/* * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "dp_types.h" #include "dp_rx.h" #include "dp_peer.h" #include "hal_rx.h" #include "hal_api.h" #include "qdf_nbuf.h" #include #ifdef MESH_MODE_SUPPORT #include "if_meta_hdr.h" #endif #include "dp_internal.h" /* * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs * called during dp rx initialization * and at the end of dp_rx_process. * * @soc: core txrx main context * @mac_id: mac_id which is one of 3 mac_ids * @dp_rxdma_srng: dp rxdma circular ring * @rx_desc_pool: Poiter to free Rx descriptor pool * @num_req_buffers: number of buffer to be replenished * @desc_list: list of descs if called from dp_rx_process * or NULL during dp rx initialization or out of buffer * interrupt. * @tail: tail of descs list * @owner: who owns the nbuf (host, NSS etc...) * Return: return success or failure */ QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id, struct dp_srng *dp_rxdma_srng, struct rx_desc_pool *rx_desc_pool, uint32_t num_req_buffers, union dp_rx_desc_list_elem_t **desc_list, union dp_rx_desc_list_elem_t **tail, uint8_t owner) { uint32_t num_alloc_desc; uint16_t num_desc_to_free = 0; struct dp_pdev *dp_pdev = dp_soc->pdev_list[mac_id]; uint32_t num_entries_avail; uint32_t count; int sync_hw_ptr = 1; qdf_dma_addr_t paddr; qdf_nbuf_t rx_netbuf; void *rxdma_ring_entry; union dp_rx_desc_list_elem_t *next; QDF_STATUS ret; void *rxdma_srng; rxdma_srng = dp_rxdma_srng->hal_srng; if (!rxdma_srng) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "rxdma srng not initialized"); DP_STATS_INC(dp_pdev, err.rxdma_unitialized, 1); return QDF_STATUS_E_FAILURE; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "requested %d buffers for replenish", num_req_buffers); /* * if desc_list is NULL, allocate the descs from freelist */ if (!(*desc_list)) { num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool, num_req_buffers, desc_list, tail); if (!num_alloc_desc) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "no free rx_descs in freelist"); DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_alloc_desc); return QDF_STATUS_E_NOMEM; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%d rx desc allocated", num_alloc_desc); num_req_buffers = num_alloc_desc; } hal_srng_access_start(dp_soc->hal_soc, rxdma_srng); num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc, rxdma_srng, sync_hw_ptr); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "no of availble entries in rxdma ring: %d", num_entries_avail); if (num_entries_avail < num_req_buffers) { num_desc_to_free = num_req_buffers - num_entries_avail; num_req_buffers = num_entries_avail; } count = 0; while (count < num_req_buffers) { rx_netbuf = qdf_nbuf_alloc(dp_pdev->osif_pdev, RX_BUFFER_SIZE, RX_BUFFER_RESERVATION, RX_BUFFER_ALIGNMENT, FALSE); if (rx_netbuf == NULL) continue; qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf, QDF_DMA_BIDIRECTIONAL); paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0); /* * check if the physical address of nbuf->data is * less then 0x50000000 then free the nbuf and try * allocating new nbuf. We can try for 100 times. * this is a temp WAR till we fix it properly. */ ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev); if (ret == QDF_STATUS_E_FAILURE) break; count++; rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc, rxdma_srng); next = (*desc_list)->next; (*desc_list)->rx_desc.nbuf = rx_netbuf; DP_STATS_INC_PKT(dp_pdev, replenished, 1, qdf_nbuf_len(rx_netbuf)); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "rx_netbuf=%p, buf=%p, paddr=0x%llx, cookie=%d\n", rx_netbuf, qdf_nbuf_data(rx_netbuf), (unsigned long long)paddr, (*desc_list)->rx_desc.cookie); hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr, (*desc_list)->rx_desc.cookie, owner); *desc_list = next; } hal_srng_access_end(dp_soc->hal_soc, rxdma_srng); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "successfully replenished %d buffers", num_req_buffers); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "%d rx desc added back to free list", num_desc_to_free); DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free); /* * add any available free desc back to the free list */ if (*desc_list) dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail, mac_id, rx_desc_pool); return QDF_STATUS_SUCCESS; } /* * dp_rx_deliver_raw() - process RAW mode pkts and hand over the * pkts to RAW mode simulation to * decapsulate the pkt. * * @vdev: vdev on which RAW mode is enabled * @nbuf_list: list of RAW pkts to process * * Return: void */ void dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list) { qdf_nbuf_t deliver_list_head = NULL; qdf_nbuf_t deliver_list_tail = NULL; qdf_nbuf_t nbuf; nbuf = nbuf_list; while (nbuf) { qdf_nbuf_t next = qdf_nbuf_next(nbuf); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); /* * reset the chfrag_start and chfrag_end bits in nbuf cb * as this is a non-amsdu pkt and RAW mode simulation expects * these bit s to be 0 for non-amsdu pkt. */ if (qdf_nbuf_is_chfrag_start(nbuf) && qdf_nbuf_is_chfrag_end(nbuf)) { qdf_nbuf_set_chfrag_start(nbuf, 0); qdf_nbuf_set_chfrag_end(nbuf, 0); } nbuf = next; } vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head, &deliver_list_tail); vdev->osif_rx(vdev->osif_vdev, deliver_list_head); } #ifdef DP_LFR /* * In case of LFR, data of a new peer might be sent up * even before peer is added. */ static inline struct dp_vdev * dp_get_vdev_from_peer(struct dp_soc *soc, uint16_t peer_id, struct dp_peer *peer, struct hal_rx_mpdu_desc_info mpdu_desc_info) { struct dp_vdev *vdev; uint8_t vdev_id; if (unlikely(!peer)) { if (peer_id != HTT_INVALID_PEER) { vdev_id = DP_PEER_METADATA_ID_GET( mpdu_desc_info.peer_meta_data); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("PeerID %d not found use vdevID %d"), peer_id, vdev_id); vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id); } else { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Invalid PeerID %d"), peer_id); return NULL; } } else { vdev = peer->vdev; } return vdev; } #else static inline struct dp_vdev * dp_get_vdev_from_peer(struct dp_soc *soc, uint16_t peer_id, struct dp_peer *peer, struct hal_rx_mpdu_desc_info mpdu_desc_info) { if (unlikely(!peer)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("Peer not found for peerID %d"), peer_id); return NULL; } else { return peer->vdev; } } #endif /** * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic * * @soc: core txrx main context * @sa_peer : source peer entry * @rx_tlv_hdr : start address of rx tlvs * @nbuf : nbuf that has to be intrabss forwarded * * Return: bool: true if it is forwarded else false */ static bool dp_rx_intrabss_fwd(struct dp_soc *soc, struct dp_peer *sa_peer, uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf) { uint16_t da_idx; uint16_t len; struct dp_peer *da_peer; struct dp_ast_entry *ast_entry; qdf_nbuf_t nbuf_copy; /* check if the destination peer is available in peer table * and also check if the source peer and destination peer * belong to the same vap and destination peer is not bss peer. */ if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) && !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) { da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr); ast_entry = soc->ast_table[da_idx]; if (!ast_entry) return false; da_peer = ast_entry->peer; if (!da_peer) return false; if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) { memset(nbuf->cb, 0x0, sizeof(nbuf->cb)); len = qdf_nbuf_len(nbuf); if (!dp_tx_send(sa_peer->vdev, nbuf)) { DP_STATS_INC_PKT(sa_peer, rx.intra_bss, 1, len); return true; } else return false; } } /* if it is a broadcast pkt (eg: ARP) and it is not its own * source, then clone the pkt and send the cloned pkt for * intra BSS forwarding and original pkt up the network stack * Note: how do we handle multicast pkts. do we forward * all multicast pkts as is or let a higher layer module * like igmpsnoop decide whether to forward or not with * Mcast enhancement. */ else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) && !sa_peer->bss_peer))) { nbuf_copy = qdf_nbuf_copy(nbuf); if (!nbuf_copy) return false; memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb)); len = qdf_nbuf_len(nbuf_copy); if (dp_tx_send(sa_peer->vdev, nbuf_copy)) qdf_nbuf_free(nbuf_copy); else DP_STATS_INC_PKT(sa_peer, rx.intra_bss, 1, len); } /* return false as we have to still send the original pkt * up the stack */ return false; } #ifdef MESH_MODE_SUPPORT /** * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats * * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * * This function allocated memory for mesh receive stats and fill the * required stats. Stores the memory address in skb cb. * * Return: void */ static void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { struct mesh_recv_hdr_s *rx_info = NULL; uint32_t pkt_type; uint32_t nss; uint32_t rate_mcs; uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf); /* fill recv mesh stats */ rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s)); /* upper layers are resposible to free this memory */ if (rx_info == NULL) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Memory allocation failed for mesh rx stats"); return; } if (qdf_nbuf_is_chfrag_start(nbuf)) rx_info->rs_flags |= MESH_RX_FIRST_MSDU; if (qdf_nbuf_is_chfrag_end(nbuf)) rx_info->rs_flags |= MESH_RX_LAST_MSDU; if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) { rx_info->rs_flags |= MESH_RX_DECRYPTED; rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr); rx_info->rs_flags |= MESH_KEY_NOTFILLED; } rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr); rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr); pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr); rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr); nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr); rx_info->rs_ratephy1 = rate_mcs | (nss << 0x4) | (pkt_type << 6); qdf_nbuf_set_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"), rx_info->rs_flags, rx_info->rs_rssi, rx_info->rs_channel, rx_info->rs_ratephy1, rx_info->rs_keyix); } /** * dp_rx_fill_mesh_stats() - Filters mesh unwanted packets * * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * * This checks if the received packet is matching any filter out * catogery and and drop the packet if it matches. * * Return: status(0 indicates drop, 1 indicate to no drop) */ static inline QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf); union dp_align_mac_addr mac_addr; if (qdf_unlikely(vdev->mesh_rx_filter)) { if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS) if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS) if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS) if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr) && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr)) return QDF_STATUS_SUCCESS; if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) { if (hal_rx_mpdu_get_addr1(rx_tlv_hdr, &mac_addr.raw[0])) return QDF_STATUS_E_FAILURE; if (!qdf_mem_cmp(&mac_addr.raw[0], &vdev->mac_addr.raw[0], DP_MAC_ADDR_LEN)) return QDF_STATUS_SUCCESS; } if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) { if (hal_rx_mpdu_get_addr2(rx_tlv_hdr, &mac_addr.raw[0])) return QDF_STATUS_E_FAILURE; if (!qdf_mem_cmp(&mac_addr.raw[0], &vdev->mac_addr.raw[0], DP_MAC_ADDR_LEN)) return QDF_STATUS_SUCCESS; } } return QDF_STATUS_E_FAILURE; } #else static void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { } static inline QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { return QDF_STATUS_E_FAILURE; } #endif #ifdef CONFIG_WIN /** * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac * @soc: DP SOC handle * @nbuf: nbuf for which peer is invalid * * return: integer type */ uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t nbuf) { struct dp_invalid_peer_msg msg; struct dp_vdev *vdev = NULL; struct dp_pdev *pdev = NULL; struct ieee80211_frame *wh; uint8_t i; uint8_t *rx_pkt_hdr; rx_pkt_hdr = qdf_nbuf_data(nbuf); wh = (struct ieee80211_frame *)rx_pkt_hdr; if (!DP_FRAME_IS_DATA(wh)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "NAWDS valid only for data frames"); return 1; } if (qdf_nbuf_len(nbuf) < sizeof(struct ieee80211_frame)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "Invalid nbuf length"); return 1; } for (i = 0; i < MAX_PDEV_CNT; i++) { pdev = soc->pdev_list[i]; if (!pdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "PDEV not found"); continue; } TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) { if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw, DP_MAC_ADDR_LEN) == 0) { goto out; } } } if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "VDEV not found"); return 1; } out: msg.wh = wh; msg.nbuf = nbuf; msg.vdev_id = vdev->vdev_id; if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) return pdev->soc->cdp_soc.ol_ops->rx_invalid_peer( pdev->osif_pdev, &msg); return 0; } #else uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t nbuf) { return 0; } #endif /** * dp_rx_lro() - LRO related processing * @rx_tlv: TLV data extracted from the rx packet * @peer: destination peer of the msdu * @msdu: network buffer * @ctx: LRO context * * This function performs the LRO related processing of the msdu * * Return: true: LRO enabled false: LRO is not enabled */ #if defined(FEATURE_LRO) static bool dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer, qdf_nbuf_t msdu, qdf_lro_ctx_t ctx) { qdf_assert(rx_tlv); if (peer->vdev->lro_enable && HAL_RX_TLV_GET_TCP_PROTO(rx_tlv)) { QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv) && !HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv); if (QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu)) { QDF_NBUF_CB_RX_LRO_CTX(msdu) = ctx; QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = HAL_RX_TLV_GET_TCP_ACK(rx_tlv); QDF_NBUF_CB_RX_TCP_WIN(msdu) = HAL_RX_TLV_GET_TCP_WIN(rx_tlv); QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = HAL_RX_TLV_GET_TCP_SEQ(rx_tlv); QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) = HAL_RX_TLV_GET_TCP_CHKSUM (rx_tlv); QDF_NBUF_CB_RX_FLOW_ID_TOEPLITZ(msdu) = HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ (rx_tlv); QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = HAL_RX_TLV_GET_TCP_OFFSET (rx_tlv); QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = HAL_RX_TLV_GET_IPV6(rx_tlv); QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = qdf_lro_update_info(ctx, msdu); } /* LRO 'enabled' packet, it may not be LRO 'eligible' */ return true; } /* LRO not supported on this vdev or a non-TCP packet */ return false; } #else static bool dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer, qdf_nbuf_t msdu, qdf_lro_ctx_t ctx) { return false; } #endif /** * dp_rx_process() - Brain of the Rx processing functionality * Called from the bottom half (tasklet/NET_RX_SOFTIRQ) * @soc: core txrx main context * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced * @quota: No. of units (packets) that can be serviced in one shot. * * This function implements the core of Rx functionality. This is * expected to handle only non-error frames. * * Return: uint32_t: No. of elements processed */ uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota) { void *hal_soc; void *ring_desc; struct dp_rx_desc *rx_desc = NULL; qdf_nbuf_t nbuf; union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL }; union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL }; uint32_t rx_bufs_used = 0, rx_buf_cookie, l2_hdr_offset; uint16_t msdu_len; uint16_t peer_id; struct dp_peer *peer = NULL; struct dp_vdev *vdev = NULL; struct dp_vdev *vdev_list[WLAN_UMAC_PSOC_MAX_VDEVS] = { NULL }; uint32_t pkt_len; struct hal_rx_mpdu_desc_info mpdu_desc_info; struct hal_rx_msdu_desc_info msdu_desc_info; enum hal_reo_error_status error; static uint32_t peer_mdata; uint8_t *rx_tlv_hdr; uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 }; uint32_t sgi, rate_mcs, tid, nss, bw, reception_type; uint64_t vdev_map = 0; uint8_t mac_id; uint16_t i, vdev_cnt = 0; uint32_t ampdu_flag, amsdu_flag; struct ether_header *eh; struct dp_pdev *pdev; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; struct dp_soc *soc = int_ctx->soc; DP_HIST_INIT(); /* Debug -- Remove later */ qdf_assert(soc && hal_ring); hal_soc = soc->hal_soc; /* Debug -- Remove later */ qdf_assert(hal_soc); if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) { /* * Need API to convert from hal_ring pointer to * Ring Type / Ring Id combo */ DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("HAL RING Access Failed -- %p"), hal_ring); hal_srng_access_end(hal_soc, hal_ring); goto done; } /* * start reaping the buffers from reo ring and queue * them in per vdev queue. * Process the received pkts in a different per vdev loop. */ while (qdf_likely((ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring)) && quota--)) { error = HAL_RX_ERROR_STATUS_GET(ring_desc); if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("HAL RING 0x%p:error %d"), hal_ring, error); /* Don't know how to deal with this -- assert */ qdf_assert(0); } rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc); rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie); qdf_assert(rx_desc); rx_bufs_reaped[rx_desc->pool_id]++; /* TODO */ /* * Need a separate API for unmapping based on * phyiscal address */ qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf, QDF_DMA_BIDIRECTIONAL); /* Get MPDU DESC info */ hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info); peer_id = DP_PEER_METADATA_PEER_ID_GET( mpdu_desc_info.peer_meta_data); peer = dp_peer_find_by_id(soc, peer_id); vdev = dp_get_vdev_from_peer(soc, peer_id, peer, mpdu_desc_info); if (!vdev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("vdev is NULL")); qdf_nbuf_free(rx_desc->nbuf); goto fail; } if (!