/****************************************************************************** * Copyright (C) 2015, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2022 NXP * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ******************************************************************************/ /* * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. * *****************************************************************************/ #include #include #include #include #include "common.h" bool secure_peripheral_not_found = true; int nfc_parse_dt(struct device *dev, struct platform_configs *nfc_configs, uint8_t interface) { int ret; struct device_node *np = dev->of_node; struct platform_gpio *nfc_gpio = &nfc_configs->gpio; struct platform_ldo *ldo = &nfc_configs->ldo; if (!np) { pr_err("NxpDrv: %s: nfc of_node NULL\n", __func__); return -EINVAL; } nfc_gpio->irq = -EINVAL; nfc_gpio->dwl_req = -EINVAL; nfc_gpio->ven = -EINVAL; nfc_gpio->clkreq = -EINVAL; /* irq required for i2c based chips only */ if (interface == PLATFORM_IF_I2C) { nfc_gpio->irq = of_get_named_gpio(np, DTS_IRQ_GPIO_STR, 0); if ((!gpio_is_valid(nfc_gpio->irq))) { pr_err("NxpDrv: %s: irq gpio invalid %d\n", __func__, nfc_gpio->irq); return nfc_gpio->irq; } pr_info("NxpDrv: %s: irq %d\n", __func__, nfc_gpio->irq); } nfc_gpio->ven = of_get_named_gpio(np, DTS_VEN_GPIO_STR, 0); if ((!gpio_is_valid(nfc_gpio->ven))) { pr_err("NxpDrv: %s: ven gpio invalid %d\n", __func__, nfc_gpio->ven); return nfc_gpio->ven; } /* some products like sn220 does not required fw dwl pin */ nfc_gpio->dwl_req = of_get_named_gpio(np, DTS_FWDN_GPIO_STR, 0); /* not returning failure for dwl gpio as it is optional for sn220 */ if ((!gpio_is_valid(nfc_gpio->dwl_req))) { pr_warn("NxpDrv: %s: dwl_req gpio invalid %d\n", __func__, nfc_gpio->dwl_req); } /* Read clkreq GPIO pin number from DTSI */ nfc_gpio->clkreq = of_get_named_gpio(np, DTS_CLKREQ_GPIO_STR, 0); if (!gpio_is_valid(nfc_gpio->clkreq)) { dev_err(dev, "NxpDrv: clkreq gpio invalid %d\n", nfc_gpio->clkreq); return -EINVAL; } #ifdef NFC_SECURE_PERIPHERAL_ENABLED /* Read DTS_SZONE_STR to check secure zone support */ if (of_property_read_string(np, DTS_SZONE_STR, &nfc_configs->szone)) { nfc_configs->CNSS_NFC_HW_SECURE_ENABLE = false; }else nfc_configs->CNSS_NFC_HW_SECURE_ENABLE = true; #endif pr_info("NxpDrv: %s: irq %d, ven %d, dwl %d, clkreq %d \n", __func__, nfc_gpio->irq, nfc_gpio->ven, nfc_gpio->dwl_req, nfc_gpio->clkreq); /* optional property */ ret = of_property_read_u32_array(np, NFC_LDO_VOL_DT_NAME, (u32 *) ldo->vdd_levels, ARRAY_SIZE(ldo->vdd_levels)); if (ret) { dev_err(dev, "NxpDrv: error reading NFC VDDIO min and max value\n"); // set default as per datasheet ldo->vdd_levels[0] = NFC_VDDIO_MIN; ldo->vdd_levels[1] = NFC_VDDIO_MAX; } /* optional property */ ret = of_property_read_u32(np, NFC_LDO_CUR_DT_NAME, &ldo->max_current); if (ret) { dev_err(dev, "NxpDrv: error reading NFC current value\n"); // set default as per datasheet ldo->max_current = NFC_CURRENT_MAX; } return 0; } void set_valid_gpio(int gpio, int value) { if (gpio_is_valid(gpio)) { pr_debug("NxpDrv: %s: gpio %d value %d\n", __func__, gpio, value); gpio_set_value(gpio, value); /* hardware dependent delay */ usleep_range(NFC_GPIO_SET_WAIT_TIME_US, NFC_GPIO_SET_WAIT_TIME_US + 100); } } int get_valid_gpio(int gpio) { int value = -EINVAL; if (gpio_is_valid(gpio)) { value = gpio_get_value(gpio); pr_debug("NxpDrv: %s: gpio %d value %d\n", __func__, gpio, value); } return value; } void gpio_set_ven(struct nfc_dev *nfc_dev, int value) { struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; if (gpio_get_value(nfc_gpio->ven) != value) { pr_debug("NxpDrv: %s: value %d\n", __func__, value); #ifdef NFC_SECURE_PERIPHERAL_ENABLED if(secure_peripheral_not_found) { /*secure peripheral feature is not enabled*/ gpio_set_value(nfc_gpio->ven, value); } else { /*secure peripheral feature is enabled*/ if(!nfc_hw_secure_check()) gpio_set_value(nfc_gpio->ven, value); } #else gpio_set_value(nfc_gpio->ven, value); #endif /* hardware dependent delay */ usleep_range(NFC_GPIO_SET_WAIT_TIME_US, NFC_GPIO_SET_WAIT_TIME_US + 100); } } int configure_gpio(unsigned int gpio, int flag) { int ret; pr_debug("NxpDrv: %s: nfc gpio [%d] flag [%01x]\n", __func__, gpio, flag); if (gpio_is_valid(gpio)) { ret = gpio_request(gpio, "nfc_gpio"); if (ret) { pr_err("NxpDrv: %s: unable to request nfc gpio [%d]\n", __func__, gpio); return ret; } /* set direction and value for output pin */ if (flag & GPIO_OUTPUT) { ret = gpio_direction_output(gpio, (GPIO_HIGH & flag)); pr_debug("NxpDrv: %s: nfc o/p gpio %d level %d\n", __func__, gpio, gpio_get_value(gpio)); } else { ret = gpio_direction_input(gpio); pr_debug("NxpDrv: %s: nfc i/p gpio %d\n", __func__, gpio); } if (ret) { pr_err("NxpDrv: %s: unable to set direction for nfc gpio [%d]\n", __func__, gpio); gpio_free(gpio); return ret; } /* Consider value as control for input IRQ pin */ if (flag & GPIO_IRQ) { ret = gpio_to_irq(gpio); if (ret < 0) { pr_err("NxpDrv: %s: unable to set irq [%d]\n", __func__, gpio); gpio_free(gpio); return ret; } pr_debug("NxpDrv: %s: gpio_to_irq successful [%d]\n", __func__, gpio); return ret; } } else { pr_err("NxpDrv: %s: invalid gpio\n", __func__); ret = -EINVAL; } return ret; } void gpio_free_all(struct nfc_dev *nfc_dev) { struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; if (gpio_is_valid(nfc_gpio->clkreq)) gpio_free(nfc_gpio->clkreq); if (gpio_is_valid(nfc_gpio->dwl_req)) gpio_free(nfc_gpio->dwl_req); if (gpio_is_valid(nfc_gpio->irq)) gpio_free(nfc_gpio->irq); if (gpio_is_valid(nfc_gpio->ven)) gpio_free(nfc_gpio->ven); } void nfc_misc_unregister(struct nfc_dev *nfc_dev, int count) { pr_debug("NxpDrv: %s: entry\n", __func__); kfree(nfc_dev->kbuf); device_destroy(nfc_dev->nfc_class, nfc_dev->devno); cdev_del(&nfc_dev->c_dev); class_destroy(nfc_dev->nfc_class); unregister_chrdev_region(nfc_dev->devno, count); if (nfc_dev->ipcl) ipc_log_context_destroy(nfc_dev->ipcl); } int nfc_misc_register(struct nfc_dev *nfc_dev, const struct file_operations *nfc_fops, int count, char *devname, char *classname) { int ret = 0; ret = alloc_chrdev_region(&nfc_dev->devno, 0, count, devname); if (ret < 0) { pr_err("NxpDrv: %s: failed to alloc chrdev region ret %d\n", __func__, ret); return ret; } nfc_dev->nfc_class = class_create(THIS_MODULE, classname); if (IS_ERR(nfc_dev->nfc_class)) { ret = PTR_ERR(nfc_dev->nfc_class); pr_err("NxpDrv: %s: failed to register device class ret %d\n", __func__, ret); unregister_chrdev_region(nfc_dev->devno, count); return ret; } cdev_init(&nfc_dev->c_dev, nfc_fops); ret = cdev_add(&nfc_dev->c_dev, nfc_dev->devno, count); if (ret < 0) { pr_err("NxpDrv: %s: failed to add cdev ret %d\n", __func__, ret); class_destroy(nfc_dev->nfc_class); unregister_chrdev_region(nfc_dev->devno, count); return ret; } nfc_dev->nfc_device = device_create(nfc_dev->nfc_class, NULL, nfc_dev->devno, nfc_dev, devname); if (IS_ERR(nfc_dev->nfc_device)) { ret = PTR_ERR(nfc_dev->nfc_device); pr_err("NxpDrv: %s: failed to create the device ret %d\n", __func__, ret); cdev_del(&nfc_dev->c_dev); class_destroy(nfc_dev->nfc_class); unregister_chrdev_region(nfc_dev->devno, count); return ret; } nfc_dev->ipcl = ipc_log_context_create(NUM_OF_IPC_LOG_PAGES, dev_name(nfc_dev->nfc_device), 0); nfc_dev->kbuflen = MAX_NCI_BUFFER_SIZE; nfc_dev->kbuf = kzalloc(MAX_NCI_BUFFER_SIZE, GFP_KERNEL | GFP_DMA); if (!nfc_dev->kbuf) { nfc_misc_unregister(nfc_dev, count); return -ENOMEM; } nfc_dev->cold_reset.rsp_pending = false; nfc_dev->cold_reset.is_nfc_enabled = false; nfc_dev->cold_reset.is_crp_en = false; nfc_dev->cold_reset.last_src_ese_prot = ESE_COLD_RESET_ORIGIN_NONE; init_waitqueue_head(&nfc_dev->cold_reset.read_wq); return 0; } /** * nfc_gpio_info() - gets the status of nfc gpio pins and encodes into a byte. * @nfc_dev: nfc device data structure * @arg: userspace buffer * * Encoding can be done in following manner * 1) map the gpio value into INVALID(-2), SET(1), RESET(0). * 2) mask the first 2 bits of gpio. * 3) left shift the 2 bits as multiple of 2. * 4) multiply factor can be defined as position of gpio pin in struct platform_gpio * * Return: -EFAULT, if unable to copy the data from kernel space to userspace, 0 * if Success(or no issue) */ static int nfc_gpio_info(struct nfc_dev *nfc_dev, unsigned long arg) { unsigned int gpios_status = 0; int value = 0; int gpio_no = 0; int i; int ret = 0; struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; for (i = 0; i < sizeof(struct platform_gpio) / sizeof(unsigned int); i++) { gpio_no = *((unsigned int *)nfc_gpio + i); value = get_valid_gpio(gpio_no); if (value < 0) value = -2; gpios_status |= (value & GPIO_STATUS_MASK_BITS)<<(GPIO_POS_SHIFT_VAL*i); } ret = copy_to_user((uint32_t *) arg, &gpios_status, sizeof(value)); if (ret < 0) { pr_err("NxpDrv: %s : Unable to copy data from kernel space to user space", __func__); return -EFAULT; } return 0; } /** * nfc_ioctl_power_states() - power control * @nfc_dev: nfc device data structure * @arg: mode that we want to move to * * Device power control. Depending on the arg value, device moves to * different states, refer common.h for args * * Return: -ENOIOCTLCMD if arg is not supported, 0 if Success(or no issue) * and error ret code otherwise */ static int nfc_ioctl_power_states(struct nfc_dev *nfc_dev, unsigned long arg) { int ret = 0; struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; if (arg == NFC_POWER_OFF) { /* * We are attempting a hardware reset so let us disable * interrupts to avoid spurious notifications to upper * layers. */ nfc_dev->nfc_disable_intr(nfc_dev); set_valid_gpio(nfc_gpio->dwl_req, 