/* * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2014-2021, The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include #include #include #include #include #include "msm_drv.h" #include "sde_kms.h" #include #include #include #include "sde_hwio.h" #include "sde_hw_catalog.h" #include "sde_hw_intf.h" #include "sde_hw_ctl.h" #include "sde_formats.h" #include "sde_encoder.h" #include "sde_encoder_phys.h" #include "sde_hw_dsc.h" #include "sde_hw_vdc.h" #include "sde_crtc.h" #include "sde_trace.h" #include "sde_core_irq.h" #include "sde_hw_top.h" #include "sde_hw_qdss.h" #include "sde_encoder_dce.h" #include "sde_vm.h" #include "sde_fence.h" #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) #include #include "ss_dsi_panel_common.h" #endif #define SDE_DEBUG_ENC(e, fmt, ...) SDE_DEBUG("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) #define SDE_ERROR_ENC(e, fmt, ...) SDE_ERROR("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) #define SDE_DEBUG_PHYS(p, fmt, ...) SDE_DEBUG("enc%d intf%d pp%d " fmt,\ (p) ? (p)->parent->base.id : -1, \ (p) ? (p)->intf_idx - INTF_0 : -1, \ (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ ##__VA_ARGS__) #define SDE_ERROR_PHYS(p, fmt, ...) SDE_ERROR("enc%d intf%d pp%d " fmt,\ (p) ? (p)->parent->base.id : -1, \ (p) ? (p)->intf_idx - INTF_0 : -1, \ (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ ##__VA_ARGS__) #define SEC_TO_MILLI_SEC 1000 #define MISR_BUFF_SIZE 256 #define IDLE_SHORT_TIMEOUT 1 #define EVT_TIME_OUT_SPLIT 2 /* worst case poll time for delay_kickoff to be cleared */ #define DELAY_KICKOFF_POLL_TIMEOUT_US 100000 /* Maximum number of VSYNC wait attempts for RSC state transition */ #define MAX_RSC_WAIT 5 /* Worst case time required for trigger the frame after the EPT wait */ #define EPT_BACKOFF_THRESHOLD (3 * NSEC_PER_MSEC) #define MAX_EPT_TIMEOUT_US (10 * USEC_PER_SEC) #define IS_ROI_UPDATED(a, b) (a.x1 != b.x1 || a.x2 != b.x2 || \ a.y1 != b.y1 || a.y2 != b.y2) /** * enum sde_enc_rc_events - events for resource control state machine * @SDE_ENC_RC_EVENT_KICKOFF: * This event happens at NORMAL priority. * Event that signals the start of the transfer. When this event is * received, enable MDP/DSI core clocks and request RSC with CMD state. * Regardless of the previous state, the resource should be in ON state * at the end of this event. At the end of this event, a delayed work is * scheduled to go to IDLE_PC state after IDLE_POWERCOLLAPSE_DURATION * ktime. * @SDE_ENC_RC_EVENT_PRE_STOP: * This event happens at NORMAL priority. * This event, when received during the ON state, set RSC to IDLE, and * and leave the RC STATE in the PRE_OFF state. * It should be followed by the STOP event as part of encoder disable. * If received during IDLE or OFF states, it will do nothing. * @SDE_ENC_RC_EVENT_STOP: * This event happens at NORMAL priority. * When this event is received, disable all the MDP/DSI core clocks, and * disable IRQs. It should be called from the PRE_OFF or IDLE states. * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. * PRE_OFF is expected when PRE_STOP was executed during the ON state. * Resource state should be in OFF at the end of the event. * @SDE_ENC_RC_EVENT_PRE_MODESET: * This event happens at NORMAL priority from a work item. * Event signals that there is a seamless mode switch is in prgoress. A * client needs to leave clocks ON to reduce the mode switch latency. * @SDE_ENC_RC_EVENT_POST_MODESET: * This event happens at NORMAL priority from a work item. * Event signals that seamless mode switch is complete and resources are * acquired. Clients wants to update the rsc with new vtotal and update * pm_qos vote. * @SDE_ENC_RC_EVENT_ENTER_IDLE: * This event happens at NORMAL priority from a work item. * Event signals that there were no frame updates for * IDLE_POWERCOLLAPSE_DURATION time. This would disable MDP/DSI core clocks * and request RSC with IDLE state and change the resource state to IDLE. * @SDE_ENC_RC_EVENT_EARLY_WAKEUP: * This event is triggered from the input event thread when touch event is * received from the input device. On receiving this event, * - If the device is in SDE_ENC_RC_STATE_IDLE