// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021-2023, Qualcomm Innovation Center, Inc. All rights reserved. */ #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include "ipclite_client.h" #include "ipclite.h" static struct ipclite_info *ipclite; static struct ipclite_client synx_client; static struct ipclite_client test_client; static struct ipclite_debug_info *ipclite_dbg_info; static struct ipclite_debug_struct *ipclite_dbg_struct; static struct ipclite_debug_inmem_buf *ipclite_dbg_inmem; static struct mutex ssr_mutex; static struct kobject *sysfs_kobj; static uint32_t ipclite_debug_level = IPCLITE_ERR | IPCLITE_WARN | IPCLITE_INFO; static uint32_t ipclite_debug_control = IPCLITE_DMESG_LOG, ipclite_debug_dump; static uint32_t enabled_hosts, partitions, major_ver, minor_ver; static uint64_t feature_mask; static inline bool is_host_enabled(uint32_t host) { return (1U & (enabled_hosts >> host)); } static inline bool is_loopback_except_apps(uint32_t h0, uint32_t h1) { return (h0 == h1 && h0 != IPCMEM_APPS); } static void ipclite_inmem_log(const char *psztStr, ...) { uint32_t local_index = 0; va_list pArgs; va_start(pArgs, psztStr); /* Incrementing the index atomically and storing the index in local variable */ local_index = ipclite_global_atomic_inc((ipclite_atomic_int32_t *) &ipclite_dbg_info->debug_log_index); local_index %= IPCLITE_LOG_BUF_SIZE; /* Writes data on the index location */ vsnprintf(ipclite_dbg_inmem->IPCLITELog[local_index], IPCLITE_LOG_MSG_SIZE, psztStr, pArgs); va_end(pArgs); } static void ipclite_dump_debug_struct(void) { int i = 0, host = 0; struct ipclite_debug_struct *temp_dbg_struct; /* Check if debug structures are initialized */ if (!ipclite_dbg_info || !ipclite_dbg_struct) { pr_err("Debug Structures not initialized\n"); return; } /* Check if debug structures are enabled before printing */ if (!(IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT))) { pr_err("Debug Structures not enabled\n"); return; } /* Dumping the debug structures */ pr_info("------------------- Dumping IPCLite Debug Structure -------------------\n"); for (host = 0; host < IPCMEM_NUM_HOSTS; host++) { if (!is_host_enabled(host)) continue; temp_dbg_struct = (struct ipclite_debug_struct *) (((char *)ipclite_dbg_struct) + (sizeof(*temp_dbg_struct) * host)); pr_info("---------- Host ID: %d dbg_mem:%p ----------\n", host, temp_dbg_struct); pr_info("Total Signals Sent : %d Total Signals Received : %d\n", temp_dbg_struct->dbg_info_overall.total_numsig_sent, temp_dbg_struct->dbg_info_overall.total_numsig_recv); pr_info("Last Signal Sent to Host ID : %d Last Signal Received from Host ID : %d\n", temp_dbg_struct->dbg_info_overall.last_sent_host_id, temp_dbg_struct->dbg_info_overall.last_recv_host_id); pr_info("Last Signal ID Sent : %d Last Signal ID Received : %d\n", temp_dbg_struct->dbg_info_overall.last_sigid_sent, temp_dbg_struct->dbg_info_overall.last_sigid_recv); for (i = 0; i < IPCMEM_NUM_HOSTS; i++) { if (!is_host_enabled(i)) continue; pr_info("----------> Host ID : %d Host ID : %d\n", host, i); pr_info("No. of Messages Sent : %d No. of Messages Received : %d\n", temp_dbg_struct->dbg_info_host[i].numsig_sent, temp_dbg_struct->dbg_info_host[i].numsig_recv); pr_info("No. of Interrupts Received : %d\n", temp_dbg_struct->dbg_info_host[i].num_intr); pr_info("TX Write Index : %d TX Read Index : %d\n", temp_dbg_struct->dbg_info_host[i].tx_wr_index, temp_dbg_struct->dbg_info_host[i].tx_rd_index); pr_info("TX Write Index[0] : %d TX Read Index[0] : %d\n", temp_dbg_struct->dbg_info_host[i].prev_tx_wr_index[0], temp_dbg_struct->dbg_info_host[i].prev_tx_rd_index[0]); pr_info("TX Write Index[1] : %d TX Read Index[1] : %d\n", temp_dbg_struct->dbg_info_host[i].prev_tx_wr_index[1], temp_dbg_struct->dbg_info_host[i].prev_tx_rd_index[1]); pr_info("RX Write Index : %d RX Read Index : %d\n", temp_dbg_struct->dbg_info_host[i].rx_wr_index, temp_dbg_struct->dbg_info_host[i].rx_rd_index); pr_info("RX Write Index[0] : %d RX Read Index[0] : %d\n", temp_dbg_struct->dbg_info_host[i].prev_rx_wr_index[0], temp_dbg_struct->dbg_info_host[i].prev_rx_rd_index[0]); pr_info("RX Write Index[1] : %d RX Read Index[1] : %d\n", temp_dbg_struct->dbg_info_host[i].prev_rx_wr_index[1], temp_dbg_struct->dbg_info_host[i].prev_rx_rd_index[1]); } } return; } static void ipclite_dump_inmem_logs(void) { int i = 0; uint32_t local_index = 0; /* Check if debug and inmem structures are initialized */ if (!ipclite_dbg_info || !ipclite_dbg_inmem) { pr_err("Debug structures not initialized\n"); return; } /* Check if debug structures are enabled before printing */ if (!(IS_DEBUG_CONFIG(IPCLITE_INMEM_LOG))) { pr_err("In-Memory Logs not enabled\n"); return; } /* Dumping the debug in-memory logs */ pr_info("------------------- Dumping In-Memory Logs -------------------\n"); /* Storing the index atomically in local variable */ local_index = ipclite_global_atomic_load_u32((ipclite_atomic_uint32_t *) &ipclite_dbg_info->debug_log_index); /* Printing from current index till the end of buffer */ for (i = local_index % IPCLITE_LOG_BUF_SIZE; i < IPCLITE_LOG_BUF_SIZE; i++) { if (ipclite_dbg_inmem->IPCLITELog[i][0]) pr_info("%s\n", ipclite_dbg_inmem->IPCLITELog[i]); } /* Printing from 0th index to current-1 index */ for (i = 0; i < local_index % IPCLITE_LOG_BUF_SIZE; i++) { if (ipclite_dbg_inmem->IPCLITELog[i][0]) pr_info("%s\n", ipclite_dbg_inmem->IPCLITELog[i]); } return; } int ipclite_hw_mutex_acquire(void) { int ret; if (unlikely(!ipclite)) { pr_err("IPCLite not initialized\n"); return -ENOMEM; } ret = hwspin_lock_timeout_irqsave(ipclite->hwlock, HWSPINLOCK_TIMEOUT, &ipclite->hw_mutex_flags); if (ret) { pr_err("Hw mutex lock acquire failed\n"); return ret; } ipclite->ipcmem.toc_data.host_info->hwlock_owner = IPCMEM_APPS; return ret; } EXPORT_SYMBOL(ipclite_hw_mutex_acquire); int ipclite_hw_mutex_release(void) { if (unlikely(!ipclite)) { pr_err("IPCLite not initialized\n"); return -ENOMEM; } if (ipclite->ipcmem.toc_data.host_info->hwlock_owner != IPCMEM_APPS) return -EINVAL; ipclite->ipcmem.toc_data.host_info->hwlock_owner = IPCMEM_INVALID_HOST; hwspin_unlock_irqrestore(ipclite->hwlock, &ipclite->hw_mutex_flags); return 0; } EXPORT_SYMBOL(ipclite_hw_mutex_release); /* Atomic Functions Start */ void ipclite_atomic_init_u32(ipclite_atomic_uint32_t *addr, uint32_t data) { BUG_ON(addr == NULL); atomic_set(addr, data); } EXPORT_SYMBOL(ipclite_atomic_init_u32); void ipclite_atomic_init_i32(ipclite_atomic_int32_t *addr, int32_t