((vdev_map >> vdev->vdev_id) & 1)) { vdev_map |= 1 << vdev->vdev_id; vdev_list[vdev_cnt] = vdev; vdev_cnt++; } /* Get MSDU DESC info */ hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info); /* * save msdu flags first, last and continuation msdu in * nbuf->cb */ if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU) qdf_nbuf_set_chfrag_start(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION) qdf_nbuf_set_chfrag_cont(rx_desc->nbuf, 1); if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU) qdf_nbuf_set_chfrag_end(rx_desc->nbuf, 1); DP_STATS_INC_PKT(peer, rx.rcvd_reo, 1, qdf_nbuf_len(rx_desc->nbuf)); ampdu_flag = (mpdu_desc_info.mpdu_flags & HAL_MPDU_F_AMPDU_FLAG); DP_STATS_INCC(peer, rx.ampdu_cnt, 1, ampdu_flag); DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(ampdu_flag)); hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info); amsdu_flag = ((msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU) && (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)); DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, amsdu_flag); DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !(amsdu_flag)); DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id); qdf_nbuf_queue_add(&vdev->rxq, rx_desc->nbuf); fail: dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id], &tail[rx_desc->pool_id], rx_desc); } done: hal_srng_access_end(hal_soc, hal_ring); /* Update histogram statistics by looping through pdev's */ DP_RX_HIST_STATS_PER_PDEV(); for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) { /* * continue with next mac_id if no pkts were reaped * from that pool */ if (!rx_bufs_reaped[mac_id]) continue; pdev = soc->pdev_list[mac_id]; dp_rxdma_srng = &pdev->rx_refill_buf_ring; rx_desc_pool = &soc->rx_desc_buf[mac_id]; dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng, rx_desc_pool, rx_bufs_reaped[mac_id], &head[mac_id], &tail[mac_id], HAL_RX_BUF_RBM_SW3_BM); } for (i = 0; i < vdev_cnt; i++) { qdf_nbuf_t deliver_list_head = NULL; qdf_nbuf_t deliver_list_tail = NULL; vdev = vdev_list[i]; while ((nbuf = qdf_nbuf_queue_remove(&vdev->rxq))) { rx_tlv_hdr = qdf_nbuf_data(nbuf); eh = (struct ether_header *)qdf_nbuf_data(nbuf); /* * Check if DMA completed -- msdu_done is the last bit * to be written */ if (!hal_rx_attn_msdu_done_get(rx_tlv_hdr)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, FL("MSDU DONE failure")); hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO); qdf_assert(0); } if (qdf_nbuf_is_chfrag_start(nbuf)) peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr); peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata); peer = dp_peer_find_by_id(soc, peer_id); /* TODO */ /* * In case of roaming peer object may not be * immediately available -- need to handle this * Cannot drop these packets right away. */ /* Peer lookup failed */ if (!peer && !vdev) { dp_rx_process_invalid_peer(soc, nbuf); DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1, qdf_nbuf_len(nbuf)); /* Drop & free packet */ qdf_nbuf_free(nbuf); /* Statistics */ continue; } if (peer && qdf_unlikely(peer->bss_peer)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("received pkt with same src MAC")); /* Drop & free packet */ qdf_nbuf_free(nbuf); /* Statistics */ continue; } sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr); rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr); tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, "%s: %d, SGI: %d, rate_mcs: %d, tid: %d", __func__, __LINE__, sgi, rate_mcs, tid); bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr); reception_type = hal_rx_msdu_start_reception_type_get( rx_tlv_hdr); nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr); DP_STATS_INC(vdev->pdev, rx.bw[bw], 1); DP_STATS_INC(vdev->pdev, rx.reception_type[reception_type], 1); DP_STATS_INCC(vdev->pdev, rx.nss[nss], 1, ((reception_type == REPT_MU_MIMO) || (reception_type == REPT_MU_OFDMA_MIMO)) ); DP_STATS_INC(peer, rx.sgi_count[sgi], 1); DP_STATS_INC(peer, rx.mcs_count[rate_mcs], 1); DP_STATS_INCC(peer, rx.err.mic_err, 1, hal_rx_mpdu_end_mic_err_get( rx_tlv_hdr)); DP_STATS_INCC(peer, rx.err.decrypt_err, 1, hal_rx_mpdu_end_decrypt_err_get( rx_tlv_hdr)); DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1); DP_STATS_INC(peer, rx.bw[bw], 