/* * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "dp_types.h" #include "dp_internal.h" #include "dp_tx.h" #include "dp_tx_desc.h" #include "dp_rx.h" #include "dp_rx_mon.h" #ifdef DP_RATETABLE_SUPPORT #include "dp_ratetable.h" #endif #include #include #include #include "cdp_txrx_cmn_struct.h" #include "cdp_txrx_stats_struct.h" #include "cdp_txrx_cmn_reg.h" #include #include "dp_peer.h" #include "dp_rx_mon.h" #include "htt_stats.h" #include "dp_htt.h" #ifdef WLAN_SUPPORT_RX_FISA #include #endif #include "htt_ppdu_stats.h" #include "qdf_mem.h" /* qdf_mem_malloc,free */ #include "cfg_ucfg_api.h" #include "dp_mon_filter.h" #ifdef QCA_LL_TX_FLOW_CONTROL_V2 #include "cdp_txrx_flow_ctrl_v2.h" #else static inline void cdp_dump_flow_pool_info(struct cdp_soc_t *soc) { return; } #endif #include "dp_ipa.h" #include "dp_cal_client_api.h" #ifdef FEATURE_WDS #include "dp_txrx_wds.h" #endif #ifdef ATH_SUPPORT_IQUE #include "dp_txrx_me.h" #endif #if defined(DP_CON_MON) #ifndef REMOVE_PKT_LOG #include #include #endif #endif #ifdef WLAN_FEATURE_STATS_EXT #define INIT_RX_HW_STATS_LOCK(_soc) \ qdf_spinlock_create(&(_soc)->rx_hw_stats_lock) #define DEINIT_RX_HW_STATS_LOCK(_soc) \ qdf_spinlock_destroy(&(_soc)->rx_hw_stats_lock) #else #define INIT_RX_HW_STATS_LOCK(_soc) /* no op */ #define DEINIT_RX_HW_STATS_LOCK(_soc) /* no op */ #endif /* * The max size of cdp_peer_stats_param_t is limited to 16 bytes. * If the buffer size is exceeding this size limit, * dp_txrx_get_peer_stats is to be used instead. */ QDF_COMPILE_TIME_ASSERT(cdp_peer_stats_param_t_max_size, (sizeof(cdp_peer_stats_param_t) <= 16)); #ifdef WLAN_FEATURE_DP_EVENT_HISTORY /* * If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS * also should be updated accordingly */ QDF_COMPILE_TIME_ASSERT(num_intr_grps, HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS); /* * HIF_EVENT_HIST_MAX should always be power of 2 */ QDF_COMPILE_TIME_ASSERT(hif_event_history_size, (HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0); #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */ /* * If WLAN_CFG_INT_NUM_CONTEXTS is changed, * WLAN_CFG_INT_NUM_CONTEXTS_MAX should also be updated */ QDF_COMPILE_TIME_ASSERT(wlan_cfg_num_int_ctxs, WLAN_CFG_INT_NUM_CONTEXTS_MAX >= WLAN_CFG_INT_NUM_CONTEXTS); #ifdef WLAN_RX_PKT_CAPTURE_ENH #include "dp_rx_mon_feature.h" #else /* * dp_config_enh_rx_capture()- API to enable/disable enhanced rx capture * @pdev_handle: DP_PDEV handle * @val: user provided value * * Return: QDF_STATUS */ static QDF_STATUS dp_config_enh_rx_capture(struct dp_pdev *pdev_handle, uint8_t val) { return QDF_STATUS_E_INVAL; } #endif /* WLAN_RX_PKT_CAPTURE_ENH */ #ifdef WLAN_TX_PKT_CAPTURE_ENH #include "dp_tx_capture.h" #else /* * dp_config_enh_tx_capture()- API to enable/disable enhanced tx capture * @pdev_handle: DP_PDEV handle * @val: user provided value * * Return: QDF_STATUS */ static QDF_STATUS dp_config_enh_tx_capture(struct dp_pdev *pdev_handle, uint8_t val) { return QDF_STATUS_E_INVAL; } #endif void *dp_soc_init(struct dp_soc *soc, HTC_HANDLE htc_handle, struct hif_opaque_softc *hif_handle); static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force); static struct dp_soc * dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, struct ol_if_ops *ol_ops, uint16_t device_id); static void dp_pktlogmod_exit(struct dp_pdev *handle); static inline QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac_addr); static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, uint32_t bitmap); static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle, bool unmap_only); #ifdef ENABLE_VERBOSE_DEBUG bool is_dp_verbose_debug_enabled; #endif #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE) static void dp_cfr_filter(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable, struct cdp_monitor_filter *filter_val); static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id); static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable); static inline void dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, struct cdp_cfr_rcc_stats *cfr_rcc_stats); static inline void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id); static inline void dp_enable_mon_reap_timer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable); #endif static inline bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev); static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num); #define DP_INTR_POLL_TIMER_MS 10 /* Generic AST entry aging timer value */ #define DP_AST_AGING_TIMER_DEFAULT_MS 1000 #define DP_MCS_LENGTH (6*MAX_MCS) #define DP_CURR_FW_STATS_AVAIL 19 #define DP_HTT_DBG_EXT_STATS_MAX 256 #define DP_MAX_SLEEP_TIME 100 #ifndef QCA_WIFI_3_0_EMU #define SUSPEND_DRAIN_WAIT 500 #else #define SUSPEND_DRAIN_WAIT 3000 #endif #ifdef IPA_OFFLOAD /* Exclude IPA rings from the interrupt context */ #define TX_RING_MASK_VAL 0xb #define RX_RING_MASK_VAL 0x7 #else #define TX_RING_MASK_VAL 0xF #define RX_RING_MASK_VAL 0xF #endif #define STR_MAXLEN 64 #define RNG_ERR "SRNG setup failed for" /* Threshold for peer's cached buf queue beyond which frames are dropped */ #define DP_RX_CACHED_BUFQ_THRESH 64 /* Budget to reap monitor status ring */ #define DP_MON_REAP_BUDGET 1024 /** * default_dscp_tid_map - Default DSCP-TID mapping * * DSCP TID * 000000 0 * 001000 1 * 010000 2 * 011000 3 * 100000 4 * 101000 5 * 110000 6 * 111000 7 */ static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, }; /** * default_pcp_tid_map - Default PCP-TID mapping * * PCP TID * 000 0 * 001 1 * 010 2 * 011 3 * 100 4 * 101 5 * 110 6 * 111 7 */ static uint8_t default_pcp_tid_map[PCP_TID_MAP_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, }; /** * @brief Cpu to tx ring map */ uint8_t dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS_MAX] = { {0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2}, {0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1}, {0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0}, {0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2}, {0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3}, #ifdef WLAN_TX_PKT_CAPTURE_ENH {0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1} #endif }; /** * @brief Select the type of statistics */ enum dp_stats_type { STATS_FW = 0, STATS_HOST = 1, STATS_TYPE_MAX = 2, }; /** * @brief General Firmware statistics options * */ enum dp_fw_stats { TXRX_FW_STATS_INVALID = -1, }; /** * dp_stats_mapping_table - Firmware and Host statistics * currently supported */ const int dp_stats_mapping_table[][STATS_TYPE_MAX] = { {HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID}, {TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID}, {HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID}, /* Last ENUM for HTT FW STATS */ {DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID}, {TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS}, {TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS}, {TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS}, {TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS}, {TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS}, {TXRX_FW_STATS_INVALID, TXRX_AST_STATS}, {TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS}, {TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS}, {TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS}, {TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS}, {TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS}, {TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS}, {TXRX_FW_STATS_INVALID, TXRX_SOC_FSE_STATS}, {TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS}, }; /* MCL specific functions */ #if defined(DP_CON_MON) /** * dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode * @soc: pointer to dp_soc handle * @intr_ctx_num: interrupt context number for which mon mask is needed * * For MCL, monitor mode rings are being processed in timer contexts (polled). * This function is returning 0, since in interrupt mode(softirq based RX), * we donot want to process monitor mode rings in a softirq. * * So, in case packet log is enabled for SAP/STA/P2P modes, * regular interrupt processing will not process monitor mode rings. It would be * done in a separate timer context. * * Return: 0 */ static inline uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num) { return 0; } /* * dp_service_mon_rings()- service monitor rings * @soc: soc dp handle * @quota: number of ring entry that can be serviced * * Return: None * */ static void dp_service_mon_rings(struct dp_soc *soc, uint32_t quota) { int ring = 0, work_done; struct dp_pdev *pdev = NULL; for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) { pdev = dp_get_pdev_for_lmac_id(soc, ring); if (!pdev) continue; work_done = dp_mon_process(soc, ring, quota); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("Reaped %d descs from Monitor rings"), work_done); } } /* * dp_mon_reap_timer_handler()- timer to reap monitor rings * reqd as we are not getting ppdu end interrupts * @arg: SoC Handle * * Return: * */ static void dp_mon_reap_timer_handler(void *arg) { struct dp_soc *soc = (struct dp_soc *)arg; dp_service_mon_rings(soc, QCA_NAPI_BUDGET); qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS); } #ifndef REMOVE_PKT_LOG /** * dp_pkt_log_init() - API to initialize packet log * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * @scn: HIF context * * Return: none */ void dp_pkt_log_init(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, void *scn) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *handle = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!handle) { dp_err("pdev handle is NULL"); return; } if (handle->pkt_log_init) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Packet log not initialized", __func__); return; } pktlog_sethandle(&handle->pl_dev, scn); pktlog_set_pdev_id(handle->pl_dev, pdev_id); pktlog_set_callback_regtype(PKTLOG_DEFAULT_CALLBACK_REGISTRATION); if (pktlogmod_init(scn)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: pktlogmod_init failed", __func__); handle->pkt_log_init = false; } else { handle->pkt_log_init = true; } } /** * dp_pkt_log_con_service() - connect packet log service * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * @scn: device context * * Return: none */ static void dp_pkt_log_con_service(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, void *scn) { dp_pkt_log_init(soc_hdl, pdev_id, scn); pktlog_htc_attach(); } /** * dp_get_num_rx_contexts() - get number of RX contexts * @soc_hdl: cdp opaque soc handle * * Return: number of RX contexts */ static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl) { int i; int num_rx_contexts = 0; struct dp_soc *soc = (struct dp_soc *)soc_hdl; for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) if (wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i)) num_rx_contexts++; return num_rx_contexts; } /** * dp_pktlogmod_exit() - API to cleanup pktlog info * @pdev: Pdev handle * * Return: none */ static void dp_pktlogmod_exit(struct dp_pdev *pdev) { struct dp_soc *soc = pdev->soc; struct hif_opaque_softc *scn = soc->hif_handle; if (!scn) { dp_err("Invalid hif(scn) handle"); return; } /* stop mon_reap_timer if it has been started */ if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED && soc->reap_timer_init && (!dp_is_enable_reap_timer_non_pkt(pdev))) qdf_timer_sync_cancel(&soc->mon_reap_timer); pktlogmod_exit(scn); pdev->pkt_log_init = false; } #endif #else static void dp_pktlogmod_exit(struct dp_pdev *handle) { } /** * dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode * @soc: pointer to dp_soc handle * @intr_ctx_num: interrupt context number for which mon mask is needed * * Return: mon mask value */ static inline uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num) { return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num); } /* * dp_service_lmac_rings()- timer to reap lmac rings * @arg: SoC Handle * * Return: * */ static void dp_service_lmac_rings(void *arg) { struct dp_soc *soc = (struct dp_soc *)arg; int ring = 0, i; struct dp_pdev *pdev = NULL; union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; /* Process LMAC interrupts */ for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) { int mac_for_pdev = ring; struct dp_srng *rx_refill_buf_ring; pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev); if (!pdev) continue; rx_refill_buf_ring = &soc->rx_refill_buf_ring[mac_for_pdev]; dp_mon_process(soc, mac_for_pdev, QCA_NAPI_BUDGET); for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) dp_rxdma_err_process(&soc->intr_ctx[i], soc, mac_for_pdev, QCA_NAPI_BUDGET); if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, mac_for_pdev)) dp_rx_buffers_replenish(soc, mac_for_pdev, rx_refill_buf_ring, &soc->rx_desc_buf[mac_for_pdev], 0, &desc_list, &tail); } qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS); } #endif static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac, uint8_t *mac_addr, enum cdp_txrx_ast_entry_type type, uint32_t flags) { int ret = -1; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%s: Peer is NULL!\n", __func__); goto fail; } ret = dp_peer_add_ast((struct dp_soc *)soc_hdl, peer, mac_addr, type, flags); fail: if (peer) dp_peer_unref_delete(peer); return ret; } static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac, uint8_t *wds_macaddr, uint32_t flags) { int status = -1; struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_ast_entry *ast_entry = NULL; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc_hdl, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%s: Peer is NULL!\n", __func__); goto fail; } qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr, peer->vdev->pdev->pdev_id); if (ast_entry) { status = dp_peer_update_ast(soc, peer, ast_entry, flags); } qdf_spin_unlock_bh(&soc->ast_lock); fail: if (peer) dp_peer_unref_delete(peer); return status; } /* * dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry * @soc_handle: Datapath SOC handle * @wds_macaddr: WDS entry MAC Address * @peer_macaddr: WDS entry MAC Address * @vdev_id: id of vdev handle * Return: QDF_STATUS */ static QDF_STATUS dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl, uint8_t *wds_macaddr, uint8_t *peer_mac_addr, uint8_t vdev_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_ast_entry *ast_entry = NULL; struct dp_ast_entry *tmp_ast_entry; struct dp_peer *peer; struct dp_pdev *pdev; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; pdev = vdev->pdev; if (peer_mac_addr) { peer = dp_peer_find_hash_find(soc, peer_mac_addr, 0, vdev->vdev_id); if (!peer) { return QDF_STATUS_E_FAILURE; } if (peer->delete_in_progress) { dp_peer_unref_delete(peer); return QDF_STATUS_E_FAILURE; } qdf_spin_lock_bh(&soc->ast_lock); DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) { if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) || (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC)) dp_peer_del_ast(soc, ast_entry); } qdf_spin_unlock_bh(&soc->ast_lock); dp_peer_unref_delete(peer); return QDF_STATUS_SUCCESS; } else if (wds_macaddr) { qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr, pdev->pdev_id); if (ast_entry) { if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) || (ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC)) dp_peer_del_ast(soc, ast_entry); } qdf_spin_unlock_bh(&soc->ast_lock); } return QDF_STATUS_SUCCESS; } /* * dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry * @soc: Datapath SOC handle * * Return: QDF_STATUS */ static QDF_STATUS dp_wds_reset_ast_table_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = (struct dp_soc *) soc_hdl; struct dp_pdev *pdev; struct dp_vdev *vdev; struct dp_peer *peer; struct dp_ast_entry *ase, *temp_ase; int i; qdf_spin_lock_bh(&soc->ast_lock); for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) { pdev = soc->pdev_list[i]; qdf_spin_lock_bh(&pdev->vdev_list_lock); DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) { DP_VDEV_ITERATE_PEER_LIST(vdev, peer) { DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) { if ((ase->type == CDP_TXRX_AST_TYPE_WDS_HM) || (ase->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC)) dp_peer_del_ast(soc, ase); } } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); } qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_SUCCESS; } /* * dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry * @soc: Datapath SOC handle * * Return: None */ static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t *soc_hdl) { struct dp_soc *soc = (struct dp_soc *) soc_hdl; struct dp_pdev *pdev; struct dp_vdev *vdev; struct dp_peer *peer; struct dp_ast_entry *ase, *temp_ase; int i; qdf_spin_lock_bh(&soc->ast_lock); for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) { pdev = soc->pdev_list[i]; qdf_spin_lock_bh(&pdev->vdev_list_lock); DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) { DP_VDEV_ITERATE_PEER_LIST(vdev, peer) { DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) { if ((ase->type == CDP_TXRX_AST_TYPE_STATIC) || (ase->type == CDP_TXRX_AST_TYPE_SELF) || (ase->type == CDP_TXRX_AST_TYPE_STA_BSS)) continue; dp_peer_del_ast(soc, ase); } } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); } qdf_spin_unlock_bh(&soc->ast_lock); } /** * dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table * and return ast entry information * of first ast entry found in the * table with given mac address * * @soc : data path soc handle * @ast_mac_addr : AST entry mac address * @ast_entry_info : ast entry information * * return : true if ast entry found with ast_mac_addr * false if ast entry not found */ static bool dp_peer_get_ast_info_by_soc_wifi3 (struct cdp_soc_t *soc_hdl, uint8_t *ast_mac_addr, struct cdp_ast_entry_info *ast_entry_info) { struct dp_ast_entry *ast_entry = NULL; struct dp_soc *soc = (struct dp_soc *)soc_hdl; qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr); if (!ast_entry || !ast_entry->peer) { qdf_spin_unlock_bh(&soc->ast_lock); return false; } if (ast_entry->delete_in_progress && !ast_entry->callback) { qdf_spin_unlock_bh(&soc->ast_lock); return false; } ast_entry_info->type = ast_entry->type; ast_entry_info->pdev_id = ast_entry->pdev_id; ast_entry_info->vdev_id = ast_entry->peer->vdev->vdev_id; ast_entry_info->peer_id = ast_entry->peer->peer_ids[0]; qdf_mem_copy(&ast_entry_info->peer_mac_addr[0], &ast_entry->peer->mac_addr.raw[0], QDF_MAC_ADDR_SIZE); qdf_spin_unlock_bh(&soc->ast_lock); return true; } /** * dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table * and return ast entry information * if mac address and pdev_id matches * * @soc : data path soc handle * @ast_mac_addr : AST entry mac address * @pdev_id : pdev_id * @ast_entry_info : ast entry information * * return : true if ast entry found with ast_mac_addr * false if ast entry not found */ static bool dp_peer_get_ast_info_by_pdevid_wifi3 (struct cdp_soc_t *soc_hdl, uint8_t *ast_mac_addr, uint8_t pdev_id, struct cdp_ast_entry_info *ast_entry_info) { struct dp_ast_entry *ast_entry; struct dp_soc *soc = (struct dp_soc *)soc_hdl; qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr, pdev_id); if (!ast_entry || !ast_entry->peer) { qdf_spin_unlock_bh(&soc->ast_lock); return false; } if (ast_entry->delete_in_progress && !ast_entry->callback) { qdf_spin_unlock_bh(&soc->ast_lock); return false; } ast_entry_info->type = ast_entry->type; ast_entry_info->pdev_id = ast_entry->pdev_id; ast_entry_info->vdev_id = ast_entry->peer->vdev->vdev_id; ast_entry_info->peer_id = ast_entry->peer->peer_ids[0]; qdf_mem_copy(&ast_entry_info->peer_mac_addr[0], &ast_entry->peer->mac_addr.raw[0], QDF_MAC_ADDR_SIZE); qdf_spin_unlock_bh(&soc->ast_lock); return true; } /** * dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table * with given mac address * * @soc : data path soc handle * @ast_mac_addr : AST entry mac address * @callback : callback function to called on ast delete response from FW * @cookie : argument to be passed to callback * * return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete * is sent * QDF_STATUS_E_INVAL false if ast entry not found */ static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle, uint8_t *mac_addr, txrx_ast_free_cb callback, void *cookie) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_ast_entry *ast_entry = NULL; txrx_ast_free_cb cb = NULL; void *arg = NULL; qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr); if (!ast_entry) { qdf_spin_unlock_bh(&soc->ast_lock); return -QDF_STATUS_E_INVAL; } if (ast_entry->callback) { cb = ast_entry->callback; arg = ast_entry->cookie; } ast_entry->callback = callback; ast_entry->cookie = cookie; /* * if delete_in_progress is set AST delete is sent to target * and host is waiting for response should not send delete * again */ if (!ast_entry->delete_in_progress) dp_peer_del_ast(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); if (cb) { cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), arg, CDP_TXRX_AST_DELETE_IN_PROGRESS); } return QDF_STATUS_SUCCESS; } /** * dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash * table if mac address and pdev_id matches * * @soc : data path soc handle * @ast_mac_addr : AST entry mac address * @pdev_id : pdev id * @callback : callback function to called on ast delete response from FW * @cookie : argument to be passed to callback * * return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete * is sent * QDF_STATUS_E_INVAL false if ast entry not found */ static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle, uint8_t *mac_addr, uint8_t pdev_id, txrx_ast_free_cb callback, void *cookie) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_ast_entry *ast_entry; txrx_ast_free_cb cb = NULL; void *arg = NULL; qdf_spin_lock_bh(&soc->ast_lock); ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id); if (!ast_entry) { qdf_spin_unlock_bh(&soc->ast_lock); return -QDF_STATUS_E_INVAL; } if (ast_entry->callback) { cb = ast_entry->callback; arg = ast_entry->cookie; } ast_entry->callback = callback; ast_entry->cookie = cookie; /* * if delete_in_progress is set AST delete is sent to target * and host is waiting for response should not sent delete * again */ if (!ast_entry->delete_in_progress) dp_peer_del_ast(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); if (cb) { cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), arg, CDP_TXRX_AST_DELETE_IN_PROGRESS); } return QDF_STATUS_SUCCESS; } /** * dp_srng_find_ring_in_mask() - find which ext_group a ring belongs * @ring_num: ring num of the ring being queried * @grp_mask: the grp_mask array for the ring type in question. * * The grp_mask array is indexed by group number and the bit fields correspond * to ring numbers. We are finding which interrupt group a ring belongs to. * * Return: the index in the grp_mask array with the ring number. * -QDF_STATUS_E_NOENT if no entry is found */ static int dp_srng_find_ring_in_mask(int ring_num, int *grp_mask) { int ext_group_num; int mask = 1 << ring_num; for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS; ext_group_num++) { if (mask & grp_mask[ext_group_num]) return ext_group_num; } return -QDF_STATUS_E_NOENT; } static int dp_srng_calculate_msi_group(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num) { int *grp_mask; switch (ring_type) { case WBM2SW_RELEASE: /* dp_tx_comp_handler - soc->tx_comp_ring */ if (ring_num < 3) grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0]; /* dp_rx_wbm_err_process - soc->rx_rel_ring */ else if (ring_num == 3) { /* sw treats this as a separate ring type */ grp_mask = &soc->wlan_cfg_ctx-> int_rx_wbm_rel_ring_mask[0]; ring_num = 0; } else { qdf_assert(0); return -QDF_STATUS_E_NOENT; } break; case REO_EXCEPTION: /* dp_rx_err_process - &soc->reo_exception_ring */ grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0]; break; case REO_DST: /* dp_rx_process - soc->reo_dest_ring */ grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0]; break; case REO_STATUS: /* dp_reo_status_ring_handler - soc->reo_status_ring */ grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0]; break; /* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/ case RXDMA_MONITOR_STATUS: /* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */ case RXDMA_MONITOR_DST: /* dp_mon_process */ grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0]; break; case RXDMA_DST: /* dp_rxdma_err_process */ grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0]; break; case RXDMA_BUF: grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0]; break; case RXDMA_MONITOR_BUF: /* TODO: support low_thresh interrupt */ return -QDF_STATUS_E_NOENT; break; case TCL_DATA: /* CMD_CREDIT_RING is used as command in 8074 and credit in 9000 */ case TCL_CMD_CREDIT: case REO_CMD: case SW2WBM_RELEASE: case WBM_IDLE_LINK: /* normally empty SW_TO_HW rings */ return -QDF_STATUS_E_NOENT; break; case TCL_STATUS: case REO_REINJECT: /* misc unused rings */ return -QDF_STATUS_E_NOENT; break; case CE_SRC: case CE_DST: case CE_DST_STATUS: /* CE_rings - currently handled by hif */ default: return -QDF_STATUS_E_NOENT; break; } return dp_srng_find_ring_in_mask(ring_num, grp_mask); } static void dp_srng_msi_setup(struct dp_soc *soc, struct hal_srng_params *ring_params, int ring_type, int ring_num) { int msi_group_number; int msi_data_count; int ret; uint32_t msi_data_start, msi_irq_start, addr_low, addr_high; ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP", &msi_data_count, &msi_data_start, &msi_irq_start); if (ret) return; msi_group_number = dp_srng_calculate_msi_group(soc, ring_type, ring_num); if (msi_group_number < 0) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW, FL("ring not part of an ext_group; ring_type: %d,ring_num %d"), ring_type, ring_num); ring_params->msi_addr = 0; ring_params->msi_data = 0; return; } if (msi_group_number > msi_data_count) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN, FL("2 msi_groups will share an msi; msi_group_num %d"), msi_group_number); QDF_ASSERT(0); } pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high); ring_params->msi_addr = addr_low; ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32); ring_params->msi_data = (msi_group_number % msi_data_count) + msi_data_start; ring_params->flags |= HAL_SRNG_MSI_INTR; } /** * dp_print_ast_stats() - Dump AST table contents * @soc: Datapath soc handle * * return void */ #ifdef FEATURE_AST void dp_print_ast_stats(struct dp_soc *soc) { uint8_t i; uint8_t num_entries = 0; struct dp_vdev *vdev; struct dp_pdev *pdev; struct dp_peer *peer; struct dp_ast_entry *ase, *tmp_ase; char type[CDP_TXRX_AST_TYPE_MAX][10] = { "NONE", "STATIC", "SELF", "WDS", "MEC", "HMWDS", "BSS", "DA", "HMWDS_SEC"}; DP_PRINT_STATS("AST Stats:"); DP_PRINT_STATS(" Entries Added = %d", soc->stats.ast.added); DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.ast.deleted); DP_PRINT_STATS(" Entries Agedout = %d", soc->stats.ast.aged_out); DP_PRINT_STATS(" Entries MAP ERR = %d", soc->stats.ast.map_err); DP_PRINT_STATS("AST Table:"); qdf_spin_lock_bh(&soc->ast_lock); for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) { pdev = soc->pdev_list[i]; qdf_spin_lock_bh(&pdev->vdev_list_lock); DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) { DP_VDEV_ITERATE_PEER_LIST(vdev, peer) { DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) { DP_PRINT_STATS("%6d mac_addr = %pM" " peer_mac_addr = %pM" " peer_id = %u" " type = %s" " next_hop = %d" " is_active = %d" " ast_idx = %d" " ast_hash = %d" " delete_in_progress = %d" " pdev_id = %d" " vdev_id = %d", ++num_entries, ase->mac_addr.raw, ase->peer->mac_addr.raw, ase->peer->peer_ids[0], type[ase->type], ase->next_hop, ase->is_active, ase->ast_idx, ase->ast_hash_value, ase->delete_in_progress, ase->pdev_id, vdev->vdev_id); } } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); } qdf_spin_unlock_bh(&soc->ast_lock); } #else void dp_print_ast_stats(struct dp_soc *soc) { DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST"); return; } #endif /** * dp_print_peer_table() - Dump all Peer stats * @vdev: Datapath Vdev handle * * return void */ static void dp_print_peer_table(struct dp_vdev *vdev) { struct dp_peer *peer = NULL; DP_PRINT_STATS("Dumping Peer Table Stats:"); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (!peer) { DP_PRINT_STATS("Invalid Peer"); return; } DP_PRINT_STATS(" peer_mac_addr = %pM" " nawds_enabled = %d" " bss_peer = %d" " wds_enabled = %d" " tx_cap_enabled = %d" " rx_cap_enabled = %d" " delete in progress = %d" " peer id = %d", peer->mac_addr.raw, peer->nawds_enabled, peer->bss_peer, peer->wds_enabled, peer->tx_cap_enabled, peer->rx_cap_enabled, peer->delete_in_progress, peer->peer_ids[0]); } } #ifdef WLAN_DP_PER_RING_TYPE_CONFIG /** * dp_srng_configure_interrupt_thresholds() - Retrieve interrupt * threshold values from the wlan_srng_cfg table for each ring type * @soc: device handle * @ring_params: per ring specific parameters * @ring_type: Ring type * @ring_num: Ring number for a given ring type * * Fill the ring params with the interrupt threshold * configuration parameters available in the per ring type wlan_srng_cfg * table. * * Return: None */ static void dp_srng_configure_interrupt_thresholds(struct dp_soc *soc, struct hal_srng_params *ring_params, int ring_type, int ring_num, int num_entries) { if (ring_type == WBM2SW_RELEASE && (ring_num == 3)) { ring_params->intr_timer_thres_us = wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx); ring_params->intr_batch_cntr_thres_entries = wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx); } else { ring_params->intr_timer_thres_us = soc->wlan_srng_cfg[ring_type].timer_threshold; ring_params->intr_batch_cntr_thres_entries = soc->wlan_srng_cfg[ring_type].batch_count_threshold; } ring_params->low_threshold = soc->wlan_srng_cfg[ring_type].low_threshold; if (ring_params->low_threshold) ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE; } #else static void dp_srng_configure_interrupt_thresholds(struct dp_soc *soc, struct hal_srng_params *ring_params, int ring_type, int ring_num, int num_entries) { if (ring_type == REO_DST) { ring_params->intr_timer_thres_us = wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx); ring_params->intr_batch_cntr_thres_entries = wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx); } else if (ring_type == WBM2SW_RELEASE && (ring_num < 3)) { ring_params->intr_timer_thres_us = wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx); ring_params->intr_batch_cntr_thres_entries = wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx); } else { ring_params->intr_timer_thres_us = wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx); ring_params->intr_batch_cntr_thres_entries = wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx); } /* Enable low threshold interrupts for rx buffer rings (regular and * monitor buffer rings. * TODO: See if this is required for any other ring */ if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF) || (ring_type == RXDMA_MONITOR_STATUS)) { /* TODO: Setting low threshold to 1/8th of ring size * see if this needs to be configurable */ ring_params->low_threshold = num_entries >> 3; ring_params->intr_timer_thres_us = wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx); ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE; ring_params->intr_batch_cntr_thres_entries = 0; } } #endif /** * dp_srng_setup() - Internal function to setup SRNG rings used by data path * @soc: datapath soc handle * @srng: srng handle * @ring_type: ring that needs to be configured * @mac_id: mac number * @num_entries: Total number of entries for a given ring * * Return: non-zero - failure/zero - success */ static int dp_srng_setup(struct dp_soc *soc, struct dp_srng *srng, int ring_type, int ring_num, int mac_id, uint32_t num_entries, bool cached) { hal_soc_handle_t hal_soc = soc->hal_soc; uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type); /* TODO: See if we should get align size from hal */ uint32_t ring_base_align = 8; struct hal_srng_params ring_params; uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type); /* TODO: Currently hal layer takes care of endianness related settings. * See if these settings need to passed from DP layer */ ring_params.flags = 0; num_entries = (num_entries > max_entries) ? max_entries : num_entries; srng->hal_srng = NULL; srng->alloc_size = num_entries * entry_size; srng->num_entries = num_entries; if (!dp_is_soc_reinit(soc)) { if (!cached) { ring_params.ring_base_vaddr = qdf_aligned_mem_alloc_consistent( soc->osdev, &srng->alloc_size, &srng->base_vaddr_unaligned, &srng->base_paddr_unaligned, &ring_params.ring_base_paddr, ring_base_align); } else { ring_params.ring_base_vaddr = qdf_aligned_malloc( &srng->alloc_size, &srng->base_vaddr_unaligned, &srng->base_paddr_unaligned, &ring_params.ring_base_paddr, ring_base_align); } if (!ring_params.ring_base_vaddr) { dp_err("alloc failed - ring_type: %d, ring_num %d", ring_type, ring_num); return QDF_STATUS_E_NOMEM; } } ring_params.ring_base_paddr = (qdf_dma_addr_t)qdf_align( (unsigned long)(srng->base_paddr_unaligned), ring_base_align); ring_params.ring_base_vaddr = (void *)( (unsigned long)(srng->base_vaddr_unaligned) + ((unsigned long)(ring_params.ring_base_paddr) - (unsigned long)(srng->base_paddr_unaligned))); qdf_assert_always(ring_params.ring_base_vaddr); ring_params.num_entries = num_entries; dp_verbose_debug("Ring type: %d, num:%d vaddr %pK paddr %pK entries %u", ring_type, ring_num, (void *)ring_params.ring_base_vaddr, (void *)ring_params.ring_base_paddr, ring_params.num_entries); if (soc->intr_mode == DP_INTR_MSI) { dp_srng_msi_setup(soc, &ring_params, ring_type, ring_num); dp_verbose_debug("Using MSI for ring_type: %d, ring_num %d", ring_type, ring_num); } else { ring_params.msi_data = 0; ring_params.msi_addr = 0; dp_verbose_debug("Skipping MSI for ring_type: %d, ring_num %d", ring_type, ring_num); } dp_srng_configure_interrupt_thresholds(soc, &ring_params, ring_type, ring_num, num_entries); if (cached) { ring_params.flags |= HAL_SRNG_CACHED_DESC; srng->cached = 1; } srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num, mac_id, &ring_params); if (!srng->hal_srng) { if (cached) { qdf_mem_free(srng->base_vaddr_unaligned); } else { qdf_mem_free_consistent(soc->osdev, soc->osdev->dev, srng->alloc_size, srng->base_vaddr_unaligned, srng->base_paddr_unaligned, 0); } } return 0; } /* * dp_srng_deinit() - Internal function to deinit SRNG rings used by data path * @soc: DP SOC handle * @srng: source ring structure * @ring_type: type of ring * @ring_num: ring number * * Return: None */ static void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng, int ring_type, int ring_num) { if (!srng->hal_srng) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Ring type: %d, num:%d not setup"), ring_type, ring_num); return; } hal_srng_cleanup(soc->hal_soc, srng->hal_srng); srng->hal_srng = NULL; } /** * dp_srng_cleanup - Internal function to cleanup SRNG rings used by data path * Any buffers allocated and attached to ring entries are expected to be freed * before calling this function. */ static void dp_srng_cleanup(struct dp_soc *soc, struct dp_srng *srng, int ring_type, int ring_num) { if (!dp_is_soc_reinit(soc)) { if (!srng->hal_srng && (srng->alloc_size == 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Ring type: %d, num:%d not setup"), ring_type, ring_num); return; } if (srng->hal_srng) { hal_srng_cleanup(soc->hal_soc, srng->hal_srng); srng->hal_srng = NULL; } } if (srng->alloc_size && srng->base_vaddr_unaligned) { if (!srng->cached) { qdf_mem_free_consistent(soc->osdev, soc->osdev->dev, srng->alloc_size, srng->base_vaddr_unaligned, srng->base_paddr_unaligned, 0); } else { qdf_mem_free(srng->base_vaddr_unaligned); } srng->alloc_size = 0; srng->base_vaddr_unaligned = NULL; } srng->hal_srng = NULL; } /* TODO: Need this interface from HIF */ void *hif_get_hal_handle(struct hif_opaque_softc *hif_handle); #ifdef WLAN_FEATURE_DP_EVENT_HISTORY int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc, hal_ring_handle_t hal_ring_hdl) { hal_soc_handle_t hal_soc = dp_soc->hal_soc; uint32_t hp, tp; uint8_t ring_id; hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp); ring_id = hal_srng_ring_id_get(hal_ring_hdl); hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id, ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START); return hal_srng_access_start(hal_soc, hal_ring_hdl); } void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc, hal_ring_handle_t hal_ring_hdl) { hal_soc_handle_t hal_soc = dp_soc->hal_soc; uint32_t hp, tp; uint8_t ring_id; hal_get_sw_hptp(hal_soc, hal_ring_hdl, &tp, &hp); ring_id = hal_srng_ring_id_get(hal_ring_hdl); hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id, ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END); return hal_srng_access_end(hal_soc, hal_ring_hdl); } #endif /* WLAN_FEATURE_DP_EVENT_HISTORY */ /* * dp_service_srngs() - Top level interrupt handler for DP Ring interrupts * @dp_ctx: DP SOC handle * @budget: Number of frames/descriptors that can be processed in one shot * * Return: remaining budget/quota for the soc device */ static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget) { struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx; struct dp_intr_stats *intr_stats = &int_ctx->intr_stats; struct dp_soc *soc = int_ctx->soc; int ring = 0; uint32_t work_done = 0; int budget = dp_budget; uint8_t tx_mask = int_ctx->tx_ring_mask; uint8_t rx_mask = int_ctx->rx_ring_mask; uint8_t rx_err_mask = int_ctx->rx_err_ring_mask; uint8_t rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask; uint8_t reo_status_mask = int_ctx->reo_status_ring_mask; uint32_t remaining_quota = dp_budget; struct dp_pdev *pdev = NULL; dp_verbose_debug("tx %x rx %x rx_err %x rx_wbm_rel %x reo_status %x rx_mon_ring %x host2rxdma %x rxdma2host %x\n", tx_mask, rx_mask, rx_err_mask, rx_wbm_rel_mask, reo_status_mask, int_ctx->rx_mon_ring_mask, int_ctx->host2rxdma_ring_mask, int_ctx->rxdma2host_ring_mask); /* Process Tx completion interrupts first to return back buffers */ while (tx_mask) { if (tx_mask & 0x1) { work_done = dp_tx_comp_handler(int_ctx, soc, soc->tx_comp_ring[ring].hal_srng, ring, remaining_quota); if (work_done) { intr_stats->num_tx_ring_masks[ring]++; dp_verbose_debug("tx mask 0x%x ring %d, budget %d, work_done %d", tx_mask, ring, budget, work_done); } budget -= work_done; if (budget <= 0) goto budget_done; remaining_quota = budget; } tx_mask = tx_mask >> 1; ring++; } /* Process REO Exception ring interrupt */ if (rx_err_mask) { work_done = dp_rx_err_process(int_ctx, soc, soc->reo_exception_ring.hal_srng, remaining_quota); if (work_done) { intr_stats->num_rx_err_ring_masks++; dp_verbose_debug("REO Exception Ring: work_done %d budget %d", work_done, budget); } budget -= work_done; if (budget <= 0) { goto budget_done; } remaining_quota = budget; } /* Process Rx WBM release ring interrupt */ if (rx_wbm_rel_mask) { work_done = dp_rx_wbm_err_process(int_ctx, soc, soc->rx_rel_ring.hal_srng, remaining_quota); if (work_done) { intr_stats->num_rx_wbm_rel_ring_masks++; dp_verbose_debug("WBM Release Ring: work_done %d budget %d", work_done, budget); } budget -= work_done; if (budget <= 0) { goto budget_done; } remaining_quota = budget; } /* Process Rx interrupts */ if (rx_mask) { for (ring = 0; ring < soc->num_reo_dest_rings; ring++) { if (!