYPE_MASK, adreno_dev->bcl_data)) return 0; switch (sid_id) { case 0: return ((u64) FIELD_GET(BCL_SID0_MASK, adreno_dev->bcl_data)); case 1: return ((u64) FIELD_GET(BCL_SID1_MASK, adreno_dev->bcl_data)); case 2: return ((u64) FIELD_GET(BCL_SID2_MASK, adreno_dev->bcl_data)); default: return 0; } } static void gen8_send_tlb_hint(struct kgsl_device *device, bool val) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); if (!gmu->domain) return; #if (KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE) qcom_skip_tlb_management(&gmu->pdev->dev, val); #endif if (!val) iommu_flush_iotlb_all(gmu->domain); } static const struct gmu_dev_ops gen8_gmudev = { .oob_set = gen8_gmu_oob_set, .oob_clear = gen8_gmu_oob_clear, .ifpc_store = gen8_gmu_ifpc_store, .ifpc_isenabled = gen8_gmu_ifpc_isenabled, .cooperative_reset = gen8_gmu_cooperative_reset, .wait_for_active_transition = gen8_gmu_wait_for_active_transition, .scales_bandwidth = gen8_gmu_scales_bandwidth, .acd_set = gen8_gmu_acd_set, .bcl_sid_set = gen8_bcl_sid_set, .bcl_sid_get = gen8_bcl_sid_get, .send_nmi = gen8_gmu_send_nmi, .send_tlb_hint = gen8_send_tlb_hint, }; static int gen8_gmu_bus_set(struct adreno_device *adreno_dev, int buslevel, u32 ab) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct kgsl_pwrctrl *pwr = &device->pwrctrl; int ret = 0; if (buslevel == pwr->cur_buslevel) buslevel = INVALID_DCVS_IDX; if ((ab == pwr->cur_ab) || (ab == 0)) ab = INVALID_AB_VALUE; if ((ab == INVALID_AB_VALUE) && (buslevel == INVALID_DCVS_IDX)) return 0; ret = gen8_gmu_dcvs_set(adreno_dev, INVALID_DCVS_IDX, buslevel, ab); if (ret) return ret; if (buslevel != INVALID_DCVS_IDX) pwr->cur_buslevel = buslevel; if (ab != INVALID_AB_VALUE) { if (!adreno_dev->gmu_ab) icc_set_bw(pwr->icc_path, MBps_to_icc(ab), 0); pwr->cur_ab = ab; } trace_kgsl_buslevel(device, pwr->active_pwrlevel, pwr->cur_buslevel, pwr->cur_ab); return ret; } u32 gen8_bus_ab_quantize(struct adreno_device *adreno_dev, u32 ab) { u16 vote = 0; u32 max_bw, max_ab; struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct kgsl_pwrctrl *pwr = &device->pwrctrl; if (!adreno_dev->gmu_ab || (ab == INVALID_AB_VALUE)) return (FIELD_PREP(GENMASK(31, 16), INVALID_AB_VALUE)); /* * max ddr bandwidth (kbps) = (Max bw in kbps per channel * number of channel) * max ab (Mbps) = max ddr bandwidth (kbps) / 1000 */ max_bw = pwr->ddr_table[pwr->ddr_table_count - 1] * adreno_dev->gpucore->num_ddr_channels; max_ab = max_bw / 1000; /* * If requested AB is higher than theoretical max bandwidth, set AB vote as max * allowable quantized AB value. * * Power FW supports a 16 bit AB BW level. We can quantize the entire vote-able BW * range to a 16 bit space and the quantized value can be used to vote for AB though * GMU. Quantization can be performed as below. * * quantized_vote = (ab vote (kbps) * 2^16) / max ddr bandwidth (kbps) */ if (ab >= max_ab) vote = MAX_AB_VALUE; else vote = (u16)(((u64)ab * 1000 * (1 << 16)) / max_bw); /* * Vote will be calculated as 0 for smaller AB values. * Set a minimum non-zero vote in such cases. */ if (ab && !vote) vote = 0x1; /* * Set ab enable mask and valid AB vote. req.bw is 32 bit value 0xABABENIB * and with this return we want to set the upper 16 bits and EN field specifies * if the AB vote is valid or not. */ return (FIELD_PREP(GENMASK(31, 16), vote) | FIELD_PREP(GENMASK(15, 8), 1)); } static void gen8_free_gmu_globals(struct gen8_gmu_device *gmu) { int i; for (i = 0; i < gmu->global_entries && i < ARRAY_SIZE(gmu->gmu_globals); i++) { struct kgsl_memdesc *md = &gmu->gmu_globals[i]; if (!md->gmuaddr) continue; iommu_unmap(gmu->domain, md->gmuaddr, md->size); if (md->priv & KGSL_MEMDESC_SYSMEM) kgsl_sharedmem_free(md); memset(md, 0, sizeof(*md)); } if (gmu->domain) { iommu_detach_device(gmu->domain, &gmu->pdev->dev); iommu_domain_free(gmu->domain); gmu->domain = NULL; } gmu->global_entries = 0; } static int gen8_gmu_qmp_aoss_init(struct adreno_device *adreno_dev, struct gen8_gmu_device *gmu) { gmu->qmp = qmp_get(&gmu->pdev->dev); if (IS_ERR(gmu->qmp)) return PTR_ERR(gmu->qmp); adreno_dev->acd_enabled = true; return 0; } static void gen8_gmu_acd_probe(struct kgsl_device *device, struct gen8_gmu_device *gmu, struct device_node *node) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct kgsl_pwrlevel *pwrlevel = &pwr->pwrlevels[pwr->num_pwrlevels - 1]; struct hfi_acd_table_cmd *cmd = &gmu->hfi.acd_table; int ret, i, cmd_idx = 0; if (!ADRENO_FEATURE(adreno_dev, ADRENO_ACD)) return; cmd->hdr = CREATE_MSG_HDR(H2F_MSG_ACD_TBL, HFI_MSG_CMD); cmd->version = 1; cmd->stride = 1; cmd->enable_by_level = 0; /* * Iterate through each gpu power level and generate a mask for GMU * firmware for ACD enabled levels and store the corresponding control * register configurations to the acd_table structure. */ for (i = 0; i < pwr->num_pwrlevels; i++) { if (pwrlevel->acd_level) { cmd->enable_by_level |= (1 << (i + 1)); cmd->data[cmd_idx++] = pwrlevel->acd_level; } pwrlevel--; } if (!cmd->enable_by_level) return; cmd->num_levels = cmd_idx; ret = gen8_gmu_qmp_aoss_init(adreno_dev, gmu); if (ret) dev_err(&gmu->pdev->dev, "AOP qmp init failed: %d\n", ret); } static int gen8_gmu_reg_probe(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; ret = kgsl_regmap_add_region(&device->regmap, gmu->pdev, "gmu", NULL, NULL); if (ret) dev_err(&gmu->pdev->dev, "Unable to map the GMU registers\n"); /* * gmu_ao_blk_dec1 and gmu_ao_blk_dec2 are contiguous and contained within the gmu region * mapped above. gmu_ao_blk_dec0 is not within the gmu region and is mapped separately. */ kgsl_regmap_add_region(&device->regmap, gmu->pdev, "gmu_ao_blk_dec0", NULL, NULL); return ret; } static int gen8_gmu_clk_probe(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret, i; int tbl_size; int num_freqs; int offset; ret = devm_clk_bulk_get_all(&gmu->pdev->dev, &gmu->clks); if (ret < 0) return ret; /* * Voting for apb_pclk will enable power and clocks required for * QDSS path to function. However, if QCOM_KGSL_QDSS_STM is not enabled, * QDSS is essentially unusable. Hence, if QDSS cannot be used, * don't vote for this clock. */ if (!IS_ENABLED(CONFIG_QCOM_KGSL_QDSS_STM)) { for (i = 0; i < ret; i++) { if (!strcmp(gmu->clks[i].id, "apb_pclk")) { gmu->clks[i].clk = NULL; break; } } } gmu->num_clks = ret; /* Read the optional list of GMU frequencies */ if (of_get_property(gmu->pdev->dev.of_node, "qcom,gmu-freq-table", &tbl_size) == NULL) goto default_gmu_freq; num_freqs = (tbl_size / sizeof(u32)) / 2; if (num_freqs != ARRAY_SIZE(gmu->freqs)) goto default_gmu_freq; for (i = 0; i < num_freqs; i++) { offset = i * 2; ret = of_property_read_u32_index(gmu->pdev->dev.of_node, "qcom,gmu-freq-table", offset, &gmu->freqs[i]); if (ret) goto default_gmu_freq; ret = of_property_read_u32_index(gmu->pdev->dev.of_node, "qcom,gmu-freq-table", offset + 1, &gmu->vlvls[i]); if (ret) goto default_gmu_freq; } return 0; default_gmu_freq: /* The GMU frequency table is missing or invalid. Go with a default */ gmu->freqs[0] = GMU_FREQ_MIN; gmu->vlvls[0] = RPMH_REGULATOR_LEVEL_LOW_SVS; gmu->freqs[1] = GMU_FREQ_MAX; gmu->vlvls[1] = RPMH_REGULATOR_LEVEL_SVS; return 0; } static void gen8_gmu_rdpm_probe(struct gen8_gmu_device *gmu, struct kgsl_device *device) { struct resource *res; res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, "rdpm_cx"); if (res) gmu->rdpm_cx_virt = devm_ioremap(&device->pdev->dev, res->start, resource_size(res)); res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, "rdpm_mx"); if (res) gmu->rdpm_mx_virt = devm_ioremap(&device->pdev->dev, res->start, resource_size(res)); } void gen8_gmu_remove(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); if (!IS_ERR_OR_NULL(gmu->qmp)) qmp_put(gmu->qmp); adreno_dev->acd_enabled = false; if (gmu->fw_image) release_firmware(gmu->fw_image); gen8_free_gmu_globals(gmu); vfree(gmu->itcm_shadow); kobject_put(&gmu->log_kobj); kobject_put(&gmu->stats_kobj); } static int gen8_gmu_iommu_fault_handler(struct iommu_domain *domain, struct device *dev, unsigned long addr, int flags, void *token) { char *fault_type = "unknown"; if (flags & IOMMU_FAULT_TRANSLATION) fault_type = "translation"; else if (flags & IOMMU_FAULT_PERMISSION) fault_type = "permission"; else if (flags & IOMMU_FAULT_EXTERNAL) fault_type = "external"; else if (flags & IOMMU_FAULT_TRANSACTION_STALLED) fault_type = "transaction stalled"; dev_err(dev, "GMU fault addr = %lX, context=kernel (%s %s fault)\n", addr, (flags & IOMMU_FAULT_WRITE) ? "write" : "read", fault_type); return 0; } static int gen8_gmu_iommu_init(struct gen8_gmu_device *gmu) { int ret; gmu->domain = iommu_domain_alloc(&platform_bus_type); if (gmu->domain == NULL) { dev_err(&gmu->pdev->dev, "Unable to allocate GMU IOMMU domain\n"); return -ENODEV; } /* * Disable stall on fault for the GMU context bank. * This sets SCTLR.CFCFG = 0. * Also note that, the smmu driver sets SCTLR.HUPCF = 0 by default. */ qcom_iommu_set_fault_model(gmu->domain, QCOM_IOMMU_FAULT_MODEL_NO_STALL); ret = iommu_attach_device(gmu->domain, &gmu->pdev->dev); if (!ret) { iommu_set_fault_handler(gmu->domain, gen8_gmu_iommu_fault_handler, gmu); return 0; } dev_err(&gmu->pdev->dev, "Unable to attach GMU IOMMU domain: %d\n", ret); iommu_domain_free(gmu->domain); gmu->domain = NULL; return ret; } /* Default IFPC timer (300usec) value */ #define GEN8_GMU_LONG_IFPC_HYST FIELD_PREP(GENMASK(15, 0), 0x1680) /* Minimum IFPC timer (200usec) allowed to override default value */ #define GEN8_GMU_LONG_IFPC_HYST_FLOOR FIELD_PREP(GENMASK(15, 0), 0x0F00) int gen8_gmu_probe(struct kgsl_device *device, struct platform_device *pdev) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct device *dev = &pdev->dev; struct resource *res; int ret, i; gmu->pdev = pdev; dma_set_coherent_mask(&gmu->pdev->dev, DMA_BIT_MASK(64)); gmu->pdev->dev.dma_mask = &gmu->pdev->dev.coherent_dma_mask; set_dma_ops(&gmu->pdev->dev, NULL); res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, "rscc"); if (res) { gmu->rscc_virt = devm_ioremap(&device->pdev->dev, res->start, resource_size(res)); if (!gmu->rscc_virt) { dev_err(&gmu->pdev->dev, "rscc ioremap failed\n"); return -ENOMEM; } } /* Setup any rdpm register ranges */ gen8_gmu_rdpm_probe(gmu, device); /* Set up GMU regulators */ ret = kgsl_pwrctrl_probe_regulators(device, pdev); if (ret) return ret; ret = gen8_gmu_clk_probe(adreno_dev); if (ret) return ret; /* Set up GMU IOMMU and shared memory with GMU */ ret = gen8_gmu_iommu_init(gmu); if (ret) goto error; gmu->vma = gen8_gmu_vma; for (i = 0; i < ARRAY_SIZE(gen8_gmu_vma); i++) { struct gmu_vma_entry *vma = &gen8_gmu_vma[i]; vma->vma_root = RB_ROOT; spin_lock_init(&vma->lock); } /* Map and reserve GMU CSRs registers */ ret = gen8_gmu_reg_probe(adreno_dev); if (ret) goto error; /* Populates RPMh configurations */ ret = gen8_build_rpmh_tables(adreno_dev); if (ret) goto error; /* Set up GMU idle state */ if (ADRENO_FEATURE(adreno_dev, ADRENO_IFPC)) { gmu->idle_level = GPU_HW_IFPC; adreno_dev->ifpc_hyst = GEN8_GMU_LONG_IFPC_HYST; adreno_dev->ifpc_hyst_floor = GEN8_GMU_LONG_IFPC_HYST_FLOOR; } else { gmu->idle_level = GPU_HW_ACTIVE; } gen8_gmu_acd_probe(device, gmu, pdev->dev.of_node); set_bit(GMU_ENABLED, &device->gmu_core.flags); device->gmu_core.dev_ops = &gen8_gmudev; /* Set default GMU attributes */ gmu->log_stream_enable = false; gmu->log_group_mask = 0x3; /* Initialize to zero to detect trace packet loss */ gmu->trace.seq_num = 0; /* Disabled by default */ gmu->stats_enable = false; /* Set default to CM3 busy cycles countable */ gmu->stats_mask = BIT(GEN8_GMU_CM3_BUSY_CYCLES); /* Interval is in 50 us units. Set default sampling frequency to 4x50 us */ gmu->stats_interval = HFI_FEATURE_GMU_STATS_INTERVAL; /* GMU sysfs nodes setup */ (void) kobject_init_and_add(&gmu->log_kobj, &log_kobj_type, &dev->kobj, "log"); (void) kobject_init_and_add(&gmu->stats_kobj, &stats_kobj_type, &dev->kobj, "stats"); of_property_read_u32(gmu->pdev->dev.of_node, "qcom,gmu-perf-ddr-bw", &gmu->perf_ddr_bw); spin_lock_init(&gmu->hfi.cmdq_lock); gmu->irq = kgsl_request_irq(gmu->pdev, "gmu", gen8_gmu_irq_handler, device); if (gmu->irq >= 0) return 0; ret = gmu->irq; error: gen8_gmu_remove(device); return ret; } static void gen8_gmu_active_count_put(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); if (WARN_ON(!mutex_is_locked(&device->mutex))) return; if (WARN(atomic_read(&device->active_cnt) == 0, "Unbalanced get/put calls to KGSL active count\n")) return; if (atomic_dec_and_test(&device->active_cnt)) { kgsl_pwrscale_update_stats(device); kgsl_pwrscale_update(device); kgsl_start_idle_timer(device); } trace_kgsl_active_count(device, (unsigned long) __builtin_return_address(0)); wake_up(&device->active_cnt_wq); } int gen8_halt_gbif(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; /* Halt new client requests */ kgsl_regwrite(device, GEN8_GBIF_HALT, GEN8_GBIF_CLIENT_HALT_MASK); ret = adreno_wait_for_halt_ack(device, GEN8_GBIF_HALT_ACK, GEN8_GBIF_CLIENT_HALT_MASK); /* Halt all AXI requests */ kgsl_regwrite(device, GEN8_GBIF_HALT, GEN8_GBIF_ARB_HALT_MASK); ret = adreno_wait_for_halt_ack(device, GEN8_GBIF_HALT_ACK, GEN8_GBIF_ARB_HALT_MASK); /* De-assert the halts */ kgsl_regwrite(device, GEN8_GBIF_HALT, 0x0); return ret; } static int gen8_gmu_power_off(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret = 0; if (device->gmu_fault) goto error; /* Wait for the lowest idle level we requested */ ret = gen8_gmu_wait_for_lowest_idle(adreno_dev); if (ret) goto error; ret = gen8_complete_rpmh_votes(gmu, 2); if (ret) goto error; ret = gen8_gmu_notify_slumber(adreno_dev); if (ret) goto error; ret = gen8_gmu_wait_for_idle(adreno_dev); if (ret) goto error; ret = gen8_rscc_sleep_sequence(adreno_dev); if (ret) goto error; gen8_rdpm_mx_freq_update(gmu, 0); /* Now that we are done with GMU and GPU, Clear the GBIF */ ret = gen8_halt_gbif(adreno_dev); if (ret) goto error; gen8_gmu_irq_disable(adreno_dev); gen8_hfi_stop(adreno_dev); clk_bulk_disable_unprepare(gmu->num_clks, gmu->clks); kgsl_pwrctrl_disable_cx_gdsc(device); gen8_rdpm_cx_freq_update(gmu, 0); kgsl_pwrctrl_set_state(device, KGSL_STATE_NONE); return 0; error: gen8_gmu_irq_disable(adreno_dev); gen8_hfi_stop(adreno_dev); gen8_gmu_suspend(adreno_dev); return ret; } void gen8_enable_gpu_irq(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); kgsl_pwrctrl_irq(device, true); adreno_irqctrl(adreno_dev, 1); } void gen8_disable_gpu_irq(struct adreno_device *adreno_dev) { kgsl_pwrctrl_irq(KGSL_DEVICE(adreno_dev), false); if (gen8_gmu_gx_is_on(adreno_dev)) adreno_irqctrl(adreno_dev, 0); } static int gen8_gpu_boot(struct adreno_device *adreno_dev) { const struct