data) { BUG_ON(addr == NULL); atomic_set(addr, data); } EXPORT_SYMBOL(ipclite_atomic_init_i32); void ipclite_global_atomic_store_u32(ipclite_atomic_uint32_t *addr, uint32_t data) { BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; atomic_set(addr, data); ATOMIC_HW_MUTEX_RELEASE; } EXPORT_SYMBOL(ipclite_global_atomic_store_u32); void ipclite_global_atomic_store_i32(ipclite_atomic_int32_t *addr, int32_t data) { BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; atomic_set(addr, data); ATOMIC_HW_MUTEX_RELEASE; } EXPORT_SYMBOL(ipclite_global_atomic_store_i32); uint32_t ipclite_global_atomic_load_u32(ipclite_atomic_uint32_t *addr) { uint32_t ret = 0; BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; ret = atomic_read(addr); ATOMIC_HW_MUTEX_RELEASE; return ret; } EXPORT_SYMBOL(ipclite_global_atomic_load_u32); int32_t ipclite_global_atomic_load_i32(ipclite_atomic_int32_t *addr) { int32_t ret = 0; BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; ret = atomic_read(addr); ATOMIC_HW_MUTEX_RELEASE; return ret; } EXPORT_SYMBOL(ipclite_global_atomic_load_i32); uint32_t ipclite_global_test_and_set_bit(uint32_t nr, ipclite_atomic_uint32_t *addr) { uint32_t ret = 0, mask = (1 << nr); BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; ret = atomic_fetch_or(mask, addr); ATOMIC_HW_MUTEX_RELEASE; return ret; } EXPORT_SYMBOL(ipclite_global_test_and_set_bit); uint32_t ipclite_global_test_and_clear_bit(uint32_t nr, ipclite_atomic_uint32_t *addr) { uint32_t ret = 0, mask = (1 << nr); BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; ret = atomic_fetch_and(~mask, addr); ATOMIC_HW_MUTEX_RELEASE; return ret; } EXPORT_SYMBOL(ipclite_global_test_and_clear_bit); int32_t ipclite_global_atomic_inc(ipclite_atomic_int32_t *addr) { int32_t ret = 0; BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; ret = atomic_fetch_add(1, addr); ATOMIC_HW_MUTEX_RELEASE; return ret; } EXPORT_SYMBOL(ipclite_global_atomic_inc); int32_t ipclite_global_atomic_dec(ipclite_atomic_int32_t *addr) { int32_t ret = 0; BUG_ON(addr == NULL); ATOMIC_HW_MUTEX_ACQUIRE; ret = atomic_fetch_sub(1, addr); ATOMIC_HW_MUTEX_RELEASE; return ret; } EXPORT_SYMBOL(ipclite_global_atomic_dec); /* Atomic Functions End */ static size_t ipcmem_rx_avail(struct ipclite_fifo *rx_fifo) { size_t len = 0; u32 head = 0, tail = 0; head = le32_to_cpu(*rx_fifo->head); tail = le32_to_cpu(*rx_fifo->tail); IPCLITE_OS_LOG(IPCLITE_DBG, "head=%d, tail=%d\n", head, tail); if (head < tail) len = rx_fifo->length - tail + head; else len = head - tail; if (WARN_ON_ONCE(len > rx_fifo->length)) len = 0; IPCLITE_OS_LOG(IPCLITE_DBG, "len=%d\n", len); return len; } static void ipcmem_rx_peak(struct ipclite_fifo *rx_fifo, void *data, size_t count) { size_t len = 0; u32 tail = 0; tail = le32_to_cpu(*rx_fifo->tail); if (WARN_ON_ONCE(tail > rx_fifo->length)) return; if (tail >= rx_fifo->length) tail -= rx_fifo->length; len = min_t(size_t, count, rx_fifo->length - tail); if (len) memcpy_fromio(data, rx_fifo->fifo + tail, len); if (len != count) memcpy_fromio(data + len, rx_fifo->fifo, (count - len)); } static void ipcmem_rx_advance(struct ipclite_fifo *rx_fifo, size_t count, uint32_t core_id) { u32 tail = 0; tail = le32_to_cpu(*rx_fifo->tail); tail += count; if (tail >= rx_fifo->length) tail %= rx_fifo->length; *rx_fifo->tail = cpu_to_le32(tail); /* Storing the debug data in debug structures */ if (IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT)) { ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_wr_index[1] = ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_wr_index[0]; ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_wr_index[0] = ipclite_dbg_struct->dbg_info_host[core_id].rx_wr_index; ipclite_dbg_struct->dbg_info_host[core_id].rx_wr_index = *rx_fifo->head; ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_rd_index[1] = ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_rd_index[0]; ipclite_dbg_struct->dbg_info_host[core_id].prev_rx_rd_index[0] = ipclite_dbg_struct->dbg_info_host[core_id].rx_rd_index; ipclite_dbg_struct->dbg_info_host[core_id].rx_rd_index = *rx_fifo->tail; ipclite_dbg_struct->dbg_info_overall.total_numsig_recv++; ipclite_dbg_struct->dbg_info_host[core_id].numsig_recv++; } } static size_t ipcmem_tx_avail(struct ipclite_fifo *tx_fifo) { u32 head = 0, tail = 0, avail = 0; head = le32_to_cpu(*tx_fifo->head); tail = le32_to_cpu(*tx_fifo->tail); if (tail <= head) avail = tx_fifo->length - head + tail; else avail = tail - head; if (avail < FIFO_FULL_RESERVE) avail = 0; else avail -= FIFO_FULL_RESERVE; if (WARN_ON_ONCE(avail > tx_fifo->length)) avail = 0; return avail; } static unsigned int ipcmem_tx_write_one(struct ipclite_fifo *tx_fifo, unsigned int head, const void *data, size_t count) { size_t len = 0; if (WARN_ON_ONCE(head > tx_fifo->length)) return head; len = min_t(size_t, count, tx_fifo->length - head); if (len) memcpy(tx_fifo->fifo + head, data, len); if (len != count) memcpy(tx_fifo->fifo, data + len, count - len); head += count; if (head >= tx_fifo->length) head -= tx_fifo->length; return head; } static void ipcmem_tx_write(struct ipclite_fifo *tx_fifo, const void *data, size_t dlen, uint32_t core_id, uint32_t signal_id) { unsigned int head = 0; head = le32_to_cpu(*tx_fifo->head); head = ipcmem_tx_write_one(tx_fifo, head, data, dlen); head = ALIGN(head, 8); if (head >= tx_fifo->length) head -= tx_fifo->length; /* Ensure ordering of fifo and head update */ wmb(); *tx_fifo->head = cpu_to_le32(head); IPCLITE_OS_LOG(IPCLITE_DBG, "head : %d core_id : %d signal_id : %d\n", *tx_fifo->head, core_id, signal_id); /* Storing the debug data in debug structures */ if (IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT)) { ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_wr_index[1] = ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_wr_index[0]; ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_wr_index[0] = ipclite_dbg_struct->dbg_info_host[core_id].tx_wr_index; ipclite_dbg_struct->dbg_info_host[core_id].tx_wr_index = *tx_fifo->head; ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_rd_index[1] = ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_rd_index[0]; ipclite_dbg_struct->dbg_info_host[core_id].prev_tx_rd_index[0] = ipclite_dbg_struct->dbg_info_host[core_id].tx_rd_index; ipclite_dbg_struct->dbg_info_host[core_id].tx_rd_index = *tx_fifo->tail; ipclite_dbg_struct->dbg_info_overall.total_numsig_sent++; ipclite_dbg_struct->dbg_info_host[core_id].numsig_sent++; ipclite_dbg_struct->dbg_info_overall.last_sent_host_id = core_id; ipclite_dbg_struct->dbg_info_overall.last_sigid_sent = signal_id; } } static size_t ipclite_rx_avail(struct ipclite_channel *channel) { return channel->rx_fifo->avail(channel->rx_fifo); } static void ipclite_rx_peak(struct ipclite_channel *channel, void *data, size_t count) { channel->rx_fifo->peak(channel->rx_fifo, data, count); } static void ipclite_rx_advance(struct ipclite_channel *channel, size_t count) { channel->rx_fifo->advance(channel->rx_fifo, count, channel->remote_pid); } static size_t ipclite_tx_avail(struct ipclite_channel *channel) { return channel->tx_fifo->avail(channel->tx_fifo); } static void ipclite_tx_write(struct ipclite_channel *channel, const void *data, size_t dlen) { channel->tx_fifo->write(channel->tx_fifo, data, dlen, channel->remote_pid, channel->irq_info->signal_id); } static int ipclite_rx_data(struct ipclite_channel *channel, size_t avail) { int ret = 0; uint64_t data = 0; if (avail < sizeof(data)) { IPCLITE_OS_LOG(IPCLITE_ERR, "Not enough data in fifo, Core : %d Signal : %d\n", channel->remote_pid, channel->irq_info->signal_id); return -EAGAIN; } ipclite_rx_peak(channel, &data, sizeof(data)); if (synx_client.reg_complete == 1) { if (synx_client.callback) synx_client.callback(channel->remote_pid, data, synx_client.priv_data); } ipclite_rx_advance(channel, ALIGN(sizeof(data), 8)); return ret; } static int ipclite_rx_test_data(struct ipclite_channel *channel, size_t avail) { int ret = 0; uint64_t data = 0; if (avail < sizeof(data)) { IPCLITE_OS_LOG(IPCLITE_ERR, "Not enough data in fifo, Core : %d Signal : %d\n", channel->remote_pid, channel->irq_info->signal_id); return -EAGAIN; } ipclite_rx_peak(channel, &data, sizeof(data)); if (test_client.reg_complete == 1) { if (test_client.callback) test_client.callback(channel->remote_pid, data, test_client.priv_data); } ipclite_rx_advance(channel, ALIGN(sizeof(data), 8)); return ret; } static irqreturn_t ipclite_intr(int irq, void *data) { int ret = 0; unsigned int avail = 0; uint64_t msg = 0; struct ipclite_channel *channel; struct ipclite_irq_info *irq_info; irq_info = (struct ipclite_irq_info *)data; channel = container_of(irq_info, struct ipclite_channel, irq_info[irq_info->signal_id]); IPCLITE_OS_LOG(IPCLITE_DBG, "Interrupt received from Core : %d Signal : %d\n", channel->remote_pid, irq_info->signal_id); /* Storing the debug data in debug structures */ if (IS_DEBUG_CONFIG(IPCLITE_DBG_STRUCT)) { ipclite_dbg_struct->dbg_info_host[channel->remote_pid].num_intr++; ipclite_dbg_struct->dbg_info_overall.last_recv_host_id = channel->remote_pid; ipclite_dbg_struct->dbg_info_overall.last_sigid_recv = irq_info->signal_id; } if (irq_info->signal_id == IPCLITE_MSG_SIGNAL) { for (;;) { avail = ipclite_rx_avail(channel); if (avail < sizeof(msg)) break; ret = ipclite_rx_data(channel, avail); } IPCLITE_OS_LOG(IPCLITE_DBG, "checking messages in rx_fifo done\n"); } else if (irq_info->signal_id == IPCLITE_VERSION_SIGNAL) { IPCLITE_OS_LOG(IPCLITE_DBG, "Versioning is not enabled using IPCC signals\n"); } else if (irq_info->signal_id == IPCLITE_TEST_SIGNAL) { for (;;) { avail = ipclite_rx_avail(channel); if (avail < sizeof(msg)) break; ret = ipclite_rx_test_data(channel, avail); } IPCLITE_OS_LOG(IPCLITE_DBG, "checking messages in rx_fifo done\n"); } else { IPCLITE_OS_LOG(IPCLITE_ERR, "Wrong Interrupt Signal from core : %d signal : %d\n", channel->remote_pid, irq_info->signal_id); } return IRQ_HANDLED; } static int ipclite_tx(struct ipclite_channel *channel, uint64_t data, size_t dlen, uint32_t ipclite_signal) { int ret = 0; unsigned long flags; if (channel->status != ACTIVE) { if (channel->status == IN_PROGRESS && *channel->gstatus_ptr == ACTIVE) { channel->status = ACTIVE; } else { IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot Send, Channel not active\n"); return -EOPNOTSUPP; } } spin_lock_irqsave(&channel->tx_lock, flags); if (ipclite_tx_avail(channel) < dlen) { spin_unlock_irqrestore(&channel->tx_lock, flags); ret = -EAGAIN; return ret; } ipclite_tx_write(channel, &data, dlen); mbox_send_message(channel->irq_info[ipclite_signal].mbox_chan, NULL); mbox_client_txdone(channel->irq_info[ipclite_signal].mbox_chan, 0); spin_unlock_irqrestore(&channel->tx_lock, flags); return ret; } static int ipclite_notify_core(int32_t proc_id, int32_t signal_id) { int ret = 0; struct ipclite_channel *channel; if (proc_id < 0 || proc_id >= IPCMEM_NUM_HOSTS) { IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid proc_id : %d\n", proc_id); return -EINVAL; } channel = &ipclite->channel[proc_id]; if (channel->status != ACTIVE) { if (channel->status == IN_PROGRESS && *channel->gstatus_ptr == ACTIVE) { channel->status = ACTIVE; } else { IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot Send, Core %d is Inactive\n", proc_id); return -EOPNOTSUPP; } } ret = mbox_send_message(channel->irq_info[signal_id].mbox_chan, NULL); if (ret < 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Signal sending failed to Core : %d Signal : %d ret : %d\n", proc_id, signal_id, ret); return ret; } IPCLITE_OS_LOG(IPCLITE_DBG, "Signal send completed to core : %d signal : %d ret : %d\n", proc_id, signal_id, ret); return 0; } static int map_ipcmem(struct ipclite_info *ipclite, const char *name) { int ret = 0; struct device *dev; struct device_node *np; struct resource r; dev = ipclite->dev; np = of_parse_phandle(dev->of_node, name, 0); if (!np) { IPCLITE_OS_LOG(IPCLITE_ERR, "No %s specified\n", name); return -EINVAL; } ret = of_address_to_resource(np, 0, &r); of_node_put(np); if (ret) return ret; ipclite->ipcmem.mem.aux_base = (u64)r.start; ipclite->ipcmem.mem.size = resource_size(&r); ipclite->ipcmem.mem.virt_base = devm_ioremap_wc(dev, r.start, resource_size(&r)); if (!ipclite->ipcmem.mem.virt_base) return -ENOMEM; IPCLITE_OS_LOG(IPCLITE_DBG, "aux_base = %lx, size=%d,virt_base=%p\n", ipclite->ipcmem.mem.aux_base, ipclite->ipcmem.mem.size, ipclite->ipcmem.mem.virt_base); return ret; } /** * insert_magic_number() - Inserts the magic number in toc header * * Function computes a simple checksum of the contents in toc header * and stores the result in magic_number field in the toc header */ static void insert_magic_number(void) { uint32_t *block = ipclite->ipcmem.mem.virt_base; size_t size = sizeof(struct ipcmem_toc_header) / sizeof(uint32_t); for (int i = 1; i < size; i++) block[0] ^= block[i]; block[0] = ~block[0]; } static int32_t setup_toc(struct ipclite_mem *ipcmem) { size_t offset = 0; void *virt_base = ipcmem->mem.virt_base; struct ipcmem_offsets *offsets = &ipcmem->toc->offsets; struct ipcmem_toc_data *toc_data = &ipcmem->toc_data; /* Setup Offsets */ offsets->host_info = offset += IPCMEM_TOC_VAR_OFFSET; offsets->global_entry = offset += sizeof(struct ipcmem_host_info); offsets->partition_info = offset += sizeof(struct ipcmem_partition_entry); offsets->partition_entry = offset += sizeof(struct ipcmem_partition_info); // offsets->debug = virt_base + size - 64K; /* Offset to be used for any new structure added in toc (after partition_entry) */ // offsets->new_struct = offset += sizeof(struct ipcmem_partition_entry)*IPCMEM_NUM_HOSTS; IPCLITE_OS_LOG(IPCLITE_DBG, "toc_data offsets:"); IPCLITE_OS_LOG(IPCLITE_DBG, "host_info = 0x%X", offsets->host_info); IPCLITE_OS_LOG(IPCLITE_DBG, "global_entry = 0x%X", offsets->global_entry); IPCLITE_OS_LOG(IPCLITE_DBG, "partition_info = 0x%X", offsets->partition_info); IPCLITE_OS_LOG(IPCLITE_DBG, "partition_entry = 0x%X", offsets->partition_entry); /* Point structures to the appropriate offset in TOC */ toc_data->host_info = ADD_OFFSET(virt_base, offsets->host_info); toc_data->global_entry = ADD_OFFSET(virt_base, offsets->global_entry); toc_data->partition_info = ADD_OFFSET(virt_base, offsets->partition_info); toc_data->partition_entry = ADD_OFFSET(virt_base, offsets->partition_entry); return 0; } static void setup_global_partition(struct ipclite_mem *ipcmem, uint32_t base_offset) { /*Fill in global partition details*/ ipcmem->toc_data.global_entry->base_offset = base_offset; ipcmem->toc_data.global_entry->size = GLOBAL_PARTITION_SIZE; ipcmem->toc_data.global_entry->flags = GLOBAL_PARTITION_FLAGS; ipcmem->toc_data.global_entry->host0 = IPCMEM_GLOBAL_HOST; ipcmem->toc_data.global_entry->host1 = IPCMEM_GLOBAL_HOST; ipcmem->global_partition = ADD_OFFSET(ipcmem->mem.virt_base, base_offset); IPCLITE_OS_LOG(IPCLITE_DBG, "base_offset =%x,ipcmem->global_partition = %p\n", base_offset, ipcmem->global_partition); ipcmem->global_partition->hdr = global_partition_hdr; IPCLITE_OS_LOG(IPCLITE_DBG, "hdr.type = %x,hdr.offset = %x,hdr.size = %d\n", ipcmem->global_partition->hdr.partition_type, ipcmem->global_partition->hdr.region_offset, ipcmem->global_partition->hdr.region_size); } static void update_partition(struct ipclite_mem *ipcmem, uint32_t p) { int host0 = ipcmem->toc_data.partition_entry[p].host0; int host1 = ipcmem->toc_data.partition_entry[p].host1; IPCLITE_OS_LOG(IPCLITE_DBG, "host0 = %d, host1=%d\n", host0, host1); ipcmem->partition[p] = ADD_OFFSET(ipcmem->mem.virt_base, ipcmem->toc_data.partition_entry[p].base_offset); IPCLITE_OS_LOG(IPCLITE_DBG, "partition[%d] = %p,partition_base_offset[%d]=%lx", p, ipcmem->partition[p], p, ipcmem->toc_data.partition_entry[p].base_offset); if (host0 == host1) ipcmem->partition[p]->hdr = loopback_partition_hdr; else ipcmem->partition[p]->hdr = default_partition_hdr; IPCLITE_OS_LOG(IPCLITE_DBG, "hdr.type = %x,hdr.offset = %x,hdr.size = %d", ipcmem->partition[p]->hdr.type, ipcmem->partition[p]->hdr.desc_offset, ipcmem->partition[p]->hdr.desc_size); } static int32_t setup_partitions(struct ipclite_mem *ipcmem, uint32_t base_offset) { uint32_t p, host0, host1; uint32_t num_entry = 0; /*Fill in each valid ipcmem partition table entry*/ for (host0 = 0; host0 < IPCMEM_NUM_HOSTS; host0++) { if (!is_host_enabled(host0)) continue; for (host1 = host0; host1 < IPCMEM_NUM_HOSTS; host1++) { if (!is_host_enabled(host1) || is_loopback_except_apps(host0, host1)) continue; ipcmem->toc_data.partition_entry[num_entry].base_offset = base_offset; ipcmem->toc_data.partition_entry[num_entry].size = DEFAULT_PARTITION_SIZE; ipcmem->toc_data.partition_entry[num_entry].flags = DEFAULT_PARTITION_FLAGS; ipcmem->toc_data.partition_entry[num_entry].host0 = host0; ipcmem->toc_data.partition_entry[num_entry].host1 = host1; base_offset += DEFAULT_PARTITION_SIZE; num_entry++; } } IPCLITE_OS_LOG(IPCLITE_DBG, "total partitions = %u", num_entry); ipcmem->partition = kcalloc(num_entry, sizeof(*ipcmem->partition), GFP_KERNEL); if (!ipcmem->partition) { IPCLITE_OS_LOG(IPCLITE_ERR, "Partition Allocation failed"); return -ENOMEM; } /*Update appropriate partition based on partition entries*/ for (p = 0; p < num_entry; p++) update_partition(ipcmem, p); /*Set up info to parse partition entries*/ ipcmem->toc_data.partition_info->num_entries = partitions = num_entry; ipcmem->toc_data.partition_info->entry_size = sizeof(struct ipcmem_partition_entry); return 0; } static int32_t ipcmem_init(struct ipclite_mem *ipcmem, struct device_node *pn) { int ret = 0; uint32_t remote_pid = 0, host_count = 0, gmem_offset = 0; struct device_node *cn; for_each_available_child_of_node(pn, cn) { of_property_read_u32(cn, "qcom,remote-pid", &remote_pid); if (remote_pid < IPCMEM_NUM_HOSTS) { enabled_hosts |= BIT_MASK(remote_pid); host_count++; } } IPCLITE_OS_LOG(IPCLITE_DBG, "enabled_hosts = 0x%X", enabled_hosts); IPCLITE_OS_LOG(IPCLITE_DBG, "host_count = %u", host_count); ipcmem->toc = ipcmem->mem.virt_base; IPCLITE_OS_LOG(IPCLITE_DBG, "toc_base = %p\n", ipcmem->toc); ret = setup_toc(ipcmem); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to set up toc"); return ret; } /*Set up host related info*/ ipcmem->toc_data.host_info->hwlock_owner = IPCMEM_INVALID_HOST; ipcmem->toc_data.host_info->configured_host = enabled_hosts; gmem_offset += IPCMEM_TOC_SIZE; setup_global_partition(ipcmem, gmem_offset); gmem_offset += GLOBAL_PARTITION_SIZE; ret = setup_partitions(ipcmem, gmem_offset); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to set up partitions"); return ret; } /*Making sure all writes for ipcmem configurations are completed*/ wmb(); ipcmem->toc->hdr.init_done = IPCMEM_INIT_COMPLETED; IPCLITE_OS_LOG(IPCLITE_DBG, "Ipcmem init completed\n"); return 0; } static int ipclite_channel_irq_init(struct device *parent, struct device_node *node, struct ipclite_channel *channel) { int ret = 0; u32 index = 0; struct ipclite_irq_info *irq_info; struct device *dev; char strs[MAX_CHANNEL_SIGNALS][IPCLITE_SIGNAL_LABEL_SIZE] = { "msg", "mem-init", "version", "test", "ssr", "debug"}; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->parent = parent; dev->of_node = node; dev_set_name(dev, "%s:%pOFn", dev_name(parent->parent), node); IPCLITE_OS_LOG(IPCLITE_DBG, "Registering %s device\n", dev_name(parent->parent)); ret = device_register(dev); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to register ipclite child