(rx_mask & (1 << ring))) continue; work_done = dp_rx_process(int_ctx, soc->reo_dest_ring[ring].hal_srng, ring, remaining_quota); if (work_done) { intr_stats->num_rx_ring_masks[ring]++; dp_verbose_debug("rx mask 0x%x ring %d, work_done %d budget %d", rx_mask, ring, work_done, budget); budget -= work_done; if (budget <= 0) goto budget_done; remaining_quota = budget; } } } if (reo_status_mask) { if (dp_reo_status_ring_handler(int_ctx, soc)) int_ctx->intr_stats.num_reo_status_ring_masks++; } /* Process LMAC interrupts */ for (ring = 0 ; ring < MAX_NUM_LMAC_HW; ring++) { int mac_for_pdev = ring; pdev = dp_get_pdev_for_lmac_id(soc, mac_for_pdev); if (!pdev) continue; if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) { work_done = dp_mon_process(soc, mac_for_pdev, remaining_quota); if (work_done) intr_stats->num_rx_mon_ring_masks++; budget -= work_done; if (budget <= 0) goto budget_done; remaining_quota = budget; } if (int_ctx->rxdma2host_ring_mask & (1 << mac_for_pdev)) { work_done = dp_rxdma_err_process(int_ctx, soc, mac_for_pdev, remaining_quota); if (work_done) intr_stats->num_rxdma2host_ring_masks++; budget -= work_done; if (budget <= 0) goto budget_done; remaining_quota = budget; } if (int_ctx->host2rxdma_ring_mask & (1 << mac_for_pdev)) { union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; struct dp_srng *rx_refill_buf_ring = &soc->rx_refill_buf_ring[mac_for_pdev]; intr_stats->num_host2rxdma_ring_masks++; DP_STATS_INC(pdev, replenish.low_thresh_intrs, 1); dp_rx_buffers_replenish(soc, mac_for_pdev, rx_refill_buf_ring, &soc->rx_desc_buf[mac_for_pdev], 0, &desc_list, &tail); } } qdf_lro_flush(int_ctx->lro_ctx); intr_stats->num_masks++; budget_done: return dp_budget - budget; } /* dp_interrupt_timer()- timer poll for interrupts * * @arg: SoC Handle * * Return: * */ static void dp_interrupt_timer(void *arg) { struct dp_soc *soc = (struct dp_soc *) arg; int i; if (qdf_atomic_read(&soc->cmn_init_done)) { for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) dp_service_srngs(&soc->intr_ctx[i], 0xffff); qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS); } } /* * dp_soc_attach_poll() - Register handlers for DP interrupts * @txrx_soc: DP SOC handle * * Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI * contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and * rx_monitor_ring mask to indicate the rings that are processed by the handler. * * Return: 0 for success, nonzero for failure. */ static QDF_STATUS dp_soc_attach_poll(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; int i; soc->intr_mode = DP_INTR_POLL; for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) { soc->intr_ctx[i].dp_intr_id = i; soc->intr_ctx[i].tx_ring_mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].rx_ring_mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].rx_mon_ring_mask = wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i); soc->intr_ctx[i].soc = soc; soc->intr_ctx[i].lro_ctx = qdf_lro_init(); } qdf_timer_init(soc->osdev, &soc->int_timer, dp_interrupt_timer, (void *)soc, QDF_TIMER_TYPE_WAKE_APPS); return QDF_STATUS_SUCCESS; } /** * dp_soc_set_interrupt_mode() - Set the interrupt mode in soc * soc: DP soc handle * * Set the appropriate interrupt mode flag in the soc */ static void dp_soc_set_interrupt_mode(struct dp_soc *soc) { uint32_t msi_base_data, msi_vector_start; int msi_vector_count, ret; soc->intr_mode = DP_INTR_INTEGRATED; if (!(soc->wlan_cfg_ctx->napi_enabled) || (soc->cdp_soc.ol_ops->get_con_mode && soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) { soc->intr_mode = DP_INTR_POLL; } else { ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP", &msi_vector_count, &msi_base_data, &msi_vector_start); if (ret) return; soc->intr_mode = DP_INTR_MSI; } } static QDF_STATUS dp_soc_interrupt_attach(struct cdp_soc_t *txrx_soc); #if defined(DP_INTR_POLL_BOTH) /* * dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts * @txrx_soc: DP SOC handle * * Call the appropriate attach function based on the mode of operation. * This is a WAR for enabling monitor mode. * * Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; if (!(soc->wlan_cfg_ctx->napi_enabled) || (soc->cdp_soc.ol_ops->get_con_mode && soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) { dp_info("Poll mode"); return dp_soc_attach_poll(txrx_soc); } else { dp_info("Interrupt mode"); return dp_soc_interrupt_attach(txrx_soc); } } #else #if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc) { return dp_soc_attach_poll(txrx_soc); } #else static QDF_STATUS dp_soc_interrupt_attach_wrapper(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; if (hif_is_polled_mode_enabled(soc->hif_handle)) return dp_soc_attach_poll(txrx_soc); else return dp_soc_interrupt_attach(txrx_soc); } #endif #endif static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc, int intr_ctx_num, int *irq_id_map, int *num_irq_r) { int j; int num_irq = 0; int tx_mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num); int rx_mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num); int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num); int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); soc->intr_mode = DP_INTR_INTEGRATED; for (j = 0; j < HIF_MAX_GRP_IRQ; j++) { if (tx_mask & (1 << j)) { irq_id_map[num_irq++] = (wbm2host_tx_completions_ring1 - j); } if (rx_mask & (1 << j)) { irq_id_map[num_irq++] = (reo2host_destination_ring1 - j); } if (rxdma2host_ring_mask & (1 << j)) { irq_id_map[num_irq++] = rxdma2host_destination_ring_mac1 - j; } if (host2rxdma_ring_mask & (1 << j)) { irq_id_map[num_irq++] = host2rxdma_host_buf_ring_mac1 - j; } if (host2rxdma_mon_ring_mask & (1 << j)) { irq_id_map[num_irq++] = host2rxdma_monitor_ring1 - j; } if (rx_mon_mask & (1 << j)) { irq_id_map[num_irq++] = ppdu_end_interrupts_mac1 - j; irq_id_map[num_irq++] = rxdma2host_monitor_status_ring_mac1 - j; } if (rx_wbm_rel_ring_mask & (1 << j)) irq_id_map[num_irq++] = wbm2host_rx_release; if (rx_err_ring_mask & (1 << j)) irq_id_map[num_irq++] = reo2host_exception; if (reo_status_ring_mask & (1 << j)) irq_id_map[num_irq++] = reo2host_status; } *num_irq_r = num_irq; } static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc, int intr_ctx_num, int *irq_id_map, int *num_irq_r, int msi_vector_count, int msi_vector_start) { int tx_mask = wlan_cfg_get_tx_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rx_mask = wlan_cfg_get_rx_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask( soc->wlan_cfg_ctx, intr_ctx_num); unsigned int vector = (intr_ctx_num % msi_vector_count) + msi_vector_start; int num_irq = 0; soc->intr_mode = DP_INTR_MSI; if (tx_mask | rx_mask | rx_mon_mask | rx_err_ring_mask | rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask) irq_id_map[num_irq++] = pld_get_msi_irq(soc->osdev->dev, vector); *num_irq_r = num_irq; } static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num, int *irq_id_map, int *num_irq) { int msi_vector_count, ret; uint32_t msi_base_data, msi_vector_start; ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP", &msi_vector_count, &msi_base_data, &msi_vector_start); if (ret) return dp_soc_interrupt_map_calculate_integrated(soc, intr_ctx_num, irq_id_map, num_irq); else dp_soc_interrupt_map_calculate_msi(soc, intr_ctx_num, irq_id_map, num_irq, msi_vector_count, msi_vector_start); } /* * dp_soc_interrupt_attach() - Register handlers for DP interrupts * @txrx_soc: DP SOC handle * * Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI * contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and * rx_monitor_ring mask to indicate the rings that are processed by the handler. * * Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_soc_interrupt_attach(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; int i = 0; int num_irq = 0; for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) { int ret = 0; /* Map of IRQ ids registered with one interrupt context */ int irq_id_map[HIF_MAX_GRP_IRQ]; int tx_mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i); int rx_mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i); int rx_mon_mask = dp_soc_get_mon_mask_for_interrupt_mode(soc, i); int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i); int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i); int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i); int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i); int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, i); int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask( soc->wlan_cfg_ctx, i); soc->intr_ctx[i].dp_intr_id = i; soc->intr_ctx[i].tx_ring_mask = tx_mask; soc->intr_ctx[i].rx_ring_mask = rx_mask; soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask; soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask; soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask; soc->intr_ctx[i].host2rxdma_ring_mask = host2rxdma_ring_mask; soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask; soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask; soc->intr_ctx[i].host2rxdma_mon_ring_mask = host2rxdma_mon_ring_mask; soc->intr_ctx[i].soc = soc; num_irq = 0; dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0], &num_irq); ret = hif_register_ext_group(soc->hif_handle, num_irq, irq_id_map, dp_service_srngs, &soc->intr_ctx[i], "dp_intr", HIF_EXEC_NAPI_TYPE, QCA_NAPI_DEF_SCALE_BIN_SHIFT); if (ret) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("failed, ret = %d"), ret); return QDF_STATUS_E_FAILURE; } soc->intr_ctx[i].lro_ctx = qdf_lro_init(); } hif_configure_ext_group_interrupts(soc->hif_handle); return QDF_STATUS_SUCCESS; } /* * dp_soc_interrupt_detach() - Deregister any allocations done for interrupts * @txrx_soc: DP SOC handle * * Return: none */ static void dp_soc_interrupt_detach(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; int i; if (soc->intr_mode == DP_INTR_POLL) { qdf_timer_free(&soc->int_timer); } else { hif_deregister_exec_group(soc->hif_handle, "dp_intr"); } for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) { soc->intr_ctx[i].tx_ring_mask = 0; soc->intr_ctx[i].rx_ring_mask = 0; soc->intr_ctx[i].rx_mon_ring_mask = 0; soc->intr_ctx[i].rx_err_ring_mask = 0; soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0; soc->intr_ctx[i].reo_status_ring_mask = 0; soc->intr_ctx[i].rxdma2host_ring_mask = 0; soc->intr_ctx[i].host2rxdma_ring_mask = 0; soc->intr_ctx[i].host2rxdma_mon_ring_mask = 0; qdf_lro_deinit(soc->intr_ctx[i].lro_ctx); } } #define AVG_MAX_MPDUS_PER_TID 128 #define AVG_TIDS_PER_CLIENT 2 #define AVG_FLOWS_PER_TID 2 #define AVG_MSDUS_PER_FLOW 128 #define AVG_MSDUS_PER_MPDU 4 /* * Allocate and setup link descriptor pool that will be used by HW for * various link and queue descriptors and managed by WBM */ static int dp_hw_link_desc_pool_setup(struct dp_soc *soc) { int link_desc_size = hal_get_link_desc_size(soc->hal_soc); int link_desc_align = hal_get_link_desc_align(soc->hal_soc); uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx); uint32_t num_mpdus_per_link_desc = hal_num_mpdus_per_link_desc(soc->hal_soc); uint32_t num_msdus_per_link_desc = hal_num_msdus_per_link_desc(soc->hal_soc); uint32_t num_mpdu_links_per_queue_desc = hal_num_mpdu_links_per_queue_desc(soc->hal_soc); uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx); uint32_t total_link_descs, total_mem_size; uint32_t num_mpdu_link_descs, num_mpdu_queue_descs; uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs; uint32_t entry_size, num_entries; int i; uint32_t cookie = 0; qdf_dma_addr_t *baseaddr = NULL; uint32_t page_idx = 0; struct qdf_mem_multi_page_t *pages; struct qdf_mem_dma_page_t *dma_pages; uint32_t offset = 0; uint32_t count = 0; uint32_t num_descs_per_page; /* Only Tx queue descriptors are allocated from common link descriptor * pool Rx queue descriptors are not included in this because (REO queue * extension descriptors) they are expected to be allocated contiguously * with REO queue descriptors */ num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT * AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc; num_mpdu_queue_descs = num_mpdu_link_descs / num_mpdu_links_per_queue_desc; num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT * AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) / num_msdus_per_link_desc; num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT * AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6; num_entries = num_mpdu_link_descs + num_mpdu_queue_descs + num_tx_msdu_link_descs + num_rx_msdu_link_descs; /* Round up to power of 2 */ total_link_descs = 1; while (total_link_descs < num_entries) total_link_descs <<= 1; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH, FL("total_link_descs: %u, link_desc_size: %d"), total_link_descs, link_desc_size); total_mem_size = total_link_descs * link_desc_size; total_mem_size += link_desc_align; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH, FL("total_mem_size: %d"), total_mem_size); pages = &soc->link_desc_pages; dp_set_max_page_size(pages, max_alloc_size); if (!dp_is_soc_reinit(soc)) { qdf_mem_multi_pages_alloc(soc->osdev, pages, link_desc_size, total_link_descs, 0, false); if (!pages->num_pages) { dp_err("Multi page alloc fail for hw link desc pool"); goto fail_page_alloc; } wlan_minidump_log(pages->dma_pages->page_v_addr_start, pages->num_pages * pages->page_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_WBM_IDLE_LINK, "hw_link_desc_bank"); } /* Allocate and setup link descriptor idle list for HW internal use */ entry_size = hal_srng_get_entrysize(soc->hal_soc, WBM_IDLE_LINK); total_mem_size = entry_size * total_link_descs; if (total_mem_size <= max_alloc_size) { void *desc; if (dp_srng_setup(soc, &soc->wbm_idle_link_ring, WBM_IDLE_LINK, 0, 0, total_link_descs, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Link desc idle ring setup failed")); goto fail; } wlan_minidump_log(soc->wbm_idle_link_ring.base_vaddr_unaligned, soc->wbm_idle_link_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_WBM_IDLE_LINK, "wbm_idle_link_ring"); hal_srng_access_start_unlocked(soc->hal_soc, soc->wbm_idle_link_ring.hal_srng); page_idx = 0; count = 0; offset = 0; pages = &soc->link_desc_pages; if (pages->dma_pages) dma_pages = pages->dma_pages; else goto fail; num_descs_per_page = pages->num_element_per_page; while ((desc = hal_srng_src_get_next( soc->hal_soc, soc->wbm_idle_link_ring.hal_srng)) && (count < total_link_descs)) { page_idx = count / num_descs_per_page; offset = count % num_descs_per_page; cookie = LINK_DESC_COOKIE(count, page_idx); hal_set_link_desc_addr( desc, cookie, dma_pages[page_idx].page_p_addr + (offset * link_desc_size)); count++; } hal_srng_access_end_unlocked(soc->hal_soc, soc->wbm_idle_link_ring.hal_srng); } else { uint32_t num_scatter_bufs; uint32_t num_entries_per_buf; uint32_t rem_entries; uint8_t *scatter_buf_ptr; uint16_t scatter_buf_num; uint32_t buf_size = 0; soc->wbm_idle_scatter_buf_size = hal_idle_list_scatter_buf_size(soc->hal_soc); num_entries_per_buf = hal_idle_scatter_buf_num_entries( soc->hal_soc, soc->wbm_idle_scatter_buf_size); num_scatter_bufs = hal_idle_list_num_scatter_bufs( soc->hal_soc, total_mem_size, soc->wbm_idle_scatter_buf_size); if (num_scatter_bufs > MAX_IDLE_SCATTER_BUFS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("scatter bufs size out of bounds")); goto fail; } for (i = 0; i < num_scatter_bufs; i++) { baseaddr = &soc->wbm_idle_scatter_buf_base_paddr[i]; if (!dp_is_soc_reinit(soc)) { buf_size = soc->wbm_idle_scatter_buf_size; soc->wbm_idle_scatter_buf_base_vaddr[i] = qdf_mem_alloc_consistent(soc->osdev, soc->osdev-> dev, buf_size, baseaddr); } if (!soc->wbm_idle_scatter_buf_base_vaddr[i]) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Scatter lst memory alloc fail")); goto fail; } } /* Populate idle list scatter buffers with link descriptor * pointers */ scatter_buf_num = 0; scatter_buf_ptr = (uint8_t *)( soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]); rem_entries = num_entries_per_buf; pages = &soc->link_desc_pages; page_idx = 0; count = 0; offset = 0; num_descs_per_page = pages->num_element_per_page; if (pages->dma_pages) dma_pages = pages->dma_pages; else goto fail; while (count < total_link_descs) { page_idx = count / num_descs_per_page; offset = count % num_descs_per_page; cookie = LINK_DESC_COOKIE(count, page_idx); hal_set_link_desc_addr( (void *)scatter_buf_ptr, cookie, dma_pages[page_idx].page_p_addr + (offset * link_desc_size)); rem_entries--; if (rem_entries) { scatter_buf_ptr += entry_size; } else { rem_entries = num_entries_per_buf; scatter_buf_num++; if (scatter_buf_num >= num_scatter_bufs) break; scatter_buf_ptr = (uint8_t *) (soc->wbm_idle_scatter_buf_base_vaddr[ scatter_buf_num]); } count++; } /* Setup link descriptor idle list in HW */ hal_setup_link_idle_list(soc->hal_soc, soc->wbm_idle_scatter_buf_base_paddr, soc->wbm_idle_scatter_buf_base_vaddr, num_scatter_bufs, soc->wbm_idle_scatter_buf_size, (uint32_t)(scatter_buf_ptr - (uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[ scatter_buf_num-1])), total_link_descs); } return 0; fail: if (soc->wbm_idle_link_ring.hal_srng) { wlan_minidump_remove( soc->wbm_idle_link_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->wbm_idle_link_ring, WBM_IDLE_LINK, 0); } for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) { if (soc->wbm_idle_scatter_buf_base_vaddr[i]) { qdf_mem_free_consistent(soc->osdev, soc->osdev->dev, soc->wbm_idle_scatter_buf_size, soc->wbm_idle_scatter_buf_base_vaddr[i], soc->wbm_idle_scatter_buf_base_paddr[i], 0); soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL; } } pages = &soc->link_desc_pages; qdf_minidump_remove( (void *)pages->dma_pages->page_v_addr_start); qdf_mem_multi_pages_free(soc->osdev, pages, 0, false); return QDF_STATUS_E_FAILURE; fail_page_alloc: return QDF_STATUS_E_FAULT; } /* * Free link descriptor pool that was setup HW */ static void dp_hw_link_desc_pool_cleanup(struct dp_soc *soc) { int i; struct qdf_mem_multi_page_t *pages; if (soc->wbm_idle_link_ring.hal_srng) { wlan_minidump_remove( soc->wbm_idle_link_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->wbm_idle_link_ring, WBM_IDLE_LINK, 0); } for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) { if (soc->wbm_idle_scatter_buf_base_vaddr[i]) { qdf_mem_free_consistent(soc->osdev, soc->osdev->dev, soc->wbm_idle_scatter_buf_size, soc->wbm_idle_scatter_buf_base_vaddr[i], soc->wbm_idle_scatter_buf_base_paddr[i], 0); soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL; } } pages = &soc->link_desc_pages; wlan_minidump_remove( (void *)pages->dma_pages->page_v_addr_start); qdf_mem_multi_pages_free(soc->osdev, pages, 0, false); } #ifdef IPA_OFFLOAD #define REO_DST_RING_SIZE_QCA6290 1023 #ifndef CONFIG_WIFI_EMULATION_WIFI_3_0 #define REO_DST_RING_SIZE_QCA8074 1023 #define REO_DST_RING_SIZE_QCN9000 2048 #else #define REO_DST_RING_SIZE_QCA8074 8 #define REO_DST_RING_SIZE_QCN9000 8 #endif /* CONFIG_WIFI_EMULATION_WIFI_3_0 */ #else #define REO_DST_RING_SIZE_QCA6290 1024 #ifndef CONFIG_WIFI_EMULATION_WIFI_3_0 #define REO_DST_RING_SIZE_QCA8074 2048 #define REO_DST_RING_SIZE_QCN9000 2048 #else #define REO_DST_RING_SIZE_QCA8074 8 #define REO_DST_RING_SIZE_QCN9000 8 #endif /* CONFIG_WIFI_EMULATION_WIFI_3_0 */ #endif /* IPA_OFFLOAD */ #ifndef FEATURE_WDS static void dp_soc_wds_attach(struct dp_soc *soc) { } static void dp_soc_wds_detach(struct dp_soc *soc) { } #endif /* * dp_soc_reset_ring_map() - Reset cpu ring map * @soc: Datapath soc handler * * This api resets the default cpu ring map */ static void dp_soc_reset_cpu_ring_map(struct dp_soc *soc) { uint8_t i; int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx); for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) { switch (nss_config) { case dp_nss_cfg_first_radio: /* * Setting Tx ring map for one nss offloaded radio */ soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i]; break; case dp_nss_cfg_second_radio: /* * Setting Tx ring for two nss offloaded radios */ soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i]; break; case dp_nss_cfg_dbdc: /* * Setting Tx ring map for 2 nss offloaded radios */ soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DBDC_OFFLOADED_MAP][i]; break; case dp_nss_cfg_dbtc: /* * Setting Tx ring map for 3 nss offloaded radios */ soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DBTC_OFFLOADED_MAP][i]; break; default: dp_err("tx_ring_map failed due to invalid nss cfg"); break; } } } /* * dp_soc_ring_if_nss_offloaded() - find if ring is offloaded to NSS * @dp_soc - DP soc handle * @ring_type - ring type * @ring_num - ring_num * * return 0 or 1 */ static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num) { uint8_t nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx); uint8_t status = 0; switch (ring_type) { case WBM2SW_RELEASE: case REO_DST: case RXDMA_BUF: status = ((nss_config) & (1 << ring_num)); break; default: break; } return status; } /* * dp_soc_disable_mac2_intr_mask() - reset interrupt mask for WMAC2 hw rings * @dp_soc - DP Soc handle * * Return: Return void */ static void dp_soc_disable_mac2_intr_mask(struct dp_soc *soc) { int *grp_mask = NULL; int group_number; grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0]; group_number = dp_srng_find_ring_in_mask(0x2, grp_mask); wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx, group_number, 0x0); grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0]; group_number = dp_srng_find_ring_in_mask(0x2, grp_mask); wlan_cfg_set_rx_mon_ring_mask(soc->wlan_cfg_ctx, group_number, 0x0); grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0]; group_number = dp_srng_find_ring_in_mask(0x2, grp_mask); wlan_cfg_set_rxdma2host_ring_mask(soc->wlan_cfg_ctx, group_number, 0x0); grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_mon_ring_mask[0]; group_number = dp_srng_find_ring_in_mask(0x2, grp_mask); wlan_cfg_set_host2rxdma_mon_ring_mask(soc->wlan_cfg_ctx, group_number, 0x0); } /* * dp_soc_reset_intr_mask() - reset interrupt mask * @dp_soc - DP Soc handle * * Return: Return void */ static void dp_soc_reset_intr_mask(struct dp_soc *soc) { uint8_t j; int *grp_mask = NULL; int group_number, mask, num_ring; /* number of tx ring */ num_ring = wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx); /* * group mask for tx completion ring. */ grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0]; /* loop and reset the mask for only offloaded ring */ for (j = 0; j < num_ring; j++) { if (!dp_soc_ring_if_nss_offloaded(soc, WBM2SW_RELEASE, j)) { continue; } /* * Group number corresponding to tx offloaded ring. */ group_number = dp_srng_find_ring_in_mask(j, grp_mask); if (group_number < 0) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("ring not part of any group; ring_type: %d,ring_num %d"), WBM2SW_RELEASE, j); return; } /* reset the tx mask for offloaded ring */ mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, group_number); mask &= (~(1 << j)); /* * reset the interrupt mask for offloaded ring. */ wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, group_number, mask); } /* number of rx rings */ num_ring = wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx); /* * group mask for reo destination ring. */ grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0]; /* loop and reset the mask for only offloaded ring */ for (j = 0; j < num_ring; j++) { if (!dp_soc_ring_if_nss_offloaded(soc, REO_DST, j)) { continue; } /* * Group number corresponding to rx offloaded ring. */ group_number = dp_srng_find_ring_in_mask(j, grp_mask); if (group_number < 0) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("ring not part of any group; ring_type: %d,ring_num %d"), REO_DST, j); return; } /* set the interrupt mask for offloaded ring */ mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number); mask &= (~(1 << j)); /* * set the interrupt mask to zero for rx offloaded radio. */ wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask); } /* * group mask for Rx buffer refill ring */ grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0]; /* loop and reset the mask for only offloaded ring */ for (j = 0; j < MAX_PDEV_CNT; j++) { int lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j); if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, j)) { continue; } /* * Group number corresponding to rx offloaded ring. */ group_number = dp_srng_find_ring_in_mask(lmac_id, grp_mask); if (group_number < 0) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, FL("ring not part of any group; ring_type: %d,ring_num %d"), REO_DST, lmac_id); return; } /* set the interrupt mask for offloaded ring */ mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, group_number); mask &= (~(1 << lmac_id)); /* * set the interrupt mask to zero for rx offloaded radio. */ wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx, group_number, mask); } } #ifdef IPA_OFFLOAD /** * dp_reo_remap_config() - configure reo remap register value based * nss configuration. * based on offload_radio value below remap configuration * get applied. * 0 - both Radios handled by host (remap rings 1, 2, 3 & 4) * 1 - 1st Radio handled by NSS (remap rings 2, 3 & 4) * 2 - 2nd Radio handled by NSS (remap rings 1, 2 & 4) * 3 - both Radios handled by NSS (remap not required) * 4 - IPA OFFLOAD enabled (remap rings 1,2 & 3) * * @remap1: output parameter indicates reo remap 1 register value * @remap2: output parameter indicates reo remap 2 register value * Return: bool type, true if remap is configured else false. */ bool dp_reo_remap_config(struct dp_soc *soc, uint32_t *remap1, uint32_t *remap2) { *remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW1, 16) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 17) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 18) | HAL_REO_REMAP_IX2(REO_REMAP_SW1, 19) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 20) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 21) | HAL_REO_REMAP_IX2(REO_REMAP_SW1, 22) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 23); *remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW3, 24) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 25) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 26) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 27) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 28) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 29) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 30) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 31); dp_debug("remap1 %x remap2 %x", *remap1, *remap2); return true; } #else static bool dp_reo_remap_config(struct dp_soc *soc, uint32_t *remap1, uint32_t *remap2) { uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx); uint8_t target_type; target_type = hal_get_target_type(soc->hal_soc); switch (offload_radio) { case dp_nss_cfg_default: *remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW1, 16) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 17) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 18) | HAL_REO_REMAP_IX2(REO_REMAP_SW4, 19) | HAL_REO_REMAP_IX2(REO_REMAP_SW1, 20) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 21) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 22) | HAL_REO_REMAP_IX2(REO_REMAP_SW4, 23); *remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW1, 24) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 25) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 26) | HAL_REO_REMAP_IX3(REO_REMAP_SW4, 27) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 28) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 29) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 30) | HAL_REO_REMAP_IX3(REO_REMAP_SW4, 31); break; case dp_nss_cfg_first_radio: *remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW2, 16) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 17) | HAL_REO_REMAP_IX2(REO_REMAP_SW4, 18) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 19) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 20) | HAL_REO_REMAP_IX2(REO_REMAP_SW4, 21) | HAL_REO_REMAP_IX2(REO_REMAP_SW2, 22) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 23); *remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW4, 24) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 25) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 26) | HAL_REO_REMAP_IX3(REO_REMAP_SW4, 27) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 28) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 29) | HAL_REO_REMAP_IX3(REO_REMAP_SW4, 30) | HAL_REO_REMAP_IX3(REO_REMAP_SW2, 31); break; case dp_nss_cfg_second_radio: *remap1 = HAL_REO_REMAP_IX2(REO_REMAP_SW1, 16) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 17) | HAL_REO_REMAP_IX2(REO_REMAP_SW4, 18) | HAL_REO_REMAP_IX2(REO_REMAP_SW1, 19) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 20) | HAL_REO_REMAP_IX2(REO_REMAP_SW4, 21) | HAL_REO_REMAP_IX2(REO_REMAP_SW1, 22) | HAL_REO_REMAP_IX2(REO_REMAP_SW3, 23); *remap2 = HAL_REO_REMAP_IX3(REO_REMAP_SW4, 24) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 25) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 26) | HAL_REO_REMAP_IX3(REO_REMAP_SW4, 27) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 28) | HAL_REO_REMAP_IX3(REO_REMAP_SW3, 29) | HAL_REO_REMAP_IX3(REO_REMAP_SW4, 30) | HAL_REO_REMAP_IX3(REO_REMAP_SW1, 31); break; case dp_nss_cfg_dbdc: case dp_nss_cfg_dbtc: /* return false if both or all are offloaded to NSS */ return false; } dp_debug("remap1 %x remap2 %x offload_radio %u", *remap1, *remap2, offload_radio); return true; } #endif /* IPA_OFFLOAD */ /* * dp_reo_frag_dst_set() - configure reo register to set the * fragment destination ring * @soc : Datapath soc * @frag_dst_ring : output parameter to set fragment destination ring * * Based on offload_radio below fragment destination rings is selected * 0 - TCL * 1 - SW1 * 2 - SW2 * 3 - SW3 * 4 - SW4 * 5 - Release * 6 - FW * 7 - alternate select * * return: void */ static void dp_reo_frag_dst_set(struct dp_soc *soc, uint8_t *frag_dst_ring) { uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx); switch (offload_radio) { case dp_nss_cfg_default: *frag_dst_ring = REO_REMAP_TCL; break; case dp_nss_cfg_first_radio: /* * This configuration is valid for single band radio which * is also NSS offload. */ case dp_nss_cfg_dbdc: case dp_nss_cfg_dbtc: *frag_dst_ring = HAL_SRNG_REO_ALTERNATE_SELECT; break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_reo_frag_dst_set invalid offload radio config")); break; } } #ifdef ENABLE_VERBOSE_DEBUG static void dp_enable_verbose_debug(struct dp_soc *soc) { struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx; soc_cfg_ctx = soc->wlan_cfg_ctx; if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask) is_dp_verbose_debug_enabled = true; if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask) hal_set_verbose_debug(true); else hal_set_verbose_debug(false); } #else static void dp_enable_verbose_debug(struct dp_soc *soc) { } #endif #ifdef WLAN_FEATURE_STATS_EXT static inline void dp_create_ext_stats_event(struct dp_soc *soc) { qdf_event_create(&soc->rx_hw_stats_event); } #else static inline void dp_create_ext_stats_event(struct dp_soc *soc) { } #endif static QDF_STATUS dp_setup_tx_ring_pair_by_index(struct dp_soc *soc, uint8_t index) { int tx_ring_size; int tx_comp_ring_size; struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx = soc->wlan_cfg_ctx; int cached; tx_ring_size = wlan_cfg_tx_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->tcl_data_ring[index], TCL_DATA, index, 0, tx_ring_size, 0)) { dp_err("dp_srng_setup failed for tcl_data_ring"); goto fail1; } wlan_minidump_log(soc->tcl_data_ring[index].base_vaddr_unaligned, soc->tcl_data_ring[index].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_TCL_DATA, "tcl_data_ring"); tx_comp_ring_size = wlan_cfg_tx_comp_ring_size(soc_cfg_ctx); /* Disable cached desc if NSS offload is enabled */ cached = WLAN_CFG_DST_RING_CACHED_DESC; if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx)) cached = 0; if (dp_srng_setup(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE, index, 0, tx_comp_ring_size, cached)) { dp_err("dp_srng_setup failed for tx_comp_ring"); goto fail1; } wlan_minidump_log(soc->tx_comp_ring[index].base_vaddr_unaligned, soc->tx_comp_ring[index].