adreno_gen8_core *gen8_core = to_gen8_core(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; adreno_set_active_ctxs_null(adreno_dev); ret = kgsl_mmu_start(device); if (ret) goto err; ret = gen8_gmu_oob_set(device, oob_gpu); if (ret) goto oob_clear; ret = gen8_gmu_hfi_start_msg(adreno_dev); if (ret) goto oob_clear; /* Clear the busy_data stats - we're starting over from scratch */ memset(&adreno_dev->busy_data, 0, sizeof(adreno_dev->busy_data)); gen8_start(adreno_dev); if (gen8_core->qos_value && adreno_is_preemption_enabled(adreno_dev)) kgsl_regwrite(device, GEN8_RBBM_GBIF_CLIENT_QOS_CNTL, gen8_core->qos_value[adreno_dev->cur_rb->id]); /* Re-initialize the coresight registers if applicable */ adreno_coresight_start(adreno_dev); adreno_perfcounter_start(adreno_dev); /* Clear FSR here in case it is set from a previous pagefault */ kgsl_mmu_clear_fsr(&device->mmu); gen8_enable_gpu_irq(adreno_dev); ret = gen8_rb_start(adreno_dev); if (ret) { gen8_disable_gpu_irq(adreno_dev); goto oob_clear; } /* * At this point it is safe to assume that we recovered. Setting * this field allows us to take a new snapshot for the next failure * if we are prioritizing the first unrecoverable snapshot. */ if (device->snapshot) device->snapshot->recovered = true; /* Start the dispatcher */ adreno_dispatcher_start(device); device->reset_counter++; gen8_gmu_oob_clear(device, oob_gpu); return 0; oob_clear: gen8_gmu_oob_clear(device, oob_gpu); err: gen8_gmu_power_off(adreno_dev); return ret; } static void gmu_idle_timer(struct timer_list *t) { struct kgsl_device *device = container_of(t, struct kgsl_device, idle_timer); kgsl_schedule_work(&device->idle_check_ws); } static int gen8_boot(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; if (WARN_ON(test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags))) return 0; kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE); ret = gen8_gmu_boot(adreno_dev); if (ret) return ret; ret = gen8_gpu_boot(adreno_dev); if (ret) return ret; kgsl_start_idle_timer(device); kgsl_pwrscale_wake(device); set_bit(GMU_PRIV_GPU_STARTED, &gmu->flags); device->pwrctrl.last_stat_updated = ktime_get(); kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE); return ret; } static int gen8_first_boot(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; if (test_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags)) { if (!test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) return gen8_boot(adreno_dev); return 0; } ret = gen8_ringbuffer_init(adreno_dev); if (ret) return ret; ret = gen8_microcode_read(adreno_dev); if (ret) return ret; ret = gen8_init(adreno_dev); if (ret) return ret; ret = gen8_gmu_init(adreno_dev); if (ret) return ret; kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE); ret = gen8_gmu_first_boot(adreno_dev); if (ret) return ret; ret = gen8_gpu_boot(adreno_dev); if (ret) return ret; adreno_get_bus_counters(adreno_dev); adreno_dev->cooperative_reset = ADRENO_FEATURE(adreno_dev, ADRENO_COOP_RESET); adreno_create_profile_buffer(adreno_dev); set_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags); set_bit(GMU_PRIV_GPU_STARTED, &gmu->flags); /* * BCL needs respective Central Broadcast register to * be programed from TZ. For kernel version prior to 6.1, this * programing happens only when zap shader firmware load is successful. * Zap firmware load can fail in boot up path hence enable BCL only * after we successfully complete first boot to ensure that Central * Broadcast register was programed before enabling BCL. */ if (ADRENO_FEATURE(adreno_dev, ADRENO_BCL)) adreno_dev->bcl_enabled = true; /* * There is a possible deadlock scenario during