0); gpio_set_ven(nfc_dev, 0); nfc_dev->nfc_ven_enabled = false; nfc_dev->nfc_state = NFC_STATE_NCI; } else if (arg == NFC_POWER_ON) { nfc_dev->nfc_enable_intr(nfc_dev); set_valid_gpio(nfc_gpio->dwl_req, 0); gpio_set_ven(nfc_dev, 1); nfc_dev->nfc_ven_enabled = true; nfc_dev->nfc_state = NFC_STATE_NCI; } else if (arg == NFC_FW_DWL_VEN_TOGGLE) { /* * We are switching to download Mode, toggle the enable pin * in order to set the NFCC in the new mode */ nfc_dev->nfc_disable_intr(nfc_dev); set_valid_gpio(nfc_gpio->dwl_req, 1); nfc_dev->nfc_state = NFC_STATE_FW_DWL; gpio_set_ven(nfc_dev, 0); gpio_set_ven(nfc_dev, 1); nfc_dev->nfc_enable_intr(nfc_dev); } else if (arg == NFC_FW_DWL_HIGH) { /* * Setting firmware download gpio to HIGH * before FW download start */ pr_debug("NxpDrv: set fw gpio high\n"); set_valid_gpio(nfc_gpio->dwl_req, 1); nfc_dev->nfc_state = NFC_STATE_FW_DWL; } else if (arg == NFC_VEN_FORCED_HARD_RESET) { nfc_dev->nfc_disable_intr(nfc_dev); gpio_set_ven(nfc_dev, 0); gpio_set_ven(nfc_dev, 1); nfc_dev->nfc_enable_intr(nfc_dev); pr_info("NxpDrv: %s VEN forced reset done\n", __func__); } else if (arg == NFC_FW_DWL_LOW) { /* * Setting firmware download gpio to LOW * FW download finished */ pr_debug("NxpDrv: set fw gpio LOW\n"); set_valid_gpio(nfc_gpio->dwl_req, 0); nfc_dev->nfc_state = NFC_STATE_NCI; } else if (arg == NFC_ENABLE) { /* Setting flag true when NFC is enabled */ nfc_dev->cold_reset.is_nfc_enabled = true; } else if (arg == NFC_DISABLE) { /* Setting flag true when NFC is disabled */ nfc_dev->cold_reset.is_nfc_enabled = false; } else { pr_err("NxpDrv: %s: bad arg %lu\n", __func__, arg); ret = -ENOIOCTLCMD; } return ret; } #ifdef CONFIG_COMPAT /** * nfc_dev_compat_ioctl - used to set or get data from upper layer. * @pfile file node for opened device. * @cmd ioctl type from upper layer. * @arg ioctl arg from upper layer. * * NFC and ESE Device power control, based on the argument value * * Return: -ENOIOCTLCMD if arg is not supported * 0 if Success(or no issue) * 0 or 1 in case of arg is ESE_GET_PWR/ESE_POWER_STATE * and error ret code otherwise */ long nfc_dev_compat_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg) { int ret = 0; arg = (compat_u64) arg; pr_debug("NxpDrv: %s: cmd = %x arg = %zx\n", __func__, cmd, arg); ret = nfc_dev_ioctl(pfile, cmd, arg); return ret; } #endif /** * nfc_post_init() - Configuraing Ven GPIO and hardware check * @nfc_dev: nfc device data structure * * Configure GPIOs post notification from TZ, ensuring it's a non-secure zone. * * Return: 0 if Success(or no issue) and error ret code otherwise */ int nfc_post_init(struct nfc_dev *nfc_dev) { int ret=0; unsigned int clkreq_gpio = 0; static int post_init_success; struct platform_configs nfc_configs; struct platform_gpio *nfc_gpio; if(post_init_success) return 0; if (!nfc_dev) return -ENODEV; memcpy(&nfc_configs, &nfc_dev->configs, sizeof(struct platform_configs)); nfc_gpio = &nfc_configs.gpio; ret = configure_gpio(nfc_gpio->ven, GPIO_OUTPUT); if (ret) { pr_err("NxpDrv: %s: unable to request nfc reset gpio [%d]\n", __func__, nfc_gpio->ven); return ret; } ret = configure_gpio(nfc_gpio->dwl_req, GPIO_OUTPUT); if (ret) { pr_err("NxpDrv: %s: unable to request nfc firm downl gpio [%d]\n", __func__, nfc_gpio->dwl_req); } /* Read clkreq GPIO number from device tree*/ ret = of_property_read_u32_index(nfc_dev->i2c_dev.client->dev.of_node, DTS_CLKREQ_GPIO_STR, 1, &clkreq_gpio); if (ret < 0) { pr_err("NxpDrv: %s Failed to read clkreq gipo number, ret: %d\n", __func__, ret); return ret; } /* configure clkreq GPIO as wakeup capable */ ret = msm_gpio_mpm_wake_set(clkreq_gpio, true); if (ret < 0) { pr_err("NxpDrv: %s Failed to setup clkreq gpio %d as wakeup capable, ret: %d\n", __func__, clkreq_gpio , ret); return ret; } else { pr_info("NxpDrv: %s clkreq gpio %d successfully setup for wakeup capable\n", __func__, clkreq_gpio); } ret = nfcc_hw_check(nfc_dev); if (ret || nfc_dev->nfc_state == NFC_STATE_UNKNOWN) { pr_err("NxpDrv: nfc hw check failed ret %d\n", ret); gpio_free(nfc_gpio->dwl_req); gpio_free(nfc_gpio->ven); return ret; } #ifdef NFC_SECURE_PERIPHERAL_ENABLED /*Initialising sempahore to disbale NFC Ven GPIO only after eSE is power off flag is set */ if (nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) { sema_init(&sem_eSE_pwr_off,0); } #endif post_init_success = 1; pr_info("NxpDrv: %s success\n", __func__); return 0; } #ifdef NFC_SECURE_PERIPHERAL_ENABLED /** * nfc_hw_secure_check() - Checks the NFC secure zone status * * Queries the TZ secure libraries if NFC is in secure zone statue or not. * * Return: 0 if FEATURE_NOT_SUPPORTED or PERIPHERAL_NOT_FOUND or nfc_sec_state = 2(non-secure zone) and * return 1 if nfc_sec_state = 1(secure zone) or error otherwise */ bool nfc_hw_secure_check(void) { struct Object client_env; struct Object app_object; u32 nfc_uid = HW_NFC_UID; union ObjectArg obj_arg[2] = {{{0, 0}}}; int ret; bool retstat = 1; u8 nfc_sec_state = 0; /* get rootObj */ ret = get_client_env_object(&client_env); if (ret) { pr_err("NxpDrv: Failed to get client_env_object, ret: %d\n", ret); return retstat; } ret = IClientEnv_open(client_env, HW_STATE_UID, &app_object); if (ret) { pr_debug("NxpDrv: Failed to get app_object, ret: %d\n", ret); if (ret == FEATURE_NOT_SUPPORTED) { retstat = 0; /* Do not Assert */ pr_debug("NxpDrv: Secure HW feature not supported\n"); } goto exit_release_clientenv; } obj_arg[0].b = (struct ObjectBuf) {&nfc_uid, sizeof(u32)}; obj_arg[1].b = (struct ObjectBuf) {&nfc_sec_state, sizeof(u8)}; ret = Object_invoke(app_object, HW_OP_GET_STATE, obj_arg, ObjectCounts_pack(1, 1, 0, 0)); pr_info("NxpDrv: TZ ret: %d nfc_sec_state: %d\n", ret, nfc_sec_state); if (ret) { if (ret == PERIPHERAL_NOT_FOUND) { retstat = 0; /* Do not Assert */ pr_debug("NxpDrv: Secure HW mode is not updated. Peripheral not found\n"); } goto exit_release_app_obj; } secure_peripheral_not_found = false; /* Refer peripheral state utilities for different states of NFC peripherals */ if (nfc_sec_state == 1) { /*Secure Zone*/ retstat = 1; } else { /*Non-Secure Zone*/ retstat = 0; } exit_release_app_obj: Object_release(app_object); exit_release_clientenv: Object_release(client_env); return retstat; } /** * nfc_dynamic_protection_ioctl() - dynamic protection control * @nfc_dev: nfc device data structure * @sec_zone_trans: mode that we want to move to * If sec_zone_trans = 1; transition from non-secure zone to secure zone * If sec_zone_trans = 