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_TX_COMP, "tcl_comp_ring"); return QDF_STATUS_SUCCESS; fail1: return QDF_STATUS_E_FAILURE; } /* * dp_soc_cmn_setup() - Common SoC level initializion * @soc: Datapath SOC handle * * This is an internal function used to setup common SOC data structures, * to be called from PDEV attach after receiving HW mode capabilities from FW */ static int dp_soc_cmn_setup(struct dp_soc *soc) { int i, cached; struct hal_reo_params reo_params; int tx_ring_size; int tx_comp_ring_size; int reo_dst_ring_size; uint32_t entries; struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx; QDF_STATUS status; if (qdf_atomic_read(&soc->cmn_init_done)) return 0; if (dp_hw_link_desc_pool_setup(soc)) goto fail1; soc_cfg_ctx = soc->wlan_cfg_ctx; dp_enable_verbose_debug(soc); /* Setup SRNG rings */ /* Common rings */ entries = wlan_cfg_get_dp_soc_wbm_release_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for wbm_desc_rel_ring")); goto fail1; } wlan_minidump_log(soc->wbm_desc_rel_ring.base_vaddr_unaligned, soc->wbm_desc_rel_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_WBM_DESC_REL, "wbm_desc_rel_ring"); soc->num_tcl_data_rings = 0; /* Tx data rings */ if (!wlan_cfg_per_pdev_tx_ring(soc_cfg_ctx)) { soc->num_tcl_data_rings = wlan_cfg_num_tcl_data_rings(soc_cfg_ctx); tx_comp_ring_size = wlan_cfg_tx_comp_ring_size(soc_cfg_ctx); tx_ring_size = wlan_cfg_tx_ring_size(soc_cfg_ctx); for (i = 0; i < soc->num_tcl_data_rings; i++) { status = dp_setup_tx_ring_pair_by_index(soc, i); if (status != QDF_STATUS_SUCCESS) goto fail1; } if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) { status = dp_setup_tx_ring_pair_by_index(soc, IPA_TCL_DATA_RING_IDX); if (status != QDF_STATUS_SUCCESS) goto fail1; } } else { /* This will be incremented during per pdev ring setup */ soc->num_tcl_data_rings = 0; } entries = wlan_cfg_get_dp_soc_tcl_cmd_credit_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->tcl_cmd_credit_ring, TCL_CMD_CREDIT, 0, 0, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for tcl_cmd_credit_ring.")); goto fail2; } wlan_minidump_log(soc->tcl_cmd_credit_ring.base_vaddr_unaligned, soc->tcl_cmd_credit_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_TCL_CMD, "tcl_cmd_credit_ring"); if (dp_tx_soc_attach(soc)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_tx_soc_attach failed")); goto fail1; } entries = wlan_cfg_get_dp_soc_tcl_status_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for tcl_status_ring")); goto fail2; } wlan_minidump_log(soc->tcl_status_ring.base_vaddr_unaligned, soc->tcl_status_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_TCL_STATUS, "tcl_status_ring"); reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx); /* TBD: call dp_tx_init to setup Tx SW descriptors and MSDU extension * descriptors */ /* Rx data rings */ if (!wlan_cfg_per_pdev_rx_ring(soc_cfg_ctx)) { soc->num_reo_dest_rings = wlan_cfg_num_reo_dest_rings(soc_cfg_ctx); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("num_reo_dest_rings %d"), soc->num_reo_dest_rings); /* Disable cached desc if NSS offload is enabled */ cached = WLAN_CFG_DST_RING_CACHED_DESC; if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx)) cached = 0; for (i = 0; i < soc->num_reo_dest_rings; i++) { if (dp_srng_setup(soc, &soc->reo_dest_ring[i], REO_DST, i, 0, reo_dst_ring_size, cached)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "reo_dest_ring [%d]"), i); goto fail2; } wlan_minidump_log(soc->reo_dest_ring[i].base_vaddr_unaligned, soc->reo_dest_ring[i].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_DEST, "reo_dest_ring"); } } else { /* This will be incremented during per pdev ring setup */ soc->num_reo_dest_rings = 0; } entries = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx); /* LMAC RxDMA to SW Rings configuration */ if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx)) { for (i = 0; i < MAX_RX_MAC_RINGS; i++) { if (dp_srng_setup(soc, &soc->rxdma_err_dst_ring[i], RXDMA_DST, 0, i, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_err_dst_ring")); goto fail2; } wlan_minidump_log(soc->rxdma_err_dst_ring[i].base_vaddr_unaligned, soc->rxdma_err_dst_ring[i].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_ERR_DST, "rxdma_err_dst"); } } /* TBD: call dp_rx_init to setup Rx SW descriptors */ /* REO reinjection ring */ entries = wlan_cfg_get_dp_soc_reo_reinject_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for reo_reinject_ring")); goto fail2; } wlan_minidump_log(soc->reo_reinject_ring.base_vaddr_unaligned, soc->reo_reinject_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_REINJECT, "reo_reinject_ring"); /* Rx release ring */ if (dp_srng_setup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0, wlan_cfg_get_dp_soc_rx_release_ring_size(soc_cfg_ctx), 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for rx_rel_ring")); goto fail2; } wlan_minidump_log(soc->rx_rel_ring.base_vaddr_unaligned, soc->rx_rel_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RX_REL, "reo_release_ring"); /* Rx exception ring */ entries = wlan_cfg_get_dp_soc_reo_exception_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0, MAX_REO_DEST_RINGS, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for reo_exception_ring")); goto fail2; } wlan_minidump_log(soc->reo_exception_ring.base_vaddr_unaligned, soc->reo_exception_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_EXCEPTION, "reo_exception_ring"); /* REO command and status rings */ if (dp_srng_setup(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0, wlan_cfg_get_dp_soc_reo_cmd_ring_size(soc_cfg_ctx), 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for reo_cmd_ring")); goto fail2; } wlan_minidump_log(soc->reo_cmd_ring.base_vaddr_unaligned, soc->reo_cmd_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_CMD, "reo_cmd_ring"); hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng); TAILQ_INIT(&soc->rx.reo_cmd_list); qdf_spinlock_create(&soc->rx.reo_cmd_lock); if (dp_srng_setup(soc, &soc->reo_status_ring, REO_STATUS, 0, 0, wlan_cfg_get_dp_soc_reo_status_ring_size(soc_cfg_ctx), 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for reo_status_ring")); goto fail2; } wlan_minidump_log(soc->reo_status_ring.base_vaddr_unaligned, soc->reo_status_ring.alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_STATUS, "reo_status_ring"); /* * Skip registering hw ring interrupts for WMAC2 on IPQ6018 * WMAC2 is not there in IPQ6018 platform. */ if (hal_get_target_type(soc->hal_soc) == TARGET_TYPE_QCA6018) { dp_soc_disable_mac2_intr_mask(soc); } /* Reset the cpu ring map if radio is NSS offloaded */ if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx)) { dp_soc_reset_cpu_ring_map(soc); dp_soc_reset_intr_mask(soc); } /* Setup HW REO */ qdf_mem_zero(&reo_params, sizeof(reo_params)); if (wlan_cfg_is_rx_hash_enabled(soc_cfg_ctx)) { /* * Reo ring remap is not required if both radios * are offloaded to NSS */ if (!dp_reo_remap_config(soc, &reo_params.remap1, &reo_params.remap2)) goto out; reo_params.rx_hash_enabled = true; } /* setup the global rx defrag waitlist */ TAILQ_INIT(&soc->rx.defrag.waitlist); soc->rx.defrag.timeout_ms = wlan_cfg_get_rx_defrag_min_timeout(soc_cfg_ctx); soc->rx.defrag.next_flush_ms = 0; soc->rx.flags.defrag_timeout_check = wlan_cfg_get_defrag_timeout_check(soc_cfg_ctx); qdf_spinlock_create(&soc->rx.defrag.defrag_lock); dp_create_ext_stats_event(soc); out: /* * set the fragment destination ring */ dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring); hal_reo_setup(soc->hal_soc, &reo_params); hal_reo_set_err_dst_remap(soc->hal_soc); qdf_atomic_set(&soc->cmn_init_done, 1); dp_soc_wds_attach(soc); qdf_nbuf_queue_init(&soc->htt_stats.msg); return 0; fail2: dp_tx_soc_detach(soc); fail1: /* * Cleanup will be done as part of soc_detach, which will * be called on pdev attach failure */ return QDF_STATUS_E_FAILURE; } /* * dp_soc_cmn_cleanup() - Common SoC level De-initializion * * @soc: Datapath SOC handle * * This function is responsible for cleaning up DP resource of Soc * initialled in dp_pdev_attach_wifi3-->dp_soc_cmn_setup, since * dp_soc_detach_wifi3 could not identify some of them * whether they have done initialized or not accurately. * */ static void dp_soc_cmn_cleanup(struct dp_soc *soc) { if (!dp_is_soc_reinit(soc)) { dp_tx_soc_detach(soc); } qdf_spinlock_destroy(&soc->rx.defrag.defrag_lock); dp_reo_cmdlist_destroy(soc); qdf_spinlock_destroy(&soc->rx.reo_cmd_lock); } static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force); static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev) { struct cdp_lro_hash_config lro_hash; QDF_STATUS status; if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) && !wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) && !wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) { dp_err("LRO, GRO and RX hash disabled"); return QDF_STATUS_E_FAILURE; } qdf_mem_zero(&lro_hash, sizeof(lro_hash)); if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) || wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) { lro_hash.lro_enable = 1; lro_hash.tcp_flag = QDF_TCPHDR_ACK; lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN | QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG | QDF_TCPHDR_ECE | QDF_TCPHDR_CWR; } qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv4, (sizeof(lro_hash.toeplitz_hash_ipv4[0]) * LRO_IPV4_SEED_ARR_SZ)); qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv6, (sizeof(lro_hash.toeplitz_hash_ipv6[0]) * LRO_IPV6_SEED_ARR_SZ)); qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config); if (!soc->cdp_soc.ol_ops->lro_hash_config) { QDF_BUG(0); dp_err("lro_hash_config not configured"); return QDF_STATUS_E_FAILURE; } status = soc->cdp_soc.ol_ops->lro_hash_config(soc->ctrl_psoc, pdev->pdev_id, &lro_hash); if (!QDF_IS_STATUS_SUCCESS(status)) { dp_err("failed to send lro_hash_config to FW %u", status); return status; } dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x", lro_hash.lro_enable, lro_hash.tcp_flag, lro_hash.tcp_flag_mask); dp_info("toeplitz_hash_ipv4:"); qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, lro_hash.toeplitz_hash_ipv4, (sizeof(lro_hash.toeplitz_hash_ipv4[0]) * LRO_IPV4_SEED_ARR_SZ)); dp_info("toeplitz_hash_ipv6:"); qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, lro_hash.toeplitz_hash_ipv6, (sizeof(lro_hash.toeplitz_hash_ipv6[0]) * LRO_IPV6_SEED_ARR_SZ)); return status; } /* * dp_rxdma_ring_setup() - configure the RX DMA rings * @soc: data path SoC handle * @pdev: Physical device handle * * Return: 0 - success, > 0 - failure */ #ifdef QCA_HOST2FW_RXBUF_RING static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev) { struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx; int max_mac_rings; int i; int ring_size; pdev_cfg_ctx = pdev->wlan_cfg_ctx; max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx); ring_size = wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx); for (i = 0; i < max_mac_rings; i++) { dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i); if (dp_srng_setup(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1, i, ring_size, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("failed rx mac ring setup")); return QDF_STATUS_E_FAILURE; } } return QDF_STATUS_SUCCESS; } #else static int dp_rxdma_ring_setup(struct dp_soc *soc, struct dp_pdev *pdev) { return QDF_STATUS_SUCCESS; } #endif /** * dp_dscp_tid_map_setup(): Initialize the dscp-tid maps * @pdev - DP_PDEV handle * * Return: void */ static inline void dp_dscp_tid_map_setup(struct dp_pdev *pdev) { uint8_t map_id; struct dp_soc *soc = pdev->soc; if (!soc) return; for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) { qdf_mem_copy(pdev->dscp_tid_map[map_id], default_dscp_tid_map, sizeof(default_dscp_tid_map)); } for (map_id = 0; map_id < soc->num_hw_dscp_tid_map; map_id++) { hal_tx_set_dscp_tid_map(soc->hal_soc, default_dscp_tid_map, map_id); } } /** * dp_pcp_tid_map_setup(): Initialize the pcp-tid maps * @pdev - DP_PDEV handle * * Return: void */ static inline void dp_pcp_tid_map_setup(struct dp_pdev *pdev) { struct dp_soc *soc = pdev->soc; if (!soc) return; qdf_mem_copy(soc->pcp_tid_map, default_pcp_tid_map, sizeof(default_pcp_tid_map)); hal_tx_set_pcp_tid_map_default(soc->hal_soc, default_pcp_tid_map); } #ifdef IPA_OFFLOAD /** * dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring * @soc: data path instance * @pdev: core txrx pdev context * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc, struct dp_pdev *pdev) { struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx; int entries; soc_cfg_ctx = soc->wlan_cfg_ctx; entries = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx); /* Setup second Rx refill buffer ring */ if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id, entries, 0) ) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed second rx refill ring")); return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } /** * dp_cleanup_ipa_rx_refill_buf_ring - Cleanup second Rx refill buffer ring * @soc: data path instance * @pdev: core txrx pdev context * * Return: void */ static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc, struct dp_pdev *pdev) { dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF, IPA_RX_REFILL_BUF_RING_IDX); } #else static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc, struct dp_pdev *pdev) { return QDF_STATUS_SUCCESS; } static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc, struct dp_pdev *pdev) { } #endif #if !defined(DISABLE_MON_CONFIG) /** * dp_mon_rings_setup() - Initialize Monitor rings based on target * @soc: soc handle * @pdev: physical device handle * * Return: nonzero on failure and zero on success */ static QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev) { int mac_id = 0; int pdev_id = pdev->pdev_id; int entries; struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx; pdev_cfg_ctx = pdev->wlan_cfg_ctx; for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) { int lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev_id); if (soc->wlan_cfg_ctx->rxdma1_enable) { entries = wlan_cfg_get_dma_mon_buf_ring_size(pdev_cfg_ctx); if (dp_srng_setup(soc, &soc->rxdma_mon_buf_ring[lmac_id], RXDMA_MONITOR_BUF, 0, lmac_id, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_mon_buf_ring ")); return QDF_STATUS_E_NOMEM; } wlan_minidump_log(soc->rxdma_mon_buf_ring[lmac_id].base_vaddr_unaligned, soc->rxdma_mon_buf_ring[lmac_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_MON_BUF, "rxdma_mon_buf_ring"); entries = wlan_cfg_get_dma_mon_dest_ring_size(pdev_cfg_ctx); if (dp_srng_setup(soc, &soc->rxdma_mon_dst_ring[lmac_id], RXDMA_MONITOR_DST, 0, lmac_id, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_mon_dst_ring")); return QDF_STATUS_E_NOMEM; } wlan_minidump_log(soc->rxdma_mon_dst_ring[lmac_id].base_vaddr_unaligned, soc->rxdma_mon_dst_ring[lmac_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_MON_DST, "rxdma_mon_dst"); entries = wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx); if (dp_srng_setup(soc, &soc->rxdma_mon_status_ring[lmac_id], RXDMA_MONITOR_STATUS, 0, lmac_id, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_mon_status_ring")); return QDF_STATUS_E_NOMEM; } wlan_minidump_log(soc->rxdma_mon_status_ring[lmac_id].base_vaddr_unaligned, soc->rxdma_mon_status_ring[lmac_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_MON_STATUS, "rxdma_mon_status"); entries = wlan_cfg_get_dma_mon_desc_ring_size(pdev_cfg_ctx); if (dp_srng_setup(soc, &soc->rxdma_mon_desc_ring[lmac_id], RXDMA_MONITOR_DESC, 0, lmac_id, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_mon_desc_ring")); return QDF_STATUS_E_NOMEM; } wlan_minidump_log(soc->rxdma_mon_desc_ring[lmac_id].base_vaddr_unaligned, soc->rxdma_mon_desc_ring[lmac_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_MON_DESC, "rxdma_mon_desc"); } else { entries = wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx); if (dp_srng_setup(soc, &soc->rxdma_mon_status_ring[lmac_id], RXDMA_MONITOR_STATUS, 0, lmac_id, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_mon_status_ring")); return QDF_STATUS_E_NOMEM; } wlan_minidump_log(soc->rxdma_mon_status_ring[lmac_id].base_vaddr_unaligned, soc->rxdma_mon_status_ring[lmac_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_MON_STATUS, "rxdma_mon_status_ring"); } } return QDF_STATUS_SUCCESS; } #else static QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev) { return QDF_STATUS_SUCCESS; } #endif /*dp_iterate_update_peer_list - update peer stats on cal client timer * @pdev_hdl: pdev handle */ #ifdef ATH_SUPPORT_EXT_STAT void dp_iterate_update_peer_list(struct cdp_pdev *pdev_hdl) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl; struct dp_soc *soc = pdev->soc; struct dp_vdev *vdev = NULL; struct dp_peer *peer = NULL; qdf_spin_lock_bh(&soc->peer_ref_mutex); qdf_spin_lock_bh(&pdev->vdev_list_lock); DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) { DP_VDEV_ITERATE_PEER_LIST(vdev, peer) { dp_cal_client_update_peer_stats(&peer->stats); } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); qdf_spin_unlock_bh(&soc->peer_ref_mutex); } #else void dp_iterate_update_peer_list(struct cdp_pdev *pdev_hdl) { } #endif /* * dp_htt_ppdu_stats_attach() - attach resources for HTT PPDU stats processing * @pdev: Datapath PDEV handle * * Return: QDF_STATUS_SUCCESS: Success * QDF_STATUS_E_NOMEM: Error */ static QDF_STATUS dp_htt_ppdu_stats_attach(struct dp_pdev *pdev) { pdev->ppdu_tlv_buf = qdf_mem_malloc(HTT_T2H_MAX_MSG_SIZE); if (!pdev->ppdu_tlv_buf) { QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "ppdu_tlv_buf alloc fail"); return QDF_STATUS_E_NOMEM; } return QDF_STATUS_SUCCESS; } /* * dp_pdev_attach_wifi3() - attach txrx pdev * @txrx_soc: Datapath SOC handle * @htc_handle: HTC handle for host-target interface * @qdf_osdev: QDF OS device * @pdev_id: PDEV ID * * Return: QDF_STATUS */ static inline QDF_STATUS dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, uint8_t pdev_id) { int ring_size; int entries; struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx; int nss_cfg; void *sojourn_buf; struct dp_soc *soc = (struct dp_soc *)txrx_soc; struct dp_pdev *pdev = NULL; QDF_STATUS ret; if (dp_is_soc_reinit(soc)) { pdev = soc->pdev_list[pdev_id]; } else { pdev = qdf_mem_malloc(sizeof(*pdev)); wlan_minidump_log(pdev, sizeof(*pdev), soc->ctrl_psoc, WLAN_MD_DP_PDEV, "dp_pdev"); } if (!pdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("DP PDEV memory allocation failed")); ret = QDF_STATUS_E_NOMEM; goto fail0; } pdev->soc = soc; pdev->pdev_id = pdev_id; pdev->filter = dp_mon_filter_alloc(pdev); if (!pdev->filter) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Memory allocation failed for monitor filters")); qdf_mem_free(pdev); ret = QDF_STATUS_E_NOMEM; goto fail0; } /* * Variable to prevent double pdev deinitialization during * radio detach execution .i.e. in the absence of any vdev. */ pdev->pdev_deinit = 0; pdev->invalid_peer = qdf_mem_malloc(sizeof(struct dp_peer)); if (!pdev->invalid_peer) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Invalid peer memory allocation failed")); dp_mon_filter_dealloc(pdev); qdf_mem_free(pdev); ret = QDF_STATUS_E_NOMEM; goto fail0; } soc_cfg_ctx = soc->wlan_cfg_ctx; pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc); if (!pdev->wlan_cfg_ctx) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("pdev cfg_attach failed")); qdf_mem_free(pdev->invalid_peer); dp_mon_filter_dealloc(pdev); qdf_mem_free(pdev); ret = QDF_STATUS_E_FAILURE; goto fail0; } /* * set nss pdev config based on soc config */ nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx); wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx, (nss_cfg & (1 << pdev_id))); soc->pdev_list[pdev_id] = pdev; pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id); soc->pdev_count++; TAILQ_INIT(&pdev->vdev_list); qdf_spinlock_create(&pdev->vdev_list_lock); pdev->vdev_count = 0; qdf_spinlock_create(&pdev->tx_mutex); qdf_spinlock_create(&pdev->neighbour_peer_mutex); TAILQ_INIT(&pdev->neighbour_peers_list); pdev->neighbour_peers_added = false; pdev->monitor_configured = false; pdev->enable_reap_timer_non_pkt = false; if (dp_soc_cmn_setup(soc)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_soc_cmn_setup failed")); ret = QDF_STATUS_E_FAILURE; goto fail1; } /* Setup per PDEV TCL rings if configured */ if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) { ring_size = wlan_cfg_tx_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->tcl_data_ring[pdev_id], TCL_DATA, pdev_id, pdev_id, ring_size, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for tcl_data_ring")); ret = QDF_STATUS_E_FAILURE; goto fail1; } wlan_minidump_log(soc->tcl_data_ring[pdev_id].base_vaddr_unaligned, soc->tcl_data_ring[pdev_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_TCL_DATA, "tcl_data"); ring_size = wlan_cfg_tx_comp_ring_size(soc_cfg_ctx); if (dp_srng_setup(soc, &soc->tx_comp_ring[pdev_id], WBM2SW_RELEASE, pdev_id, pdev_id, ring_size, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for tx_comp_ring")); ret = QDF_STATUS_E_FAILURE; goto fail1; } wlan_minidump_log(soc->tcl_data_ring[pdev_id].base_vaddr_unaligned, soc->tcl_data_ring[pdev_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_TX_COMP, "tcl_comp_ring"); soc->num_tcl_data_rings++; } /* Tx specific init */ if (dp_tx_pdev_attach(pdev)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_tx_pdev_attach failed")); ret = QDF_STATUS_E_FAILURE; goto fail1; } ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx); /* Setup per PDEV REO rings if configured */ if (wlan_cfg_per_pdev_rx_ring(soc_cfg_ctx)) { if (dp_srng_setup(soc, &soc->reo_dest_ring[pdev_id], REO_DST, pdev_id, pdev_id, ring_size, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed for reo_dest_ringn")); ret = QDF_STATUS_E_FAILURE; goto fail1; } wlan_minidump_log(soc->reo_dest_ring[pdev_id].base_vaddr_unaligned, soc->reo_dest_ring[pdev_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_REO_DEST, "reo_dest_ring"); soc->num_reo_dest_rings++; } ring_size = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc->wlan_cfg_ctx); if (dp_srng_setup(soc, &soc->rx_refill_buf_ring[pdev->lmac_id], RXDMA_BUF, 0, pdev->lmac_id, ring_size, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_srng_setup failed rx refill ring")); ret = QDF_STATUS_E_FAILURE; goto fail1; } if (dp_rxdma_ring_setup(soc, pdev)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("RXDMA ring config failed")); ret = QDF_STATUS_E_FAILURE; goto fail1; } if (dp_mon_rings_setup(soc, pdev)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("MONITOR rings setup failed")); ret = QDF_STATUS_E_FAILURE; goto fail1; } entries = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx); if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) { if (dp_srng_setup(soc, &soc->rxdma_err_dst_ring[pdev->lmac_id], RXDMA_DST, 0, pdev->lmac_id, entries, 0)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL(RNG_ERR "rxdma_err_dst_ring")); ret = QDF_STATUS_E_FAILURE; goto fail1; } wlan_minidump_log(soc->rxdma_err_dst_ring[pdev->lmac_id].base_vaddr_unaligned, soc->rxdma_err_dst_ring[pdev->lmac_id].alloc_size, soc->ctrl_psoc, WLAN_MD_DP_SRNG_RXDMA_ERR_DST, "rxdma_err_dst_ring"); } if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev)) { ret = QDF_STATUS_E_FAILURE; goto fail1; } if (dp_ipa_ring_resource_setup(soc, pdev)) { ret = QDF_STATUS_E_FAILURE; goto fail1; } if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_ipa_uc_attach failed")); ret = QDF_STATUS_E_FAILURE; goto fail1; } /* Rx specific init */ if (dp_rx_pdev_attach(pdev)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("dp_rx_pdev_attach failed")); ret = QDF_STATUS_E_FAILURE; goto fail2; } DP_STATS_INIT(pdev); /* Monitor filter init */ pdev->mon_filter_mode = MON_FILTER_ALL; pdev->fp_mgmt_filter = FILTER_MGMT_ALL; pdev->fp_ctrl_filter = FILTER_CTRL_ALL; pdev->fp_data_filter = FILTER_DATA_ALL; pdev->mo_mgmt_filter = FILTER_MGMT_ALL; pdev->mo_ctrl_filter = FILTER_CTRL_ALL; pdev->mo_data_filter = FILTER_DATA_ALL; dp_local_peer_id_pool_init(pdev); dp_dscp_tid_map_setup(pdev); dp_pcp_tid_map_setup(pdev); /* Rx monitor mode specific init */ if (dp_rx_pdev_mon_attach(pdev)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_rx_pdev_mon_attach failed"); ret = QDF_STATUS_E_FAILURE; goto fail2; } if (dp_wdi_event_attach(pdev)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_wdi_evet_attach failed"); ret = QDF_STATUS_E_FAILURE; goto wdi_attach_fail; } /* set the reo destination during initialization */ pdev->reo_dest = pdev->pdev_id + 1; /* * initialize ppdu tlv list */ TAILQ_INIT(&pdev->ppdu_info_list); pdev->tlv_count = 0; pdev->list_depth = 0; qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats)); pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev, sizeof(struct cdp_tx_sojourn_stats), 0, 4, TRUE); if (pdev->sojourn_buf) { sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf); qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats)); } /* initlialize cal client timer */ dp_cal_client_attach(&pdev->cal_client_ctx, dp_pdev_to_cdp_pdev(pdev), pdev->soc->osdev, &dp_iterate_update_peer_list); qdf_event_create(&pdev->fw_peer_stats_event); pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx); dp_init_tso_stats(pdev); if (dp_htt_ppdu_stats_attach(pdev) != QDF_STATUS_SUCCESS) { ret = QDF_STATUS_E_FAILURE; goto fail1; } dp_tx_ppdu_stats_attach(pdev); return QDF_STATUS_SUCCESS; wdi_attach_fail: /* * dp_mon_link_desc_pool_cleanup is done in dp_pdev_detach * and hence need not to be done here. */ dp_rx_pdev_mon_detach(pdev); fail2: dp_rx_pdev_detach(pdev); fail1: if (pdev->invalid_peer) qdf_mem_free(pdev->invalid_peer); if (pdev->filter) dp_mon_filter_dealloc(pdev); dp_pdev_detach((struct cdp_pdev *)pdev, 0); fail0: return ret; } /* * dp_rxdma_ring_cleanup() - configure the RX DMA rings * @soc: data path SoC handle * @pdev: Physical device handle * * Return: void */ #ifdef QCA_HOST2FW_RXBUF_RING static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev) { int i; for (i = 0; i < MAX_RX_MAC_RINGS; i++) dp_srng_cleanup(soc, &pdev->rx_mac_buf_ring[i], RXDMA_BUF, 1); if (soc->reap_timer_init) { qdf_timer_free(&soc->mon_reap_timer); soc->reap_timer_init = 0; } } #else static void dp_rxdma_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev) { if (soc->lmac_timer_init) { qdf_timer_stop(&soc->lmac_reap_timer); qdf_timer_free(&soc->lmac_reap_timer); soc->lmac_timer_init = 0; } } #endif /* * dp_neighbour_peers_detach() - Detach neighbour peers(nac clients) * @pdev: device object * * Return: void */ static void dp_neighbour_peers_detach(struct dp_pdev *pdev) { struct dp_neighbour_peer *peer = NULL; struct dp_neighbour_peer *temp_peer = NULL; TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem, temp_peer) { /* delete this peer from the list */ TAILQ_REMOVE(&pdev->neighbour_peers_list, peer, neighbour_peer_list_elem); qdf_mem_free(peer); } qdf_spinlock_destroy(&pdev->neighbour_peer_mutex); } /** * dp_htt_ppdu_stats_detach() - detach stats resources * @pdev: Datapath PDEV handle * * Return: void */ static void dp_htt_ppdu_stats_detach(struct dp_pdev *pdev) { struct ppdu_info *ppdu_info, *ppdu_info_next; TAILQ_FOREACH_SAFE(ppdu_info, &pdev->ppdu_info_list, ppdu_info_list_elem, ppdu_info_next) { if (!ppdu_info) break; qdf_assert_always(ppdu_info->nbuf); qdf_nbuf_free(ppdu_info->nbuf); qdf_mem_free(ppdu_info); } if (pdev->ppdu_tlv_buf) qdf_mem_free(pdev->ppdu_tlv_buf); } #if !defined(DISABLE_MON_CONFIG) static void dp_mon_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev, int mac_id) { if (soc->wlan_cfg_ctx->rxdma1_enable) { wlan_minidump_remove(soc->rxdma_mon_buf_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_mon_buf_ring[mac_id], RXDMA_MONITOR_BUF, 0); wlan_minidump_remove(soc->rxdma_mon_dst_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_mon_dst_ring[mac_id], RXDMA_MONITOR_DST, 0); wlan_minidump_remove(soc->rxdma_mon_status_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_mon_status_ring[mac_id], RXDMA_MONITOR_STATUS, 0); wlan_minidump_remove(soc->rxdma_mon_desc_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_mon_desc_ring[mac_id], RXDMA_MONITOR_DESC, 0); wlan_minidump_remove(soc->rxdma_err_dst_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_err_dst_ring[mac_id], RXDMA_DST, 0); } else { wlan_minidump_remove(soc->rxdma_mon_status_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_mon_status_ring[mac_id], RXDMA_MONITOR_STATUS, 0); wlan_minidump_remove(soc->rxdma_err_dst_ring[mac_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rxdma_err_dst_ring[mac_id], RXDMA_DST, 0); } } #else static void dp_mon_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev, int mac_id) { } #endif /** * dp_mon_ring_deinit() - Placeholder to deinitialize Monitor rings * * @soc: soc handle * @pdev: datapath physical dev handle * @mac_id: mac number * * Return: None */ static void dp_mon_ring_deinit(struct dp_soc *soc, struct dp_pdev *pdev, int mac_id) { } /** * dp_pdev_mem_reset() - Reset txrx pdev memory * @pdev: dp pdev handle * * Return: None */ static void dp_pdev_mem_reset(struct dp_pdev *pdev) { uint16_t len = 0; uint8_t *dp_pdev_offset = (uint8_t *)pdev; len = sizeof(struct dp_pdev) - offsetof(struct dp_pdev, pdev_deinit) - sizeof(pdev->pdev_deinit); dp_pdev_offset = dp_pdev_offset + offsetof(struct dp_pdev, pdev_deinit) + sizeof(pdev->pdev_deinit); qdf_mem_zero(dp_pdev_offset, len); } #ifdef WLAN_DP_PENDING_MEM_FLUSH /** * dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev * @pdev: Datapath PDEV handle * * This is the last chance to flush all pending dp vdevs/peers, * some peer/vdev leak case like Non-SSR + peer unmap missing * will be covered here. * * Return: None */ static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev) { struct dp_vdev *vdev = NULL; while (true) { qdf_spin_lock_bh(&pdev->vdev_list_lock); TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { if (vdev->delete.pending) break; } qdf_spin_unlock_bh(&pdev->vdev_list_lock); /* * vdev will be freed when all peers get cleanup, * dp_delete_pending_vdev will remove vdev from vdev_list * in pdev. */ if (vdev) dp_vdev_flush_peers((struct cdp_vdev *)vdev, 0); else break; } } #else static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev) { } #endif /** * dp_pdev_deinit() - Deinit txrx pdev * @txrx_pdev: Datapath PDEV handle * @force: Force deinit * * Return: None */ static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force) { struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev; struct dp_soc *soc = pdev->soc; qdf_nbuf_t curr_nbuf, next_nbuf; int mac_id; /* * Prevent double pdev deinitialization during radio detach * execution .i.e. in the absence of any vdev */ if (pdev->pdev_deinit) return; pdev->pdev_deinit = 1; dp_wdi_event_detach(pdev); dp_pdev_flush_pending_vdevs(pdev); dp_tx_pdev_detach(pdev); if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) { dp_srng_deinit(soc, &soc->tcl_data_ring[pdev->pdev_id], TCL_DATA, pdev->pdev_id); dp_srng_deinit(soc, &soc->tx_comp_ring[pdev->pdev_id], WBM2SW_RELEASE, pdev->pdev_id); } dp_pktlogmod_exit(pdev); dp_rx_fst_detach(soc, pdev); dp_rx_pdev_detach(pdev); dp_rx_pdev_mon_detach(pdev); dp_neighbour_peers_detach(pdev); qdf_spinlock_destroy(&pdev->tx_mutex); qdf_spinlock_destroy(&pdev->vdev_list_lock); dp_ipa_uc_detach(soc, pdev); dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev); /* Cleanup per PDEV REO rings if configured */ if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) { dp_srng_deinit(soc, &soc->reo_dest_ring[pdev->pdev_id], REO_DST, pdev->pdev_id); } dp_srng_deinit(soc, &soc->rx_refill_buf_ring[pdev->lmac_id], RXDMA_BUF, 0); dp_rxdma_ring_cleanup(soc, pdev); for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) { int lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id); dp_mon_ring_deinit(soc, pdev, lmac_id); dp_srng_deinit(soc, &soc->rxdma_err_dst_ring[lmac_id], RXDMA_DST, 0); } curr_nbuf = pdev->invalid_peer_head_msdu; while (curr_nbuf) { next_nbuf = qdf_nbuf_next(curr_nbuf); qdf_nbuf_free(curr_nbuf); curr_nbuf = next_nbuf; } pdev->invalid_peer_head_msdu = NULL; pdev->invalid_peer_tail_msdu = NULL; dp_htt_ppdu_stats_detach(pdev); dp_tx_ppdu_stats_detach(pdev); qdf_nbuf_free(pdev->sojourn_buf); qdf_nbuf_queue_free(&pdev->rx_ppdu_buf_q); dp_cal_client_detach(&pdev->cal_client_ctx); soc->pdev_count--; /* only do soc common cleanup when last pdev do detach */ if (!(soc->pdev_count)) dp_soc_cmn_cleanup(soc); wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx); if (pdev->invalid_peer) qdf_mem_free(pdev->invalid_peer); /* * Fee the monitor filter allocated and stored */ if (pdev->filter) dp_mon_filter_dealloc(pdev); qdf_mem_free(pdev->dp_txrx_handle); dp_pdev_mem_reset(pdev); } /** * dp_pdev_deinit_wifi3() - Deinit txrx pdev * @psoc: Datapath psoc handle * @pdev_id: Id of datapath PDEV handle * @force: Force deinit * * Return: QDF_STATUS */ static QDF_STATUS dp_pdev_deinit_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force) { struct dp_soc *soc = (struct dp_soc *)psoc; struct dp_pdev *txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc, pdev_id); if (!txrx_pdev) return QDF_STATUS_E_FAILURE; soc->dp_soc_reinit = TRUE; dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force); return QDF_STATUS_SUCCESS; } /* * dp_pdev_detach() - Complete rest of pdev detach * @txrx_pdev: Datapath PDEV handle * @force: Force deinit * * Return: None */ static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force) { struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev; struct dp_soc *soc = pdev->soc; struct rx_desc_pool *rx_desc_pool; int mac_id, mac_for_pdev; int lmac_id; if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) { wlan_minidump_remove( soc->tcl_data_ring[pdev->pdev_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->tcl_data_ring[pdev->pdev_id], TCL_DATA, pdev->pdev_id); wlan_minidump_remove( soc->tx_comp_ring[pdev->pdev_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->tx_comp_ring[pdev->pdev_id], WBM2SW_RELEASE, pdev->pdev_id); } dp_mon_link_free(pdev); /* Cleanup per PDEV REO rings if configured */ if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) { wlan_minidump_remove( soc->reo_dest_ring[pdev->pdev_id].