kgsl firmware reading * (request_firmware) and devfreq update calls. During first boot, kgsl * device mutex is held and then request_firmware is called for reading * firmware. request_firmware internally takes dev_pm_qos_mtx lock. * Whereas in case of devfreq update calls triggered by thermal/bcl or * devfreq sysfs, it first takes the same dev_pm_qos_mtx lock and then * tries to take kgsl device mutex as part of get_dev_status/target * calls. This results in deadlock when both thread are unable to acquire * the mutex held by other thread. Enable devfreq updates now as we are * done reading all firmware files. */ device->pwrscale.devfreq_enabled = true; device->pwrctrl.last_stat_updated = ktime_get(); kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE); return 0; } static bool gen8_irq_pending(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); u32 status; kgsl_regread(device, GEN8_RBBM_INT_0_STATUS, &status); /* Return busy if a interrupt is pending */ return ((status & adreno_dev->irq_mask) || atomic_read(&adreno_dev->pending_irq_refcnt)); } static int gen8_power_off(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; WARN_ON(!test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)); adreno_suspend_context(device); /* * adreno_suspend_context() unlocks the device mutex, which * could allow a concurrent thread to attempt SLUMBER sequence. * Hence, check the flags again before proceeding with SLUMBER. */ if (!test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) return 0; kgsl_pwrctrl_request_state(device, KGSL_STATE_SLUMBER); ret = gen8_gmu_oob_set(device, oob_gpu); if (ret) goto no_gx_power; if (gen8_irq_pending(adreno_dev)) { gen8_gmu_oob_clear(device, oob_gpu); return -EBUSY; } kgsl_pwrscale_update_stats(device); /* Save active coresight registers if applicable */ adreno_coresight_stop(adreno_dev); adreno_irqctrl(adreno_dev, 0); no_gx_power: gen8_gmu_oob_clear(device, oob_gpu); kgsl_pwrctrl_irq(device, false); gen8_gmu_power_off(adreno_dev); adreno_set_active_ctxs_null(adreno_dev); adreno_dispatcher_stop(adreno_dev); adreno_ringbuffer_stop(adreno_dev); if (!IS_ERR_OR_NULL(adreno_dev->gpu_llc_slice)) llcc_slice_deactivate(adreno_dev->gpu_llc_slice); if (!IS_ERR_OR_NULL(adreno_dev->gpuhtw_llc_slice)) llcc_slice_deactivate(adreno_dev->gpuhtw_llc_slice); clear_bit(GMU_PRIV_GPU_STARTED, &gmu->flags); del_timer_sync(&device->idle_timer); kgsl_pwrscale_sleep(device); kgsl_pwrctrl_clear_l3_vote(device); /* * Reset the context records so that CP can start * at the correct read pointer for BV thread after * coming out of slumber. */ gen8_reset_preempt_records(adreno_dev); kgsl_pwrctrl_set_state(device, KGSL_STATE_SLUMBER); return ret; } static void gmu_idle_check(struct work_struct *work) { struct kgsl_device *device = container_of(work, struct kgsl_device, idle_check_ws); struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; mutex_lock(&device->mutex); if (test_bit(GMU_DISABLE_SLUMBER, &device->gmu_core.flags)) goto done; if (atomic_read(&device->active_cnt) || time_is_after_jiffies(device->idle_jiffies)) { kgsl_pwrscale_update(device); kgsl_start_idle_timer(device); goto done; } if (!test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) goto done; spin_lock(&device->submit_lock); if (device->submit_now) { spin_unlock(&device->submit_lock); kgsl_pwrscale_update(device); kgsl_start_idle_timer(device); goto done; } device->skip_inline_submit = true; spin_unlock(&device->submit_lock); ret = gen8_power_off(adreno_dev); if (ret == -EBUSY) { kgsl_pwrscale_update(device); kgsl_start_idle_timer(device); } done: mutex_unlock(&device->mutex); } static int