1); DP_STATS_INC(peer, rx.reception_type[reception_type], 1); /* * HW structures call this L3 header padding -- * even though this is actually the offset from * the buffer beginning where the L2 header * begins. */ QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO, FL("rxhash: flow id toeplitz: 0x%x\n"), hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr)); l2_hdr_offset = hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr); msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr); pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN; /* Set length in nbuf */ qdf_nbuf_set_pktlen(nbuf, pkt_len); if (qdf_unlikely(vdev->mesh_vdev)) { if (dp_rx_filter_mesh_packets(vdev, nbuf) == QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_MED, FL("mesh pkt filtered")); qdf_nbuf_free(nbuf); continue; } dp_rx_fill_mesh_stats(vdev, nbuf); } /* * Advance the packet start pointer by total size of * pre-header TLV's */ qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + l2_hdr_offset); #ifdef QCA_WIFI_NAPIER_EMULATION /* Debug code, remove later */ QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "p_id %d msdu_len %d hdr_off %d", peer_id, msdu_len, l2_hdr_offset); print_hex_dump(KERN_ERR, "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4, qdf_nbuf_data(nbuf), 128, false); #endif /* NAPIER_EMULATION */ /* WDS Source Port Learning */ if (qdf_likely(vdev->rx_decap_type == htt_cmn_pkt_type_ethernet)) dp_rx_wds_srcport_learn(soc, rx_tlv_hdr, peer, nbuf); /* Intrabss-fwd */ if (vdev->opmode != wlan_op_mode_sta) if (dp_rx_intrabss_fwd(soc, peer, rx_tlv_hdr, nbuf)) continue; /* Get next descriptor */ rx_bufs_used++; if (!dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx)) QDF_NBUF_CB_RX_LRO_CTX(nbuf) = NULL; DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf); DP_STATS_INCC_PKT(peer, rx.multicast, 1, pkt_len, DP_FRAME_IS_MULTICAST((eh)->ether_dhost )); DP_STATS_INCC_PKT(peer, rx.unicast, 1, pkt_len, !(DP_FRAME_IS_MULTICAST( (eh)->ether_dhost))); DP_STATS_INC_PKT(peer, rx.to_stack, 1, pkt_len); if (hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) { if (soc->cdp_soc.ol_ops->update_dp_stats) soc->cdp_soc.ol_ops->update_dp_stats( vdev->pdev->osif_pdev, &peer->stats, peer_id, UPDATE_PEER_STATS); dp_aggregate_vdev_stats(peer->vdev); if (soc->cdp_soc.ol_ops->update_dp_stats) soc->cdp_soc.ol_ops->update_dp_stats( vdev->pdev->osif_pdev, &peer->vdev->stats, peer->vdev->vdev_id, UPDATE_VDEV_STATS); } } if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) || (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) dp_rx_deliver_raw(vdev, deliver_list_head); else if (qdf_likely(vdev->osif_rx) && deliver_list_head) vdev->osif_rx(vdev->osif_vdev, deliver_list_head); } return rx_bufs_used; /* Assume no scale factor for now */ } /** * dp_rx_detach() - detach dp rx * @pdev: core txrx pdev context * * This function will detach DP RX into main device context * will free DP Rx resources. * * Return: void */ void dp_rx_pdev_detach(struct dp_pdev *pdev) { uint8_t pdev_id = pdev->pdev_id; struct dp_soc *soc = pdev->soc; struct rx_desc_pool *rx_desc_pool; rx_desc_pool = &soc->rx_desc_buf[pdev_id]; dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool); qdf_spinlock_destroy(&soc->rx_desc_mutex[pdev_id]); return; } /** * dp_rx_attach() - attach DP RX * @pdev: core txrx pdev context * * This function will attach a DP RX instance into the main * device (SOC) context. Will allocate dp rx resource and * initialize resources. * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ QDF_STATUS dp_rx_pdev_attach(struct dp_pdev *pdev) { uint8_t pdev_id = pdev->pdev_id; struct dp_soc *soc = pdev->soc; struct dp_srng rxdma_srng; uint32_t rxdma_entries; union dp_rx_desc_list_elem_t *desc_list = NULL; union dp_rx_desc_list_elem_t *tail = NULL; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; qdf_spinlock_create(&soc->rx_desc_mutex[pdev_id]); pdev = soc->pdev_list[pdev_id]; rxdma_srng = pdev->rx_refill_buf_ring; rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize( soc->hal_soc, RXDMA_BUF); rx_desc_pool = &soc->rx_desc_buf[pdev_id]; dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool); /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */ dp_rxdma_srng = &pdev->rx_refill_buf_ring; dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool, rxdma_entries, &desc_list, &tail, HAL_RX_BUF_RBM_SW3_BM); return QDF_STATUS_SUCCESS; }