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->reo_dest_ring[pdev->pdev_id], REO_DST, pdev->pdev_id); } dp_rxdma_ring_cleanup(soc, pdev); wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx); dp_srng_cleanup(soc, &soc->rx_refill_buf_ring[pdev->lmac_id], RXDMA_BUF, 0); dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev); for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) { lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id); dp_mon_ring_cleanup(soc, pdev, lmac_id); dp_srng_cleanup(soc, &soc->rxdma_err_dst_ring[lmac_id], RXDMA_DST, 0); if (dp_is_soc_reinit(soc)) { mac_for_pdev = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id); rx_desc_pool = &soc->rx_desc_status[mac_for_pdev]; dp_rx_desc_pool_free(soc, rx_desc_pool); rx_desc_pool = &soc->rx_desc_mon[mac_for_pdev]; dp_rx_desc_pool_free(soc, rx_desc_pool); } } if (dp_is_soc_reinit(soc)) { rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id]; dp_rx_desc_pool_free(soc, rx_desc_pool); } soc->pdev_list[pdev->pdev_id] = NULL; wlan_minidump_remove(pdev); qdf_mem_free(pdev); } /* * dp_pdev_detach_wifi3() - detach txrx pdev * @psoc: Datapath soc handle * @pdev_id: pdev id of pdev * @force: Force detach * * Return: QDF_STATUS */ static QDF_STATUS dp_pdev_detach_wifi3(struct cdp_soc_t *psoc, uint8_t pdev_id, int force) { struct dp_soc *soc = (struct dp_soc *)psoc; struct dp_pdev *txrx_pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)psoc, pdev_id); if (!txrx_pdev) { dp_err("Couldn't find dp pdev"); return QDF_STATUS_E_FAILURE; } if (dp_is_soc_reinit(soc)) { dp_pdev_detach((struct cdp_pdev *)txrx_pdev, force); } else { dp_pdev_deinit((struct cdp_pdev *)txrx_pdev, force); dp_pdev_detach((struct cdp_pdev *)txrx_pdev, force); } return QDF_STATUS_SUCCESS; } /* * dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist * @soc: DP SOC handle */ static inline void dp_reo_desc_freelist_destroy(struct dp_soc *soc) { struct reo_desc_list_node *desc; struct dp_rx_tid *rx_tid; qdf_spin_lock_bh(&soc->reo_desc_freelist_lock); while (qdf_list_remove_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) { rx_tid = &desc->rx_tid; qdf_mem_unmap_nbytes_single(soc->osdev, rx_tid->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size); qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); qdf_mem_free(desc); } qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock); qdf_list_destroy(&soc->reo_desc_freelist); qdf_spinlock_destroy(&soc->reo_desc_freelist_lock); } /** * dp_soc_mem_reset() - Reset Dp Soc memory * @soc: DP handle * * Return: None */ static void dp_soc_mem_reset(struct dp_soc *soc) { uint16_t len = 0; uint8_t *dp_soc_offset = (uint8_t *)soc; len = sizeof(struct dp_soc) - offsetof(struct dp_soc, dp_soc_reinit) - sizeof(soc->dp_soc_reinit); dp_soc_offset = dp_soc_offset + offsetof(struct dp_soc, dp_soc_reinit) + sizeof(soc->dp_soc_reinit); qdf_mem_zero(dp_soc_offset, len); } /** * dp_soc_deinit() - Deinitialize txrx SOC * @txrx_soc: Opaque DP SOC handle * * Return: None */ static void dp_soc_deinit(void *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; int i; qdf_atomic_set(&soc->cmn_init_done, 0); for (i = 0; i < MAX_PDEV_CNT; i++) { if (soc->pdev_list[i]) dp_pdev_deinit((struct cdp_pdev *) soc->pdev_list[i], 1); } qdf_flush_work(&soc->htt_stats.work); qdf_disable_work(&soc->htt_stats.work); /* Free pending htt stats messages */ qdf_nbuf_queue_free(&soc->htt_stats.msg); dp_peer_find_detach(soc); /* Free the ring memories */ /* Common rings */ dp_srng_deinit(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0); /* Tx data rings */ if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) { for (i = 0; i < soc->num_tcl_data_rings; i++) { dp_tx_deinit_pair_by_index(soc, i); } if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) dp_tx_deinit_pair_by_index(soc, IPA_TCL_DATA_RING_IDX); } /* TCL command/credit ring */ dp_srng_deinit(soc, &soc->tcl_cmd_credit_ring, TCL_CMD_CREDIT, 0); /* TCL status ring */ dp_srng_deinit(soc, &soc->tcl_status_ring, TCL_STATUS, 0); /* Rx data rings */ if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) { soc->num_reo_dest_rings = wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx); for (i = 0; i < soc->num_reo_dest_rings; i++) { /* TODO: Get number of rings and ring sizes * from wlan_cfg */ dp_srng_deinit(soc, &soc->reo_dest_ring[i], REO_DST, i); } } /* REO reinjection ring */ dp_srng_deinit(soc, &soc->reo_reinject_ring, REO_REINJECT, 0); /* Rx release ring */ dp_srng_deinit(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0); /* Rx exception ring */ /* TODO: Better to store ring_type and ring_num in * dp_srng during setup */ dp_srng_deinit(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0); /* REO command and status rings */ dp_srng_deinit(soc, &soc->reo_cmd_ring, REO_CMD, 0); dp_srng_deinit(soc, &soc->reo_status_ring, REO_STATUS, 0); dp_soc_wds_detach(soc); qdf_spinlock_destroy(&soc->peer_ref_mutex); qdf_spinlock_destroy(&soc->htt_stats.lock); htt_soc_htc_dealloc(soc->htt_handle); dp_reo_desc_freelist_destroy(soc); qdf_spinlock_destroy(&soc->ast_lock); DEINIT_RX_HW_STATS_LOCK(soc); dp_soc_mem_reset(soc); } void dp_tx_deinit_pair_by_index(struct dp_soc *soc, int index) { dp_srng_deinit(soc, &soc->tcl_data_ring[index], TCL_DATA, index); dp_srng_deinit(soc, &soc->tx_comp_ring[index], WBM2SW_RELEASE, index); } /** * dp_soc_deinit_wifi3() - Deinitialize txrx SOC * @txrx_soc: Opaque DP SOC handle * * Return: None */ static void dp_soc_deinit_wifi3(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; soc->dp_soc_reinit = 1; dp_soc_deinit(txrx_soc); } /* * dp_soc_detach() - Detach rest of txrx SOC * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc. * * Return: None */ static void dp_soc_detach(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; int i; qdf_atomic_set(&soc->cmn_init_done, 0); /* TBD: Call Tx and Rx cleanup functions to free buffers and * SW descriptors */ for (i = 0; i < MAX_PDEV_CNT; i++) { if (soc->pdev_list[i]) dp_pdev_detach((struct cdp_pdev *) soc->pdev_list[i], 1); } /* Free the ring memories */ /* Common rings */ wlan_minidump_remove(soc->wbm_desc_rel_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0); if (dp_is_soc_reinit(soc)) { dp_tx_soc_detach(soc); } /* Tx data rings */ if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) { for (i = 0; i < soc->num_tcl_data_rings; i++) { wlan_minidump_remove(soc->tcl_data_ring[i].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->tcl_data_ring[i], TCL_DATA, i); wlan_minidump_remove(soc->tx_comp_ring[i].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->tx_comp_ring[i], WBM2SW_RELEASE, i); } if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) { dp_srng_cleanup(soc, &soc->tcl_data_ring[IPA_TCL_DATA_RING_IDX], TCL_DATA, IPA_TCL_DATA_RING_IDX); dp_srng_cleanup(soc, &soc->tx_comp_ring[IPA_TCL_DATA_RING_IDX], WBM2SW_RELEASE, IPA_TCL_DATA_RING_IDX); } } /* TCL command/credit ring */ wlan_minidump_remove(soc->tcl_cmd_credit_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->tcl_cmd_credit_ring, TCL_CMD_CREDIT, 0); /* TCL status rings */ wlan_minidump_remove(soc->tcl_status_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->tcl_status_ring, TCL_STATUS, 0); /* Rx data rings */ if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) { soc->num_reo_dest_rings = wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx); for (i = 0; i < soc->num_reo_dest_rings; i++) { /* TODO: Get number of rings and ring sizes * from wlan_cfg */ wlan_minidump_remove(soc->reo_dest_ring[i].base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->reo_dest_ring[i], REO_DST, i); } } /* REO reinjection ring */ wlan_minidump_remove(soc->reo_reinject_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0); /* Rx release ring */ wlan_minidump_remove(soc->rx_rel_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0); dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3); /* Rx exception ring */ /* TODO: Better to store ring_type and ring_num in * dp_srng during setup */ wlan_minidump_remove(soc->reo_exception_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0); /* REO command and status rings */ wlan_minidump_remove(soc->reo_cmd_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->reo_cmd_ring, REO_CMD, 0); wlan_minidump_remove(soc->reo_status_ring.base_vaddr_unaligned); dp_srng_cleanup(soc, &soc->reo_status_ring, REO_STATUS, 0); dp_hw_link_desc_pool_cleanup(soc); htt_soc_detach(soc->htt_handle); soc->dp_soc_reinit = 0; wlan_cfg_soc_detach(soc->wlan_cfg_ctx); wlan_minidump_remove(soc); qdf_mem_free(soc); } /* * dp_soc_detach_wifi3() - Detach txrx SOC * @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc. * * Return: None */ static void dp_soc_detach_wifi3(struct cdp_soc_t *txrx_soc) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; if (dp_is_soc_reinit(soc)) { dp_soc_detach(txrx_soc); } else { dp_soc_deinit(txrx_soc); dp_soc_detach(txrx_soc); } } #if !defined(DISABLE_MON_CONFIG) /** * dp_mon_htt_srng_setup() - Prepare HTT messages for Monitor rings * @soc: soc handle * @pdev: physical device handle * @mac_id: ring number * @mac_for_pdev: mac_id * * Return: non-zero for failure, zero for success */ static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc, struct dp_pdev *pdev, int mac_id, int mac_for_pdev) { QDF_STATUS status = QDF_STATUS_SUCCESS; if (soc->wlan_cfg_ctx->rxdma1_enable) { status = htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_buf_ring[mac_id] .hal_srng, RXDMA_MONITOR_BUF); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt srng setup message for Rxdma mon buf ring"); return status; } status = htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_dst_ring[mac_id] .hal_srng, RXDMA_MONITOR_DST); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt srng setup message for Rxdma mon dst ring"); return status; } status = htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_status_ring[mac_id] .hal_srng, RXDMA_MONITOR_STATUS); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt srng setup message for Rxdma mon status ring"); return status; } status = htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_desc_ring[mac_id] .hal_srng, RXDMA_MONITOR_DESC); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt srng message for Rxdma mon desc ring"); return status; } } else { status = htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_status_ring[mac_id] .hal_srng, RXDMA_MONITOR_STATUS); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt srng setup message for Rxdma mon status ring"); return status; } } return status; } #else static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc, struct dp_pdev *pdev, int mac_id, int mac_for_pdev) { return QDF_STATUS_SUCCESS; } #endif /* * dp_rxdma_ring_config() - configure the RX DMA rings * * This function is used to configure the MAC rings. * On MCL host provides buffers in Host2FW ring * FW refills (copies) buffers to the ring and updates * ring_idx in register * * @soc: data path SoC handle * * Return: zero on success, non-zero on failure */ #ifdef QCA_HOST2FW_RXBUF_RING static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc) { int i; QDF_STATUS status = QDF_STATUS_SUCCESS; for (i = 0; i < MAX_PDEV_CNT; i++) { struct dp_pdev *pdev = soc->pdev_list[i]; if (pdev) { int mac_id; bool dbs_enable = 0; int max_mac_rings = wlan_cfg_get_num_mac_rings (pdev->wlan_cfg_ctx); int lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i); htt_srng_setup(soc->htt_handle, 0, soc->rx_refill_buf_ring[lmac_id] .hal_srng, RXDMA_BUF); if (pdev->rx_refill_buf_ring2.hal_srng) htt_srng_setup(soc->htt_handle, 0, pdev->rx_refill_buf_ring2.hal_srng, RXDMA_BUF); if (soc->cdp_soc.ol_ops-> is_hw_dbs_2x2_capable) { dbs_enable = soc->cdp_soc.ol_ops-> is_hw_dbs_2x2_capable( (void *)soc->ctrl_psoc); } if (dbs_enable) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("DBS enabled max_mac_rings %d"), max_mac_rings); } else { max_mac_rings = 1; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("DBS disabled, max_mac_rings %d"), max_mac_rings); } QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("pdev_id %d max_mac_rings %d"), pdev->pdev_id, max_mac_rings); for (mac_id = 0; mac_id < max_mac_rings; mac_id++) { int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id); /* * Obtain lmac id from pdev to access the LMAC * ring in soc context */ lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("mac_id %d"), mac_for_pdev); htt_srng_setup(soc->htt_handle, mac_for_pdev, pdev->rx_mac_buf_ring[mac_id] .hal_srng, RXDMA_BUF); htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_err_dst_ring[lmac_id] .hal_srng, RXDMA_DST); /* Configure monitor mode rings */ status = dp_mon_htt_srng_setup(soc, pdev, lmac_id, mac_for_pdev); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt monitor messages to target"); return status; } } } } /* * Timer to reap rxdma status rings. * Needed until we enable ppdu end interrupts */ qdf_timer_init(soc->osdev, &soc->mon_reap_timer, dp_mon_reap_timer_handler, (void *)soc, QDF_TIMER_TYPE_WAKE_APPS); soc->reap_timer_init = 1; return status; } #else /* This is only for WIN */ static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc) { int i; QDF_STATUS status = QDF_STATUS_SUCCESS; int mac_for_pdev; int lmac_id; for (i = 0; i < MAX_PDEV_CNT; i++) { struct dp_pdev *pdev = soc->pdev_list[i]; if (!pdev) continue; mac_for_pdev = i; lmac_id = dp_get_lmac_id_for_pdev_id(soc, 0, i); htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rx_refill_buf_ring[lmac_id]. hal_srng, RXDMA_BUF); #ifndef DISABLE_MON_CONFIG htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_buf_ring[lmac_id].hal_srng, RXDMA_MONITOR_BUF); htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_dst_ring[lmac_id].hal_srng, RXDMA_MONITOR_DST); htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_status_ring[lmac_id].hal_srng, RXDMA_MONITOR_STATUS); htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_desc_ring[lmac_id].hal_srng, RXDMA_MONITOR_DESC); #endif htt_srng_setup(soc->htt_handle, mac_for_pdev, soc->rxdma_err_dst_ring[lmac_id].hal_srng, RXDMA_DST); } /* Configure LMAC rings in Polled mode */ if (soc->lmac_polled_mode) { /* * Timer to reap lmac rings. */ qdf_timer_init(soc->osdev, &soc->lmac_reap_timer, dp_service_lmac_rings, (void *)soc, QDF_TIMER_TYPE_WAKE_APPS); soc->lmac_timer_init = 1; qdf_timer_mod(&soc->lmac_reap_timer, DP_INTR_POLL_TIMER_MS); } return status; } #endif #ifdef NO_RX_PKT_HDR_TLV static QDF_STATUS dp_rxdma_ring_sel_cfg(struct dp_soc *soc) { int i; int mac_id; struct htt_rx_ring_tlv_filter htt_tlv_filter = {0}; QDF_STATUS status = QDF_STATUS_SUCCESS; htt_tlv_filter.mpdu_start = 1; htt_tlv_filter.msdu_start = 1; htt_tlv_filter.mpdu_end = 1; htt_tlv_filter.msdu_end = 1; htt_tlv_filter.attention = 1; htt_tlv_filter.packet = 1; htt_tlv_filter.packet_header = 0; htt_tlv_filter.ppdu_start = 0; htt_tlv_filter.ppdu_end = 0; htt_tlv_filter.ppdu_end_user_stats = 0; htt_tlv_filter.ppdu_end_user_stats_ext = 0; htt_tlv_filter.ppdu_end_status_done = 0; htt_tlv_filter.enable_fp = 1; htt_tlv_filter.enable_md = 0; htt_tlv_filter.enable_md = 0; htt_tlv_filter.enable_mo = 0; htt_tlv_filter.fp_mgmt_filter = 0; htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_BA_REQ; htt_tlv_filter.fp_data_filter = (FILTER_DATA_UCAST | FILTER_DATA_MCAST | FILTER_DATA_DATA); htt_tlv_filter.mo_mgmt_filter = 0; htt_tlv_filter.mo_ctrl_filter = 0; htt_tlv_filter.mo_data_filter = 0; htt_tlv_filter.md_data_filter = 0; htt_tlv_filter.offset_valid = true; htt_tlv_filter.rx_packet_offset = RX_PKT_TLVS_LEN; /*Not subscribing rx_pkt_header*/ htt_tlv_filter.rx_header_offset = 0; htt_tlv_filter.rx_mpdu_start_offset = HAL_RX_PKT_TLV_MPDU_START_OFFSET(soc->hal_soc); htt_tlv_filter.rx_mpdu_end_offset = HAL_RX_PKT_TLV_MPDU_END_OFFSET(soc->hal_soc); htt_tlv_filter.rx_msdu_start_offset = HAL_RX_PKT_TLV_MSDU_START_OFFSET(soc->hal_soc); htt_tlv_filter.rx_msdu_end_offset = HAL_RX_PKT_TLV_MSDU_END_OFFSET(soc->hal_soc); htt_tlv_filter.rx_attn_offset = HAL_RX_PKT_TLV_ATTN_OFFSET(soc->hal_soc); for (i = 0; i < MAX_PDEV_CNT; i++) { struct dp_pdev *pdev = soc->pdev_list[i]; if (!pdev) continue; for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) { int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id); /* * Obtain lmac id from pdev to access the LMAC ring * in soc context */ int lmac_id = dp_get_lmac_id_for_pdev_id(soc, mac_id, pdev->pdev_id); htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev, soc->rx_refill_buf_ring[lmac_id]. hal_srng, RXDMA_BUF, RX_DATA_BUFFER_SIZE, &htt_tlv_filter); } } return status; } #else static QDF_STATUS dp_rxdma_ring_sel_cfg(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } #endif /* * dp_rx_target_fst_config() - configure the RXOLE Flow Search Engine * * This function is used to configure the FSE HW block in RX OLE on a * per pdev basis. Here, we will be programming parameters related to * the Flow Search Table. * * @soc: data path SoC handle * * Return: zero on success, non-zero on failure */ #ifdef WLAN_SUPPORT_RX_FLOW_TAG static QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc) { int i; QDF_STATUS status = QDF_STATUS_SUCCESS; for (i = 0; i < MAX_PDEV_CNT; i++) { struct dp_pdev *pdev = soc->pdev_list[i]; /* Flow search is not enabled if NSS offload is enabled */ if (pdev && !wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) { status = dp_rx_flow_send_fst_fw_setup(pdev->soc, pdev); if (status != QDF_STATUS_SUCCESS) break; } } return status; } #elif defined(WLAN_SUPPORT_RX_FISA) /** * dp_rx_target_fst_config() - Configure RX OLE FSE engine in HW * @soc: SoC handle * * Return: Success */ static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc) { /* Check if it is enabled in the INI */ if (!soc->fisa_enable) { dp_err("RX FISA feature is disabled"); return QDF_STATUS_E_NOSUPPORT; } return dp_rx_flow_send_fst_fw_setup(soc, soc->pdev_list[0]); } #define FISA_MAX_TIMEOUT 0xffffffff #define FISA_DISABLE_TIMEOUT 0 static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc) { struct dp_htt_rx_fisa_cfg fisa_config; fisa_config.pdev_id = 0; fisa_config.fisa_timeout = FISA_MAX_TIMEOUT; return dp_htt_rx_fisa_config(soc->pdev_list[0], &fisa_config); } #else /* !WLAN_SUPPORT_RX_FISA */ static inline QDF_STATUS dp_rx_target_fst_config(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } #endif /* !WLAN_SUPPORT_RX_FISA */ #ifndef WLAN_SUPPORT_RX_FISA static QDF_STATUS dp_rx_fisa_config(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } static QDF_STATUS dp_rx_dump_fisa_stats(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } static void dp_rx_dump_fisa_table(struct dp_soc *soc) { } #endif /* !WLAN_SUPPORT_RX_FISA */ /* * dp_soc_attach_target_wifi3() - SOC initialization in the target * @cdp_soc: Opaque Datapath SOC handle * * Return: zero on success, non-zero on failure */ static QDF_STATUS dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc) { struct dp_soc *soc = (struct dp_soc *)cdp_soc; QDF_STATUS status = QDF_STATUS_SUCCESS; htt_soc_attach_target(soc->htt_handle); status = dp_rxdma_ring_config(soc); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt srng setup messages to target"); return status; } status = dp_rxdma_ring_sel_cfg(soc); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt ring config message to target"); return status; } status = dp_rx_target_fst_config(soc); if (status != QDF_STATUS_SUCCESS && status != QDF_STATUS_E_NOSUPPORT) { dp_err("Failed to send htt fst setup config message to target"); return status; } if (status == QDF_STATUS_SUCCESS) { status = dp_rx_fisa_config(soc); if (status != QDF_STATUS_SUCCESS) { dp_err("Failed to send htt FISA config message to target"); return status; } } DP_STATS_INIT(soc); /* initialize work queue for stats processing */ qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc); wlan_minidump_log(soc, sizeof(*soc), soc->ctrl_psoc, WLAN_MD_DP_SOC, "dp_soc"); return QDF_STATUS_SUCCESS; } #ifdef QCA_SUPPORT_FULL_MON static inline QDF_STATUS dp_soc_config_full_mon_mode(struct dp_pdev *pdev, enum dp_full_mon_config val) { struct dp_soc *soc = pdev->soc; QDF_STATUS status = QDF_STATUS_SUCCESS; if (!soc->full_mon_mode) return QDF_STATUS_SUCCESS; if ((htt_h2t_full_mon_cfg(soc->htt_handle, pdev->pdev_id, val)) != QDF_STATUS_SUCCESS) { status = QDF_STATUS_E_FAILURE; } return status; } #else static inline QDF_STATUS dp_soc_config_full_mon_mode(struct dp_pdev *pdev, enum dp_full_mon_config val) { return 0; } #endif /* * dp_vdev_attach_wifi3() - attach txrx vdev * @txrx_pdev: Datapath PDEV handle * @vdev_mac_addr: MAC address of the virtual interface * @vdev_id: VDEV Id * @wlan_op_mode: VDEV operating mode * @subtype: VDEV operating subtype * * Return: status */ static QDF_STATUS dp_vdev_attach_wifi3(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, uint8_t *vdev_mac_addr, uint8_t vdev_id, enum wlan_op_mode op_mode, enum wlan_op_subtype subtype) { struct dp_soc *soc = (struct dp_soc *)cdp_soc; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev)); if (!pdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("DP PDEV is Null for pdev id %d"), pdev_id); qdf_mem_free(vdev); goto fail0; } wlan_minidump_log(vdev, sizeof(*vdev), soc->ctrl_psoc, WLAN_MD_DP_VDEV, "dp_vdev"); if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("DP VDEV memory allocation failed")); goto fail0; } vdev->pdev = pdev; vdev->vdev_id = vdev_id; vdev->opmode = op_mode; vdev->subtype = subtype; vdev->osdev = soc->osdev; vdev->osif_rx = NULL; vdev->osif_rsim_rx_decap = NULL; vdev->osif_get_key = NULL; vdev->osif_rx_mon = NULL; vdev->osif_tx_free_ext = NULL; vdev->osif_vdev = NULL; vdev->delete.pending = 0; vdev->safemode = 0; vdev->drop_unenc = 1; vdev->sec_type = cdp_sec_type_none; vdev->multipass_en = false; #ifdef notyet vdev->filters_num = 0; #endif vdev->lmac_id = pdev->lmac_id; qdf_mem_copy( &vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE); /* TODO: Initialize default HTT meta data that will be used in * TCL descriptors for packets transmitted from this VDEV */ TAILQ_INIT(&vdev->peer_list); dp_peer_multipass_list_init(vdev); if ((soc->intr_mode == DP_INTR_POLL) && wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) { if ((pdev->vdev_count == 0) || (wlan_op_mode_monitor == vdev->opmode)) qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS); } soc->vdev_id_map[vdev_id] = vdev; if (wlan_op_mode_monitor == vdev->opmode) { pdev->monitor_vdev = vdev; return QDF_STATUS_SUCCESS; } vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx); vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx); vdev->dscp_tid_map_id = 0; vdev->mcast_enhancement_en = 0; vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx); vdev->prev_tx_enq_tstamp = 0; vdev->prev_rx_deliver_tstamp = 0; qdf_spin_lock_bh(&pdev->vdev_list_lock); /* add this vdev into the pdev's list */ TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem); qdf_spin_unlock_bh(&pdev->vdev_list_lock); pdev->vdev_count++; if (wlan_op_mode_sta != vdev->opmode) vdev->ap_bridge_enabled = true; else vdev->ap_bridge_enabled = false; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "%s: wlan_cfg_ap_bridge_enabled %d", __func__, vdev->ap_bridge_enabled); dp_tx_vdev_attach(vdev); if (pdev->vdev_count == 1) dp_lro_hash_setup(soc, pdev); dp_info("Created vdev %pK (%pM)", vdev, vdev->mac_addr.raw); DP_STATS_INIT(vdev); if (wlan_op_mode_sta == vdev->opmode) dp_peer_create_wifi3((struct cdp_soc_t *)soc, vdev_id, vdev->mac_addr.raw); return QDF_STATUS_SUCCESS; fail0: return QDF_STATUS_E_FAILURE; } /** * dp_vdev_register_wifi3() - Register VDEV operations from osif layer * @soc: Datapath soc handle * @vdev_id: id of Datapath VDEV handle * @osif_vdev: OSIF vdev handle * @txrx_ops: Tx and Rx operations * * Return: DP VDEV handle on success, NULL on failure */ static QDF_STATUS dp_vdev_register_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id, ol_osif_vdev_handle osif_vdev, struct ol_txrx_ops *txrx_ops) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; vdev->osif_vdev = osif_vdev; vdev->osif_rx = txrx_ops->rx.rx; vdev->osif_rx_stack = txrx_ops->rx.rx_stack; vdev->osif_rx_flush = txrx_ops->rx.rx_flush; vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush; vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap; vdev->osif_fisa_rx = txrx_ops->rx.osif_fisa_rx; vdev->osif_fisa_flush = txrx_ops->rx.osif_fisa_flush; vdev->osif_get_key = txrx_ops->get_key; vdev->osif_rx_mon = txrx_ops->rx.mon; vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext; vdev->tx_comp = txrx_ops->tx.tx_comp; #ifdef notyet #if ATH_SUPPORT_WAPI vdev->osif_check_wai = txrx_ops->rx.wai_check; #endif #endif #ifdef UMAC_SUPPORT_PROXY_ARP vdev->osif_proxy_arp = txrx_ops->proxy_arp; #endif vdev->me_convert = txrx_ops->me_convert; /* TODO: Enable the following once Tx code is integrated */ if (vdev->mesh_vdev) txrx_ops->tx.tx = dp_tx_send_mesh; else txrx_ops->tx.tx = dp_tx_send; txrx_ops->tx.tx_exception = dp_tx_send_exception; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW, "DP Vdev Register success"); return QDF_STATUS_SUCCESS; } /** * dp_peer_flush_ast_entry() - Forcibily flush all AST entry of peer * @soc: Datapath soc handle * @peer: Datapath peer handle * @peer_id: Peer ID * @vdev_id: Vdev ID * * Return: void */ static void dp_peer_flush_ast_entry(struct dp_soc *soc, struct dp_peer *peer, uint16_t peer_id, uint8_t vdev_id) { struct dp_ast_entry *ase, *tmp_ase; if (soc->is_peer_map_unmap_v2) { DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) { dp_rx_peer_unmap_handler (soc, peer_id, vdev_id, ase->mac_addr.raw, 1); } } } /** * dp_vdev_flush_peers() - Forcibily Flush peers of vdev * @vdev: Datapath VDEV handle * @unmap_only: Flag to indicate "only unmap" * * Return: void */ static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle, bool unmap_only) { struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle; struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; struct dp_peer *peer; uint16_t *peer_ids; struct dp_peer **peer_array = NULL; uint8_t i = 0, j = 0; uint8_t m = 0, n = 0; peer_ids = qdf_mem_malloc(soc->max_peers * sizeof(peer_ids[0])); if (!peer_ids) { dp_err("DP alloc failure - unable to flush peers"); return; } if (!unmap_only) { peer_array = qdf_mem_malloc( soc->max_peers * sizeof(struct dp_peer *)); if (!peer_array) { qdf_mem_free(peer_ids); dp_err("DP alloc failure - unable to flush peers"); return; } } qdf_spin_lock_bh(&soc->peer_ref_mutex); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (!unmap_only && n < soc->max_peers) peer_array[n++] = peer; for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) if (peer->peer_ids[i] != HTT_INVALID_PEER) if (j < soc->max_peers) peer_ids[j++] = peer->peer_ids[i]; } qdf_spin_unlock_bh(&soc->peer_ref_mutex); /* * If peer id is invalid, need to flush the peer if * peer valid flag is true, this is needed for NAN + SSR case. */ if (!unmap_only) { for (m = 0; m < n ; m++) { peer = peer_array[m]; dp_info("peer: %pM is getting deleted", peer->mac_addr.raw); /* only if peer valid is true */ if (peer->valid) dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id, peer->mac_addr.raw, 0); } qdf_mem_free(peer_array); } for (i = 0; i < j ; i++) { peer = __dp_peer_find_by_id(soc, peer_ids[i]); if (!peer) continue; dp_info("peer: %pM is getting unmap", peer->mac_addr.raw); /* free AST entries of peer */ dp_peer_flush_ast_entry(soc, peer, peer_ids[i], vdev->vdev_id); dp_rx_peer_unmap_handler(soc, peer_ids[i], vdev->vdev_id, peer->mac_addr.raw, 0); } qdf_mem_free(peer_ids); dp_info("Flushed peers for vdev object %pK ", vdev); } /* * dp_vdev_detach_wifi3() - Detach txrx vdev * @cdp_soc: Datapath soc handle * @vdev_id: VDEV Id * @callback: Callback OL_IF on completion of detach * @cb_context: Callback context * */ static QDF_STATUS dp_vdev_detach_wifi3(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, ol_txrx_vdev_delete_cb callback, void *cb_context) { struct dp_soc *soc = (struct dp_soc *)cdp_soc; struct dp_pdev *pdev; struct dp_neighbour_peer *peer = NULL; struct dp_neighbour_peer *temp_peer = NULL; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; pdev = vdev->pdev; soc->vdev_id_map[vdev->vdev_id] = NULL; if (wlan_op_mode_sta == vdev->opmode) dp_peer_delete_wifi3((struct cdp_soc_t *)soc, vdev->vdev_id, vdev->vap_self_peer->mac_addr.raw, 0); /* * If Target is hung, flush all peers before detaching vdev * this will free all references held due to missing * unmap commands from Target */ if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle))) dp_vdev_flush_peers((struct cdp_vdev *)vdev, false); else if (hif_get_target_status(soc->hif_handle) == TARGET_STATUS_RESET) dp_vdev_flush_peers((struct cdp_vdev *)vdev, true); /* * Use peer_ref_mutex while accessing peer_list, in case * a peer is in the process of being removed from the list. */ qdf_spin_lock_bh(&soc->peer_ref_mutex); /* check that the vdev has no peers allocated */ if (!TAILQ_EMPTY(&vdev->peer_list)) { /* debug print - will be removed later */ dp_warn("not deleting vdev object %pK (%pM) until deletion finishes for all its peers", vdev, vdev->mac_addr.raw); if (vdev->vdev_dp_ext_handle) { qdf_mem_free(vdev->vdev_dp_ext_handle); vdev->vdev_dp_ext_handle = NULL; } /* indicate that the vdev needs to be deleted */ vdev->delete.pending = 1; vdev->delete.callback = callback; vdev->delete.context = cb_context; qdf_spin_unlock_bh(&soc->peer_ref_mutex); return QDF_STATUS_E_FAILURE; } qdf_spin_unlock_bh(&soc->peer_ref_mutex); if (wlan_op_mode_monitor == vdev->opmode) goto free_vdev; qdf_spin_lock_bh(&pdev->neighbour_peer_mutex); if (!soc->hw_nac_monitor_support) { TAILQ_FOREACH(peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem) { QDF_ASSERT(peer->vdev != vdev); } } else { TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem, temp_peer) { if (peer->vdev == vdev) { TAILQ_REMOVE(&pdev->neighbour_peers_list, peer, neighbour_peer_list_elem); qdf_mem_free(peer); } } } qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); qdf_spin_lock_bh(&pdev->vdev_list_lock); /* remove the vdev from its parent pdev's list */ TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem); qdf_spin_unlock_bh(&pdev->vdev_list_lock); dp_tx_vdev_detach(vdev); dp_rx_vdev_detach(vdev); free_vdev: if (wlan_op_mode_monitor == vdev->opmode) { if (soc->intr_mode == DP_INTR_POLL) qdf_timer_sync_cancel(&soc->int_timer); pdev->monitor_vdev = NULL; } if (vdev->vdev_dp_ext_handle) { qdf_mem_free(vdev->vdev_dp_ext_handle); vdev->vdev_dp_ext_handle = NULL; } dp_info("deleting vdev object %pK (%pM)", vdev, vdev->mac_addr.raw); qdf_mem_free(vdev); if (callback) callback(cb_context); return QDF_STATUS_SUCCESS; } #ifdef FEATURE_AST /* * dp_peer_delete_ast_entries(): Delete all AST entries for a peer * @soc - datapath soc handle * @peer - datapath peer handle * * Delete the AST entries belonging to a peer */ static inline void dp_peer_delete_ast_entries(struct dp_soc *soc, struct dp_peer *peer) { struct dp_ast_entry *ast_entry, *temp_ast_entry; DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, temp_ast_entry) dp_peer_del_ast(soc, ast_entry); peer->self_ast_entry = NULL; } #else static inline void dp_peer_delete_ast_entries(struct dp_soc *soc, struct dp_peer *peer) { } #endif #if ATH_SUPPORT_WRAP static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev, uint8_t *peer_mac_addr) { struct dp_peer *peer; peer = dp_peer_find_hash_find(vdev->pdev->soc, peer_mac_addr, 0, vdev->vdev_id); if (!peer) return NULL; if (peer->bss_peer) return peer; dp_peer_unref_delete(peer); return NULL; } #else static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev, uint8_t *peer_mac_addr) { struct dp_peer *peer; peer = dp_peer_find_hash_find(vdev->pdev->soc, peer_mac_addr, 0, vdev->vdev_id); if (!peer) return NULL; if (peer->bss_peer && (peer->vdev->vdev_id == vdev->vdev_id)) return peer; dp_peer_unref_delete(peer); return NULL; } #endif #ifdef FEATURE_AST static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc, struct dp_pdev *pdev, uint8_t *peer_mac_addr) { struct dp_ast_entry *ast_entry; qdf_spin_lock_bh(&soc->ast_lock); if (soc->ast_override_support) ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr, pdev->pdev_id); else ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr); if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress) dp_peer_del_ast(soc, ast_entry); qdf_spin_unlock_bh(&soc->ast_lock); } #endif #ifdef PEER_CACHE_RX_PKTS static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer) { qdf_spinlock_create(&peer->bufq_info.bufq_lock); peer->bufq_info.thresh = DP_RX_CACHED_BUFQ_THRESH; qdf_list_create(&peer->bufq_info.cached_bufq, DP_RX_CACHED_BUFQ_THRESH); } #else static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer) { } #endif /* * dp_peer_create_wifi3() - attach txrx peer * @soc_hdl: Datapath soc handle * @vdev_id: id of vdev * @peer_mac_addr: Peer MAC address * * Return: 0 on success, -1 on failure */ static QDF_STATUS dp_peer_create_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac_addr) { struct dp_peer *peer; int i; struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_pdev *pdev; struct cdp_peer_cookie peer_cookie; enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev || !peer_mac_addr) return QDF_STATUS_E_FAILURE; pdev = vdev->pdev; soc = pdev->soc; /* * If a peer entry with given MAC address already exists, * reuse the peer and reset the state of peer. */ peer = dp_peer_can_reuse(vdev, peer_mac_addr); if (peer) { qdf_atomic_init(&peer->is_default_route_set); dp_peer_cleanup(vdev, peer, true); qdf_spin_lock_bh(&soc->ast_lock); dp_peer_delete_ast_entries(soc, peer); peer->delete_in_progress = false; qdf_spin_unlock_bh(&soc->ast_lock); if ((vdev->opmode == wlan_op_mode_sta) && !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE)) { ast_type = CDP_TXRX_AST_TYPE_SELF; } dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0); /* * Control path maintains a node count which is incremented * for every new peer create command. Since new peer is not being * created and earlier reference is reused here, * peer_unref_delete event is sent to control path to * increment the count back. */ if (soc->cdp_soc.ol_ops->peer_unref_delete) { soc->cdp_soc.ol_ops->peer_unref_delete( soc->ctrl_psoc, pdev->pdev_id, peer->mac_addr.raw, vdev->mac_addr.raw, vdev->opmode); } peer->valid = 1; dp_local_peer_id_alloc(pdev, peer); qdf_spinlock_create(&peer->peer_info_lock); dp_peer_rx_bufq_resources_init(peer); DP_STATS_INIT(peer); DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI); /* * In tx_monitor mode, filter may be set for unassociated peer * when unassociated peer get associated peer need to * update tx_cap_enabled flag to support peer filter. */ dp_peer_tx_capture_filter_check(pdev, peer); return QDF_STATUS_SUCCESS; } else { /* * When a STA roams from RPTR AP to ROOT AP and vice versa, we * need to remove the AST entry which was earlier added as a WDS * entry. * If an AST entry exists, but no peer entry exists with a given * MAC addresses, we could deduce it as a WDS entry */ dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr); } #ifdef notyet peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev, soc->mempool_ol_ath_peer); #else peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer)); #endif wlan_minidump_log(peer, sizeof(*peer), soc->ctrl_psoc, WLAN_MD_DP_PEER, "dp_peer"); if (!peer) return QDF_STATUS_E_FAILURE; /* failure */ qdf_mem_zero(peer, sizeof(struct dp_peer)); TAILQ_INIT(&peer->ast_entry_list); /* store provided params */ peer->vdev = vdev; if ((vdev->opmode == wlan_op_mode_sta) && !qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE)) { ast_type = CDP_TXRX_AST_TYPE_SELF; } dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0); qdf_spinlock_create(&peer->peer_info_lock); dp_peer_rx_bufq_resources_init(peer); qdf_mem_copy( &peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE); /* initialize the peer_id */ for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++) peer->peer_ids[i] = HTT_INVALID_PEER; /* reset the ast index to flowid table */ dp_peer_reset_flowq_map(peer); qdf_spin_lock_bh(&soc->peer_ref_mutex); qdf_atomic_init(&peer->ref_cnt); /* keep one reference for attach */ qdf_atomic_inc(&peer->ref_cnt); /* add this peer into the vdev's list */ if (wlan_op_mode_sta == vdev->opmode) TAILQ_INSERT_HEAD(&vdev->peer_list, peer, peer_list_elem); else TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem); qdf_spin_unlock_bh(&soc->peer_ref_mutex); /* TODO: See if hash based search is required */ dp_peer_find_hash_add(soc, peer); /* Initialize the peer state */ peer->state = OL_TXRX_PEER_STATE_DISC; dp_info("vdev %pK created peer %pK (%pM) ref_cnt: %d", vdev, peer, peer->mac_addr.raw, qdf_atomic_read(&peer->ref_cnt)); /* * For every peer MAp message search and set if bss_peer */ if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0 && (wlan_op_mode_sta != vdev->opmode)) { dp_info("vdev bss_peer!!"); peer->bss_peer = 1; vdev->vap_bss_peer = peer; } if (wlan_op_mode_sta == vdev->opmode && qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE) == 0) { vdev->vap_self_peer = peer; } for (i = 0; i < DP_MAX_TIDS; i++) qdf_spinlock_create(&peer->rx_tid[i].tid_lock); peer->valid = 1; dp_local_peer_id_alloc(pdev, peer); DP_STATS_INIT(peer); DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI); qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw, QDF_MAC_ADDR_SIZE); peer_cookie.ctx = NULL; peer_cookie.pdev_id = pdev->pdev_id; peer_cookie.cookie = pdev->next_peer_cookie++; #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE dp_wdi_event_handler(WDI_EVENT_PEER_CREATE, pdev->soc, (void *)&peer_cookie, peer->peer_ids[0], WDI_NO_VAL, pdev->pdev_id); #endif if (soc->wlanstats_enabled) { if (!peer_cookie.ctx) { pdev->next_peer_cookie--; qdf_err("Failed to initialize peer rate stats"); } else { peer->wlanstats_ctx = (struct cdp_peer_rate_stats_ctx *) peer_cookie.ctx; } } /* * In tx_monitor mode, filter may be set for unassociated peer * when unassociated peer get associated peer need to * update tx_cap_enabled flag to support peer filter. */ dp_peer_tx_capture_filter_check(pdev, peer); return QDF_STATUS_SUCCESS; } /* * dp_vdev_get_default_reo_hash() - get reo dest ring and hash values for a vdev * @vdev: Datapath VDEV handle * @reo_dest: pointer to default reo_dest ring for vdev to be populated * @hash_based: pointer to hash value (enabled/disabled) to be populated * * Return: None */ static void dp_vdev_get_default_reo_hash(struct dp_vdev *vdev, enum cdp_host_reo_dest_ring *reo_dest, bool *hash_based) { struct dp_soc *soc; struct dp_pdev *pdev; pdev = vdev->pdev; soc = pdev->soc; /* * hash based steering is disabled for Radios which are offloaded * to NSS */ if (!