0; transition from secure zone to non - secure zone * * nfc periheral dynamic protection control. Depending on the sec_zone_trans value, device moves to * secure zone and non-secure zone * * Return: -ENOIOCTLCMD if sec_zone_trans val is not supported, 0 if Success(or no issue) * and error ret code otherwise */ int nfc_dynamic_protection_ioctl(struct nfc_dev *nfc_dev, unsigned long sec_zone_trans) { int ret = 0; static int init_flag=1; struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; if(sec_zone_trans == 1) { /*check NFC is disabled, only then set Ven GPIO low*/ if(nfc_dev->cold_reset.is_nfc_enabled == false) { pr_debug("NxpDrv: %s: value %d\n", __func__, gpio_get_value(nfc_gpio->ven)); chk_eSE_pwr_off = 1; /*check if eSE is active, if yes, wait max of 1sec, until it's inactive */ if(nfc_dev->is_ese_session_active == true) { if(down_timeout(&sem_eSE_pwr_off, msecs_to_jiffies(1000))) { /*waited for 1sec yet eSE not turned off, so, ignoring eSE power off*/ pr_info("NxpDrv: Forcefull shutdown of eSE\n"); } } ret = nfc_ioctl_power_states(nfc_dev, 0); /*set driver as secure zone, such that no ioctl calls are allowed*/ nfc_dev->secure_zone = true; pr_info("NxpDrv: Driver Secure flag set successful\n"); } else { ret = -1; } } else if(sec_zone_trans == 0) { chk_eSE_pwr_off = 0; nfc_dev->secure_zone = false; if(init_flag) { /*Initialize once,only during the first non-secure entry*/ ret = nfc_post_init(nfc_dev); if(ret == 0) init_flag=0; } else { if(!gpio_get_value(nfc_gpio->ven)) ret = nfc_ioctl_power_states(nfc_dev, 1); } pr_info("NxpDrv: Func Driver Secure flag clear successful\n"); } else { pr_info("NxpDrv: INVALID ARG\n"); ret = -ENOIOCTLCMD; } return ret; } #endif /** * nfc_dev_ioctl - used to set or get data from upper layer. * @pfile file node for opened device. * @cmd ioctl type from upper layer. * @arg ioctl arg from upper layer. * * NFC and ESE Device power control, based on the argument value * * Return: -ENOIOCTLCMD if arg is not supported * 0 if Success(or no issue) * 0 or 1 in case of arg is ESE_GET_PWR/ESE_POWER_STATE * and error ret code otherwise */ long nfc_dev_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg) { int ret = 0; struct nfc_dev *nfc_dev = pfile->private_data; if (!nfc_dev) return -ENODEV; #ifdef NFC_SECURE_PERIPHERAL_ENABLED if( nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) { /*Avoiding ioctl call in secure zone*/ if(nfc_dev->secure_zone) { if(cmd!=NFC_SECURE_ZONE) { pr_debug("NxpDrv: nfc_dev_ioctl failed\n"); return -1; } } } #endif pr_debug("NxpDrv: %s: cmd = %x arg = %zx\n", __func__, cmd, arg); switch (cmd) { case NFC_SET_PWR: ret = nfc_ioctl_power_states(nfc_dev, arg); break; case NFC_SET_RESET_READ_PENDING: if (arg == NFC_SET_READ_PENDING) { nfc_dev->cold_reset.is_nfc_read_pending = true; /* Set default NFC state as NCI for Nfc read pending request */ nfc_dev->nfc_state = NFC_STATE_NCI; } else if (arg == NFC_RESET_READ_PENDING) { nfc_dev->cold_reset.is_nfc_read_pending = false; } else { ret = -EINVAL; } break; case ESE_SET_PWR: ret = nfc_ese_pwr(nfc_dev, arg); break; case ESE_GET_PWR: ret = nfc_ese_pwr(nfc_dev, ESE_POWER_STATE); break; case NFC_GET_GPIO_STATUS: ret = nfc_gpio_info(nfc_dev, arg); break; case NFCC_GET_INFO: ret = nfc_ioctl_nfcc_info(pfile, arg); break; case ESE_COLD_RESET: pr_debug("NxpDrv: nfc ese cold reset ioctl\n"); ret = ese_cold_reset_ioctl(nfc_dev, arg); break; #ifdef NFC_SECURE_PERIPHERAL_ENABLED case NFC_SECURE_ZONE: if( nfc_dev->configs.CNSS_NFC_HW_SECURE_ENABLE == true) { ret = nfc_dynamic_protection_ioctl(nfc_dev, arg); } break; #endif default: pr_err("NxpDrv: %s: bad cmd %lu\n", __func__, arg); ret = -ENOIOCTLCMD; } return ret; } int nfc_dev_open(struct inode *inode, struct file *filp) { struct nfc_dev *nfc_dev = NULL; nfc_dev = container_of(inode->i_cdev, struct nfc_dev, c_dev); if (!nfc_dev) return -ENODEV; pr_debug("NxpDrv: %s: %d, %d\n", __func__, imajor(inode), iminor(inode)); /* Set flag to block freezer fake signal if not set already. * Without this Signal being set, Driver is trying to do a read * which is causing the delay in moving to Hibernate Mode. */ if (!(current->flags & PF_NOFREEZE)) { current->flags |= PF_NOFREEZE; pr_debug("NxpDrv: %s: current->flags 0x%x. \n", __func__, current->flags); } mutex_lock(&nfc_dev->dev_ref_mutex); filp->private_data = nfc_dev; if (nfc_dev->dev_ref_count == 0) { set_valid_gpio(nfc_dev->configs.gpio.dwl_req, 0); nfc_dev->nfc_enable_intr(nfc_dev); } nfc_dev->dev_ref_count = nfc_dev->dev_ref_count + 1; mutex_unlock(&nfc_dev->dev_ref_mutex); return 0; } int nfc_dev_flush(struct file *pfile, fl_owner_t id) { struct nfc_dev *nfc_dev = pfile->private_data; if (!nfc_dev) return -ENODEV; /* * release blocked user thread waiting for pending read during close */ if (!mutex_trylock(&nfc_dev->read_mutex)) { nfc_dev->release_read = true; nfc_dev->nfc_disable_intr(nfc_dev); wake_up(&nfc_dev->read_wq); pr_debug("NxpDrv: %s: waiting for release of blocked read\n", __func__); mutex_lock(&nfc_dev->read_mutex); nfc_dev->release_read = false; } else { pr_debug("NxpDrv: %s: read thread already released\n", __func__); } mutex_unlock(&nfc_dev->read_mutex); return 0; } int nfc_dev_close(struct inode *inode, struct file *filp) { struct nfc_dev *nfc_dev = NULL; nfc_dev = container_of(inode->i_cdev, struct nfc_dev, c_dev); if (!nfc_dev) return -ENODEV; pr_debug("NxpDrv: %s: %d, %d\n", __func__, imajor(inode), iminor(inode)); /* unset the flag to restore to previous state */ if (current->flags & PF_NOFREEZE) { current->flags &= ~PF_NOFREEZE; pr_debug("NxpDrv: %s: current->flags 0x%x. \n", __func__, current->flags); } mutex_lock(&nfc_dev->dev_ref_mutex); if (nfc_dev->dev_ref_count == 1) { nfc_dev->nfc_disable_intr(nfc_dev); set_valid_gpio(nfc_dev->configs.gpio.dwl_req, 0); } if (nfc_dev->dev_ref_count > 0) nfc_dev->dev_ref_count = nfc_dev->dev_ref_count - 1; filp->private_data = NULL; mutex_unlock(&nfc_dev->dev_ref_mutex); return 0; } int validate_nfc_state_nci(struct nfc_dev *nfc_dev) { struct platform_gpio *nfc_gpio = &nfc_dev->configs.gpio; if(!nfc_dev->secure_zone) { if (!gpio_get_value(nfc_gpio->ven)) { pr_err("NxpDrv: %s: ven low - nfcc powered off\n", __func__); return -ENODEV; } } if (get_valid_gpio(nfc_gpio->dwl_req) == 1) { pr_err("NxpDrv: %s: fw download in-progress\n", __func__); return -EBUSY; } if (nfc_dev->nfc_state != NFC_STATE_NCI) { pr_err("NxpDrv: %s: fw download state\n", __func__); return -EBUSY; } return 0; }