node\n"); put_device(dev); return ret; } ret = of_property_read_u32(dev->of_node, "index", &index); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse index\n"); goto err_dev; } irq_info = &channel->irq_info[index]; IPCLITE_OS_LOG(IPCLITE_DBG, "irq_info[%d]=%p\n", index, irq_info); irq_info->mbox_client.dev = dev; irq_info->mbox_client.knows_txdone = true; irq_info->mbox_chan = mbox_request_channel(&irq_info->mbox_client, 0); IPCLITE_OS_LOG(IPCLITE_DBG, "irq_info[%d].mbox_chan=%p\n", index, irq_info->mbox_chan); if (IS_ERR(irq_info->mbox_chan)) { if (PTR_ERR(irq_info->mbox_chan) != -EPROBE_DEFER) IPCLITE_OS_LOG(IPCLITE_ERR, "failed to acquire IPC channel\n"); goto err_dev; } snprintf(irq_info->irqname, 32, "ipclite-signal-%s", strs[index]); irq_info->irq = of_irq_get(dev->of_node, 0); IPCLITE_OS_LOG(IPCLITE_DBG, "irq[%d] = %d\n", index, irq_info->irq); irq_info->signal_id = index; ret = devm_request_irq(dev, irq_info->irq, ipclite_intr, IRQF_NO_SUSPEND | IRQF_SHARED, irq_info->irqname, irq_info); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to request IRQ\n"); goto err_dev; } IPCLITE_OS_LOG(IPCLITE_DBG, "Interrupt init completed, ret = %d\n", ret); return ret; err_dev: device_unregister(dev); kfree(dev); return ret; } static struct ipcmem_partition_header *get_ipcmem_partition_hdr(struct ipclite_mem ipcmem, int local_pid, int remote_pid) { uint32_t p = 0, found = -1; for (p = 0; p < partitions; p++) { if (ipcmem.toc_data.partition_entry[p].host0 == local_pid && ipcmem.toc_data.partition_entry[p].host1 == remote_pid) { found = p; break; } } if (found < partitions) return (struct ipcmem_partition_header *)((char *)ipcmem.mem.virt_base + ipcmem.toc_data.partition_entry[found].base_offset); else return NULL; } static void ipclite_channel_release(struct device *dev) { IPCLITE_OS_LOG(IPCLITE_INFO, "Releasing ipclite channel\n"); kfree(dev); } /* Sets up following fields of IPCLite channel structure: * remote_pid,tx_fifo, rx_fifo */ static int ipclite_channel_init(struct device *parent, struct device_node *node) { int ret = 0; u32 local_pid = 0, remote_pid = 0; u32 *descs = NULL; struct ipclite_fifo *rx_fifo; struct ipclite_fifo *tx_fifo; struct device *dev; struct device_node *child; struct ipcmem_partition_header *partition_hdr; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->parent = parent; dev->of_node = node; dev->release = ipclite_channel_release; dev_set_name(dev, "%s:%pOFn", dev_name(parent->parent), node); IPCLITE_OS_LOG(IPCLITE_DBG, "Registering %s device\n", dev_name(parent->parent)); ret = device_register(dev); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to register ipclite device\n"); put_device(dev); kfree(dev); return ret; } local_pid = LOCAL_HOST; ret = of_property_read_u32(dev->of_node, "qcom,remote-pid", &remote_pid); if (ret) { dev_err(dev, "failed to parse qcom,remote-pid\n"); goto err_put_dev; } IPCLITE_OS_LOG(IPCLITE_DBG, "remote_pid = %d, local_pid=%d\n", remote_pid, local_pid); rx_fifo = devm_kzalloc(dev, sizeof(*rx_fifo), GFP_KERNEL); tx_fifo = devm_kzalloc(dev, sizeof(*tx_fifo), GFP_KERNEL); if (!rx_fifo || !tx_fifo) { ret = -ENOMEM; goto err_put_dev; } IPCLITE_OS_LOG(IPCLITE_DBG, "rx_fifo = %p, tx_fifo=%p\n", rx_fifo, tx_fifo); partition_hdr = get_ipcmem_partition_hdr(ipclite->ipcmem, local_pid, remote_pid); IPCLITE_OS_LOG(IPCLITE_DBG, "partition_hdr = %p\n", partition_hdr); if (!partition_hdr) { ret = -ENOMEM; goto err_put_dev; } descs = (u32 *)((char *)partition_hdr + partition_hdr->desc_offset); IPCLITE_OS_LOG(IPCLITE_DBG, "descs = %p\n", descs); if (local_pid < remote_pid) { tx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo0_offset; tx_fifo->length = partition_hdr->fifo0_size; rx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo1_offset; rx_fifo->length = partition_hdr->fifo1_size; tx_fifo->tail = &descs[0]; tx_fifo->head = &descs[1]; rx_fifo->tail = &descs[2]; rx_fifo->head = &descs[3]; } else { tx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo1_offset; tx_fifo->length = partition_hdr->fifo1_size; rx_fifo->fifo = (char *)partition_hdr + partition_hdr->fifo0_offset; rx_fifo->length = partition_hdr->fifo0_size; rx_fifo->tail = &descs[0]; rx_fifo->head = &descs[1]; tx_fifo->tail = &descs[2]; tx_fifo->head = &descs[3]; } if (partition_hdr->type == LOOPBACK_PARTITION_TYPE) { rx_fifo->tail = tx_fifo->tail; rx_fifo->head = tx_fifo->head; } /* rx_fifo->reset = ipcmem_rx_reset;*/ rx_fifo->avail = ipcmem_rx_avail; rx_fifo->peak = ipcmem_rx_peak; rx_fifo->advance = ipcmem_rx_advance; /* tx_fifo->reset = ipcmem_tx_reset;*/ tx_fifo->avail = ipcmem_tx_avail; tx_fifo->write = ipcmem_tx_write; *rx_fifo->tail = 0; *tx_fifo->head = 0; /*Store Channel Information*/ ipclite->channel[remote_pid].remote_pid = remote_pid; ipclite->channel[remote_pid].tx_fifo = tx_fifo; ipclite->channel[remote_pid].rx_fifo = rx_fifo; ipclite->channel[remote_pid].gstatus_ptr = &partition_hdr->status; spin_lock_init(&ipclite->channel[remote_pid].tx_lock); for_each_available_child_of_node(dev->of_node, child) { ret = ipclite_channel_irq_init(dev, child, &ipclite->channel[remote_pid]); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "irq setup for ipclite channel failed\n"); goto err_put_dev; } } /* Updating Local & Global Channel Status */ if (remote_pid == IPCMEM_APPS) { *ipclite->channel[remote_pid].gstatus_ptr = ACTIVE; ipclite->channel[remote_pid].status = ACTIVE; } else { *ipclite->channel[remote_pid].gstatus_ptr = IN_PROGRESS; ipclite->channel[remote_pid].status = IN_PROGRESS; } IPCLITE_OS_LOG(IPCLITE_DBG, "Channel init completed, ret = %d\n", ret); return ret; err_put_dev: ipclite->channel[remote_pid].status = INACTIVE; device_unregister(dev); kfree(dev); return ret; } static void probe_subsystem(struct device *dev, struct device_node *np) { int ret = 0; ret = ipclite_channel_init(dev, np); if (ret) IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Channel init failed\n"); } /* IPCLite Debug related functions start */ static ssize_t ipclite_dbg_lvl_write(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int ret = 0, host = 0; /* Parse the string from Sysfs Interface */ ret = kstrtoint(buf, 0, &ipclite_debug_level); if (ret < 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Error parsing the sysfs value"); return ret; } /* Check if debug structure is initialized */ if (!ipclite_dbg_info) { IPCLITE_OS_LOG(IPCLITE_ERR, "Debug structures not initialized\n"); return -ENOMEM; } /* Update the Global Debug variable for FW cores */ ipclite_dbg_info->debug_level = ipclite_debug_level; /* Memory Barrier to make sure all writes are completed */ wmb(); /* Signal other cores for updating the debug information */ for (host = 1; host < IPCMEM_NUM_HOSTS; host++) { if (!is_host_enabled(host)) continue; ret = ipclite_notify_core(host, IPCLITE_DEBUG_SIGNAL); if (ret < 0) IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to send the debug info %d\n", host); else IPCLITE_OS_LOG(IPCLITE_DBG, "Debug info sent to host %d\n", host); } return count; } static ssize_t ipclite_dbg_ctrl_write(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int ret = 0, host = 0; /* Parse the string from Sysfs Interface */ ret = kstrtoint(buf, 0, &ipclite_debug_control); if (ret < 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Error parsing the sysfs value"); return ret; } /* Check if debug structures are initialized */ if (!ipclite_dbg_info || !ipclite_dbg_struct || !ipclite_dbg_inmem) { IPCLITE_OS_LOG(IPCLITE_ERR, "Debug structures not initialized\n"); return -ENOMEM; } /* Update the Global Debug variable for FW cores */ ipclite_dbg_info->debug_control = ipclite_debug_control; /* Memory Barrier to make sure all writes are completed */ wmb(); /* Signal other cores for updating the debug information */ for (host = 1; host < IPCMEM_NUM_HOSTS; host++) { if (!is_host_enabled(host)) continue; ret = ipclite_notify_core(host, IPCLITE_DEBUG_SIGNAL); if (ret < 0) IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to send the debug info %d\n", host); else IPCLITE_OS_LOG(IPCLITE_DBG, "Debug info sent to host %d\n", host); } return count; } static ssize_t ipclite_dbg_dump_write(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int ret = 0; /* Parse the string from Sysfs Interface */ ret = kstrtoint(buf, 0, &ipclite_debug_dump); if (ret < 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Error parsing the sysfs value"); return ret; } /* Check if debug structures are initialized */ if (!ipclite_dbg_info || !ipclite_dbg_struct || !ipclite_dbg_inmem) { IPCLITE_OS_LOG(IPCLITE_ERR, "Debug structures not initialized\n"); return -ENOMEM; } /* Dump the debug information */ if (ipclite_debug_dump & IPCLITE_DUMP_DBG_STRUCT) ipclite_dump_debug_struct(); if (ipclite_debug_dump & IPCLITE_DUMP_INMEM_LOG) ipclite_dump_inmem_logs(); return count; } struct kobj_attribute sysfs_dbg_lvl = __ATTR(ipclite_debug_level, 0660, NULL, ipclite_dbg_lvl_write); struct kobj_attribute sysfs_dbg_ctrl = __ATTR(ipclite_debug_control, 0660, NULL, ipclite_dbg_ctrl_write); struct kobj_attribute sysfs_dbg_dump = __ATTR(ipclite_debug_dump, 0660, NULL, ipclite_dbg_dump_write); static int ipclite_debug_sysfs_setup(void) { int ret = 0; /* Creating a directory in /sys/kernel/ */ sysfs_kobj = kobject_create_and_add("ipclite", kernel_kobj); if (!sysfs_kobj) { IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create and add sysfs directory\n"); return -ENOMEM; } /* Creating sysfs files/interfaces for debug */ ret = sysfs_create_file(sysfs_kobj, &sysfs_dbg_lvl.attr); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create sysfs debug level file\n"); return ret; } ret = sysfs_create_file(sysfs_kobj, &sysfs_dbg_ctrl.attr); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create sysfs debug control file\n"); return ret; } ret = sysfs_create_file(sysfs_kobj, &sysfs_dbg_dump.attr); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "Cannot create sysfs debug dump file\n"); return ret; } return ret; } static int ipclite_debug_mem_setup(void) { /* Setting up the Debug Structures */ ipclite_dbg_info = (struct ipclite_debug_info *)(((char *)ipclite->ipcmem.mem.virt_base + ipclite->ipcmem.mem.size) - DEBUG_PARTITION_SIZE); if (!ipclite_dbg_info) return -EADDRNOTAVAIL; ipclite_dbg_struct = (struct ipclite_debug_struct *) (((char *)ipclite_dbg_info + IPCLITE_DEBUG_INFO_SIZE) + (sizeof(*ipclite_dbg_struct) * IPCMEM_APPS)); if (!ipclite_dbg_struct) return -EADDRNOTAVAIL; ipclite_dbg_inmem = (struct ipclite_debug_inmem_buf *) (((char *)ipclite_dbg_info + IPCLITE_DEBUG_INFO_SIZE) + (sizeof(*ipclite_dbg_struct) * IPCMEM_NUM_HOSTS)); if (!ipclite_dbg_inmem) return -EADDRNOTAVAIL; IPCLITE_OS_LOG(IPCLITE_DBG, "virtual_base_ptr = %p total_size : %d debug_size : %d\n", ipclite->ipcmem.mem.virt_base, ipclite->ipcmem.mem.size, DEBUG_PARTITION_SIZE); IPCLITE_OS_LOG(IPCLITE_DBG, "dbg_info : %p dbg_struct : %p dbg_inmem : %p\n", ipclite_dbg_info, ipclite_dbg_struct, ipclite_dbg_inmem); return 0; } static int ipclite_debug_setup(void) { int ret = 0; /* Set up sysfs for debug */ ret = ipclite_debug_sysfs_setup(); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to Set up IPCLite Debug Sysfs\n"); return ret; } /* Mapping Debug Memory */ ret = ipclite_debug_mem_setup(); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to Set up IPCLite Debug Structures\n"); return ret; } /* Update the Global Debug variable for FW cores */ ipclite_dbg_info->debug_level = ipclite_debug_level; ipclite_dbg_info->debug_control = ipclite_debug_control; return ret; } /* IPCLite Debug related functions end */ /* IPCLite Features setup related functions start */ static int ipclite_feature_setup(struct device_node *pn) { int ret = 0; uint32_t feature_mask_l = 0, feature_mask_h = 0; /* Parse the feature related DT entries and store the values locally */ ret = of_property_read_u32(pn, "feature_mask_low", &feature_mask_l); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse feature_mask_low\n"); return ret; } ret = of_property_read_u32(pn, "feature_mask_high", &feature_mask_h); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse feature_mask_high\n"); return ret; } /* Combine feature_mask_low and feature_mask_high into 64-bit feature_mask */ feature_mask = (uint64_t) feature_mask_h << 32 | feature_mask_l; /* Update the feature mask to TOC for FW */ ipclite->ipcmem.toc->hdr.feature_mask = feature_mask; /* Set up Global Atomics Feature*/ if (!(IS_FEATURE_CONFIG(IPCLITE_GLOBAL_ATOMIC))) IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Global Atomic Support Disabled\n"); /* Set up Test Suite Feature*/ if (!