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) *hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx); /* * Below line of code will ensure the proper reo_dest ring is chosen * for cases where toeplitz hash cannot be generated (ex: non TCP/UDP) */ *reo_dest = pdev->reo_dest; } #ifdef IPA_OFFLOAD /** * dp_is_vdev_subtype_p2p() - Check if the subtype for vdev is P2P * @vdev: Virtual device * * Return: true if the vdev is of subtype P2P * false if the vdev is of any other subtype */ static inline bool dp_is_vdev_subtype_p2p(struct dp_vdev *vdev) { if (vdev->subtype == wlan_op_subtype_p2p_device || vdev->subtype == wlan_op_subtype_p2p_cli || vdev->subtype == wlan_op_subtype_p2p_go) return true; return false; } /* * dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer * @vdev: Datapath VDEV handle * @reo_dest: pointer to default reo_dest ring for vdev to be populated * @hash_based: pointer to hash value (enabled/disabled) to be populated * * If IPA is enabled in ini, for SAP mode, disable hash based * steering, use default reo_dst ring for RX. Use config values for other modes. * Return: None */ static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev, enum cdp_host_reo_dest_ring *reo_dest, bool *hash_based) { struct dp_soc *soc; struct dp_pdev *pdev; pdev = vdev->pdev; soc = pdev->soc; dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based); /* For P2P-GO interfaces we do not need to change the REO * configuration even if IPA config is enabled */ if (dp_is_vdev_subtype_p2p(vdev)) return; /* * If IPA is enabled, disable hash-based flow steering and set * reo_dest_ring_4 as the REO ring to receive packets on. * IPA is configured to reap reo_dest_ring_4. * * Note - REO DST indexes are from 0 - 3, while cdp_host_reo_dest_ring * value enum value is from 1 - 4. * Hence, *reo_dest = IPA_REO_DEST_RING_IDX + 1 */ if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) { if (vdev->opmode == wlan_op_mode_ap) { *reo_dest = IPA_REO_DEST_RING_IDX + 1; *hash_based = 0; } else if (vdev->opmode == wlan_op_mode_sta && dp_ipa_is_mdm_platform()) { *reo_dest = IPA_REO_DEST_RING_IDX + 1; } } } #else /* * dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer * @vdev: Datapath VDEV handle * @reo_dest: pointer to default reo_dest ring for vdev to be populated * @hash_based: pointer to hash value (enabled/disabled) to be populated * * Use system config values for hash based steering. * Return: None */ static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev, enum cdp_host_reo_dest_ring *reo_dest, bool *hash_based) { dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based); } #endif /* IPA_OFFLOAD */ /* * dp_peer_setup_wifi3() - initialize the peer * @soc_hdl: soc handle object * @vdev_id : vdev_id of vdev object * @peer_mac: Peer's mac address * * Return: QDF_STATUS */ static QDF_STATUS dp_peer_setup_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_pdev *pdev; bool hash_based = 0; enum cdp_host_reo_dest_ring reo_dest; QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id); if (!vdev || !peer || peer->delete_in_progress) { status = QDF_STATUS_E_FAILURE; goto fail; } pdev = vdev->pdev; dp_peer_setup_get_reo_hash(vdev, &reo_dest, &hash_based); dp_info("pdev: %d vdev :%d opmode:%u hash-based-steering:%d default-reo_dest:%u", pdev->pdev_id, vdev->vdev_id, vdev->opmode, hash_based, reo_dest); /* * There are corner cases where the AD1 = AD2 = "VAPs address" * i.e both the devices have same MAC address. In these * cases we want such pkts to be processed in NULL Q handler * which is REO2TCL ring. for this reason we should * not setup reo_queues and default route for bss_peer. */ if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap) { status = QDF_STATUS_E_FAILURE; goto fail; } if (soc->cdp_soc.ol_ops->peer_set_default_routing) { /* TODO: Check the destination ring number to be passed to FW */ soc->cdp_soc.ol_ops->peer_set_default_routing( soc->ctrl_psoc, peer->vdev->pdev->pdev_id, peer->mac_addr.raw, peer->vdev->vdev_id, hash_based, reo_dest); } qdf_atomic_set(&peer->is_default_route_set, 1); dp_peer_rx_init(pdev, peer); dp_peer_tx_init(pdev, peer); dp_peer_ppdu_delayed_ba_init(peer); fail: if (peer) dp_peer_unref_delete(peer); return status; } /* * dp_cp_peer_del_resp_handler - Handle the peer delete response * @soc_hdl: Datapath SOC handle * @vdev_id: id of virtual device object * @mac_addr: Mac address of the peer * * Return: QDF_STATUS */ static QDF_STATUS dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *mac_addr) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_ast_entry *ast_entry = NULL; txrx_ast_free_cb cb = NULL; void *cookie; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; qdf_spin_lock_bh(&soc->ast_lock); if (soc->ast_override_support) ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, vdev->pdev->pdev_id); else ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr); /* in case of qwrap we have multiple BSS peers * with same mac address * * AST entry for this mac address will be created * only for one peer hence it will be NULL here */ if (!ast_entry || ast_entry->peer || !ast_entry->delete_in_progress) { qdf_spin_unlock_bh(&soc->ast_lock); return QDF_STATUS_E_FAILURE; } if (ast_entry->is_mapped) soc->ast_table[ast_entry->ast_idx] = NULL; DP_STATS_INC(soc, ast.deleted, 1); dp_peer_ast_hash_remove(soc, ast_entry); cb = ast_entry->callback; cookie = ast_entry->cookie; ast_entry->callback = NULL; ast_entry->cookie = NULL; soc->num_ast_entries--; qdf_spin_unlock_bh(&soc->ast_lock); if (cb) { cb(soc->ctrl_psoc, dp_soc_to_cdp_soc(soc), cookie, CDP_TXRX_AST_DELETED); } qdf_mem_free(ast_entry); return QDF_STATUS_SUCCESS; } /* * dp_set_ba_aging_timeout() - set ba aging timeout per AC * @txrx_soc: cdp soc handle * @ac: Access category * @value: timeout value in millisec * * Return: void */ static void dp_set_ba_aging_timeout(struct cdp_soc_t *txrx_soc, uint8_t ac, uint32_t value) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; hal_set_ba_aging_timeout(soc->hal_soc, ac, value); } /* * dp_get_ba_aging_timeout() - get ba aging timeout per AC * @txrx_soc: cdp soc handle * @ac: access category * @value: timeout value in millisec * * Return: void */ static void dp_get_ba_aging_timeout(struct cdp_soc_t *txrx_soc, uint8_t ac, uint32_t *value) { struct dp_soc *soc = (struct dp_soc *)txrx_soc; hal_get_ba_aging_timeout(soc->hal_soc, ac, value); } /* * dp_set_pdev_reo_dest() - set the reo destination ring for this pdev * @txrx_soc: cdp soc handle * @pdev_id: id of physical device object * @val: reo destination ring index (1 - 4) * * Return: QDF_STATUS */ static QDF_STATUS dp_set_pdev_reo_dest(struct cdp_soc_t *txrx_soc, uint8_t pdev_id, enum cdp_host_reo_dest_ring val) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)txrx_soc, pdev_id); if (pdev) { pdev->reo_dest = val; return QDF_STATUS_SUCCESS; } return QDF_STATUS_E_FAILURE; } /* * dp_get_pdev_reo_dest() - get the reo destination for this pdev * @txrx_soc: cdp soc handle * @pdev_id: id of physical device object * * Return: reo destination ring index */ static enum cdp_host_reo_dest_ring dp_get_pdev_reo_dest(struct cdp_soc_t *txrx_soc, uint8_t pdev_id) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)txrx_soc, pdev_id); if (pdev) return pdev->reo_dest; else return cdp_host_reo_dest_ring_unknown; } #ifdef ATH_SUPPORT_NAC /* * dp_set_filter_neigh_peers() - set filter neighbour peers for smart mesh * @pdev_handle: device object * @val: value to be set * * Return: void */ static int dp_set_filter_neigh_peers(struct dp_pdev *pdev, bool val) { /* Enable/Disable smart mesh filtering. This flag will be checked * during rx processing to check if packets are from NAC clients. */ pdev->filter_neighbour_peers = val; return 0; } #else static int dp_set_filter_neigh_peers(struct dp_pdev *pdev, bool val) { return 0; } #endif /* ATH_SUPPORT_NAC */ #if defined(ATH_SUPPORT_NAC_RSSI) || defined(ATH_SUPPORT_NAC) /* * dp_update_filter_neighbour_peers() - set neighbour peers(nac clients) * address for smart mesh filtering * @txrx_soc: cdp soc handle * @vdev_id: id of virtual device object * @cmd: Add/Del command * @macaddr: nac client mac address * * Return: success/failure */ static int dp_update_filter_neighbour_peers(struct cdp_soc_t *soc, uint8_t vdev_id, uint32_t cmd, uint8_t *macaddr) { struct dp_pdev *pdev; struct dp_neighbour_peer *peer = NULL; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev || !macaddr) goto fail0; pdev = vdev->pdev; if (!pdev) goto fail0; /* Store address of NAC (neighbour peer) which will be checked * against TA of received packets. */ if (cmd == DP_NAC_PARAM_ADD) { peer = (struct dp_neighbour_peer *) qdf_mem_malloc( sizeof(*peer)); if (!peer) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("DP neighbour peer node memory allocation failed")); goto fail0; } qdf_mem_copy(&peer->neighbour_peers_macaddr.raw[0], macaddr, QDF_MAC_ADDR_SIZE); peer->vdev = vdev; qdf_spin_lock_bh(&pdev->neighbour_peer_mutex); /* add this neighbour peer into the list */ TAILQ_INSERT_TAIL(&pdev->neighbour_peers_list, peer, neighbour_peer_list_elem); qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); /* first neighbour */ if (!pdev->neighbour_peers_added) { QDF_STATUS status = QDF_STATUS_SUCCESS; pdev->neighbour_peers_added = true; dp_mon_filter_setup_smart_monitor(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("smart mon filter setup failed")); dp_mon_filter_reset_smart_monitor(pdev); pdev->neighbour_peers_added = false; } } return 1; } else if (cmd == DP_NAC_PARAM_DEL) { qdf_spin_lock_bh(&pdev->neighbour_peer_mutex); TAILQ_FOREACH(peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem) { if (!qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0], macaddr, QDF_MAC_ADDR_SIZE)) { /* delete this peer from the list */ TAILQ_REMOVE(&pdev->neighbour_peers_list, peer, neighbour_peer_list_elem); qdf_mem_free(peer); break; } } /* last neighbour deleted */ if (TAILQ_EMPTY(&pdev->neighbour_peers_list)) { QDF_STATUS status = QDF_STATUS_SUCCESS; pdev->neighbour_peers_added = false; dp_mon_filter_reset_smart_monitor(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("smart mon filter clear failed")); } } qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); return 1; } fail0: return 0; } #endif /* ATH_SUPPORT_NAC_RSSI || ATH_SUPPORT_NAC */ /* * dp_get_sec_type() - Get the security type * @soc: soc handle * @vdev_id: id of dp handle * @peer_mac: mac of datapath PEER handle * @sec_idx: Security id (mcast, ucast) * * return sec_type: Security type */ static int dp_get_sec_type(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, uint8_t sec_idx) { int sec_type = 0; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%s: Peer is NULL!\n", __func__); goto fail; } sec_type = peer->security[sec_idx].sec_type; fail: if (peer) dp_peer_unref_delete(peer); return sec_type; } /* * dp_peer_authorize() - authorize txrx peer * @soc: soc handle * @vdev_id: id of dp handle * @peer_mac: mac of datapath PEER handle * @authorize * */ static QDF_STATUS dp_peer_authorize(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac, uint32_t authorize) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%s: Peer is NULL!\n", __func__); status = QDF_STATUS_E_FAILURE; } else { qdf_spin_lock_bh(&soc->peer_ref_mutex); peer->authorize = authorize ? 1 : 0; qdf_spin_unlock_bh(&soc->peer_ref_mutex); } if (peer) dp_peer_unref_delete(peer); return status; } /* * dp_vdev_reset_peer() - Update peer related member in vdev as peer is going to free * @vdev: datapath vdev handle * @peer: dataptah peer handle * * Return: None */ static void dp_vdev_reset_peer(struct dp_vdev *vdev, struct dp_peer *peer) { struct dp_peer *bss_peer = NULL; if (!vdev) { dp_err("vdev is NULL"); } else { if (vdev->vap_bss_peer == peer) { vdev->vap_bss_peer = NULL; qdf_mem_zero(vdev->vap_bss_peer_mac_addr, QDF_MAC_ADDR_SIZE); } if (vdev && vdev->vap_bss_peer) { bss_peer = vdev->vap_bss_peer; DP_UPDATE_STATS(vdev, peer); } } } /* * dp_peer_release_mem() - free dp peer handle memory * @soc: dataptah soc handle * @pdev: datapath pdev handle * @peer: datapath peer handle * @vdev_opmode: Vdev operation mode * @vdev_mac_addr: Vdev Mac address * * Return: None */ static void dp_peer_release_mem(struct dp_soc *soc, struct dp_pdev *pdev, struct dp_peer *peer, enum wlan_op_mode vdev_opmode, uint8_t *vdev_mac_addr) { if (soc->cdp_soc.ol_ops->peer_unref_delete) soc->cdp_soc.ol_ops->peer_unref_delete( soc->ctrl_psoc, pdev->pdev_id, peer->mac_addr.raw, vdev_mac_addr, vdev_opmode); /* * Peer AST list hast to be empty here */ DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list)); qdf_mem_free(peer); } /** * dp_delete_pending_vdev() - check and process vdev delete * @pdev: DP specific pdev pointer * @vdev: DP specific vdev pointer * @vdev_id: vdev id corresponding to vdev * * This API does following: * 1) It releases tx flow pools buffers as vdev is * going down and no peers are associated. * 2) It also detaches vdev before cleaning vdev (struct dp_vdev) memory */ static void dp_delete_pending_vdev(struct dp_pdev *pdev, struct dp_vdev *vdev, uint8_t vdev_id) { ol_txrx_vdev_delete_cb vdev_delete_cb = NULL; void *vdev_delete_context = NULL; vdev_delete_cb = vdev->delete.callback; vdev_delete_context = vdev->delete.context; dp_info("deleting vdev object %pK (%pM)- its last peer is done", vdev, vdev->mac_addr.raw); /* all peers are gone, go ahead and delete it */ dp_tx_flow_pool_unmap_handler(pdev, vdev_id, FLOW_TYPE_VDEV, vdev_id); dp_tx_vdev_detach(vdev); pdev->soc->vdev_id_map[vdev_id] = NULL; if (wlan_op_mode_monitor == vdev->opmode) { pdev->monitor_vdev = NULL; } else { qdf_spin_lock_bh(&pdev->vdev_list_lock); TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem); qdf_spin_unlock_bh(&pdev->vdev_list_lock); } dp_info("deleting vdev object %pK (%pM)", vdev, vdev->mac_addr.raw); qdf_mem_free(vdev); vdev = NULL; if (vdev_delete_cb) vdev_delete_cb(vdev_delete_context); } /* * dp_peer_unref_delete() - unref and delete peer * @peer_handle: Datapath peer handle * */ void dp_peer_unref_delete(struct dp_peer *peer) { struct dp_vdev *vdev = peer->vdev; struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; struct dp_peer *tmppeer; int found = 0; uint16_t peer_id; uint16_t vdev_id; bool vdev_delete = false; struct cdp_peer_cookie peer_cookie; enum wlan_op_mode vdev_opmode; uint8_t vdev_mac_addr[QDF_MAC_ADDR_SIZE]; /* * Hold the lock all the way from checking if the peer ref count * is zero until the peer references are removed from the hash * table and vdev list (if the peer ref count is zero). * This protects against a new HL tx operation starting to use the * peer object just after this function concludes it's done being used. * Furthermore, the lock needs to be held while checking whether the * vdev's list of peers is empty, to make sure that list is not modified * concurrently with the empty check. */ qdf_spin_lock_bh(&soc->peer_ref_mutex); if (qdf_atomic_dec_and_test(&peer->ref_cnt)) { peer_id = peer->peer_ids[0]; vdev_id = vdev->vdev_id; /* * Make sure that the reference to the peer in * peer object map is removed */ if (peer_id != HTT_INVALID_PEER) soc->peer_id_to_obj_map[peer_id] = NULL; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "Deleting peer %pK (%pM)", peer, peer->mac_addr.raw); /* remove the reference to the peer from the hash table */ dp_peer_find_hash_remove(soc, peer); qdf_spin_lock_bh(&soc->ast_lock); if (peer->self_ast_entry) { dp_peer_del_ast(soc, peer->self_ast_entry); } qdf_spin_unlock_bh(&soc->ast_lock); TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) { if (tmppeer == peer) { found = 1; break; } } if (found) { TAILQ_REMOVE(&peer->vdev->peer_list, peer, peer_list_elem); } else { /*Ignoring the remove operation as peer not found*/ QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "peer:%pK not found in vdev:%pK peerlist:%pK", peer, vdev, &peer->vdev->peer_list); } /* send peer destroy event to upper layer */ qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw, QDF_MAC_ADDR_SIZE); peer_cookie.ctx = NULL; peer_cookie.ctx = (struct cdp_stats_cookie *) peer->wlanstats_ctx; #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE dp_wdi_event_handler(WDI_EVENT_PEER_DESTROY, pdev->soc, (void *)&peer_cookie, peer->peer_ids[0], WDI_NO_VAL, pdev->pdev_id); #endif peer->wlanstats_ctx = NULL; /* cleanup the peer data */ dp_peer_cleanup(vdev, peer, false); /* reset this peer related info in vdev */ dp_vdev_reset_peer(vdev, peer); /* save vdev related member in case vdev freed */ vdev_opmode = vdev->opmode; qdf_mem_copy(vdev_mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE); /* * check whether the parent vdev is pending for deleting * and no peers left. */ if (vdev->delete.pending && TAILQ_EMPTY(&vdev->peer_list)) vdev_delete = true; /* * Now that there are no references to the peer, we can * release the peer reference lock. */ qdf_spin_unlock_bh(&soc->peer_ref_mutex); wlan_minidump_remove(peer); /* * Invoke soc.ol_ops->peer_unref_delete out of * peer_ref_mutex in case deadlock issue. */ dp_peer_release_mem(soc, pdev, peer, vdev_opmode, vdev_mac_addr); /* * Delete the vdev if it's waiting all peer deleted * and it's chance now. */ if (vdev_delete) dp_delete_pending_vdev(pdev, vdev, vdev_id); } else { qdf_spin_unlock_bh(&soc->peer_ref_mutex); } } #ifdef PEER_CACHE_RX_PKTS static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer) { dp_rx_flush_rx_cached(peer, true); qdf_list_destroy(&peer->bufq_info.cached_bufq); qdf_spinlock_destroy(&peer->bufq_info.bufq_lock); } #else static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer) { } #endif /* * dp_peer_detach_wifi3() – Detach txrx peer * @soc: soc handle * @vdev_id: id of dp handle * @peer_mac: mac of datapath PEER handle * @bitmap: bitmap indicating special handling of request. * */ static QDF_STATUS dp_peer_delete_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, uint32_t bitmap) { struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id); /* Peer can be null for monitor vap mac address */ if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "%s: Invalid peer\n", __func__); return QDF_STATUS_E_FAILURE; } if (!peer->valid) { dp_peer_unref_delete(peer); dp_err("Invalid peer: %pM", peer_mac); return QDF_STATUS_E_ALREADY; } peer->valid = 0; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH, FL("peer %pK (%pM)"), peer, peer->mac_addr.raw); dp_local_peer_id_free(peer->vdev->pdev, peer); dp_peer_rx_bufq_resources_deinit(peer); qdf_spinlock_destroy(&peer->peer_info_lock); dp_peer_multipass_list_remove(peer); /* * Remove the reference added during peer_attach. * The peer will still be left allocated until the * PEER_UNMAP message arrives to remove the other * reference, added by the PEER_MAP message. */ dp_peer_unref_delete(peer); /* * Remove the reference taken above */ dp_peer_unref_delete(peer); return QDF_STATUS_SUCCESS; } /* * dp_get_vdev_mac_addr_wifi3() – Detach txrx peer * @soc_hdl: Datapath soc handle * @vdev_id: virtual interface id * * Return: MAC address on success, NULL on failure. * */ static uint8 *dp_get_vdev_mac_addr_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) return NULL; return vdev->mac_addr.raw; } /* * dp_vdev_set_wds() - Enable per packet stats * @soc: DP soc handle * @vdev_id: id of DP VDEV handle * @val: value * * Return: none */ static int dp_vdev_set_wds(struct cdp_soc_t *soc, uint8_t vdev_id, uint32_t val) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; vdev->wds_enabled = val; return QDF_STATUS_SUCCESS; } /* * dp_get_mon_vdev_from_pdev_wifi3() - Get vdev id of monitor mode * @soc_hdl: datapath soc handle * @pdev_id: physical device instance id * * Return: virtual interface id */ static uint8_t dp_get_mon_vdev_from_pdev_wifi3(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (qdf_unlikely(!pdev)) return -EINVAL; return pdev->monitor_vdev->vdev_id; } static int dp_get_opmode(struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) { dp_err("vdev for id %d is NULL", vdev_id); return -EINVAL; } return vdev->opmode; } /** * dp_get_os_rx_handles_from_vdev_wifi3() - Get os rx handles for a vdev * @soc_hdl: ol_txrx_soc_handle handle * @vdev_id: vdev id for which os rx handles are needed * @stack_fn_p: pointer to stack function pointer * @osif_handle_p: pointer to ol_osif_vdev_handle * * Return: void */ static void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, ol_txrx_rx_fp *stack_fn_p, ol_osif_vdev_handle *osif_vdev_p) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) return; *stack_fn_p = vdev->osif_rx_stack; *osif_vdev_p = vdev->osif_vdev; } /** * dp_get_ctrl_pdev_from_vdev() - Get control pdev of vdev * @soc_hdl: datapath soc handle * @vdev_id: virtual device/interface id * * Return: Handle to control pdev */ static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3( struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); struct dp_pdev *pdev; if (!vdev || !vdev->pdev) return NULL; pdev = vdev->pdev; return (struct cdp_cfg *)pdev->wlan_cfg_ctx; } /** * dp_monitor_mode_ring_config() - Send the tlv config to fw for monitor buffer * ring based on target * @soc: soc handle * @mac_for_pdev: WIN- pdev_id, MCL- mac id * @pdev: physical device handle * @ring_num: mac id * @htt_tlv_filter: tlv filter * * Return: zero on success, non-zero on failure */ static inline QDF_STATUS dp_monitor_mode_ring_config(struct dp_soc *soc, uint8_t mac_for_pdev, struct dp_pdev *pdev, uint8_t ring_num, struct htt_rx_ring_tlv_filter htt_tlv_filter) { QDF_STATUS status; if (soc->wlan_cfg_ctx->rxdma1_enable) status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_buf_ring[ring_num] .hal_srng, RXDMA_MONITOR_BUF, RX_MONITOR_BUFFER_SIZE, &htt_tlv_filter); else status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev, pdev->rx_mac_buf_ring[ring_num] .hal_srng, RXDMA_BUF, RX_DATA_BUFFER_SIZE, &htt_tlv_filter); return status; } static inline void dp_pdev_disable_mcopy_code(struct dp_pdev *pdev) { pdev->mcopy_mode = 0; pdev->monitor_configured = false; pdev->monitor_vdev = NULL; qdf_nbuf_queue_free(&pdev->rx_ppdu_buf_q); } /** * dp_reset_monitor_mode() - Disable monitor mode * @soc_hdl: Datapath soc handle * @pdev_id: id of datapath PDEV handle * * Return: QDF_STATUS */ QDF_STATUS dp_reset_monitor_mode(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, uint8_t special_monitor) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); QDF_STATUS status = QDF_STATUS_SUCCESS; if (!pdev) return QDF_STATUS_E_FAILURE; qdf_spin_lock_bh(&pdev->mon_lock); dp_soc_config_full_mon_mode(pdev, DP_FULL_MON_DISABLE); pdev->monitor_vdev = NULL; pdev->monitor_configured = false; /* * Lite monitor mode, smart monitor mode and monitor * mode uses this APIs to filter reset and mode disable */ if (pdev->mcopy_mode) { #if defined(FEATURE_PERPKT_INFO) dp_pdev_disable_mcopy_code(pdev); dp_mon_filter_reset_mcopy_mode(pdev); #endif /* FEATURE_PERPKT_INFO */ } else if (special_monitor) { #if defined(ATH_SUPPORT_NAC) dp_mon_filter_reset_smart_monitor(pdev); #endif /* ATH_SUPPORT_NAC */ } else { dp_mon_filter_reset_mon_mode(pdev); } status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to reset monitor filters")); } qdf_spin_unlock_bh(&pdev->mon_lock); return QDF_STATUS_SUCCESS; } /** * dp_get_tx_pending() - read pending tx * @pdev_handle: Datapath PDEV handle * * Return: outstanding tx */ static uint32_t dp_get_tx_pending(struct cdp_pdev *pdev_handle) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; return qdf_atomic_read(&pdev->num_tx_outstanding); } /** * dp_get_peer_mac_from_peer_id() - get peer mac * @pdev_handle: Datapath PDEV handle * @peer_id: Peer ID * @peer_mac: MAC addr of PEER * * Return: QDF_STATUS */ static QDF_STATUS dp_get_peer_mac_from_peer_id(struct cdp_soc_t *soc, uint32_t peer_id, uint8_t *peer_mac) { struct dp_peer *peer; if (soc && peer_mac) { peer = dp_peer_find_by_id((struct dp_soc *)soc, (uint16_t)peer_id); if (peer) { qdf_mem_copy(peer_mac, peer->mac_addr.raw, QDF_MAC_ADDR_SIZE); dp_peer_unref_del_find_by_id(peer); return QDF_STATUS_SUCCESS; } } return QDF_STATUS_E_FAILURE; } /** * dp_vdev_set_monitor_mode() - Set DP VDEV to monitor mode * @vdev_handle: Datapath VDEV handle * @smart_monitor: Flag to denote if its smart monitor mode * * Return: 0 on success, not 0 on failure */ static QDF_STATUS dp_vdev_set_monitor_mode(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t special_monitor) { struct dp_pdev *pdev; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); QDF_STATUS status = QDF_STATUS_SUCCESS; if (!vdev) return QDF_STATUS_E_FAILURE; pdev = vdev->pdev; pdev->monitor_vdev = vdev; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN, "pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK\n", pdev, pdev->pdev_id, pdev->soc, vdev); /* * do not configure monitor buf ring and filter for smart and * lite monitor * for smart monitor filters are added along with first NAC * for lite monitor required configuration done through * dp_set_pdev_param */ if (special_monitor) return QDF_STATUS_SUCCESS; /*Check if current pdev's monitor_vdev exists */ if (pdev->monitor_configured) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "monitor vap already created vdev=%pK\n", vdev); return QDF_STATUS_E_RESOURCES; } pdev->monitor_configured = true; dp_mon_buf_delayed_replenish(pdev); dp_soc_config_full_mon_mode(pdev, DP_FULL_MON_ENABLE); dp_mon_filter_setup_mon_mode(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to reset monitor filters")); dp_mon_filter_reset_mon_mode(pdev); pdev->monitor_configured = false; pdev->monitor_vdev = NULL; } return status; } /** * dp_pdev_set_advance_monitor_filter() - Set DP PDEV monitor filter * @soc: soc handle * @pdev_id: id of Datapath PDEV handle * @filter_val: Flag to select Filter for monitor mode * Return: 0 on success, not 0 on failure */ static QDF_STATUS dp_pdev_set_advance_monitor_filter(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, struct cdp_monitor_filter *filter_val) { /* Many monitor VAPs can exists in a system but only one can be up at * anytime */ struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_vdev *vdev; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); QDF_STATUS status = QDF_STATUS_SUCCESS; if (!pdev) return QDF_STATUS_E_FAILURE; vdev = pdev->monitor_vdev; if (!vdev) return QDF_STATUS_E_FAILURE; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN, "pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK", pdev, pdev_id, soc, vdev); /*Check if current pdev's monitor_vdev exists */ if (!pdev->monitor_vdev) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "vdev=%pK", vdev); qdf_assert(vdev); } /* update filter mode, type in pdev structure */ pdev->mon_filter_mode = filter_val->mode; pdev->fp_mgmt_filter = filter_val->fp_mgmt; pdev->fp_ctrl_filter = filter_val->fp_ctrl; pdev->fp_data_filter = filter_val->fp_data; pdev->mo_mgmt_filter = filter_val->mo_mgmt; pdev->mo_ctrl_filter = filter_val->mo_ctrl; pdev->mo_data_filter = filter_val->mo_data; dp_mon_filter_setup_mon_mode(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to set filter for advance mon mode")); dp_mon_filter_reset_mon_mode(pdev); } return status; } /** * dp_deliver_tx_mgmt() - Deliver mgmt frame for tx capture * @cdp_soc : data path soc handle * @pdev_id : pdev_id * @nbuf: Management frame buffer */ static QDF_STATUS dp_deliver_tx_mgmt(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, qdf_nbuf_t nbuf) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; dp_deliver_mgmt_frm(pdev, nbuf); return QDF_STATUS_SUCCESS; } /** * dp_set_bsscolor() - sets bsscolor for tx capture * @pdev: Datapath PDEV handle * @bsscolor: new bsscolor */ static void dp_mon_set_bsscolor(struct dp_pdev *pdev, uint8_t bsscolor) { pdev->rx_mon_recv_status.bsscolor = bsscolor; } /** * dp_pdev_get_filter_ucast_data() - get DP PDEV monitor ucast filter * @soc : data path soc handle * @pdev_id : pdev_id * Return: true on ucast filter flag set */ static bool dp_pdev_get_filter_ucast_data(struct cdp_pdev *pdev_handle) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; if ((pdev->fp_data_filter & FILTER_DATA_UCAST) || (pdev->mo_data_filter & FILTER_DATA_UCAST)) return true; return false; } /** * dp_pdev_get_filter_mcast_data() - get DP PDEV monitor mcast filter * @pdev_handle: Datapath PDEV handle * Return: true on mcast filter flag set */ static bool dp_pdev_get_filter_mcast_data(struct cdp_pdev *pdev_handle) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; if ((pdev->fp_data_filter & FILTER_DATA_MCAST) || (pdev->mo_data_filter & FILTER_DATA_MCAST)) return true; return false; } /** * dp_pdev_get_filter_non_data() - get DP PDEV monitor non_data filter * @pdev_handle: Datapath PDEV handle * Return: true on non data filter flag set */ static bool dp_pdev_get_filter_non_data(struct cdp_pdev *pdev_handle) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; if ((pdev->fp_mgmt_filter & FILTER_MGMT_ALL) || (pdev->mo_mgmt_filter & FILTER_MGMT_ALL)) { if ((pdev->fp_ctrl_filter & FILTER_CTRL_ALL) || (pdev->mo_ctrl_filter & FILTER_CTRL_ALL)) { return true; } } return false; } #ifdef MESH_MODE_SUPPORT void dp_peer_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val) { struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("val %d"), val); vdev->mesh_vdev = val; } /* * dp_peer_set_mesh_rx_filter() - to set the mesh rx filter * @vdev_hdl: virtual device object * @val: value to be set * * Return: void */ void dp_peer_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val) { struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("val %d"), val); vdev->mesh_rx_filter = val; } #endif #ifdef VDEV_PEER_PROTOCOL_COUNT static void dp_enable_vdev_peer_protocol_count(struct cdp_soc_t *soc, int8_t vdev_id, bool enable) { struct dp_vdev *vdev; vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); dp_info("enable %d vdev_id %d", enable, vdev_id); vdev->peer_protocol_count_track = enable; } static void dp_enable_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc, int8_t vdev_id, int drop_mask) { struct dp_vdev *vdev; vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); dp_info("drop_mask %d vdev_id %d", drop_mask, vdev_id); vdev->peer_protocol_count_dropmask = drop_mask; } static int dp_is_vdev_peer_protocol_count_enabled(struct cdp_soc_t *soc, int8_t vdev_id) { struct dp_vdev *vdev; vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); dp_info("enable %d vdev_id %d", vdev->peer_protocol_count_track, vdev_id); return vdev->peer_protocol_count_track; } static int dp_get_vdev_peer_protocol_drop_mask(struct cdp_soc_t *soc, int8_t vdev_id) { struct dp_vdev *vdev; vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); dp_info("drop_mask %d vdev_id %d", vdev->peer_protocol_count_dropmask, vdev_id); return vdev->peer_protocol_count_dropmask; } #endif bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data) { uint8_t pdev_count; for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) { if (soc->pdev_list[pdev_count] && soc->pdev_list[pdev_count] == data) return true; } return false; } /** * dp_rx_bar_stats_cb(): BAR received stats callback * @soc: SOC handle * @cb_ctxt: Call back context * @reo_status: Reo status * * return: void */ void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_pdev *pdev = (struct dp_pdev *)cb_ctxt; struct hal_reo_queue_status *queue_status = &(reo_status->queue_status); if (!dp_check_pdev_exists(soc, pdev)) { dp_err_rl("pdev doesn't exist"); return; } if (!qdf_atomic_read(&soc->cmn_init_done)) return; if (queue_status->header.status != HAL_REO_CMD_SUCCESS) { DP_PRINT_STATS("REO stats failure %d", queue_status->header.status); qdf_atomic_set(&(pdev->stats_cmd_complete), 1); return; } pdev->stats.rx.bar_recv_cnt += queue_status->bar_rcvd_cnt; qdf_atomic_set(&(pdev->stats_cmd_complete), 1); } /** * dp_aggregate_vdev_stats(): Consolidate stats at VDEV level * @vdev: DP VDEV handle * * return: void */ void dp_aggregate_vdev_stats(struct dp_vdev *vdev, struct cdp_vdev_stats *vdev_stats) { struct dp_peer *peer = NULL; struct dp_soc *soc = NULL; if (!vdev || !vdev->pdev) return; soc = vdev->pdev->soc; qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats)); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) dp_update_vdev_stats(vdev_stats, peer); #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc, vdev_stats, vdev->vdev_id, UPDATE_VDEV_STATS, vdev->pdev->pdev_id); #endif } void dp_aggregate_pdev_stats(struct dp_pdev *pdev) { struct dp_vdev *vdev = NULL; struct dp_soc *soc; struct cdp_vdev_stats *vdev_stats = qdf_mem_malloc(sizeof(struct cdp_vdev_stats)); if (!vdev_stats) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "DP alloc failure - unable to get alloc vdev stats"); return; } qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx)); qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx)); qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i)); if (pdev->mcopy_mode) DP_UPDATE_STATS(pdev, pdev->invalid_peer); soc = pdev->soc; qdf_spin_lock_bh(&soc->peer_ref_mutex); qdf_spin_lock_bh(&pdev->vdev_list_lock); TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { dp_aggregate_vdev_stats(vdev, vdev_stats); dp_update_pdev_stats(pdev, vdev_stats); dp_update_pdev_ingress_stats(pdev, vdev); } qdf_spin_unlock_bh(&pdev->vdev_list_lock); qdf_spin_unlock_bh(&soc->peer_ref_mutex); qdf_mem_free(vdev_stats); #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats, pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id); #endif } /** * dp_vdev_getstats() - get vdev packet level stats * @vdev_handle: Datapath VDEV handle * @stats: cdp network device stats structure * * Return: QDF_STATUS */ static QDF_STATUS dp_vdev_getstats(struct cdp_vdev *vdev_handle, struct cdp_dev_stats *stats) { struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle; struct dp_pdev *pdev; struct dp_soc *soc; struct cdp_vdev_stats *vdev_stats; if (!vdev) return QDF_STATUS_E_FAILURE; pdev = vdev->pdev; if (!pdev) return QDF_STATUS_E_FAILURE; soc = pdev->soc; vdev_stats = qdf_mem_malloc(sizeof(struct cdp_vdev_stats)); if (!vdev_stats) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "DP alloc failure - unable to get alloc vdev stats"); return QDF_STATUS_E_FAILURE; } qdf_spin_lock_bh(&soc->peer_ref_mutex); dp_aggregate_vdev_stats(vdev, vdev_stats); qdf_spin_unlock_bh(&soc->peer_ref_mutex); stats->tx_packets = vdev_stats->tx_i.rcvd.num; stats->tx_bytes = vdev_stats->tx_i.rcvd.bytes; stats->tx_errors = vdev_stats->tx.tx_failed + vdev_stats->tx_i.dropped.dropped_pkt.num; stats->tx_dropped = stats->tx_errors; stats->rx_packets = vdev_stats->rx.unicast.num + vdev_stats->rx.multicast.num + vdev_stats->rx.bcast.num; stats->rx_bytes = vdev_stats->rx.unicast.bytes + vdev_stats->rx.multicast.bytes + vdev_stats->rx.bcast.bytes; qdf_mem_free(vdev_stats); return QDF_STATUS_SUCCESS; } /** * dp_pdev_getstats() - get pdev packet level stats * @pdev_handle: Datapath PDEV handle * @stats: cdp network device stats structure * * Return: QDF_STATUS */ static void dp_pdev_getstats(struct cdp_pdev *pdev_handle, struct cdp_dev_stats *stats) { struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle; dp_aggregate_pdev_stats(pdev); stats->tx_packets = pdev->stats.tx_i.rcvd.num; stats->tx_bytes = pdev->stats.tx_i.rcvd.bytes; stats->tx_errors = pdev->stats.tx.tx_failed + pdev->stats.tx_i.dropped.dropped_pkt.num; stats->tx_dropped = stats->tx_errors; stats->rx_packets = pdev->stats.rx.unicast.num + pdev->stats.rx.multicast.num + pdev->stats.rx.bcast.num; stats->rx_bytes = pdev->stats.rx.unicast.bytes + pdev->stats.rx.multicast.bytes + pdev->stats.rx.bcast.bytes; stats->rx_errors = pdev->stats.err.desc_alloc_fail + pdev->stats.err.ip_csum_err + pdev->stats.err.tcp_udp_csum_err + pdev->stats.rx.err.mic_err + pdev->stats.rx.err.decrypt_err + pdev->stats.err.rxdma_error + pdev->stats.err.reo_error; stats->rx_dropped = pdev->stats.dropped.msdu_not_done + pdev->stats.dropped.mec + pdev->stats.dropped.mesh_filter + pdev->stats.dropped.wifi_parse + pdev->stats.dropped.mon_rx_drop + pdev->stats.dropped.mon_radiotap_update_err; } /** * dp_get_device_stats() - get