gen8_gmu_first_open(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; /* * Do the one time settings that need to happen when we * attempt to boot the gpu the very first time */ ret = gen8_first_boot(adreno_dev); if (ret) return ret; /* * A client that does a first_open but never closes the device * may prevent us from going back to SLUMBER. So trigger the idle * check by incrementing the active count and immediately releasing it. */ atomic_inc(&device->active_cnt); gen8_gmu_active_count_put(adreno_dev); return 0; } static int gen8_gmu_last_close(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); if (test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) return gen8_power_off(adreno_dev); return 0; } static int gen8_gmu_active_count_get(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret = 0; if (WARN_ON(!mutex_is_locked(&device->mutex))) return -EINVAL; if (test_bit(GMU_PRIV_PM_SUSPEND, &gmu->flags)) return -EINVAL; if ((atomic_read(&device->active_cnt) == 0) && !test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) ret = gen8_boot(adreno_dev); if (ret == 0) atomic_inc(&device->active_cnt); trace_kgsl_active_count(device, (unsigned long) __builtin_return_address(0)); return ret; } static int gen8_gmu_pm_suspend(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; if (test_bit(GMU_PRIV_PM_SUSPEND, &gmu->flags)) return 0; kgsl_pwrctrl_request_state(device, KGSL_STATE_SUSPEND); /* Halt any new submissions */ reinit_completion(&device->halt_gate); /* wait for active count so device can be put in slumber */ ret = kgsl_active_count_wait(device, 0, HZ); if (ret) { dev_err(device->dev, "Timed out waiting for the active count\n"); goto err; } ret = adreno_idle(device); if (ret) goto err; if (test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) gen8_power_off(adreno_dev); set_bit(GMU_PRIV_PM_SUSPEND, &gmu->flags); adreno_get_gpu_halt(adreno_dev); kgsl_pwrctrl_set_state(device, KGSL_STATE_SUSPEND); return 0; err: adreno_dispatcher_start(device); return ret; } static void gen8_gmu_pm_resume(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); if (WARN(!test_bit(GMU_PRIV_PM_SUSPEND, &gmu->flags), "resume invoked without a suspend\n")) return; adreno_put_gpu_halt(adreno_dev); adreno_dispatcher_start(device); clear_bit(GMU_PRIV_PM_SUSPEND, &gmu->flags); } static void gen8_gmu_touch_wakeup(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); int ret; /* * Do not wake up a suspended device or until the first boot sequence * has been completed. */ if (test_bit(GMU_PRIV_PM_SUSPEND, &gmu->flags) || !test_bit(GMU_PRIV_FIRST_BOOT_DONE, &gmu->flags)) return; if (test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) goto done; kgsl_pwrctrl_request_state(device, KGSL_STATE_ACTIVE); ret = gen8_gmu_boot(adreno_dev); if (ret) return; ret = gen8_gpu_boot(adreno_dev); if (ret) return; kgsl_pwrscale_wake(device); set_bit(GMU_PRIV_GPU_STARTED, &gmu->flags); device->pwrctrl.last_stat_updated = ktime_get(); kgsl_pwrctrl_set_state(device, KGSL_STATE_ACTIVE); done: /* * When waking up from a touch event we want to stay active long enough * for the user to send a draw command. The default idle timer timeout * is shorter than we want so go ahead and push the idle timer out * further for this special case */ mod_timer(&device->idle_timer, jiffies + msecs_to_jiffies(adreno_wake_timeout)); } const struct adreno_power_ops gen8_gmu_power_ops = { .first_open = gen8_gmu_first_open, .last_close = gen8_gmu_last_close, .active_count_get = gen8_gmu_active_count_get, .active_count_put = gen8_gmu_active_count_put, .pm_suspend = gen8_gmu_pm_suspend, .pm_resume = gen8_gmu_pm_resume, .touch_wakeup = gen8_gmu_touch_wakeup, .gpu_clock_set = gen8_gmu_clock_set, .gpu_bus_set = gen8_gmu_bus_set, }; int gen8_gmu_device_probe(struct platform_device *pdev, u32 chipid, const struct adreno_gpu_core *gpucore) { struct adreno_device *adreno_dev; struct kgsl_device *device; struct gen8_device *gen8_dev; int ret; gen8_dev = devm_kzalloc(&pdev->dev, sizeof(*gen8_dev), GFP_KERNEL); if (!gen8_dev) return -ENOMEM; adreno_dev = &gen8_dev->adreno_dev; adreno_dev->irq_mask = GEN8_INT_MASK; ret = gen8_probe_common(pdev, adreno_dev, chipid, gpucore); if (ret) return ret; ret = adreno_dispatcher_init(adreno_dev); if (ret) return ret; device = KGSL_DEVICE(adreno_dev); INIT_WORK(&device->idle_check_ws, gmu_idle_check); timer_setup(&device->idle_timer, gmu_idle_timer, 0); return 0; } int gen8_gmu_reset(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); gen8_disable_gpu_irq(adreno_dev); gen8_gmu_irq_disable(adreno_dev); gen8_hfi_stop(adreno_dev); /* Hard reset the gmu and gpu */ gen8_gmu_suspend(adreno_dev); gen8_reset_preempt_records(adreno_dev); clear_bit(GMU_PRIV_GPU_STARTED, &gmu->flags); /* Attempt to reboot the gmu and gpu */ return gen8_boot(adreno_dev); } int gen8_gmu_hfi_probe(struct adreno_device *adreno_dev) { struct gen8_gmu_device *gmu = to_gen8_gmu(adreno_dev); struct gen8_hfi *hfi = &gmu->hfi; hfi->irq = kgsl_request_irq(gmu->pdev, "hfi", gen8_hfi_irq_handler, KGSL_DEVICE(adreno_dev)); return hfi->irq < 0 ? hfi->irq : 0; } int gen8_gmu_add_to_minidump(struct adreno_device *adreno_dev) { struct gen8_device *gen8_dev = container_of(adreno_dev, struct gen8_device, adreno_dev); int ret; ret = kgsl_add_va_to_minidump(adreno_dev->dev.dev, KGSL_GEN8_DEVICE, (void *)(gen8_dev), sizeof(struct gen8_device)); if (ret) return ret; ret = kgsl_add_va_to_minidump(adreno_dev->dev.dev, KGSL_GMU_LOG_ENTRY, gen8_dev->gmu.gmu_log->hostptr, gen8_dev->gmu.gmu_log->size); if (ret) return ret; ret = kgsl_add_va_to_minidump(adreno_dev->dev.dev, KGSL_HFIMEM_ENTRY, gen8_dev->gmu.hfi.hfi_mem->hostptr, gen8_dev->gmu.hfi.hfi_mem->size); return ret; } static int gen8_gmu_bind(struct device *dev, struct device *master, void *data) { struct kgsl_device *device = dev_get_drvdata(master); struct adreno_device *adreno_dev = ADRENO_DEVICE(device); const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); const struct gen8_gpudev *gen8_gpudev = to_gen8_gpudev(gpudev); int ret; ret = gen8_gmu_probe(device, to_platform_device(dev)); if (ret) return ret; if (gen8_gpudev->hfi_probe) { ret = gen8_gpudev->hfi_probe(adreno_dev); if (ret) { gen8_gmu_remove(device); return ret; } } return 0; } static void gen8_gmu_unbind(struct device *dev, struct device *master, void *data) { struct kgsl_device *device = dev_get_drvdata(master); struct adreno_device *adreno_dev = ADRENO_DEVICE(device); const struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); const struct gen8_gpudev *gen8_gpudev = to_gen8_gpudev(gpudev); if (gen8_gpudev->hfi_remove) gen8_gpudev->hfi_remove(adreno_dev); gen8_gmu_remove(device); } static const struct component_ops gen8_gmu_component_ops = { .bind = gen8_gmu_bind, .unbind = gen8_gmu_unbind, }; static int gen8_gmu_probe_dev(struct platform_device *pdev) { return component_add(&pdev->dev, &gen8_gmu_component_ops); } static int gen8_gmu_remove_dev(struct platform_device *pdev) { component_del(&pdev->dev, &gen8_gmu_component_ops); return 0; } static const struct of_device_id gen8_gmu_match_table[] = { { .compatible = "qcom,gen8-gmu" }, { }, }; struct platform_driver gen8_gmu_driver = { .probe = gen8_gmu_probe_dev, .remove = gen8_gmu_remove_dev, .driver = { .name = "adreno-gen8-gmu", .of_match_table = gen8_gmu_match_table, }, };