(IS_FEATURE_CONFIG(IPCLITE_TEST_SUITE))) IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Test Suite Disabled\n"); return ret; } /* IPCLite Features setup related functions end */ /* API Definition Start - Minor Version 0*/ static int ipclite_init_v0(struct platform_device *pdev) { int ret = 0, hwlock_id = 0; struct ipcmem_region *mem; struct device_node *cn; struct device_node *pn = pdev->dev.of_node; struct ipclite_channel broadcast; /* Allocate memory for IPCLite */ ipclite = kzalloc(sizeof(*ipclite), GFP_KERNEL); if (!ipclite) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Memory Allocation Failed\n"); ret = -ENOMEM; goto error; } ipclite->dev = &pdev->dev; /* Parse HW Lock from DT */ hwlock_id = of_hwspin_lock_get_id(pn, 0); if (hwlock_id < 0) { if (hwlock_id != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to retrieve hwlock\n"); ret = hwlock_id; goto release; } IPCLITE_OS_LOG(IPCLITE_DBG, "Hwlock id retrieved, hwlock_id=%d\n", hwlock_id); /* Reserve a HWSpinLock for later use */ ipclite->hwlock = hwspin_lock_request_specific(hwlock_id); if (!ipclite->hwlock) { IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to assign hwlock_id\n"); ret = -ENXIO; goto release; } IPCLITE_OS_LOG(IPCLITE_DBG, "Hwlock id assigned successfully, hwlock=%p\n", ipclite->hwlock); /* Initializing Local Mutex Lock for SSR functionality */ mutex_init(&ssr_mutex); /* Map to IPCLite Memory */ ret = map_ipcmem(ipclite, "memory-region"); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to map ipcmem\n"); goto release; } mem = &(ipclite->ipcmem.mem); memset(mem->virt_base, 0, mem->size); ret = ipcmem_init(&ipclite->ipcmem, pn); if (ret) { IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to set up IPCMEM"); goto release; } /* Setup Channel for each Remote Subsystem */ for_each_available_child_of_node(pn, cn) probe_subsystem(&pdev->dev, cn); /* Broadcast init_done signal to all subsystems once mbox channels are set up */ broadcast = ipclite->channel[IPCMEM_APPS]; ret = mbox_send_message(broadcast.irq_info[IPCLITE_MEM_INIT_SIGNAL].mbox_chan, NULL); if (ret < 0) goto mem_release; mbox_client_txdone(broadcast.irq_info[IPCLITE_MEM_INIT_SIGNAL].mbox_chan, 0); /* Debug Setup */ ret = ipclite_debug_setup(); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Debug Setup Failed\n"); goto release; } /* Features Setup */ ret = ipclite_feature_setup(pn); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Features Setup Failed\n"); goto release; } /* Update TOC with version entries for FW */ ipclite->ipcmem.toc->hdr.major_version = major_ver; ipclite->ipcmem.toc->hdr.minor_version = minor_ver; /* Should be called after all Global TOC related init is done */ insert_magic_number(); IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Version : %d.%d Feature Mask : 0x%llx\n", major_ver, minor_ver, feature_mask); IPCLITE_OS_LOG(IPCLITE_INFO, "IPCLite Probe Completed Successfully\n"); return ret; mem_release: /* If the remote subsystem has already completed the init and actively * using IPCMEM, re-assigning IPCMEM memory back to HLOS can lead to crash * Solution: Either we don't take back the memory or make sure APPS completes * init before any other subsystem initializes IPCLite (we won't have to send * braodcast) */ release: kfree(ipclite); ipclite = NULL; error: return ret; } static int ipclite_register_client_v0(IPCLite_Client cb_func_ptr, void *priv) { if (!cb_func_ptr) { IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid callback pointer\n"); return -EINVAL; } synx_client.callback = cb_func_ptr; synx_client.priv_data = priv; synx_client.reg_complete = 1; IPCLITE_OS_LOG(IPCLITE_DBG, "Client Registration completed\n"); return 0; } static int ipclite_register_test_client_v0(IPCLite_Client cb_func_ptr, void *priv) { if (!cb_func_ptr) { IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid callback pointer\n"); return -EINVAL; } test_client.callback = cb_func_ptr; test_client.priv_data = priv; test_client.reg_complete = 1; IPCLITE_OS_LOG(IPCLITE_DBG, "Test Client Registration Completed\n"); return 0; } static int ipclite_msg_send_v0(int32_t proc_id, uint64_t data) { int ret = 0; /* Check for valid core id */ if (proc_id < 0 || proc_id >= IPCMEM_NUM_HOSTS) { IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid proc_id : %d\n", proc_id); return -EINVAL; } /* Send the data to the core */ ret = ipclite_tx(&ipclite->channel[proc_id], data, sizeof(data), IPCLITE_MSG_SIGNAL); if (ret < 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Message send failed to core : %d signal:%d ret:%d\n", proc_id, IPCLITE_MSG_SIGNAL, ret); return ret; } IPCLITE_OS_LOG(IPCLITE_DBG, "Message send complete to core : %d signal : %d ret : %d\n", proc_id, IPCLITE_MSG_SIGNAL, ret); return ret; } static int ipclite_test_msg_send_v0(int32_t proc_id, uint64_t data) { int ret = 0; /* Check for valid core id */ if (proc_id < 0 || proc_id >= IPCMEM_NUM_HOSTS) { IPCLITE_OS_LOG(IPCLITE_ERR, "Invalid proc_id : %d\n", proc_id); return -EINVAL; } /* Send the data to the core */ ret = ipclite_tx(&ipclite->channel[proc_id], data, sizeof(data), IPCLITE_TEST_SIGNAL); if (ret < 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "Message send failed to core : %d signal:%d ret:%d\n", proc_id, IPCLITE_TEST_SIGNAL, ret); return ret; } IPCLITE_OS_LOG(IPCLITE_DBG, "Test Msg send complete to core : %d signal : %d ret : %d\n", proc_id, IPCLITE_TEST_SIGNAL, ret); return ret; } static int32_t get_global_partition_info_v0(struct global_region_info *global_ipcmem) { struct ipcmem_global_partition *global_partition; if (!ipclite) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite not initialized\n"); return -ENOMEM; } if (!global_ipcmem) return -EINVAL; global_partition = ipclite->ipcmem.global_partition; global_ipcmem->virt_base = (void *)((char *)global_partition + global_partition->hdr.region_offset); global_ipcmem->size = (size_t)(global_partition->hdr.region_size); IPCLITE_OS_LOG(IPCLITE_DBG, "base = %p, size=%lx\n", global_ipcmem->virt_base, global_ipcmem->size); return 0; } static void ipclite_recover_v0(enum ipcmem_host_type core_id) { int ret = 0, host = 0, host0 = 0, host1 = 0; uint32_t p = 0; IPCLITE_OS_LOG(IPCLITE_DBG, "IPCLite Recover - Crashed Core : %d\n", core_id); /* verify and reset the hw mutex lock */ if (core_id == ipclite->ipcmem.toc_data.host_info->hwlock_owner) { ipclite->ipcmem.toc_data.host_info->hwlock_owner = IPCMEM_INVALID_HOST; hwspin_unlock_raw(ipclite->hwlock); IPCLITE_OS_LOG(IPCLITE_DBG, "HW Lock Reset\n"); } mutex_lock(&ssr_mutex); /* Set the Global Channel Status to 0 to avoid Race condition */ for (p = 0; p < partitions; p++) { host0 = ipclite->ipcmem.toc_data.partition_entry[p].host0; host1 = ipclite->ipcmem.toc_data.partition_entry[p].host1; if (host0 != core_id && host1 != core_id) continue; ipclite_global_atomic_store_i32((ipclite_atomic_int32_t *) (&(ipclite->ipcmem.partition[p]->hdr.status)), 0); IPCLITE_OS_LOG(IPCLITE_DBG, "Global Channel Status : [%d][%d] : %d\n", host0, host1, ipclite->ipcmem.partition[p]->hdr.status); } /* Resets the TX/RX queue */ *(ipclite->channel[core_id].tx_fifo->head) = 0; *(ipclite->channel[core_id].rx_fifo->tail) = 0; IPCLITE_OS_LOG(IPCLITE_DBG, "TX Fifo Reset : %d\n", *(ipclite->channel[core_id].tx_fifo->head)); IPCLITE_OS_LOG(IPCLITE_DBG, "RX Fifo Reset : %d\n", *(ipclite->channel[core_id].rx_fifo->tail)); /* Increment the Global Channel Status for APPS and crashed core*/ ipclite_global_atomic_inc((ipclite_atomic_int32_t *) ipclite->channel[core_id].gstatus_ptr); ipclite->channel[core_id].status = *ipclite->channel[core_id].gstatus_ptr; /* Update other cores about SSR */ for (host = 1; host < IPCMEM_NUM_HOSTS; host++) { if (!is_host_enabled(host) || host == core_id) continue; ret = ipclite_notify_core(host, IPCLITE_SSR_SIGNAL); if (ret < 0) IPCLITE_OS_LOG(IPCLITE_ERR, "Failed to send SSR update to core %d\n", host); else IPCLITE_OS_LOG(IPCLITE_DBG, "SSR update sent to core %d\n", host); } mutex_unlock(&ssr_mutex); /* Dump the debug information */ if (ipclite_debug_dump & IPCLITE_DUMP_SSR) { ipclite_dump_debug_struct(); ipclite_dump_inmem_logs(); } } /* API Definition End - Minor Version 0*/ /* Versioned Functions Start */ int ipclite_init(struct platform_device *pdev) { if (api_list_t.init == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return -EINVAL; } return api_list_t.init(pdev); } int ipclite_register_client(IPCLite_Client cb_func_ptr, void *priv) { if (api_list_t.register_client == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return -EINVAL; } return api_list_t.register_client(cb_func_ptr, priv); } EXPORT_SYMBOL(ipclite_register_client); int ipclite_register_test_client(IPCLite_Client cb_func_ptr, void *priv) { if (api_list_t.register_test_client == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return -EINVAL; } return api_list_t.register_test_client(cb_func_ptr, priv); } EXPORT_SYMBOL(ipclite_register_test_client); int ipclite_msg_send(int32_t proc_id, uint64_t data) { if (api_list_t.msg_send == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return -EINVAL; } return api_list_t.msg_send(proc_id, data); } EXPORT_SYMBOL(ipclite_msg_send); int ipclite_test_msg_send(int32_t proc_id, uint64_t data) { if (api_list_t.test_msg_send == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return -EINVAL; } return api_list_t.test_msg_send(proc_id, data); } EXPORT_SYMBOL(ipclite_test_msg_send); void ipclite_recover(enum ipcmem_host_type core_id) { if (api_list_t.recover == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return; } api_list_t.recover(core_id); } EXPORT_SYMBOL(ipclite_recover); int32_t get_global_partition_info(struct global_region_info *global_ipcmem) { if (api_list_t.partition_info == NULL) { IPCLITE_OS_LOG(IPCLITE_ERR, "Unassigned function : %s", __func__); return -EINVAL; } return api_list_t.partition_info(global_ipcmem); } EXPORT_SYMBOL(get_global_partition_info); /* Versioned Functions End */ /* List of APIs based on the version */ struct ipclite_api_list api_list_version[] = { /* Minor Version 0 */ { .init = ipclite_init_v0, .register_client = ipclite_register_client_v0, .register_test_client = ipclite_register_test_client_v0, .msg_send = ipclite_msg_send_v0, .test_msg_send = ipclite_test_msg_send_v0, .partition_info = get_global_partition_info_v0, .recover = ipclite_recover_v0, }, }; /* IPCLite Version setup related functions start */ static int ipclite_update_version_api(struct ipclite_api_list *res_str, struct ipclite_api_list *ver_str) { if (res_str == NULL || ver_str == NULL) return -EINVAL; /* Register APIs based on the version */ res_str->init = (ver_str->init != NULL) ? ver_str->init : res_str->init; res_str->register_client = (ver_str->register_client != NULL) ? ver_str->register_client : res_str->register_client; res_str->register_test_client = (ver_str->register_test_client != NULL) ? ver_str->register_test_client : res_str->register_test_client; res_str->msg_send = (ver_str->msg_send != NULL) ? ver_str->msg_send : res_str->msg_send; res_str->test_msg_send = (ver_str->test_msg_send != NULL) ? ver_str->test_msg_send : res_str->test_msg_send; res_str->partition_info = (ver_str->partition_info != NULL) ? ver_str->partition_info : res_str->partition_info; res_str->recover = (ver_str->recover != NULL) ? ver_str->recover : res_str->recover; return 0; } static int ipclite_register_api(void) { int ret = 0, ver_itr = 0; /* Register APIs based on the version */ for (ver_itr = 0; ver_itr <= minor_ver; ver_itr++) { ret = ipclite_update_version_api(&api_list_t, &api_list_version[ver_itr]); if (ret != 0) return ret; } return ret; } static int ipclite_version_setup(struct device_node *pn) { int ret = 0; /* Parse the version related DT entries and store the values locally */ ret = of_property_read_u32(pn, "major_version", &major_ver); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse major_vesion\n"); return ret; } ret = of_property_read_u32(pn, "minor_version", &minor_ver); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "failed to parse minor_vesion\n"); return ret; } /* Verify IPCLite Version - if version does not match crash the system */ BUG_ON(major_ver != MAJOR_VERSION || minor_ver > MINOR_VERSION); return ret; } /* IPCLite Version setup related functions end */ /* Start of IPCLite Init*/ static int ipclite_probe(struct platform_device *pdev) { int ret = 0; /* Version Setup */ ret = ipclite_version_setup(pdev->dev.of_node); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Version Setup Failed\n"); goto error; } /* Register API Setup */ ret = ipclite_register_api(); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite API Registration Failed\n"); goto error; } /* IPCLite Init */ ret = ipclite_init(pdev); if (ret != 0) { IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite Init Failed\n"); goto error; } return ret; error: IPCLITE_OS_LOG(IPCLITE_ERR, "IPCLite probe failed\n"); return ret; } static const struct of_device_id ipclite_of_match[] = { { .compatible = "qcom,ipclite"}, {} }; MODULE_DEVICE_TABLE(of, ipclite_of_match); static struct platform_driver ipclite_driver = { .probe = ipclite_probe, .driver = { .name = "ipclite", .of_match_table = ipclite_of_match, }, }; module_platform_driver(ipclite_driver); MODULE_DESCRIPTION("IPCLite Driver"); MODULE_LICENSE("GPL v2"); MODULE_SOFTDEP("pre: qcom_hwspinlock");