interface level packet stats * @soc: soc handle * @id : vdev_id or pdev_id based on type * @stats: cdp network device stats structure * @type: device type pdev/vdev * * Return: QDF_STATUS */ static QDF_STATUS dp_get_device_stats(struct cdp_soc_t *soc, uint8_t id, struct cdp_dev_stats *stats, uint8_t type) { switch (type) { case UPDATE_VDEV_STATS: return dp_vdev_getstats( (struct cdp_vdev *)dp_get_vdev_from_soc_vdev_id_wifi3( (struct dp_soc *)soc, id), stats); case UPDATE_PDEV_STATS: { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3( (struct dp_soc *)soc, id); if (pdev) { dp_pdev_getstats((struct cdp_pdev *)pdev, stats); return QDF_STATUS_SUCCESS; } } break; default: QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "apstats cannot be updated for this input " "type %d", type); break; } return QDF_STATUS_E_FAILURE; } const char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type) { switch (ring_type) { case REO_DST: return "Reo_dst"; case REO_EXCEPTION: return "Reo_exception"; case REO_CMD: return "Reo_cmd"; case REO_REINJECT: return "Reo_reinject"; case REO_STATUS: return "Reo_status"; case WBM2SW_RELEASE: return "wbm2sw_release"; case TCL_DATA: return "tcl_data"; case TCL_CMD_CREDIT: return "tcl_cmd_credit"; case TCL_STATUS: return "tcl_status"; case SW2WBM_RELEASE: return "sw2wbm_release"; case RXDMA_BUF: return "Rxdma_buf"; case RXDMA_DST: return "Rxdma_dst"; case RXDMA_MONITOR_BUF: return "Rxdma_monitor_buf"; case RXDMA_MONITOR_DESC: return "Rxdma_monitor_desc"; case RXDMA_MONITOR_STATUS: return "Rxdma_monitor_status"; default: dp_err("Invalid ring type"); break; } return "Invalid"; } /* * dp_print_napi_stats(): NAPI stats * @soc - soc handle */ void dp_print_napi_stats(struct dp_soc *soc) { hif_print_napi_stats(soc->hif_handle); } /** * dp_txrx_host_stats_clr(): Reinitialize the txrx stats * @vdev: DP_VDEV handle * * Return: QDF_STATUS */ static inline QDF_STATUS dp_txrx_host_stats_clr(struct dp_vdev *vdev) { struct dp_peer *peer = NULL; if (!vdev || !vdev->pdev) return QDF_STATUS_E_FAILURE; DP_STATS_CLR(vdev->pdev); DP_STATS_CLR(vdev->pdev->soc); DP_STATS_CLR(vdev); hif_clear_napi_stats(vdev->pdev->soc->hif_handle); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (!peer) return QDF_STATUS_E_FAILURE; DP_STATS_CLR(peer); #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc, &peer->stats, peer->peer_ids[0], UPDATE_PEER_STATS, vdev->pdev->pdev_id); #endif } #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc, &vdev->stats, vdev->vdev_id, UPDATE_VDEV_STATS, vdev->pdev->pdev_id); #endif return QDF_STATUS_SUCCESS; } /* * dp_get_host_peer_stats()- function to print peer stats * @soc: dp_soc handle * @mac_addr: mac address of the peer * * Return: QDF_STATUS */ static QDF_STATUS dp_get_host_peer_stats(struct cdp_soc_t *soc, uint8_t *mac_addr) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_peer *peer = NULL; if (!mac_addr) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: NULL peer mac addr\n", __func__); status = QDF_STATUS_E_FAILURE; goto fail; } peer = dp_peer_find_hash_find((struct dp_soc *)soc, mac_addr, 0, DP_VDEV_ALL); if (!peer || peer->delete_in_progress) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Invalid peer\n", __func__); status = QDF_STATUS_E_FAILURE; goto fail; } dp_print_peer_stats(peer); dp_peer_rxtid_stats(peer, dp_rx_tid_stats_cb, NULL); fail: if (peer) dp_peer_unref_delete(peer); return status; } /** * dp_txrx_stats_help() - Helper function for Txrx_Stats * * Return: None */ static void dp_txrx_stats_help(void) { dp_info("Command: iwpriv wlan0 txrx_stats "); dp_info("stats_option:"); dp_info(" 1 -- HTT Tx Statistics"); dp_info(" 2 -- HTT Rx Statistics"); dp_info(" 3 -- HTT Tx HW Queue Statistics"); dp_info(" 4 -- HTT Tx HW Sched Statistics"); dp_info(" 5 -- HTT Error Statistics"); dp_info(" 6 -- HTT TQM Statistics"); dp_info(" 7 -- HTT TQM CMDQ Statistics"); dp_info(" 8 -- HTT TX_DE_CMN Statistics"); dp_info(" 9 -- HTT Tx Rate Statistics"); dp_info(" 10 -- HTT Rx Rate Statistics"); dp_info(" 11 -- HTT Peer Statistics"); dp_info(" 12 -- HTT Tx SelfGen Statistics"); dp_info(" 13 -- HTT Tx MU HWQ Statistics"); dp_info(" 14 -- HTT RING_IF_INFO Statistics"); dp_info(" 15 -- HTT SRNG Statistics"); dp_info(" 16 -- HTT SFM Info Statistics"); dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics"); dp_info(" 18 -- HTT Peer List Details"); dp_info(" 20 -- Clear Host Statistics"); dp_info(" 21 -- Host Rx Rate Statistics"); dp_info(" 22 -- Host Tx Rate Statistics"); dp_info(" 23 -- Host Tx Statistics"); dp_info(" 24 -- Host Rx Statistics"); dp_info(" 25 -- Host AST Statistics"); dp_info(" 26 -- Host SRNG PTR Statistics"); dp_info(" 27 -- Host Mon Statistics"); dp_info(" 28 -- Host REO Queue Statistics"); dp_info(" 29 -- Host Soc cfg param Statistics"); dp_info(" 30 -- Host pdev cfg param Statistics"); dp_info(" 31 -- Host FISA stats"); dp_info(" 32 -- Host Register Work stats"); } /** * dp_print_host_stats()- Function to print the stats aggregated at host * @vdev_handle: DP_VDEV handle * @type: host stats type * * Return: 0 on success, print error message in case of failure */ static int dp_print_host_stats(struct dp_vdev *vdev, struct cdp_txrx_stats_req *req) { struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev; enum cdp_host_txrx_stats type = dp_stats_mapping_table[req->stats][STATS_HOST]; dp_aggregate_pdev_stats(pdev); switch (type) { case TXRX_CLEAR_STATS: dp_txrx_host_stats_clr(vdev); break; case TXRX_RX_RATE_STATS: dp_print_rx_rates(vdev); break; case TXRX_TX_RATE_STATS: dp_print_tx_rates(vdev); break; case TXRX_TX_HOST_STATS: dp_print_pdev_tx_stats(pdev); dp_print_soc_tx_stats(pdev->soc); break; case TXRX_RX_HOST_STATS: dp_print_pdev_rx_stats(pdev); dp_print_soc_rx_stats(pdev->soc); break; case TXRX_AST_STATS: dp_print_ast_stats(pdev->soc); dp_print_peer_table(vdev); break; case TXRX_SRNG_PTR_STATS: dp_print_ring_stats(pdev); break; case TXRX_RX_MON_STATS: dp_print_pdev_rx_mon_stats(pdev); break; case TXRX_REO_QUEUE_STATS: dp_get_host_peer_stats((struct cdp_soc_t *)pdev->soc, req->peer_addr); break; case TXRX_SOC_CFG_PARAMS: dp_print_soc_cfg_params(pdev->soc); break; case TXRX_PDEV_CFG_PARAMS: dp_print_pdev_cfg_params(pdev); break; case TXRX_NAPI_STATS: dp_print_napi_stats(pdev->soc); break; case TXRX_SOC_INTERRUPT_STATS: dp_print_soc_interrupt_stats(pdev->soc); break; case TXRX_SOC_FSE_STATS: dp_rx_dump_fisa_table(pdev->soc); break; case TXRX_HAL_REG_WRITE_STATS: hal_dump_reg_write_stats(pdev->soc->hal_soc); hal_dump_reg_write_srng_stats(pdev->soc->hal_soc); break; default: dp_info("Wrong Input For TxRx Host Stats"); dp_txrx_stats_help(); break; } return 0; } /* * is_ppdu_txrx_capture_enabled() - API to check both pktlog and debug_sniffer * modes are enabled or not. * @dp_pdev: dp pdev handle. * * Return: bool */ static inline bool is_ppdu_txrx_capture_enabled(struct dp_pdev *pdev) { if (!pdev->pktlog_ppdu_stats && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) return true; else return false; } /* *dp_set_bpr_enable() - API to enable/disable bpr feature *@pdev_handle: DP_PDEV handle. *@val: Provided value. * *Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_set_bpr_enable(struct dp_pdev *pdev, int val) { switch (val) { case CDP_BPR_DISABLE: pdev->bpr_enable = CDP_BPR_DISABLE; if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) { dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id); } else if (pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id); } break; case CDP_BPR_ENABLE: pdev->bpr_enable = CDP_BPR_ENABLE; if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR, pdev->pdev_id); } else if (pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR_ENH, pdev->pdev_id); } else if (pdev->pktlog_ppdu_stats) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR_PKTLOG, pdev->pdev_id); } break; default: break; } return QDF_STATUS_SUCCESS; } /* * dp_pdev_tid_stats_ingress_inc * @pdev: pdev handle * @val: increase in value * * Return: void */ static void dp_pdev_tid_stats_ingress_inc(struct dp_pdev *pdev, uint32_t val) { pdev->stats.tid_stats.ingress_stack += val; } /* * dp_pdev_tid_stats_osif_drop * @pdev: pdev handle * @val: increase in value * * Return: void */ static void dp_pdev_tid_stats_osif_drop(struct dp_pdev *pdev, uint32_t val) { pdev->stats.tid_stats.osif_drop += val; } /* * dp_config_debug_sniffer()- API to enable/disable debug sniffer * @pdev: DP_PDEV handle * @val: user provided value * * Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_config_debug_sniffer(struct dp_pdev *pdev, int val) { QDF_STATUS status = QDF_STATUS_SUCCESS; /* * Note: The mirror copy mode cannot co-exist with any other * monitor modes. Hence disabling the filter for this mode will * reset the monitor destination ring filters. */ if (pdev->mcopy_mode) { #ifdef FEATURE_PERPKT_INFO dp_pdev_disable_mcopy_code(pdev); dp_mon_filter_reset_mcopy_mode(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to reset AM copy mode filters")); } #endif /* FEATURE_PERPKT_INFO */ } switch (val) { case 0: pdev->tx_sniffer_enable = 0; pdev->monitor_configured = false; /* * We don't need to reset the Rx monitor status ring or call * the API dp_ppdu_ring_reset() if all debug sniffer mode is * disabled. The Rx monitor status ring will be disabled when * the last mode using the monitor status ring get disabled. */ if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en && !pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id); } else if (pdev->enhanced_stats_en && !pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id); } else if (!pdev->enhanced_stats_en && pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR_ENH, pdev->pdev_id); } else { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR, pdev->pdev_id); } break; case 1: pdev->tx_sniffer_enable = 1; pdev->monitor_configured = false; if (!pdev->pktlog_ppdu_stats) dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id); break; case 2: if (pdev->monitor_vdev) { status = QDF_STATUS_E_RESOURCES; break; } #ifdef FEATURE_PERPKT_INFO pdev->mcopy_mode = 1; pdev->tx_sniffer_enable = 0; pdev->monitor_configured = true; /* * Setup the M copy mode filter. */ dp_mon_filter_setup_mcopy_mode(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to set M_copy mode filters")); dp_mon_filter_reset_mcopy_mode(pdev); dp_pdev_disable_mcopy_code(pdev); return status; } if (!pdev->pktlog_ppdu_stats) dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id); #endif /* FEATURE_PERPKT_INFO */ break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid value"); break; } return status; } #ifdef FEATURE_PERPKT_INFO /* * dp_enable_enhanced_stats()- API to enable enhanced statistcs * @soc_handle: DP_SOC handle * @pdev_id: id of DP_PDEV handle * * Return: QDF_STATUS */ static QDF_STATUS dp_enable_enhanced_stats(struct cdp_soc_t *soc, uint8_t pdev_id) { struct dp_pdev *pdev = NULL; QDF_STATUS status = QDF_STATUS_SUCCESS; pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; if (pdev->enhanced_stats_en == 0) dp_cal_client_timer_start(pdev->cal_client_ctx); pdev->enhanced_stats_en = 1; dp_mon_filter_setup_enhanced_stats(pdev); status = dp_mon_filter_update(pdev); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to set enhanced mode filters")); dp_mon_filter_reset_enhanced_stats(pdev); dp_cal_client_timer_stop(pdev->cal_client_ctx); pdev->enhanced_stats_en = 0; return QDF_STATUS_E_FAILURE; } if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id); } else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR_ENH, pdev->pdev_id); } return QDF_STATUS_SUCCESS; } /* * dp_disable_enhanced_stats()- API to disable enhanced statistcs * * @param soc - the soc handle * @param pdev_id - pdev_id of pdev * @return - QDF_STATUS */ static QDF_STATUS dp_disable_enhanced_stats(struct cdp_soc_t *soc, uint8_t pdev_id) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; if (pdev->enhanced_stats_en == 1) dp_cal_client_timer_stop(pdev->cal_client_ctx); pdev->enhanced_stats_en = 0; if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id); } else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_BPR, pdev->pdev_id); } dp_mon_filter_reset_enhanced_stats(pdev); if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Failed to reset enhanced mode filters")); } return QDF_STATUS_SUCCESS; } #endif /* FEATURE_PERPKT_INFO */ /* * dp_get_fw_peer_stats()- function to print peer stats * @soc: soc handle * @pdev_id : id of the pdev handle * @mac_addr: mac address of the peer * @cap: Type of htt stats requested * @is_wait: if set, wait on completion from firmware response * * Currently Supporting only MAC ID based requests Only * 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY * 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM * 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM * * Return: QDF_STATUS */ static QDF_STATUS dp_get_fw_peer_stats(struct cdp_soc_t *soc, uint8_t pdev_id, uint8_t *mac_addr, uint32_t cap, uint32_t is_wait) { int i; uint32_t config_param0 = 0; uint32_t config_param1 = 0; uint32_t config_param2 = 0; uint32_t config_param3 = 0; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1); config_param0 |= (1 << (cap + 1)); for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) { config_param1 |= (1 << i); } config_param2 |= (mac_addr[0] & 0x000000ff); config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00); config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000); config_param2 |= ((mac_addr[3] << 24) & 0xff000000); config_param3 |= (mac_addr[4] & 0x000000ff); config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00); if (is_wait) { qdf_event_reset(&pdev->fw_peer_stats_event); dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO, config_param0, config_param1, config_param2, config_param3, 0, 1, 0); qdf_wait_single_event(&pdev->fw_peer_stats_event, DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC); } else { dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO, config_param0, config_param1, config_param2, config_param3, 0, 0, 0); } return QDF_STATUS_SUCCESS; } /* This struct definition will be removed from here * once it get added in FW headers*/ struct httstats_cmd_req { uint32_t config_param0; uint32_t config_param1; uint32_t config_param2; uint32_t config_param3; int cookie; u_int8_t stats_id; }; /* * dp_get_htt_stats: function to process the httstas request * @soc: DP soc handle * @pdev_id: id of pdev handle * @data: pointer to request data * @data_len: length for request data * * return: QDF_STATUS */ static QDF_STATUS dp_get_htt_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *data, uint32_t data_len) { struct httstats_cmd_req *req = (struct httstats_cmd_req *)data; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req)); dp_h2t_ext_stats_msg_send(pdev, req->stats_id, req->config_param0, req->config_param1, req->config_param2, req->config_param3, req->cookie, 0, 0); return QDF_STATUS_SUCCESS; } /** * dp_set_pdev_tidmap_prty_wifi3(): update tidmap priority in pdev * @pdev: DP_PDEV handle * @prio: tidmap priority value passed by the user * * Return: QDF_STATUS_SUCCESS on success */ static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct dp_pdev *pdev, uint8_t prio) { struct dp_soc *soc = pdev->soc; soc->tidmap_prty = prio; hal_tx_set_tidmap_prty(soc->hal_soc, prio); return QDF_STATUS_SUCCESS; } /* * dp_get_peer_param: function to get parameters in peer * @cdp_soc: DP soc handle * @vdev_id: id of vdev handle * @peer_mac: peer mac address * @param: parameter type to be set * @val : address of buffer * * Return: val */ static QDF_STATUS dp_get_peer_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, uint8_t *peer_mac, enum cdp_peer_param_type param, cdp_config_param_type *val) { return QDF_STATUS_SUCCESS; } /* * dp_set_peer_param: function to set parameters in peer * @cdp_soc: DP soc handle * @vdev_id: id of vdev handle * @peer_mac: peer mac address * @param: parameter type to be set * @val: value of parameter to be set * * Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_set_peer_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, uint8_t *peer_mac, enum cdp_peer_param_type param, cdp_config_param_type val) { struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) goto fail; switch (param) { case CDP_CONFIG_NAWDS: peer->nawds_enabled = val.cdp_peer_param_nawds; break; case CDP_CONFIG_NAC: peer->nac = !!(val.cdp_peer_param_nac); break; default: break; } fail: if (peer) dp_peer_unref_delete(peer); return QDF_STATUS_SUCCESS; } /* * dp_get_pdev_param: function to get parameters from pdev * @cdp_soc: DP soc handle * @pdev_id: id of pdev handle * @param: parameter type to be get * @value : buffer for value * * Return: status */ static QDF_STATUS dp_get_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, enum cdp_pdev_param_type param, cdp_config_param_type *val) { struct cdp_pdev *pdev = (struct cdp_pdev *) dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; switch (param) { case CDP_CONFIG_VOW: val->cdp_pdev_param_cfg_vow = ((struct dp_pdev *)pdev)->delay_stats_flag; break; case CDP_TX_PENDING: val->cdp_pdev_param_tx_pending = dp_get_tx_pending(pdev); break; case CDP_FILTER_MCAST_DATA: val->cdp_pdev_param_fltr_mcast = dp_pdev_get_filter_mcast_data(pdev); break; case CDP_FILTER_NO_DATA: val->cdp_pdev_param_fltr_none = dp_pdev_get_filter_non_data(pdev); break; case CDP_FILTER_UCAST_DATA: val->cdp_pdev_param_fltr_ucast = dp_pdev_get_filter_ucast_data(pdev); break; default: return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } /* * dp_set_pdev_param: function to set parameters in pdev * @cdp_soc: DP soc handle * @pdev_id: id of pdev handle * @param: parameter type to be set * @val: value of parameter to be set * * Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_set_pdev_param(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, enum cdp_pdev_param_type param, cdp_config_param_type val) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)cdp_soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; switch (param) { case CDP_CONFIG_TX_CAPTURE: return dp_config_debug_sniffer(pdev, val.cdp_pdev_param_tx_capture); case CDP_CONFIG_DEBUG_SNIFFER: return dp_config_debug_sniffer(pdev, val.cdp_pdev_param_dbg_snf); case CDP_CONFIG_BPR_ENABLE: return dp_set_bpr_enable(pdev, val.cdp_pdev_param_bpr_enable); case CDP_CONFIG_PRIMARY_RADIO: pdev->is_primary = val.cdp_pdev_param_primary_radio; break; case CDP_CONFIG_CAPTURE_LATENCY: pdev->latency_capture_enable = val.cdp_pdev_param_cptr_latcy; break; case CDP_INGRESS_STATS: dp_pdev_tid_stats_ingress_inc(pdev, val.cdp_pdev_param_ingrs_stats); break; case CDP_OSIF_DROP: dp_pdev_tid_stats_osif_drop(pdev, val.cdp_pdev_param_osif_drop); break; case CDP_CONFIG_ENH_RX_CAPTURE: return dp_config_enh_rx_capture(pdev, val.cdp_pdev_param_en_rx_cap); case CDP_CONFIG_ENH_TX_CAPTURE: return dp_config_enh_tx_capture(pdev, val.cdp_pdev_param_en_tx_cap); case CDP_CONFIG_HMMC_TID_OVERRIDE: pdev->hmmc_tid_override_en = val.cdp_pdev_param_hmmc_tid_ovrd; break; case CDP_CONFIG_HMMC_TID_VALUE: pdev->hmmc_tid = val.cdp_pdev_param_hmmc_tid; break; case CDP_CHAN_NOISE_FLOOR: pdev->chan_noise_floor = val.cdp_pdev_param_chn_noise_flr; break; case CDP_TIDMAP_PRTY: dp_set_pdev_tidmap_prty_wifi3(pdev, val.cdp_pdev_param_tidmap_prty); break; case CDP_FILTER_NEIGH_PEERS: dp_set_filter_neigh_peers(pdev, val.cdp_pdev_param_fltr_neigh_peers); break; case CDP_MONITOR_CHANNEL: pdev->mon_chan_num = val.cdp_pdev_param_monitor_chan; break; case CDP_MONITOR_FREQUENCY: pdev->mon_chan_freq = val.cdp_pdev_param_mon_freq; break; case CDP_CONFIG_BSS_COLOR: dp_mon_set_bsscolor(pdev, val.cdp_pdev_param_bss_color); break; default: return QDF_STATUS_E_INVAL; } return QDF_STATUS_SUCCESS; } /* * dp_calculate_delay_stats: function to get rx delay stats * @cdp_soc: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * * Return: QDF_STATUS */ static QDF_STATUS dp_calculate_delay_stats(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, qdf_nbuf_t nbuf) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)cdp_soc, vdev_id); if (vdev) { dp_rx_compute_delay(vdev, nbuf); return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } /* * dp_get_vdev_param: function to get parameters from vdev * @cdp_soc : DP soc handle * @vdev_id: id of DP vdev handle * @param: parameter type to get value * @val: buffer address * * return: status */ static QDF_STATUS dp_get_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, enum cdp_vdev_param_type param, cdp_config_param_type *val) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)cdp_soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; switch (param) { case CDP_ENABLE_WDS: val->cdp_vdev_param_wds = vdev->wds_enabled; break; case CDP_ENABLE_MEC: val->cdp_vdev_param_mec = vdev->mec_enabled; break; case CDP_ENABLE_DA_WAR: val->cdp_vdev_param_da_war = vdev->pdev->soc->da_war_enabled; break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "param value %d is wrong\n", param); return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } /* * dp_set_vdev_param: function to set parameters in vdev * @cdp_soc : DP soc handle * @vdev_id: id of DP vdev handle * @param: parameter type to get value * @val: value * * return: QDF_STATUS */ static QDF_STATUS dp_set_vdev_param(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, enum cdp_vdev_param_type param, cdp_config_param_type val) { struct dp_soc *dsoc = (struct dp_soc *)cdp_soc; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(dsoc, vdev_id); uint32_t var = 0; if (!vdev) return QDF_STATUS_E_FAILURE; switch (param) { case CDP_ENABLE_WDS: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "wds_enable %d for vdev(%pK) id(%d)\n", val.cdp_vdev_param_wds, vdev, vdev->vdev_id); vdev->wds_enabled = val.cdp_vdev_param_wds; break; case CDP_ENABLE_MEC: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "mec_enable %d for vdev(%pK) id(%d)\n", val.cdp_vdev_param_mec, vdev, vdev->vdev_id); vdev->mec_enabled = val.cdp_vdev_param_mec; break; case CDP_ENABLE_DA_WAR: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "da_war_enable %d for vdev(%pK) id(%d)\n", val.cdp_vdev_param_da_war, vdev, vdev->vdev_id); vdev->pdev->soc->da_war_enabled = val.cdp_vdev_param_da_war; dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *) vdev->pdev->soc)); break; case CDP_ENABLE_NAWDS: vdev->nawds_enabled = val.cdp_vdev_param_nawds; break; case CDP_ENABLE_MCAST_EN: vdev->mcast_enhancement_en = val.cdp_vdev_param_mcast_en; break; case CDP_ENABLE_PROXYSTA: vdev->proxysta_vdev = val.cdp_vdev_param_proxysta; break; case CDP_UPDATE_TDLS_FLAGS: vdev->tdls_link_connected = val.cdp_vdev_param_tdls_flags; break; case CDP_CFG_WDS_AGING_TIMER: var = val.cdp_vdev_param_aging_tmr; if (!var) qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer); else if (var != vdev->wds_aging_timer_val) qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, var); vdev->wds_aging_timer_val = var; break; case CDP_ENABLE_AP_BRIDGE: if (wlan_op_mode_sta != vdev->opmode) vdev->ap_bridge_enabled = val.cdp_vdev_param_ap_brdg_en; else vdev->ap_bridge_enabled = false; break; case CDP_ENABLE_CIPHER: vdev->sec_type = val.cdp_vdev_param_cipher_en; break; case CDP_ENABLE_QWRAP_ISOLATION: vdev->isolation_vdev = val.cdp_vdev_param_qwrap_isolation; break; case CDP_UPDATE_MULTIPASS: vdev->multipass_en = val.cdp_vdev_param_update_multipass; break; case CDP_TX_ENCAP_TYPE: vdev->tx_encap_type = val.cdp_vdev_param_tx_encap; break; case CDP_RX_DECAP_TYPE: vdev->rx_decap_type = val.cdp_vdev_param_rx_decap; break; case CDP_TID_VDEV_PRTY: vdev->tidmap_prty = val.cdp_vdev_param_tidmap_prty; break; case CDP_TIDMAP_TBL_ID: vdev->tidmap_tbl_id = val.cdp_vdev_param_tidmap_tbl_id; break; #ifdef MESH_MODE_SUPPORT case CDP_MESH_RX_FILTER: dp_peer_set_mesh_rx_filter((struct cdp_vdev *)vdev, val.cdp_vdev_param_mesh_rx_filter); break; case CDP_MESH_MODE: dp_peer_set_mesh_mode((struct cdp_vdev *)vdev, val.cdp_vdev_param_mesh_mode); break; #endif default: break; } dp_tx_vdev_update_search_flags((struct dp_vdev *)vdev); return QDF_STATUS_SUCCESS; } /* * dp_set_psoc_param: function to set parameters in psoc * @cdp_soc : DP soc handle * @param: parameter type to be set * @val: value of parameter to be set * * return: QDF_STATUS */ static QDF_STATUS dp_set_psoc_param(struct cdp_soc_t *cdp_soc, enum cdp_psoc_param_type param, cdp_config_param_type val) { struct dp_soc *soc = (struct dp_soc *)cdp_soc; struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = soc->wlan_cfg_ctx; switch (param) { case CDP_ENABLE_RATE_STATS: soc->wlanstats_enabled = val.cdp_psoc_param_en_rate_stats; break; case CDP_SET_NSS_CFG: wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx, val.cdp_psoc_param_en_nss_cfg); /* * TODO: masked out based on the per offloaded radio */ switch (val.cdp_psoc_param_en_nss_cfg) { case dp_nss_cfg_default: break; case dp_nss_cfg_first_radio: /* * This configuration is valid for single band radio which * is also NSS offload. */ case dp_nss_cfg_dbdc: case dp_nss_cfg_dbtc: wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0); wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0); wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0); wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0); break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid offload config %d", val.cdp_psoc_param_en_nss_cfg); } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("nss-wifi<0> nss config is enabled")); break; default: break; } return QDF_STATUS_SUCCESS; } /* * dp_get_psoc_param: function to get parameters in soc * @cdp_soc : DP soc handle * @param: parameter type to be set * @val: address of buffer * * return: status */ static QDF_STATUS dp_get_psoc_param(struct cdp_soc_t *cdp_soc, enum cdp_psoc_param_type param, cdp_config_param_type *val) { return QDF_STATUS_SUCCESS; } /** * dp_peer_update_pkt_capture_params: Set Rx & Tx Capture flags for a peer * @soc: DP_SOC handle * @pdev_id: id of DP_PDEV handle * @is_rx_pkt_cap_enable: enable/disable Rx packet capture in monitor mode * @is_tx_pkt_cap_enable: enable/disable/delete/print * Tx packet capture in monitor mode * @peer_mac: MAC address for which the above need to be enabled/disabled * * Return: Success if Rx & Tx capture is enabled for peer, false otherwise */ QDF_STATUS dp_peer_update_pkt_capture_params(ol_txrx_soc_handle soc, uint8_t pdev_id, bool is_rx_pkt_cap_enable, uint8_t is_tx_pkt_cap_enable, uint8_t *peer_mac) { QDF_STATUS status; struct dp_peer *peer; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; peer = (struct dp_peer *)dp_find_peer_by_addr((struct cdp_pdev *)pdev, peer_mac); /* we need to set tx pkt capture for non associated peer */ status = dp_peer_set_tx_capture_enabled(pdev, peer, is_tx_pkt_cap_enable, peer_mac); status = dp_peer_set_rx_capture_enabled(pdev, peer, is_rx_pkt_cap_enable, peer_mac); return status; } /* * dp_set_vdev_dscp_tid_map_wifi3(): Update Map ID selected for particular vdev * @soc: DP_SOC handle * @vdev_id: id of DP_VDEV handle * @map_id:ID of map that needs to be updated * * Return: QDF_STATUS */ static QDF_STATUS dp_set_vdev_dscp_tid_map_wifi3(ol_txrx_soc_handle soc, uint8_t vdev_id, uint8_t map_id) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (vdev) { vdev->dscp_tid_map_id = map_id; return QDF_STATUS_SUCCESS; } return QDF_STATUS_E_FAILURE; } #ifdef DP_RATETABLE_SUPPORT static int dp_txrx_get_ratekbps(int preamb, int mcs, int htflag, int gintval) { uint32_t rix; uint16_t ratecode; return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1, (uint8_t)preamb, 1, &rix, &ratecode); } #else static int dp_txrx_get_ratekbps(int preamb, int mcs, int htflag, int gintval) { return 0; } #endif /* dp_txrx_get_pdev_stats - Returns cdp_pdev_stats * @soc: DP soc handle * @pdev_id: id of DP pdev handle * @pdev_stats: buffer to copy to * * return : status success/failure */ static QDF_STATUS dp_txrx_get_pdev_stats(struct cdp_soc_t *soc, uint8_t pdev_id, struct cdp_pdev_stats *pdev_stats) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; dp_aggregate_pdev_stats(pdev); qdf_mem_copy(pdev_stats, &pdev->stats, sizeof(struct cdp_pdev_stats)); return QDF_STATUS_SUCCESS; } /* dp_txrx_update_vdev_me_stats(): Update vdev ME stats sent from CDP * @vdev: DP vdev handle * @buf: buffer containing specific stats structure * * Returns: void */ static void dp_txrx_update_vdev_me_stats(struct dp_vdev *vdev, void *buf) { struct cdp_tx_ingress_stats *host_stats = NULL; if (!buf) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid host stats buf"); return; } host_stats = (struct cdp_tx_ingress_stats *)buf; DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt, host_stats->mcast_en.mcast_pkt.num, host_stats->mcast_en.mcast_pkt.bytes); DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error, host_stats->mcast_en.dropped_map_error); DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac, host_stats->mcast_en.dropped_self_mac); DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail, host_stats->mcast_en.dropped_send_fail); DP_STATS_INC(vdev, tx_i.mcast_en.ucast, host_stats->mcast_en.ucast); DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc, host_stats->mcast_en.fail_seg_alloc); DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail, host_stats->mcast_en.clone_fail); } /* dp_txrx_update_vdev_host_stats(): Update stats sent through CDP * @soc: DP soc handle * @vdev_id: id of DP vdev handle * @buf: buffer containing specific stats structure * @stats_id: stats type * * Returns: QDF_STATUS */ static QDF_STATUS dp_txrx_update_vdev_host_stats(struct cdp_soc_t *soc, uint8_t vdev_id, void *buf, uint16_t stats_id) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid vdev handle"); return QDF_STATUS_E_FAILURE; } switch (stats_id) { case DP_VDEV_STATS_PKT_CNT_ONLY: break; case DP_VDEV_STATS_TX_ME: dp_txrx_update_vdev_me_stats(vdev, buf); break; default: qdf_info("Invalid stats_id %d", stats_id); break; } return QDF_STATUS_SUCCESS; } /* dp_txrx_get_peer_stats - will return cdp_peer_stats * @soc: soc handle * @vdev_id: id of vdev handle * @peer_mac: mac of DP_PEER handle * @peer_stats: buffer to copy to * return : status success/failure */ static QDF_STATUS dp_txrx_get_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, struct cdp_peer_stats *peer_stats) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { status = QDF_STATUS_E_FAILURE; } else qdf_mem_copy(peer_stats, &peer->stats, sizeof(struct cdp_peer_stats)); if (peer) dp_peer_unref_delete(peer); return status; } /* dp_txrx_get_peer_stats_param - will return specified cdp_peer_stats * @param soc - soc handle * @param vdev_id - vdev_id of vdev object * @param peer_mac - mac address of the peer * @param type - enum of required stats * @param buf - buffer to hold the value * return : status success/failure */ static QDF_STATUS dp_txrx_get_peer_stats_param(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac, enum cdp_peer_stats_type type, cdp_peer_stats_param_t *buf) { QDF_STATUS ret = QDF_STATUS_SUCCESS; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid Peer for Mac %pM", peer_mac); ret = QDF_STATUS_E_FAILURE; } else if (type < cdp_peer_stats_max) { switch (type) { case cdp_peer_tx_ucast: buf->tx_ucast = peer->stats.tx.ucast; break; case cdp_peer_tx_mcast: buf->tx_mcast = peer->stats.tx.mcast; break; case cdp_peer_tx_rate: buf->tx_rate = peer->stats.tx.tx_rate; break; case cdp_peer_tx_last_tx_rate: buf->last_tx_rate = peer->stats.tx.last_tx_rate; break; case cdp_peer_tx_inactive_time: buf->tx_inactive_time = peer->stats.tx.inactive_time; break; case cdp_peer_tx_ratecode: buf->tx_ratecode = peer->stats.tx.tx_ratecode; break; case cdp_peer_tx_flags: buf->tx_flags = peer->stats.tx.tx_flags; break; case cdp_peer_tx_power: buf->tx_power = peer->stats.tx.tx_power; break; case cdp_peer_rx_rate: buf->rx_rate = peer->stats.rx.rx_rate; break; case cdp_peer_rx_last_rx_rate: buf->last_rx_rate = peer->stats.rx.last_rx_rate; break; case cdp_peer_rx_ratecode: buf->rx_ratecode = peer->stats.rx.rx_ratecode; break; case cdp_peer_rx_ucast: buf->rx_ucast = peer->stats.rx.unicast; break; case cdp_peer_rx_flags: buf->rx_flags = peer->stats.rx.rx_flags; break; case cdp_peer_rx_avg_rssi: buf->rx_avg_rssi = peer->stats.rx.avg_rssi; break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid value"); ret = QDF_STATUS_E_FAILURE; break; } } else { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid value"); ret = QDF_STATUS_E_FAILURE; } if (peer) dp_peer_unref_delete(peer); return ret; } /* dp_txrx_reset_peer_stats - reset cdp_peer_stats for particular peer * @soc: soc handle * @vdev_id: id of vdev handle * @peer_mac: mac of DP_PEER handle * * return : QDF_STATUS */ static QDF_STATUS dp_txrx_reset_peer_stats(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t *peer_mac) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc, peer_mac, 0, vdev_id); if (!peer || peer->delete_in_progress) { status = QDF_STATUS_E_FAILURE; goto fail; } qdf_mem_zero(&peer->stats, sizeof(peer->stats)); fail: if (peer) dp_peer_unref_delete(peer); return status; } /* dp_txrx_get_vdev_stats - Update buffer with cdp_vdev_stats * @vdev_handle: DP_VDEV handle * @buf: buffer for vdev stats * * return : int */ static int dp_txrx_get_vdev_stats(struct cdp_soc_t *soc, uint8_t vdev_id, void *buf, bool is_aggregate) { struct cdp_vdev_stats *vdev_stats; struct dp_pdev *pdev; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev) return 1; pdev = vdev->pdev; if (!pdev) return 1; vdev_stats = (struct cdp_vdev_stats *)buf; if (is_aggregate) { qdf_spin_lock_bh(&((struct dp_soc *)soc)->peer_ref_mutex); dp_aggregate_vdev_stats(vdev, buf); qdf_spin_unlock_bh(&((struct dp_soc *)soc)->peer_ref_mutex); } else { qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats)); } return 0; } /* * dp_get_total_per(): get total per * @soc: DP soc handle * @pdev_id: id of DP_PDEV handle * * Return: % error rate using retries per packet and success packets */ static int dp_get_total_per(struct cdp_soc_t *soc, uint8_t pdev_id) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return 0; dp_aggregate_pdev_stats(pdev); if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0) return 0; return ((pdev->stats.tx.retries * 100) / ((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries))); } /* * dp_txrx_stats_publish(): publish pdev stats into a buffer * @soc: DP soc handle * @pdev_id: id of DP_PDEV handle * @buf: to hold pdev_stats * * Return: int */ static int dp_txrx_stats_publish(struct cdp_soc_t *soc, uint8_t pdev_id, struct cdp_stats_extd *buf) { struct cdp_txrx_stats_req req = {0,}; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return TXRX_STATS_LEVEL_OFF; dp_aggregate_pdev_stats(pdev); req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX; req.cookie_val = 1; dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0, req.param1, req.param2, req.param3, 0, req.cookie_val, 0); msleep(DP_MAX_SLEEP_TIME); req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX; req.cookie_val = 1; dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0, req.param1, req.param2, req.param3, 0, req.cookie_val, 0); msleep(DP_MAX_SLEEP_TIME); qdf_mem_copy(buf, &pdev->stats, sizeof(struct cdp_pdev_stats)); return TXRX_STATS_LEVEL; } /** * dp_set_pdev_dscp_tid_map_wifi3(): update dscp tid map in pdev * @soc: soc handle * @pdev_id: id of DP_PDEV handle * @map_id: ID of map that needs to be updated * @tos: index value in map * @tid: tid value passed by the user * * Return: QDF_STATUS */ static QDF_STATUS dp_set_pdev_dscp_tid_map_wifi3(struct cdp_soc_t *soc_handle, uint8_t pdev_id, uint8_t map_id, uint8_t tos, uint8_t tid) { uint8_t dscp; struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK; pdev->dscp_tid_map[map_id][dscp] = tid; if (map_id < soc->num_hw_dscp_tid_map) hal_tx_update_dscp_tid(soc->hal_soc, tid, map_id, dscp); else return QDF_STATUS_E_FAILURE; return QDF_STATUS_SUCCESS; } /** * dp_fw_stats_process(): Process TxRX FW stats request * @vdev_handle: DP VDEV handle * @req: stats request * * return: int */ static int dp_fw_stats_process(struct dp_vdev *vdev, struct cdp_txrx_stats_req *req) { struct dp_pdev *pdev = NULL; uint32_t stats = req->stats; uint8_t mac_id = req->mac_id; if (!vdev) { DP_TRACE(NONE, "VDEV not found"); return 1; } pdev = vdev->pdev; /* * For HTT_DBG_EXT_STATS_RESET command, FW need to config * from param0 to param3 according to below rule: * * PARAM: * - config_param0 : start_offset (stats type) * - config_param1 : stats bmask from start offset * - config_param2 : stats bmask from start offset + 32 * - config_param3 : stats bmask from start offset + 64 */ if (req->stats == CDP_TXRX_STATS_0) { req->param0 = HTT_DBG_EXT_STATS_PDEV_TX; req->param1 = 0xFFFFFFFF; req->param2 = 0xFFFFFFFF; req->param3 = 0xFFFFFFFF; } else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) { req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id); } return dp_h2t_ext_stats_msg_send(pdev, stats, req->param0, req->param1, req->param2, req->param3, 0, 0, mac_id); } /** * dp_txrx_stats_request - function to map to firmware and host stats * @soc: soc handle * @vdev_id: virtual device ID * @req: stats request * * Return: QDF_STATUS */ static QDF_STATUS dp_txrx_stats_request(struct cdp_soc_t *soc_handle, uint8_t vdev_id, struct cdp_txrx_stats_req *req) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_handle); int host_stats; int fw_stats; enum cdp_stats stats; int num_stats; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev || !req) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid vdev/req instance"); return QDF_STATUS_E_INVAL; } if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) { dp_err("Invalid mac id request"); return QDF_STATUS_E_INVAL; } stats = req->stats; if (stats >= CDP_TXRX_MAX_STATS) return QDF_STATUS_E_INVAL; /* * DP_CURR_FW_STATS_AVAIL: no of FW stats currently available * has to be updated if new FW HTT stats added */ if (stats > CDP_TXRX_STATS_HTT_MAX) stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX; num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table); if (stats >= num_stats) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Invalid stats option: %d", __func__, stats); return QDF_STATUS_E_INVAL; } req->stats = stats; fw_stats = dp_stats_mapping_table[stats][STATS_FW]; host_stats = dp_stats_mapping_table[stats][STATS_HOST]; dp_info("stats: %u fw_stats_type: %d host_stats: %d", stats, fw_stats, host_stats); if (fw_stats != TXRX_FW_STATS_INVALID) { /* update request with FW stats type */ req->stats = fw_stats; return dp_fw_stats_process(vdev, req); } if ((host_stats != TXRX_HOST_STATS_INVALID) && (host_stats <= TXRX_HOST_STATS_MAX)) return dp_print_host_stats(vdev, req); else QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "Wrong Input for TxRx Stats"); return QDF_STATUS_SUCCESS; } /* * dp_txrx_dump_stats() - Dump statistics * @value - Statistics option */ static QDF_STATUS dp_txrx_dump_stats(struct cdp_soc_t *psoc, uint16_t value, enum qdf_stats_verbosity_level level) { struct dp_soc *soc = (struct dp_soc *)psoc; QDF_STATUS status = QDF_STATUS_SUCCESS; if (!soc) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: soc is NULL", __func__); return QDF_STATUS_E_INVAL; } switch (value) { case CDP_TXRX_PATH_STATS: dp_txrx_path_stats(soc); dp_print_soc_interrupt_stats(soc); hal_dump_reg_write_stats(soc->hal_soc); break; case CDP_RX_RING_STATS: dp_print_per_ring_stats(soc); break; case CDP_TXRX_TSO_STATS: dp_print_tso_stats(soc, level); break; case CDP_DUMP_TX_FLOW_POOL_INFO: if (level == QDF_STATS_VERBOSITY_LEVEL_HIGH) cdp_dump_flow_pool_info((struct cdp_soc_t *)soc); break; case CDP_DP_NAPI_STATS: dp_print_napi_stats(soc); break; case CDP_TXRX_DESC_STATS: /* TODO: NOT IMPLEMENTED */ break; case CDP_DP_RX_FISA_STATS: dp_rx_dump_fisa_stats(soc); break; default: status = QDF_STATUS_E_INVAL; break; } return status; } /** * dp_txrx_clear_dump_stats() - clear dumpStats * @soc- soc handle * @value - stats option * * Return: 0 - Success, non-zero - failure */ static QDF_STATUS dp_txrx_clear_dump_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, uint8_t value) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); QDF_STATUS status = QDF_STATUS_SUCCESS; if (!soc) { dp_err("%s: soc is NULL", __func__); return QDF_STATUS_E_INVAL; } switch (value) { case CDP_TXRX_TSO_STATS: dp_txrx_clear_tso_stats(soc); break; default: status = QDF_STATUS_E_INVAL; break; } return status; } #ifdef QCA_LL_TX_FLOW_CONTROL_V2 /** * dp_update_flow_control_parameters() - API to store datapath * config parameters * @soc: soc handle * @cfg: ini parameter handle * * Return: void */ static inline void dp_update_flow_control_parameters(struct dp_soc *soc, struct cdp_config_params *params) { soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold = params->tx_flow_stop_queue_threshold; soc->wlan_cfg_ctx->tx_flow_start_queue_offset = params->tx_flow_start_queue_offset; } #else static inline void dp_update_flow_control_parameters(struct dp_soc *soc, struct cdp_config_params *params) { } #endif #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT /* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */ #define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024 /* Max packet limit for RX REAP Loop (dp_rx_process) */ #define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024 static void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc, struct cdp_config_params *params) { soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit = params->tx_comp_loop_pkt_limit; if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX) soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true; else soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false; soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit = params->rx_reap_loop_pkt_limit; if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX) soc->wlan_cfg_ctx->rx_enable_eol_data_check = true; else soc->wlan_cfg_ctx->rx_enable_eol_data_check = false; soc->wlan_cfg_ctx->rx_hp_oos_update_limit = params->rx_hp_oos_update_limit; dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u", soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit, soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check, soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit, soc->wlan_cfg_ctx->rx_enable_eol_data_check, soc->wlan_cfg_ctx->rx_hp_oos_update_limit); } #else static inline void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc, struct cdp_config_params *params) { } #endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */ /** * dp_update_config_parameters() - API to store datapath * config parameters * @soc: soc handle * @cfg: ini parameter handle * * Return: status */ static QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc, struct cdp_config_params *params) { struct dp_soc *soc = (struct dp_soc *)psoc; if (!(soc)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Invalid handle", __func__); return QDF_STATUS_E_INVAL; } soc->wlan_cfg_ctx->tso_enabled = params->tso_enable; soc->wlan_cfg_ctx->lro_enabled = params->lro_enable; soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable; soc->wlan_cfg_ctx->tcp_udp_checksumoffload = params->tcp_udp_checksumoffload; soc->wlan_cfg_ctx->napi_enabled = params->napi_enable; soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable; soc->wlan_cfg_ctx->gro_enabled = params->gro_enable; dp_update_rx_soft_irq_limit_params(soc, params); dp_update_flow_control_parameters(soc, params); return QDF_STATUS_SUCCESS; } static struct cdp_wds_ops dp_ops_wds = { .vdev_set_wds = dp_vdev_set_wds, #ifdef WDS_VENDOR_EXTENSION .txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy, .txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update, #endif }; /* * dp_txrx_data_tx_cb_set(): set the callback for non standard tx * @soc_hdl - datapath soc handle * @vdev_id - virtual interface id * @callback - callback function * @ctxt: callback context * */ static void dp_txrx_data_tx_cb_set(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, ol_txrx_data_tx_cb callback, void *ctxt) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) return; vdev->tx_non_std_data_callback.func = callback; vdev->tx_non_std_data_callback.ctxt = ctxt; } /** * dp_pdev_get_dp_txrx_handle() - get dp handle from pdev * @soc: datapath soc handle * @pdev_id: id of datapath pdev handle * * Return: opaque pointer to dp txrx handle */ static void *dp_pdev_get_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (qdf_unlikely(!pdev)) return NULL; return pdev->dp_txrx_handle; } /** * dp_pdev_set_dp_txrx_handle() - set dp handle in pdev * @soc: datapath soc handle * @pdev_id: id of datapath pdev handle * @dp_txrx_hdl: opaque pointer for dp_txrx_handle * * Return: void */ static void dp_pdev_set_dp_txrx_handle(struct cdp_soc_t *soc, uint8_t pdev_id, void *dp_txrx_hdl) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return; pdev->dp_txrx_handle = dp_txrx_hdl; } /** * dp_vdev_get_dp_ext_handle() - get dp handle from vdev * @soc: datapath soc handle * @vdev_id: vdev id * * Return: opaque pointer to dp txrx handle */ static void *dp_vdev_get_dp_ext_handle(ol_txrx_soc_handle soc, uint8_t vdev_id) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev) return NULL; return vdev->vdev_dp_ext_handle; } /** * dp_vdev_set_dp_ext_handle() - set dp handle in vdev * @soc: datapath soc handle * @vdev_id: vdev id * @size: size of advance dp handle * * Return: QDF_STATUS */ static QDF_STATUS dp_vdev_set_dp_ext_handle(ol_txrx_soc_handle soc, uint8_t vdev_id, uint16_t size) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); void *dp_ext_handle; if (!vdev) return QDF_STATUS_E_FAILURE; dp_ext_handle = qdf_mem_malloc(size); if (!dp_ext_handle) return QDF_STATUS_E_FAILURE; vdev->vdev_dp_ext_handle = dp_ext_handle; return QDF_STATUS_SUCCESS; } /** * dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc * @soc_handle: datapath soc handle * * Return: opaque pointer to external dp (non-core DP) */ static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle) { struct dp_soc *soc = (struct dp_soc *)soc_handle; return soc->external_txrx_handle; } /** * dp_soc_set_dp_txrx_handle() - set external dp handle in soc * @soc_handle: datapath soc handle * @txrx_handle: opaque pointer to external dp (non-core DP) * * Return: void */ static void dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle) { struct dp_soc *soc = (struct dp_soc *)soc_handle; soc->external_txrx_handle = txrx_handle; } /** * dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping * @soc_hdl: datapath soc handle * @pdev_id: id of the datapath pdev handle * @lmac_id: lmac id * * Return: QDF_STATUS */ static QDF_STATUS dp_soc_map_pdev_to_lmac (struct cdp_soc_t *soc_hdl, uint8_t pdev_id, uint32_t lmac_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; wlan_cfg_set_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id, lmac_id); /*Set host PDEV ID for lmac_id*/ wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx, pdev_id, lmac_id); return QDF_STATUS_SUCCESS; } /** * dp_soc_handle_pdev_mode_change() - Update pdev to lmac mapping * @soc_hdl: datapath soc handle * @pdev_id: id of the datapath pdev handle * @lmac_id: lmac id * * In the event of a dynamic mode change, update the pdev to lmac mapping * * Return: QDF_STATUS */ static QDF_STATUS dp_soc_handle_pdev_mode_change (struct cdp_soc_t *soc_hdl, uint8_t pdev_id, uint32_t lmac_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_vdev *vdev = NULL; uint8_t hw_pdev_id, mac_id; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx); if (qdf_unlikely(!pdev)) return QDF_STATUS_E_FAILURE; pdev->lmac_id = lmac_id; dp_info(" mode change %d %d\n", pdev->pdev_id, pdev->lmac_id); /*Set host PDEV ID for lmac_id*/ wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx, pdev->pdev_id, lmac_id); hw_pdev_id = dp_get_target_pdev_id_for_host_pdev_id(soc, pdev->pdev_id); /* * When NSS offload is enabled, send pdev_id->lmac_id * and pdev_id to hw_pdev_id to NSS FW */ if (nss_config) { mac_id = pdev->lmac_id; if (soc->cdp_soc.ol_ops->pdev_update_lmac_n_target_pdev_id) soc->cdp_soc.ol_ops-> pdev_update_lmac_n_target_pdev_id( soc->ctrl_psoc, &pdev_id, &mac_id, &hw_pdev_id); } qdf_spin_lock_bh(&pdev->vdev_list_lock); TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { HTT_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata, hw_pdev_id); vdev->lmac_id = pdev->lmac_id; } qdf_spin_unlock_bh(&pdev->vdev_list_lock); return QDF_STATUS_SUCCESS; } /** * dp_soc_set_pdev_status_down() - set pdev down/up status * @soc: datapath soc handle * @pdev_id: id of datapath pdev handle * @is_pdev_down: pdev down/up status * * Return: QDF_STATUS */ static QDF_STATUS dp_soc_set_pdev_status_down(struct cdp_soc_t *soc, uint8_t pdev_id, bool is_pdev_down) { struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; pdev->is_pdev_down = is_pdev_down; return QDF_STATUS_SUCCESS; } /** * dp_get_cfg_capabilities() - get dp capabilities * @soc_handle: datapath soc handle * @dp_caps: enum for dp capabilities * * Return: bool to determine if dp caps is enabled */ static bool dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle, enum cdp_capabilities dp_caps) { struct dp_soc *soc = (struct dp_soc *)soc_handle; return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps); } #ifdef FEATURE_AST static QDF_STATUS dp_peer_teardown_wifi3(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *peer_mac) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev_id); /* Peer can be null for monitor vap mac address */ if (!peer) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "%s: Invalid peer\n", __func__); return QDF_STATUS_E_FAILURE; } /* * For BSS peer, new peer is not created on alloc_node if the * peer with same address already exists , instead refcnt is * increased for existing peer. Correspondingly in delete path, * only refcnt is decreased; and peer is only deleted , when all * references are deleted. So delete_in_progress should not be set * for bss_peer, unless only 3 reference remains (peer map reference, * peer hash table reference and above local reference). */ if (peer->bss_peer && (qdf_atomic_read(&peer->ref_cnt) > 3)) { status = QDF_STATUS_E_FAILURE; goto fail; } qdf_spin_lock_bh(&soc->ast_lock); peer->delete_in_progress = true; dp_peer_delete_ast_entries(soc, peer); qdf_spin_unlock_bh(&soc->ast_lock); fail: if (peer) dp_peer_unref_delete(peer); return status; } #endif #ifdef ATH_SUPPORT_NAC_RSSI /** * dp_vdev_get_neighbour_rssi(): Store RSSI for configured NAC * @soc_hdl: DP soc handle * @vdev_id: id of DP vdev handle * @mac_addr: neighbour mac * @rssi: rssi value * * Return: 0 for success. nonzero for failure. */ static QDF_STATUS dp_vdev_get_neighbour_rssi(struct cdp_soc_t *soc, uint8_t vdev_id, char *mac_addr, uint8_t *rssi) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); struct dp_pdev *pdev; struct dp_neighbour_peer *peer = NULL; QDF_STATUS status = QDF_STATUS_E_FAILURE; if (!vdev) return status; pdev = vdev->pdev; *rssi = 0; qdf_spin_lock_bh(&pdev->neighbour_peer_mutex); TAILQ_FOREACH(peer, &pdev->neighbour_peers_list, neighbour_peer_list_elem) { if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0], mac_addr, QDF_MAC_ADDR_SIZE) == 0) { *rssi = peer->rssi; status = QDF_STATUS_SUCCESS; break; } } qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex); return status; } static QDF_STATUS dp_config_for_nac_rssi(struct cdp_soc_t *cdp_soc, uint8_t vdev_id, enum cdp_nac_param_cmd cmd, char *bssid, char *client_macaddr, uint8_t chan_num) { struct dp_soc *soc = (struct dp_soc *)cdp_soc; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); struct dp_pdev *pdev; if (!vdev) return QDF_STATUS_E_FAILURE; pdev = (struct dp_pdev *)vdev->pdev; pdev->nac_rssi_filtering = 1; /* Store address of NAC (neighbour peer) which will be checked * against TA of received packets. */ if (cmd == CDP_NAC_PARAM_ADD) { dp_update_filter_neighbour_peers(cdp_soc, vdev->vdev_id, DP_NAC_PARAM_ADD, (uint8_t *)client_macaddr); } else if (cmd == CDP_NAC_PARAM_DEL) { dp_update_filter_neighbour_peers(cdp_soc, vdev->vdev_id, DP_NAC_PARAM_DEL, (uint8_t *)client_macaddr); } if (soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi) soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi (soc->ctrl_psoc, pdev->pdev_id, vdev->vdev_id, cmd, bssid, client_macaddr); return QDF_STATUS_SUCCESS; } #endif /** * dp_enable_peer_based_pktlog() - Set Flag for peer based filtering * for pktlog * @soc: cdp_soc handle * @pdev_id: id of dp pdev handle * @mac_addr: Peer mac address * @enb_dsb: Enable or disable peer based filtering * * Return: QDF_STATUS */ static int dp_enable_peer_based_pktlog(struct cdp_soc_t *soc, uint8_t pdev_id, uint8_t *mac_addr, uint8_t enb_dsb) { struct dp_peer *peer; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) { dp_err("Invalid Pdev for pdev_id %d", pdev_id); return QDF_STATUS_E_FAILURE; } peer = (struct dp_peer *)dp_find_peer_by_addr((struct cdp_pdev *)pdev, mac_addr); if (!peer) { dp_err("Invalid Peer"); return QDF_STATUS_E_FAILURE; } peer->peer_based_pktlog_filter = enb_dsb; pdev->dp_peer_based_pktlog = enb_dsb; return QDF_STATUS_SUCCESS; } #ifndef WLAN_SUPPORT_RX_TAG_STATISTICS /** * dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for * given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol) * @soc: cdp_soc handle * @pdev_id: id of cdp_pdev handle * @protocol_type: protocol type for which stats should be displayed * * Return: none */ static inline void dp_dump_pdev_rx_protocol_tag_stats(struct cdp_soc_t *soc, uint8_t pdev_id, uint16_t protocol_type) { } #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */ #ifndef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG /** * dp_update_pdev_rx_protocol_tag - Add/remove a protocol tag that should be * applied to the desired protocol type packets * @soc: soc handle * @pdev_id: id of cdp_pdev handle * @enable_rx_protocol_tag - bitmask that indicates what protocol types * are enabled for tagging. zero indicates disable feature, non-zero indicates * enable feature * @protocol_type: new protocol type for which the tag is being added * @tag: user configured tag for the new protocol * * Return: Success */ static inline QDF_STATUS dp_update_pdev_rx_protocol_tag(struct cdp_soc_t *soc, uint8_t pdev_id, uint32_t enable_rx_protocol_tag, uint16_t protocol_type, uint16_t tag) { return QDF_STATUS_SUCCESS; } #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */ #ifndef WLAN_SUPPORT_RX_FLOW_TAG /** * dp_set_rx_flow_tag - add/delete a flow * @soc: soc handle * @pdev_id: id of cdp_pdev handle * @flow_info: flow tuple that is to be added to/deleted from flow search table * * Return: Success */ static inline QDF_STATUS dp_set_rx_flow_tag(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, struct cdp_rx_flow_info *flow_info) { return QDF_STATUS_SUCCESS; } /** * dp_dump_rx_flow_tag_stats - dump the number of packets tagged for * given flow 5-tuple * @cdp_soc: soc handle * @pdev_id: id of cdp_pdev handle * @flow_info: flow 5-tuple for which stats should be displayed * * Return: Success */ static inline QDF_STATUS dp_dump_rx_flow_tag_stats(struct cdp_soc_t *cdp_soc, uint8_t pdev_id, struct cdp_rx_flow_info *flow_info) { return QDF_STATUS_SUCCESS; } #endif /* WLAN_SUPPORT_RX_FLOW_TAG */ static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t *soc_hdl, uint32_t max_peers, uint32_t max_ast_index, bool peer_map_unmap_v2) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; soc->max_peers = max_peers; qdf_print ("%s max_peers %u, max_ast_index: %u\n", __func__, max_peers, max_ast_index); wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index); if (dp_peer_find_attach(soc)) return QDF_STATUS_E_FAILURE; soc->is_peer_map_unmap_v2 = peer_map_unmap_v2; return QDF_STATUS_SUCCESS; } static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle, void *stats_ctx) { struct dp_soc *soc = (struct dp_soc *)soc_handle; soc->rate_stats_ctx = (struct cdp_soc_rate_stats_ctx *)stats_ctx; } #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE static QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_vdev *vdev = NULL; struct dp_peer *peer = NULL; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (!pdev) return QDF_STATUS_E_FAILURE; qdf_spin_lock_bh(&soc->peer_ref_mutex); qdf_spin_lock_bh(&pdev->vdev_list_lock); TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (peer && !peer->bss_peer) dp_wdi_event_handler( WDI_EVENT_FLUSH_RATE_STATS_REQ, soc, peer->wlanstats_ctx, peer->peer_ids[0], WDI_NO_VAL, pdev_id); } } qdf_spin_unlock_bh(&pdev->vdev_list_lock); qdf_spin_unlock_bh(&soc->peer_ref_mutex); return QDF_STATUS_SUCCESS; } #else static inline QDF_STATUS dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { return QDF_STATUS_SUCCESS; } #endif #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE static QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *buf) { dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS, (struct dp_soc *)soc, buf, HTT_INVALID_PEER, WDI_NO_VAL, pdev_id); return QDF_STATUS_SUCCESS; } #else static inline QDF_STATUS dp_peer_flush_rate_stats(struct cdp_soc_t *soc, uint8_t pdev_id, void *buf) { return QDF_STATUS_SUCCESS; } #endif static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle) { struct dp_soc *soc = (struct dp_soc *)soc_handle; return soc->rate_stats_ctx; } /* * dp_get_cfg() - get dp cfg * @soc: cdp soc handle * @cfg: cfg enum * * Return: cfg value */ static uint32_t dp_get_cfg(struct cdp_soc_t *soc, enum cdp_dp_cfg cfg) { struct dp_soc *dpsoc = (struct dp_soc *)soc; uint32_t value = 0; switch (cfg) { case cfg_dp_enable_data_stall: value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection; break; case cfg_dp_enable_ip_tcp_udp_checksum_offload: value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload; break; case cfg_dp_tso_enable: value = dpsoc->wlan_cfg_ctx->tso_enabled; break; case cfg_dp_lro_enable: value = dpsoc->wlan_cfg_ctx->lro_enabled; break; case cfg_dp_gro_enable: value = dpsoc->wlan_cfg_ctx->gro_enabled; break; case cfg_dp_tx_flow_start_queue_offset: value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset; break; case cfg_dp_tx_flow_stop_queue_threshold: value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold; break; case cfg_dp_disable_intra_bss_fwd: value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd; break; case cfg_dp_pktlog_buffer_size: value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size; break; default: value = 0; } return value; } #ifdef PEER_FLOW_CONTROL /** * dp_tx_flow_ctrl_configure_pdev() - Configure flow control params * @soc_handle: datapath soc handle * @pdev_id: id of datapath pdev handle * @param: ol ath params * @value: value of the flag * @buff: Buffer to be passed * * Implemented this function same as legacy function. In legacy code, single * function is used to display stats and update pdev params. * * Return: 0 for success. nonzero for failure. */ static uint32_t dp_tx_flow_ctrl_configure_pdev(struct cdp_soc_t *soc_handle, uint8_t pdev_id, enum _dp_param_t param, uint32_t value, void *buff) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3((struct dp_soc *)soc, pdev_id); if (qdf_unlikely(!pdev)) return 1; soc = pdev->soc; if (!soc) return 1; switch (param) { #ifdef QCA_ENH_V3_STATS_SUPPORT case DP_PARAM_VIDEO_DELAY_STATS_FC: if (value) pdev->delay_stats_flag = true; else pdev->delay_stats_flag = false; break; case DP_PARAM_VIDEO_STATS_FC: qdf_print("------- TID Stats ------\n"); dp_pdev_print_tid_stats(pdev); qdf_print("------ Delay Stats ------\n"); dp_pdev_print_delay_stats(pdev); break; #endif case DP_PARAM_TOTAL_Q_SIZE: { uint32_t tx_min, tx_max; tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx); tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx); if (!buff) { if ((value >= tx_min) && (value <= tx_max)) { pdev->num_tx_allowed = value; } else { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "Failed to update num_tx_allowed, Q_min = %d Q_max = %d", tx_min, tx_max); break; } } else { *(int *)buff = pdev->num_tx_allowed; } } break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "%s: not handled param %d ", __func__, param); break; } return 0; } #endif /** * dp_set_pdev_pcp_tid_map_wifi3(): update pcp tid map in pdev * @psoc: dp soc handle * @pdev_id: id of DP_PDEV handle * @pcp: pcp value * @tid: tid value passed by the user * * Return: QDF_STATUS_SUCCESS on success */ static QDF_STATUS dp_set_pdev_pcp_tid_map_wifi3(ol_txrx_soc_handle psoc, uint8_t pdev_id, uint8_t pcp, uint8_t tid) { struct dp_soc *soc = (struct dp_soc *)psoc; soc->pcp_tid_map[pcp] = tid; hal_tx_update_pcp_tid_map(soc->hal_soc, pcp, tid); return QDF_STATUS_SUCCESS; } /** * dp_set_vdev_pcp_tid_map_wifi3(): update pcp tid map in vdev * @soc: DP soc handle * @vdev_id: id of DP_VDEV handle * @pcp: pcp value * @tid: tid value passed by the user * * Return: QDF_STATUS_SUCCESS on success */ static QDF_STATUS dp_set_vdev_pcp_tid_map_wifi3(struct cdp_soc_t *soc, uint8_t vdev_id, uint8_t pcp, uint8_t tid) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); if (!vdev) return QDF_STATUS_E_FAILURE; vdev->pcp_tid_map[pcp] = tid; return QDF_STATUS_SUCCESS; } #ifdef QCA_SUPPORT_FULL_MON static inline QDF_STATUS dp_config_full_mon_mode(struct cdp_soc_t *soc_handle, uint8_t val) { struct dp_soc *soc = (struct dp_soc *)soc_handle; soc->full_mon_mode = val; qdf_alert("Configure full monitor mode val: %d ", val); return QDF_STATUS_SUCCESS; } #else static inline QDF_STATUS dp_config_full_mon_mode(struct cdp_soc_t *soc_handle, uint8_t val) { return 0; } #endif static struct cdp_cmn_ops dp_ops_cmn = { .txrx_soc_attach_target = dp_soc_attach_target_wifi3, .txrx_vdev_attach = dp_vdev_attach_wifi3, .txrx_vdev_detach = dp_vdev_detach_wifi3, .txrx_pdev_attach = dp_pdev_attach_wifi3, .txrx_pdev_detach = dp_pdev_detach_wifi3, .txrx_pdev_deinit = dp_pdev_deinit_wifi3, .txrx_peer_create = dp_peer_create_wifi3, .txrx_peer_setup = dp_peer_setup_wifi3, #ifdef FEATURE_AST .txrx_peer_teardown = dp_peer_teardown_wifi3, #else .txrx_peer_teardown = NULL, #endif .txrx_peer_add_ast = dp_peer_add_ast_wifi3, .txrx_peer_update_ast = dp_peer_update_ast_wifi3, .txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3, .txrx_peer_get_ast_info_by_pdev = dp_peer_get_ast_info_by_pdevid_wifi3, .txrx_peer_ast_delete_by_soc = dp_peer_ast_entry_del_by_soc, .txrx_peer_ast_delete_by_pdev = dp_peer_ast_entry_del_by_pdev, .txrx_peer_delete = dp_peer_delete_wifi3, .txrx_vdev_register = dp_vdev_register_wifi3, .txrx_soc_detach = dp_soc_detach_wifi3, .txrx_soc_deinit = dp_soc_deinit_wifi3, .txrx_soc_init = dp_soc_init_wifi3, .txrx_tso_soc_attach = dp_tso_soc_attach, .txrx_tso_soc_detach = dp_tso_soc_detach, .txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3, .txrx_get_mon_vdev_from_pdev = dp_get_mon_vdev_from_pdev_wifi3, .txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3, .txrx_ath_getstats = dp_get_device_stats, .addba_requestprocess = dp_addba_requestprocess_wifi3, .addba_responsesetup = dp_addba_responsesetup_wifi3, .addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3, .delba_process = dp_delba_process_wifi3, .set_addba_response = dp_set_addba_response, .flush_cache_rx_queue = NULL, /* TODO: get API's for dscp-tid need to be added*/ .set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3, .set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3, .txrx_get_total_per = dp_get_total_per, .txrx_stats_request = dp_txrx_stats_request, .txrx_set_monitor_mode = dp_vdev_set_monitor_mode, .txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id, .display_stats = dp_txrx_dump_stats, .txrx_intr_attach = dp_soc_interrupt_attach_wrapper, .txrx_intr_detach = dp_soc_interrupt_detach, .set_pn_check = dp_set_pn_check_wifi3, .set_key_sec_type = dp_set_key_sec_type_wifi3, .update_config_parameters = dp_update_config_parameters, /* TODO: Add other functions */ .txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set, .get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle, .set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle, .get_vdev_dp_ext_txrx_handle = dp_vdev_get_dp_ext_handle, .set_vdev_dp_ext_txrx_handle = dp_vdev_set_dp_ext_handle, .get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle, .set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle, .map_pdev_to_lmac = dp_soc_map_pdev_to_lmac, .handle_mode_change = dp_soc_handle_pdev_mode_change, .set_pdev_status_down = dp_soc_set_pdev_status_down, .txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout, .txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout, .tx_send = dp_tx_send, .txrx_peer_reset_ast = dp_wds_reset_ast_wifi3, .txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3, .txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3, .txrx_peer_map_attach = dp_peer_map_attach_wifi3, .txrx_get_os_rx_handles_from_vdev = dp_get_os_rx_handles_from_vdev_wifi3, .delba_tx_completion = dp_delba_tx_completion_wifi3, .get_dp_capabilities = dp_get_cfg_capabilities, .txrx_get_cfg = dp_get_cfg, .set_rate_stats_ctx = dp_soc_set_rate_stats_ctx, .get_rate_stats_ctx = dp_soc_get_rate_stats_ctx, .txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats, .txrx_flush_rate_stats_request = dp_flush_rate_stats_req, .set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3, .set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3, .txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler, #ifdef QCA_MULTIPASS_SUPPORT .set_vlan_groupkey = dp_set_vlan_groupkey, #endif .get_peer_mac_list = dp_get_peer_mac_list, .tx_send_exc = dp_tx_send_exception, }; static struct cdp_ctrl_ops dp_ops_ctrl = { .txrx_peer_authorize = dp_peer_authorize, #ifdef VDEV_PEER_PROTOCOL_COUNT .txrx_enable_peer_protocol_count = dp_enable_vdev_peer_protocol_count, .txrx_set_peer_protocol_drop_mask = dp_enable_vdev_peer_protocol_drop_mask, .txrx_is_peer_protocol_count_enabled = dp_is_vdev_peer_protocol_count_enabled, .txrx_get_peer_protocol_drop_mask = dp_get_vdev_peer_protocol_drop_mask, #endif .txrx_set_vdev_param = dp_set_vdev_param, .txrx_set_psoc_param = dp_set_psoc_param, .txrx_get_psoc_param = dp_get_psoc_param, .txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest, .txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest, #if defined(ATH_SUPPORT_NAC_RSSI) || defined(ATH_SUPPORT_NAC) .txrx_update_filter_neighbour_peers = dp_update_filter_neighbour_peers, #endif /* ATH_SUPPORT_NAC_RSSI || ATH_SUPPORT_NAC */ .txrx_get_sec_type = dp_get_sec_type, .txrx_wdi_event_sub = dp_wdi_event_sub, .txrx_wdi_event_unsub = dp_wdi_event_unsub, #ifdef WDI_EVENT_ENABLE .txrx_get_pldev = dp_get_pldev, #endif .txrx_set_pdev_param = dp_set_pdev_param, .txrx_get_pdev_param = dp_get_pdev_param, .txrx_set_peer_param = dp_set_peer_param, .txrx_get_peer_param = dp_get_peer_param, #ifdef VDEV_PEER_PROTOCOL_COUNT .txrx_peer_protocol_cnt = dp_peer_stats_update_protocol_cnt, #endif #ifdef ATH_SUPPORT_NAC_RSSI .txrx_vdev_config_for_nac_rssi = dp_config_for_nac_rssi, .txrx_vdev_get_neighbour_rssi = dp_vdev_get_neighbour_rssi, #endif .set_key = dp_set_michael_key, .txrx_get_vdev_param = dp_get_vdev_param, .enable_peer_based_pktlog = dp_enable_peer_based_pktlog, .calculate_delay_stats = dp_calculate_delay_stats, #ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG .txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag, #ifdef WLAN_SUPPORT_RX_TAG_STATISTICS .txrx_dump_pdev_rx_protocol_tag_stats = dp_dump_pdev_rx_protocol_tag_stats, #endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */ #endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */ #ifdef WLAN_SUPPORT_RX_FLOW_TAG .txrx_set_rx_flow_tag = dp_set_rx_flow_tag, .txrx_dump_rx_flow_tag_stats = dp_dump_rx_flow_tag_stats, #endif /* WLAN_SUPPORT_RX_FLOW_TAG */ #ifdef QCA_MULTIPASS_SUPPORT .txrx_peer_set_vlan_id = dp_peer_set_vlan_id, #endif /*QCA_MULTIPASS_SUPPORT*/ #if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(WLAN_RX_PKT_CAPTURE_ENH) .txrx_update_peer_pkt_capture_params = dp_peer_update_pkt_capture_params, #endif /* WLAN_TX_PKT_CAPTURE_ENH || WLAN_RX_PKT_CAPTURE_ENH */ }; static struct cdp_me_ops dp_ops_me = { #ifdef ATH_SUPPORT_IQUE .tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor, .tx_me_free_descriptor = dp_tx_me_free_descriptor, .tx_me_convert_ucast = dp_tx_me_send_convert_ucast, #endif }; static struct cdp_mon_ops dp_ops_mon = { .txrx_reset_monitor_mode = dp_reset_monitor_mode, /* Added support for HK advance filter */ .txrx_set_advance_monitor_filter = dp_pdev_set_advance_monitor_filter, .txrx_deliver_tx_mgmt = dp_deliver_tx_mgmt, .config_full_mon_mode = dp_config_full_mon_mode, }; static struct cdp_host_stats_ops dp_ops_host_stats = { .txrx_per_peer_stats = dp_get_host_peer_stats, .get_fw_peer_stats = dp_get_fw_peer_stats, .get_htt_stats = dp_get_htt_stats, #ifdef FEATURE_PERPKT_INFO .txrx_enable_enhanced_stats = dp_enable_enhanced_stats, .txrx_disable_enhanced_stats = dp_disable_enhanced_stats, #endif /* FEATURE_PERPKT_INFO */ .txrx_stats_publish = dp_txrx_stats_publish, .txrx_get_vdev_stats = dp_txrx_get_vdev_stats, .txrx_get_peer_stats = dp_txrx_get_peer_stats, .txrx_get_peer_stats_param = dp_txrx_get_peer_stats_param, .txrx_reset_peer_stats = dp_txrx_reset_peer_stats, .txrx_get_pdev_stats = dp_txrx_get_pdev_stats, .txrx_get_ratekbps = dp_txrx_get_ratekbps, .txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats, /* TODO */ }; static struct cdp_raw_ops dp_ops_raw = { /* TODO */ }; #ifdef PEER_FLOW_CONTROL static struct cdp_pflow_ops dp_ops_pflow = { dp_tx_flow_ctrl_configure_pdev, }; #endif /* CONFIG_WIN */ #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE) static struct cdp_cfr_ops dp_ops_cfr = { .txrx_cfr_filter = dp_cfr_filter, .txrx_get_cfr_rcc = dp_get_cfr_rcc, .txrx_set_cfr_rcc = dp_set_cfr_rcc, .txrx_get_cfr_dbg_stats = dp_get_cfr_dbg_stats, .txrx_clear_cfr_dbg_stats = dp_clear_cfr_dbg_stats, .txrx_enable_mon_reap_timer = dp_enable_mon_reap_timer, }; #endif #ifdef FEATURE_RUNTIME_PM /** * dp_runtime_suspend() - ensure DP is ready to runtime suspend * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * * DP is ready to runtime suspend if there are no pending TX packets. * * Return: QDF_STATUS */ static QDF_STATUS dp_runtime_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev is NULL"); return QDF_STATUS_E_INVAL; } /* Abort if there are any pending TX packets */ if (dp_get_tx_pending(dp_pdev_to_cdp_pdev(pdev)) > 0) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("Abort suspend due to pending TX packets")); return QDF_STATUS_E_AGAIN; } if (soc->intr_mode == DP_INTR_POLL) qdf_timer_stop(&soc->int_timer); return QDF_STATUS_SUCCESS; } /** * dp_flush_ring_hptp() - Update ring shadow * register HP/TP address when runtime * resume * @opaque_soc: DP soc context * * Return: None */ static void dp_flush_ring_hptp(struct dp_soc *soc, hal_ring_handle_t hal_srng) { if (hal_srng && hal_srng_get_clear_event(hal_srng, HAL_SRNG_FLUSH_EVENT)) { /* Acquire the lock */ hal_srng_access_start(soc->hal_soc, hal_srng); hal_srng_access_end(soc->hal_soc, hal_srng); hal_srng_set_flush_last_ts(hal_srng); } } /** * dp_runtime_resume() - ensure DP is ready to runtime resume * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * * Resume DP for runtime PM. * * Return: QDF_STATUS */ static QDF_STATUS dp_runtime_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); int i; if (soc->intr_mode == DP_INTR_POLL) qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS); for (i = 0; i < MAX_TCL_DATA_RINGS; i++) { dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng); } dp_flush_ring_hptp(soc, soc->reo_cmd_ring.hal_srng); return QDF_STATUS_SUCCESS; } #endif /* FEATURE_RUNTIME_PM */ /** * dp_tx_get_success_ack_stats() - get tx success completion count * @soc_hdl: Datapath soc handle * @vdevid: vdev identifier * * Return: tx success ack count */ static uint32_t dp_tx_get_success_ack_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct cdp_vdev_stats *vdev_stats = NULL; uint32_t tx_success; struct dp_vdev *vdev = (struct dp_vdev *)dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Invalid vdev id %d"), vdev_id); return 0; } vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats)); if (!vdev_stats) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "DP alloc failure - unable to get alloc vdev stats"); return 0; } qdf_spin_lock_bh(&soc->peer_ref_mutex); dp_aggregate_vdev_stats(vdev, vdev_stats); qdf_spin_unlock_bh(&soc->peer_ref_mutex); tx_success = vdev_stats->tx.tx_success.num; qdf_mem_free(vdev_stats); return tx_success; } #ifdef WLAN_SUPPORT_DATA_STALL /** * dp_register_data_stall_detect_cb() - register data stall callback * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * @data_stall_detect_callback: data stall callback function * * Return: QDF_STATUS Enumeration */ static QDF_STATUS dp_register_data_stall_detect_cb( struct cdp_soc_t *soc_hdl, uint8_t pdev_id, data_stall_detect_cb data_stall_detect_callback) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev NULL!"); return QDF_STATUS_E_INVAL; } pdev->data_stall_detect_callback = data_stall_detect_callback; return QDF_STATUS_SUCCESS; } /** * dp_deregister_data_stall_detect_cb() - de-register data stall callback * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * @data_stall_detect_callback: data stall callback function * * Return: QDF_STATUS Enumeration */ static QDF_STATUS dp_deregister_data_stall_detect_cb( struct cdp_soc_t *soc_hdl, uint8_t pdev_id, data_stall_detect_cb data_stall_detect_callback) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev NULL!"); return QDF_STATUS_E_INVAL; } pdev->data_stall_detect_callback = NULL; return QDF_STATUS_SUCCESS; } /** * dp_txrx_post_data_stall_event() - post data stall event * @soc_hdl: Datapath soc handle * @indicator: Module triggering data stall * @data_stall_type: data stall event type * @pdev_id: pdev id * @vdev_id_bitmap: vdev id bitmap * @recovery_type: data stall recovery type * * Return: None */ static void dp_txrx_post_data_stall_event(struct cdp_soc_t *soc_hdl, enum data_stall_log_event_indicator indicator, enum data_stall_log_event_type data_stall_type, uint32_t pdev_id, uint32_t vdev_id_bitmap, enum data_stall_log_recovery_type recovery_type) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct data_stall_event_info data_stall_info; struct dp_pdev *pdev; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev NULL!"); return; } if (!pdev->data_stall_detect_callback) { dp_err("data stall cb not registered!"); return; } dp_info("data_stall_type: %x pdev_id: %d", data_stall_type, pdev_id); data_stall_info.indicator = indicator; data_stall_info.data_stall_type = data_stall_type; data_stall_info.vdev_id_bitmap = vdev_id_bitmap; data_stall_info.pdev_id = pdev_id; data_stall_info.recovery_type = recovery_type; pdev->data_stall_detect_callback(&data_stall_info); } #endif /* WLAN_SUPPORT_DATA_STALL */ #ifdef DP_PEER_EXTENDED_API /** * dp_peer_get_ref_find_by_addr - get peer with addr by ref count inc * @dev: physical device instance * @peer_mac_addr: peer mac address * @debug_id: to track enum peer access * * Return: peer instance pointer */ static void * dp_peer_get_ref_find_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr, enum peer_debug_id_type debug_id) { struct dp_pdev *pdev = (struct dp_pdev *)dev; struct dp_peer *peer; peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL); if (!peer) return NULL; if (peer->delete_in_progress) { dp_err("Peer deletion in progress"); dp_peer_unref_delete(peer); return NULL; } dp_info_rl("peer %pK mac: %pM", peer, peer->mac_addr.raw); return peer; } #endif /* DP_PEER_EXTENDED_API */ #ifdef WLAN_FEATURE_STATS_EXT /* rx hw stats event wait timeout in ms */ #define DP_REO_STATUS_STATS_TIMEOUT 1500 /** * dp_txrx_ext_stats_request - request dp txrx extended stats request * @soc_hdl: soc handle * @pdev_id: pdev id * @req: stats request * * Return: QDF_STATUS */ static QDF_STATUS dp_txrx_ext_stats_request(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, struct cdp_txrx_ext_stats *req) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev is null"); return QDF_STATUS_E_INVAL; } dp_aggregate_pdev_stats(pdev); req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num; req->tx_msdu_overflow = pdev->stats.tx_i.dropped.ring_full; req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received; req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received; req->rx_mpdu_missed = soc->ext_stats.rx_mpdu_missed; req->rx_mpdu_error = soc->stats.rx.err_ring_pkts - soc->stats.rx.rx_frags; return QDF_STATUS_SUCCESS; } /** * dp_rx_hw_stats_cb - request rx hw stats response callback * @soc: soc handle * @cb_ctxt: callback context * @reo_status: reo command response status * * Return: None */ static void dp_rx_hw_stats_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_req_rx_hw_stats_t *rx_hw_stats = cb_ctxt; struct hal_reo_queue_status *queue_status = &reo_status->queue_status; bool is_query_timeout; qdf_spin_lock_bh(&soc->rx_hw_stats_lock); is_query_timeout = rx_hw_stats->is_query_timeout; /* free the cb_ctxt if all pending tid stats query is received */ if (qdf_atomic_dec_and_test(&rx_hw_stats->pending_tid_stats_cnt)) { if (!is_query_timeout) { qdf_event_set(&soc->rx_hw_stats_event); soc->is_last_stats_ctx_init = false; } qdf_mem_free(rx_hw_stats); } if (queue_status->header.status != HAL_REO_CMD_SUCCESS) { dp_info("REO stats failure %d", queue_status->header.status); qdf_spin_unlock_bh(&soc->rx_hw_stats_lock); return; } if (!is_query_timeout) { soc->ext_stats.rx_mpdu_received += queue_status->mpdu_frms_cnt; soc->ext_stats.rx_mpdu_missed += queue_status->late_recv_mpdu_cnt; } qdf_spin_unlock_bh(&soc->rx_hw_stats_lock); } /** * dp_request_rx_hw_stats - request rx hardware stats * @soc_hdl: soc handle * @vdev_id: vdev id * * Return: None */ static QDF_STATUS dp_request_rx_hw_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); struct dp_peer *peer; QDF_STATUS status; struct dp_req_rx_hw_stats_t *rx_hw_stats; int rx_stats_sent_cnt = 0; if (!vdev) { dp_err("vdev is null for vdev_id: %u", vdev_id); return QDF_STATUS_E_INVAL; } peer = dp_peer_get_ref_find_by_addr((struct cdp_pdev *)vdev->pdev, vdev->vap_bss_peer_mac_addr, 0); if (!peer) { dp_err("Peer is NULL"); return QDF_STATUS_E_INVAL; } rx_hw_stats = qdf_mem_malloc(sizeof(*rx_hw_stats)); if (!rx_hw_stats) { dp_err("malloc failed for hw stats structure"); return QDF_STATUS_E_NOMEM; } qdf_event_reset(&soc->rx_hw_stats_event); qdf_spin_lock_bh(&soc->rx_hw_stats_lock); rx_stats_sent_cnt = dp_peer_rxtid_stats(peer, dp_rx_hw_stats_cb, rx_hw_stats); if (!rx_stats_sent_cnt) { dp_err("no tid stats sent successfully"); qdf_mem_free(rx_hw_stats); qdf_spin_unlock_bh(&soc->rx_hw_stats_lock); return QDF_STATUS_E_INVAL; } qdf_atomic_set(&rx_hw_stats->pending_tid_stats_cnt, rx_stats_sent_cnt); rx_hw_stats->is_query_timeout = false; soc->is_last_stats_ctx_init = true; qdf_spin_unlock_bh(&soc->rx_hw_stats_lock); status = qdf_wait_single_event(&soc->rx_hw_stats_event, DP_REO_STATUS_STATS_TIMEOUT); qdf_spin_lock_bh(&soc->rx_hw_stats_lock); if (status != QDF_STATUS_SUCCESS) { dp_info("rx hw stats event timeout"); if (soc->is_last_stats_ctx_init) rx_hw_stats->is_query_timeout = true; } qdf_spin_unlock_bh(&soc->rx_hw_stats_lock); dp_peer_unref_delete(peer); return status; } #endif /* WLAN_FEATURE_STATS_EXT */ #ifdef DP_PEER_EXTENDED_API static struct cdp_misc_ops dp_ops_misc = { #ifdef FEATURE_WLAN_TDLS .tx_non_std = dp_tx_non_std, #endif /* FEATURE_WLAN_TDLS */ .get_opmode = dp_get_opmode, #ifdef FEATURE_RUNTIME_PM .runtime_suspend = dp_runtime_suspend, .runtime_resume = dp_runtime_resume, #endif /* FEATURE_RUNTIME_PM */ .pkt_log_init = dp_pkt_log_init, .pkt_log_con_service = dp_pkt_log_con_service, .get_num_rx_contexts = dp_get_num_rx_contexts, .get_tx_ack_stats = dp_tx_get_success_ack_stats, #ifdef WLAN_SUPPORT_DATA_STALL .txrx_data_stall_cb_register = dp_register_data_stall_detect_cb, .txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb, .txrx_post_data_stall_event = dp_txrx_post_data_stall_event, #endif #ifdef WLAN_FEATURE_STATS_EXT .txrx_ext_stats_request = dp_txrx_ext_stats_request, .request_rx_hw_stats = dp_request_rx_hw_stats, #endif /* WLAN_FEATURE_STATS_EXT */ }; #endif #ifdef DP_FLOW_CTL static struct cdp_flowctl_ops dp_ops_flowctl = { /* WIFI 3.0 DP implement as required. */ #ifdef QCA_LL_TX_FLOW_CONTROL_V2 .flow_pool_map_handler = dp_tx_flow_pool_map, .flow_pool_unmap_handler = dp_tx_flow_pool_unmap, .register_pause_cb = dp_txrx_register_pause_cb, .dump_flow_pool_info = dp_tx_dump_flow_pool_info, .tx_desc_thresh_reached = dp_tx_desc_thresh_reached, #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */ }; static struct cdp_lflowctl_ops dp_ops_l_flowctl = { /* WIFI 3.0 DP NOT IMPLEMENTED YET */ }; #endif #ifdef IPA_OFFLOAD static struct cdp_ipa_ops dp_ops_ipa = { .ipa_get_resource = dp_ipa_get_resource, .ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr, .ipa_op_response = dp_ipa_op_response, .ipa_register_op_cb = dp_ipa_register_op_cb, .ipa_get_stat = dp_ipa_get_stat, .ipa_tx_data_frame = dp_tx_send_ipa_data_frame, .ipa_enable_autonomy = dp_ipa_enable_autonomy, .ipa_disable_autonomy = dp_ipa_disable_autonomy, .ipa_setup = dp_ipa_setup, .ipa_cleanup = dp_ipa_cleanup, .ipa_setup_iface = dp_ipa_setup_iface, .ipa_cleanup_iface = dp_ipa_cleanup_iface, .ipa_enable_pipes = dp_ipa_enable_pipes, .ipa_disable_pipes = dp_ipa_disable_pipes, .ipa_set_perf_level = dp_ipa_set_perf_level, .ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd }; #endif #ifdef DP_POWER_SAVE static QDF_STATUS dp_bus_suspend(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); int timeout = SUSPEND_DRAIN_WAIT; int drain_wait_delay = 50; /* 50 ms */ if (qdf_unlikely(!pdev)) { dp_err("pdev is NULL"); return QDF_STATUS_E_INVAL; } /* Abort if there are any pending TX packets */ while (dp_get_tx_pending((struct cdp_pdev *)pdev) > 0) { qdf_sleep(drain_wait_delay); if (timeout <= 0) { dp_err("TX frames are pending, abort suspend"); return QDF_STATUS_E_TIMEOUT; } timeout = timeout - drain_wait_delay; } if (soc->intr_mode == DP_INTR_POLL) qdf_timer_stop(&soc->int_timer); /* Stop monitor reap timer and reap any pending frames in ring */ if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) || dp_is_enable_reap_timer_non_pkt(pdev)) && soc->reap_timer_init) { qdf_timer_sync_cancel(&soc->mon_reap_timer); dp_service_mon_rings(soc, DP_MON_REAP_BUDGET); } return QDF_STATUS_SUCCESS; } static QDF_STATUS dp_bus_resume(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (qdf_unlikely(!pdev)) { dp_err("pdev is NULL"); return QDF_STATUS_E_INVAL; } if (soc->intr_mode == DP_INTR_POLL) qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS); /* Start monitor reap timer */ if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) || dp_is_enable_reap_timer_non_pkt(pdev)) && soc->reap_timer_init) qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS); return QDF_STATUS_SUCCESS; } /** * dp_process_wow_ack_rsp() - process wow ack response * @soc_hdl: datapath soc handle * @pdev_id: data path pdev handle id * * Return: none */ static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (qdf_unlikely(!pdev)) { dp_err("pdev is NULL"); return; } /* * As part of wow enable FW disables the mon status ring and in wow ack * response from FW reap mon status ring to make sure no packets pending * in the ring. */ if (((pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) || dp_is_enable_reap_timer_non_pkt(pdev)) && soc->reap_timer_init) { dp_service_mon_rings(soc, DP_MON_REAP_BUDGET); } } static struct cdp_bus_ops dp_ops_bus = { .bus_suspend = dp_bus_suspend, .bus_resume = dp_bus_resume, .process_wow_ack_rsp = dp_process_wow_ack_rsp, }; #endif #ifdef DP_FLOW_CTL static struct cdp_throttle_ops dp_ops_throttle = { /* WIFI 3.0 DP NOT IMPLEMENTED YET */ }; static struct cdp_cfg_ops dp_ops_cfg = { /* WIFI 3.0 DP NOT IMPLEMENTED YET */ }; #endif #ifdef DP_PEER_EXTENDED_API static struct cdp_ocb_ops dp_ops_ocb = { /* WIFI 3.0 DP NOT IMPLEMENTED YET */ }; static struct cdp_mob_stats_ops dp_ops_mob_stats = { .clear_stats = dp_txrx_clear_dump_stats, }; static struct cdp_peer_ops dp_ops_peer = { .register_peer = dp_register_peer, .clear_peer = dp_clear_peer, .find_peer_exist = dp_find_peer_exist, .find_peer_exist_on_vdev = dp_find_peer_exist_on_vdev, .find_peer_exist_on_other_vdev = dp_find_peer_exist_on_other_vdev, .peer_state_update = dp_peer_state_update, .get_vdevid = dp_get_vdevid, .get_vdev_by_peer_addr = dp_get_vdev_by_peer_addr, .peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr, .get_peer_state = dp_get_peer_state, }; #endif static struct cdp_ops dp_txrx_ops = { .cmn_drv_ops = &dp_ops_cmn, .ctrl_ops = &dp_ops_ctrl, .me_ops = &dp_ops_me, .mon_ops = &dp_ops_mon, .host_stats_ops = &dp_ops_host_stats, .wds_ops = &dp_ops_wds, .raw_ops = &dp_ops_raw, #ifdef PEER_FLOW_CONTROL .pflow_ops = &dp_ops_pflow, #endif /* PEER_FLOW_CONTROL */ #ifdef DP_PEER_EXTENDED_API .misc_ops = &dp_ops_misc, .ocb_ops = &dp_ops_ocb, .peer_ops = &dp_ops_peer, .mob_stats_ops = &dp_ops_mob_stats, #endif #ifdef DP_FLOW_CTL .cfg_ops = &dp_ops_cfg, .flowctl_ops = &dp_ops_flowctl, .l_flowctl_ops = &dp_ops_l_flowctl, .throttle_ops = &dp_ops_throttle, #endif #ifdef IPA_OFFLOAD .ipa_ops = &dp_ops_ipa, #endif #ifdef DP_POWER_SAVE .bus_ops = &dp_ops_bus, #endif #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE) .cfr_ops = &dp_ops_cfr, #endif }; /* * dp_soc_set_txrx_ring_map() * @dp_soc: DP handler for soc * * Return: Void */ void dp_soc_set_txrx_ring_map(struct dp_soc *soc) { uint32_t i; for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) { soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DEFAULT_MAP][i]; } } #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \ defined(QCA_WIFI_QCA5018) #ifndef QCA_MEM_ATTACH_ON_WIFI3 /** * dp_soc_attach_wifi3() - Attach txrx SOC * @ctrl_psoc: Opaque SOC handle from control plane * @htc_handle: Opaque HTC handle * @hif_handle: Opaque HIF handle * @qdf_osdev: QDF device * @ol_ops: Offload Operations * @device_id: Device ID * * Return: DP SOC handle on success, NULL on failure */ struct cdp_soc_t * dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, struct hif_opaque_softc *hif_handle, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, struct ol_if_ops *ol_ops, uint16_t device_id) { struct dp_soc *dp_soc = NULL; dp_soc = dp_soc_attach(ctrl_psoc, htc_handle, qdf_osdev, ol_ops, device_id); if (!dp_soc) return NULL; if (!dp_soc_init(dp_soc, htc_handle, hif_handle)) return NULL; return dp_soc_to_cdp_soc_t(dp_soc); } #else /** * dp_soc_attach_wifi3() - Attach txrx SOC * @ctrl_psoc: Opaque SOC handle from control plane * @htc_handle: Opaque HTC handle * @hif_handle: Opaque HIF handle * @qdf_osdev: QDF device * @ol_ops: Offload Operations * @device_id: Device ID * * Return: DP SOC handle on success, NULL on failure */ struct cdp_soc_t * dp_soc_attach_wifi3(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, struct hif_opaque_softc *hif_handle, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, struct ol_if_ops *ol_ops, uint16_t device_id) { struct dp_soc *dp_soc = NULL; dp_soc = dp_soc_attach(ctrl_psoc, htc_handle, qdf_osdev, ol_ops, device_id); return dp_soc_to_cdp_soc_t(dp_soc); } #endif static inline void dp_soc_set_def_pdev(struct dp_soc *soc) { int lmac_id; for (lmac_id = 0; lmac_id < MAX_NUM_LMAC_HW; lmac_id++) { /*Set default host PDEV ID for lmac_id*/ wlan_cfg_set_pdev_idx(soc->wlan_cfg_ctx, INVALID_PDEV_ID, lmac_id); } } /** * dp_soc_attach() - Attach txrx SOC * @ctrl_psoc: Opaque SOC handle from control plane * @htc_handle: Opaque HTC handle * @qdf_osdev: QDF device * @ol_ops: Offload Operations * @device_id: Device ID * * Return: DP SOC handle on success, NULL on failure */ static struct dp_soc * dp_soc_attach(struct cdp_ctrl_objmgr_psoc *ctrl_psoc, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, struct ol_if_ops *ol_ops, uint16_t device_id) { int int_ctx; struct dp_soc *soc = NULL; struct htt_soc *htt_soc; soc = qdf_mem_malloc(sizeof(*soc)); if (!soc) { dp_err("DP SOC memory allocation failed"); goto fail0; } int_ctx = 0; soc->device_id = device_id; soc->cdp_soc.ops = &dp_txrx_ops; soc->cdp_soc.ol_ops = ol_ops; soc->ctrl_psoc = ctrl_psoc; soc->osdev = qdf_osdev; soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS; wlan_set_srng_cfg(&soc->wlan_srng_cfg); qdf_mem_zero(&soc->vdev_id_map, sizeof(soc->vdev_id_map)); soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc); if (!soc->wlan_cfg_ctx) { dp_err("wlan_cfg_ctx failed\n"); goto fail1; } dp_soc_set_interrupt_mode(soc); htt_soc = htt_soc_attach(soc, htc_handle); if (!htt_soc) goto fail1; soc->htt_handle = htt_soc; if (htt_soc_htc_prealloc(htt_soc) != QDF_STATUS_SUCCESS) goto fail2; dp_soc_set_def_pdev(soc); return soc; fail2: htt_soc_detach(htt_soc); fail1: qdf_mem_free(soc); fail0: return NULL; } /** * dp_soc_init() - Initialize txrx SOC * @dp_soc: Opaque DP SOC handle * @htc_handle: Opaque HTC handle * @hif_handle: Opaque HIF handle * * Return: DP SOC handle on success, NULL on failure */ void *dp_soc_init(struct dp_soc *soc, HTC_HANDLE htc_handle, struct hif_opaque_softc *hif_handle) { int target_type; struct htt_soc *htt_soc = (struct htt_soc *)soc->htt_handle; bool is_monitor_mode = false; htt_set_htc_handle(htt_soc, htc_handle); soc->hif_handle = hif_handle; soc->hal_soc = hif_get_hal_handle(soc->hif_handle); if (!soc->hal_soc) return NULL; htt_soc_initialize(soc->htt_handle, soc->ctrl_psoc, htt_get_htc_handle(htt_soc), soc->hal_soc, soc->osdev); target_type = hal_get_target_type(soc->hal_soc); switch (target_type) { case TARGET_TYPE_QCA6290: wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx, REO_DST_RING_SIZE_QCA6290); soc->ast_override_support = 1; soc->da_war_enabled = false; break; #if defined(QCA_WIFI_QCA6390) || defined(QCA_WIFI_QCA6490) || \ defined(QCA_WIFI_QCA6750) case TARGET_TYPE_QCA6390: case TARGET_TYPE_QCA6490: case TARGET_TYPE_QCA6750: wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx, REO_DST_RING_SIZE_QCA6290); wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true); soc->ast_override_support = 1; if (soc->cdp_soc.ol_ops->get_con_mode && soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE) { int int_ctx; for (int_ctx = 0; int_ctx < WLAN_CFG_INT_NUM_CONTEXTS; int_ctx++) { soc->wlan_cfg_ctx->int_rx_ring_mask[int_ctx] = 0; soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[int_ctx] = 0; } } soc->wlan_cfg_ctx->rxdma1_enable = 0; break; #endif /* QCA_WIFI_QCA6390 || QCA_WIFI_QCA6490 || QCA_WIFI_QCA6750 */ case TARGET_TYPE_QCA8074: wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx, REO_DST_RING_SIZE_QCA8074); wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true); soc->da_war_enabled = true; soc->is_rx_fse_full_cache_invalidate_war_enabled = true; break; case TARGET_TYPE_QCA8074V2: case TARGET_TYPE_QCA6018: wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx, REO_DST_RING_SIZE_QCA8074); wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false); soc->hw_nac_monitor_support = 1; soc->ast_override_support = 1; soc->per_tid_basize_max_tid = 8; soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS; soc->da_war_enabled = false; soc->is_rx_fse_full_cache_invalidate_war_enabled = true; break; case TARGET_TYPE_QCN9000: wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx, REO_DST_RING_SIZE_QCN9000); soc->ast_override_support = 1; soc->da_war_enabled = false; wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false); soc->hw_nac_monitor_support = 1; soc->per_tid_basize_max_tid = 8; soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS; soc->lmac_polled_mode = 1; soc->wbm_release_desc_rx_sg_support = 1; break; case TARGET_TYPE_QCA5018: wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx, REO_DST_RING_SIZE_QCA8074); soc->ast_override_support = 1; soc->da_war_enabled = false; wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false); soc->hw_nac_monitor_support = 1; soc->per_tid_basize_max_tid = 8; soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS; break; default: qdf_print("%s: Unknown tgt type %d\n", __func__, target_type); qdf_assert_always(0); break; } dp_soc_set_interrupt_mode(soc); if (soc->cdp_soc.ol_ops->get_con_mode && soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE) is_monitor_mode = true; wlan_cfg_fill_interrupt_mask(soc->wlan_cfg_ctx, soc->intr_mode, is_monitor_mode); wlan_cfg_set_rx_hash(soc->wlan_cfg_ctx, cfg_get(soc->ctrl_psoc, CFG_DP_RX_HASH)); soc->cce_disable = false; qdf_atomic_init(&soc->num_tx_outstanding); soc->num_tx_allowed = wlan_cfg_get_dp_soc_tx_device_limit(soc->wlan_cfg_ctx); if (soc->cdp_soc.ol_ops->get_dp_cfg_param) { int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc, CDP_CFG_MAX_PEER_ID); if (ret != -EINVAL) { wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret); } ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc, CDP_CFG_CCE_DISABLE); if (ret == 1) soc->cce_disable = true; } qdf_spinlock_create(&soc->peer_ref_mutex); qdf_spinlock_create(&soc->ast_lock); qdf_spinlock_create(&soc->reo_desc_freelist_lock); qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE); INIT_RX_HW_STATS_LOCK(soc); /* fill the tx/rx cpu ring map*/ dp_soc_set_txrx_ring_map(soc); qdf_spinlock_create(&soc->htt_stats.lock); /* initialize work queue for stats processing */ qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc); return soc; } /** * dp_soc_init_wifi3() - Initialize txrx SOC * @soc: Opaque DP SOC handle * @ctrl_psoc: Opaque SOC handle from control plane(Unused) * @hif_handle: Opaque HIF handle * @htc_handle: Opaque HTC handle * @qdf_osdev: QDF device (Unused) * @ol_ops: Offload Operations (Unused) * @device_id: Device ID (Unused) * * Return: DP SOC handle on success, NULL on failure */ void *dp_soc_init_wifi3(struct cdp_soc_t *soc, struct cdp_ctrl_objmgr_psoc *ctrl_psoc, struct hif_opaque_softc *hif_handle, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, struct ol_if_ops *ol_ops, uint16_t device_id) { return dp_soc_init((struct dp_soc *)soc, htc_handle, hif_handle); } #endif /* * dp_get_pdev_for_mac_id() - Return pdev for mac_id * * @soc: handle to DP soc * @mac_id: MAC id * * Return: Return pdev corresponding to MAC */ void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id) { if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) return (mac_id < MAX_PDEV_CNT) ? soc->pdev_list[mac_id] : NULL; /* Typically for MCL as there only 1 PDEV*/ return soc->pdev_list[0]; } /* * dp_is_hw_dbs_enable() - Procedure to check if DBS is supported * @soc: DP SoC context * @max_mac_rings: No of MAC rings * * Return: None */ void dp_is_hw_dbs_enable(struct dp_soc *soc, int *max_mac_rings) { bool dbs_enable = false; if (soc->cdp_soc.ol_ops->is_hw_dbs_2x2_capable) dbs_enable = soc->cdp_soc.ol_ops-> is_hw_dbs_2x2_capable((void *)soc->ctrl_psoc); *max_mac_rings = (dbs_enable)?(*max_mac_rings):1; } #if defined(WLAN_CFR_ENABLE) && defined(WLAN_ENH_CFR_ENABLE) /* * dp_cfr_filter() - Configure HOST RX monitor status ring for CFR * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * @enable: Enable/Disable CFR * @filter_val: Flag to select Filter for monitor mode */ static void dp_cfr_filter(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable, struct cdp_monitor_filter *filter_val) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = NULL; struct htt_rx_ring_tlv_filter htt_tlv_filter = {0}; int max_mac_rings; uint8_t mac_id = 0; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev is NULL"); return; } if (pdev->monitor_vdev) { dp_info("No action is needed since monitor mode is enabled\n"); return; } soc = pdev->soc; pdev->cfr_rcc_mode = false; max_mac_rings = wlan_cfg_get_num_mac_rings(pdev->wlan_cfg_ctx); dp_is_hw_dbs_enable(soc, &max_mac_rings); dp_debug("Max_mac_rings %d", max_mac_rings); dp_info("enable : %d, mode: 0x%x", enable, filter_val->mode); if (enable) { pdev->cfr_rcc_mode = true; htt_tlv_filter.ppdu_start = 1; htt_tlv_filter.ppdu_end = 1; htt_tlv_filter.ppdu_end_user_stats = 1; htt_tlv_filter.ppdu_end_user_stats_ext = 1; htt_tlv_filter.ppdu_end_status_done = 1; htt_tlv_filter.mpdu_start = 1; htt_tlv_filter.offset_valid = false; htt_tlv_filter.enable_fp = (filter_val->mode & MON_FILTER_PASS) ? 1 : 0; htt_tlv_filter.enable_md = 0; htt_tlv_filter.enable_mo = (filter_val->mode & MON_FILTER_OTHER) ? 1 : 0; htt_tlv_filter.fp_mgmt_filter = filter_val->fp_mgmt; htt_tlv_filter.fp_ctrl_filter = filter_val->fp_ctrl; htt_tlv_filter.fp_data_filter = filter_val->fp_data; htt_tlv_filter.mo_mgmt_filter = filter_val->mo_mgmt; htt_tlv_filter.mo_ctrl_filter = filter_val->mo_ctrl; htt_tlv_filter.mo_data_filter = filter_val->mo_data; } for (mac_id = 0; mac_id < max_mac_rings; mac_id++) { int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id); htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev, soc->rxdma_mon_status_ring[mac_id] .hal_srng, RXDMA_MONITOR_STATUS, RX_DATA_BUFFER_SIZE, &htt_tlv_filter); } } /** * dp_get_cfr_rcc() - get cfr rcc config * @soc_hdl: Datapath soc handle * @pdev_id: id of objmgr pdev * * Return: true/false based on cfr mode setting */ static bool dp_get_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = NULL; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev is NULL"); return false; } return pdev->cfr_rcc_mode; } /** * dp_set_cfr_rcc() - enable/disable cfr rcc config * @soc_hdl: Datapath soc handle * @pdev_id: id of objmgr pdev * @enable: Enable/Disable cfr rcc mode * * Return: none */ static void dp_set_cfr_rcc(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = NULL; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev is NULL"); return; } pdev->cfr_rcc_mode = enable; } /* * dp_get_cfr_dbg_stats - Get the debug statistics for CFR * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * @cfr_rcc_stats: CFR RCC debug statistics buffer * * Return: none */ static inline void dp_get_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, struct cdp_cfr_rcc_stats *cfr_rcc_stats) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("Invalid pdev"); return; } qdf_mem_copy(cfr_rcc_stats, &pdev->stats.rcc, sizeof(struct cdp_cfr_rcc_stats)); } /* * dp_clear_cfr_dbg_stats - Clear debug statistics for CFR * @soc_hdl: Datapath soc handle * @pdev_id: id of data path pdev handle * * Return: none */ static void dp_clear_cfr_dbg_stats(struct cdp_soc_t *soc_hdl, uint8_t pdev_id) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("dp pdev is NULL"); return; } qdf_mem_zero(&pdev->stats.rcc, sizeof(pdev->stats.rcc)); } /* * dp_enable_mon_reap_timer() - enable/disable reap timer * @soc_hdl: Datapath soc handle * @pdev_id: id of objmgr pdev * @enable: Enable/Disable reap timer of monitor status ring * * Return: none */ static void dp_enable_mon_reap_timer(struct cdp_soc_t *soc_hdl, uint8_t pdev_id, bool enable) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); struct dp_pdev *pdev = NULL; pdev = dp_get_pdev_from_soc_pdev_id_wifi3(soc, pdev_id); if (!pdev) { dp_err("pdev is NULL"); return; } pdev->enable_reap_timer_non_pkt = enable; if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) { dp_debug("pktlog enabled %d", pdev->rx_pktlog_mode); return; } if (!soc->reap_timer_init) { dp_err("reap timer not init"); return; } if (enable) qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS); else qdf_timer_sync_cancel(&soc->mon_reap_timer); } #endif /* * dp_is_enable_reap_timer_non_pkt() - check if mon reap timer is * enabled by non-pkt log or not * @pdev: point to dp pdev * * Return: true if mon reap timer is enabled by non-pkt log */ static bool dp_is_enable_reap_timer_non_pkt(struct dp_pdev *pdev) { if (!pdev) { dp_err("null pdev"); return false; } return pdev->enable_reap_timer_non_pkt; } /* * dp_is_soc_reinit() - Check if soc reinit is true * @soc: DP SoC context * * Return: true or false */ bool dp_is_soc_reinit(struct dp_soc *soc) { return soc->dp_soc_reinit; } /* * dp_set_pktlog_wifi3() - attach txrx vdev * @pdev: Datapath PDEV handle * @event: which event's notifications are being subscribed to * @enable: WDI event subscribe or not. (True or False) * * Return: Success, NULL on failure */ #ifdef WDI_EVENT_ENABLE int dp_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event, bool enable) { struct dp_soc *soc = NULL; int max_mac_rings = wlan_cfg_get_num_mac_rings (pdev->wlan_cfg_ctx); uint8_t mac_id = 0; soc = pdev->soc; dp_is_hw_dbs_enable(soc, &max_mac_rings); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, FL("Max_mac_rings %d "), max_mac_rings); if (enable) { switch (event) { case WDI_EVENT_RX_DESC: if (pdev->monitor_vdev) { /* Nothing needs to be done if monitor mode is * enabled */ return 0; } if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_FULL) { pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL; dp_mon_filter_setup_rx_pkt_log_full(pdev); if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Pktlog full filters set failed")); dp_mon_filter_reset_rx_pkt_log_full(pdev); pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED; return 0; } if (soc->reap_timer_init && (!dp_is_enable_reap_timer_non_pkt(pdev))) qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS); } break; case WDI_EVENT_LITE_RX: if (pdev->monitor_vdev) { /* Nothing needs to be done if monitor mode is * enabled */ return 0; } if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_LITE) { pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE; /* * Set the packet log lite mode filter. */ dp_mon_filter_setup_rx_pkt_log_lite(pdev); if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Pktlog lite filters set failed")); dp_mon_filter_reset_rx_pkt_log_lite(pdev); pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED; return 0; } if (soc->reap_timer_init && (!dp_is_enable_reap_timer_non_pkt(pdev))) qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS); } break; case WDI_EVENT_LITE_T2H: if (pdev->monitor_vdev) { /* Nothing needs to be done if monitor mode is * enabled */ return 0; } for (mac_id = 0; mac_id < max_mac_rings; mac_id++) { int mac_for_pdev = dp_get_mac_id_for_pdev( mac_id, pdev->pdev_id); pdev->pktlog_ppdu_stats = true; dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_TXLITE_STATS_BITMASK_CFG, mac_for_pdev); } break; default: /* Nothing needs to be done for other pktlog types */ break; } } else { switch (event) { case WDI_EVENT_RX_DESC: case WDI_EVENT_LITE_RX: if (pdev->monitor_vdev) { /* Nothing needs to be done if monitor mode is * enabled */ return 0; } if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) { pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED; dp_mon_filter_reset_rx_pkt_log_full(pdev); if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Pktlog filters reset failed")); return 0; } dp_mon_filter_reset_rx_pkt_log_lite(pdev); if (dp_mon_filter_update(pdev) != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Pktlog filters reset failed")); return 0; } if (soc->reap_timer_init && (!dp_is_enable_reap_timer_non_pkt(pdev))) qdf_timer_stop(&soc->mon_reap_timer); } break; case WDI_EVENT_LITE_T2H: if (pdev->monitor_vdev) { /* Nothing needs to be done if monitor mode is * enabled */ return 0; } /* To disable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW * passing value 0. Once these macros will define in htt * header file will use proper macros */ for (mac_id = 0; mac_id < max_mac_rings; mac_id++) { int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev->pdev_id); pdev->pktlog_ppdu_stats = false; if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) { dp_h2t_cfg_stats_msg_send(pdev, 0, mac_for_pdev); } else if (pdev->tx_sniffer_enable || pdev->mcopy_mode) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER, mac_for_pdev); } else if (pdev->enhanced_stats_en) { dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, mac_for_pdev); } } break; default: /* Nothing needs to be done for other pktlog types */ break; } } return 0; } #endif /** * dp_bucket_index() - Return index from array * * @delay: delay measured * @array: array used to index corresponding delay * * Return: index */ static uint8_t dp_bucket_index(uint32_t delay, uint16_t *array) { uint8_t i = CDP_DELAY_BUCKET_0; for (; i < CDP_DELAY_BUCKET_MAX; i++) { if (delay >= array[i] && delay <= array[i + 1]) return i; } return (CDP_DELAY_BUCKET_MAX - 1); } /** * dp_fill_delay_buckets() - Fill delay statistics bucket for each * type of delay * * @pdev: pdev handle * @delay: delay in ms * @tid: tid value * @mode: type of tx delay mode * @ring_id: ring number * Return: pointer to cdp_delay_stats structure */ static struct cdp_delay_stats * dp_fill_delay_buckets(struct dp_pdev *pdev, uint32_t delay, uint8_t tid, uint8_t mode, uint8_t ring_id) { uint8_t delay_index = 0; struct cdp_tid_tx_stats *tstats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid]; struct cdp_tid_rx_stats *rstats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid]; /* * cdp_fw_to_hw_delay_range * Fw to hw delay ranges in milliseconds */ uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500}; /* * cdp_sw_enq_delay_range * Software enqueue delay ranges in milliseconds */ uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; /* * cdp_intfrm_delay_range * Interframe delay ranges in milliseconds */ uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = { 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}; /* * Update delay stats in proper bucket */ switch (mode) { /* Software Enqueue delay ranges */ case CDP_DELAY_STATS_SW_ENQ: delay_index = dp_bucket_index(delay, cdp_sw_enq_delay); tstats->swq_delay.delay_bucket[delay_index]++; return &tstats->swq_delay; /* Tx Completion delay ranges */ case CDP_DELAY_STATS_FW_HW_TRANSMIT: delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay); tstats->hwtx_delay.delay_bucket[delay_index]++; return &tstats->hwtx_delay; /* Interframe tx delay ranges */ case CDP_DELAY_STATS_TX_INTERFRAME: delay_index = dp_bucket_index(delay, cdp_intfrm_delay); tstats->intfrm_delay.delay_bucket[delay_index]++; return &tstats->intfrm_delay; /* Interframe rx delay ranges */ case CDP_DELAY_STATS_RX_INTERFRAME: delay_index = dp_bucket_index(delay, cdp_intfrm_delay); rstats->intfrm_delay.delay_bucket[delay_index]++; return &rstats->intfrm_delay; /* Ring reap to indication to network stack */ case CDP_DELAY_STATS_REAP_STACK: delay_index = dp_bucket_index(delay, cdp_intfrm_delay); rstats->to_stack_delay.delay_bucket[delay_index]++; return &rstats->to_stack_delay; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%s Incorrect delay mode: %d", __func__, mode); } return NULL; } /** * dp_update_delay_stats() - Update delay statistics in structure * and fill min, max and avg delay * * @pdev: pdev handle * @delay: delay in ms * @tid: tid value * @mode: type of tx delay mode * @ring id: ring number * Return: none */ void dp_update_delay_stats(struct dp_pdev *pdev, uint32_t delay, uint8_t tid, uint8_t mode, uint8_t ring_id) { struct cdp_delay_stats *dstats = NULL; /* * Delay ranges are different for different delay modes * Get the correct index to update delay bucket */ dstats = dp_fill_delay_buckets(pdev, delay, tid, mode, ring_id); if (qdf_unlikely(!dstats)) return; if (delay != 0) { /* * Compute minimum,average and maximum * delay */ if (delay < dstats->min_delay) dstats->min_delay = delay; if (delay > dstats->max_delay) dstats->max_delay = delay; /* * Average over delay measured till now */ if (!dstats->avg_delay) dstats->avg_delay = delay; else dstats->avg_delay = ((delay + dstats->avg_delay) / 2); } } /** * dp_get_peer_mac_list(): function to get peer mac list of vdev * @soc: Datapath soc handle * @vdev_id: vdev id * @newmac: Table of the clients mac * @mac_cnt: No. of MACs required * * return: no of clients */ uint16_t dp_get_peer_mac_list(ol_txrx_soc_handle soc, uint8_t vdev_id, u_int8_t newmac[][QDF_MAC_ADDR_SIZE], u_int16_t mac_cnt) { struct dp_vdev *vdev = dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc, vdev_id); struct dp_soc *dp_soc = (struct dp_soc *)soc; struct dp_peer *peer; uint16_t new_mac_cnt = 0; if (!vdev) return new_mac_cnt; qdf_spin_lock_bh(&dp_soc->peer_ref_mutex); TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) { if (peer->bss_peer) continue; if (new_mac_cnt < mac_cnt) { WLAN_ADDR_COPY(newmac[new_mac_cnt], peer->mac_addr.raw); new_mac_cnt++; } } qdf_spin_unlock_bh(&dp_soc->peer_ref_mutex); return new_mac_cnt; }