state, it turns ON the clocks and enable RSC. * - If the device is in SDE_ENC_RC_STATE_ON state, it resets the delayed * off work since a new commit is imminent. */ enum sde_enc_rc_events { SDE_ENC_RC_EVENT_KICKOFF = 1, SDE_ENC_RC_EVENT_PRE_STOP, SDE_ENC_RC_EVENT_STOP, SDE_ENC_RC_EVENT_PRE_MODESET, SDE_ENC_RC_EVENT_POST_MODESET, SDE_ENC_RC_EVENT_ENTER_IDLE, SDE_ENC_RC_EVENT_EARLY_WAKEUP, }; void sde_encoder_uidle_enable(struct drm_encoder *drm_enc, bool enable) { struct sde_encoder_virt *sde_enc; int i; sde_enc = to_sde_encoder_virt(drm_enc); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->hw_ctl && phys->hw_ctl->ops.uidle_enable && phys->split_role != ENC_ROLE_SLAVE) { if (enable) SDE_EVT32(DRMID(drm_enc), enable); phys->hw_ctl->ops.uidle_enable(phys->hw_ctl, enable); } } } u32 sde_encoder_get_programmed_fetch_time(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys; bool is_vid; sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc || !sde_enc->phys_encs[0]) { SDE_ERROR("invalid params\n"); return U32_MAX; } phys = sde_enc->phys_encs[0]; is_vid = sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE); return is_vid ? phys->pf_time_in_us : 0; } ktime_t sde_encoder_calc_last_vsync_timestamp(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *cur_master; u64 vsync_counter, qtmr_counter, hw_diff, hw_diff_ns, frametime_ns; ktime_t tvblank, cur_time; struct intf_status intf_status = {0}; unsigned long features; u32 fps; bool is_cmd, is_vid; sde_enc = to_sde_encoder_virt(drm_enc); cur_master = sde_enc->cur_master; fps = sde_encoder_get_fps(drm_enc); is_cmd = sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE); is_vid = sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE); if (!cur_master || !cur_master->hw_intf || !fps || !cur_master->hw_intf->ops.get_vsync_timestamp || (!is_cmd && !is_vid)) return 0; features = cur_master->hw_intf->cap->features; /* * if MDP VSYNC HW timestamp is not supported and if programmable fetch is enabled, * avoid calculation and rely on ktime_get, as the HW vsync timestamp will be updated * at panel vsync and not at MDP VSYNC */ if (!test_bit(SDE_INTF_MDP_VSYNC_TS, &features) && cur_master->hw_intf->ops.get_status) { cur_master->hw_intf->ops.get_status(cur_master->hw_intf, &intf_status); if (intf_status.is_prog_fetch_en) return 0; } vsync_counter = cur_master->hw_intf->ops.get_vsync_timestamp(cur_master->hw_intf, is_vid); qtmr_counter = arch_timer_read_counter(); cur_time = ktime_get_ns(); /* check for counter rollover between the two timestamps [56 bits] */ if (qtmr_counter < vsync_counter) { hw_diff = (0xffffffffffffff - vsync_counter) + qtmr_counter; SDE_EVT32(DRMID(drm_enc), vsync_counter >> 32, vsync_counter, qtmr_counter >> 32, qtmr_counter, hw_diff, fps, SDE_EVTLOG_FUNC_CASE1); } else { hw_diff = qtmr_counter - vsync_counter; } hw_diff_ns = DIV_ROUND_UP(hw_diff * 1000 * 10, 192); /* 19.2 MHz clock */ frametime_ns = DIV_ROUND_UP(1000000000, fps); /* avoid setting timestamp, if diff is more than one vsync */ if (ktime_compare(hw_diff_ns, frametime_ns) > 0) { tvblank = 0; SDE_EVT32(DRMID(drm_enc), vsync_counter >> 32, vsync_counter, qtmr_counter >> 32, qtmr_counter, ktime_to_us(hw_diff_ns), fps, SDE_EVTLOG_ERROR); #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) /* case 06040596 : add log to check tearing problem due to vsync count */ /* ksj TODO: restore log level: debug -> error, after bringup */ if (!vsync_counter) SDE_DEBUG_ENC(sde_enc, "Vsync counter is zero!!\n"); #endif } else { tvblank = ktime_sub_ns(cur_time, hw_diff_ns); } SDE_DEBUG_ENC(sde_enc, "vsync:%llu, qtmr:%llu, diff_ns:%llu, ts:%llu, cur_ts:%llu, fps:%d\n", vsync_counter, qtmr_counter, ktime_to_us(hw_diff_ns), ktime_to_us(tvblank), ktime_to_us(cur_time), fps); SDE_EVT32_VERBOSE(DRMID(drm_enc), hw_diff >> 32, hw_diff, ktime_to_us(hw_diff_ns), ktime_to_us(tvblank), ktime_to_us(cur_time), fps, SDE_EVTLOG_FUNC_CASE2); return tvblank; } static void _sde_encoder_control_fal10_veto(struct drm_encoder *drm_enc, bool veto) { bool clone_mode; struct sde_kms *sde_kms = sde_encoder_get_kms(drm_enc); struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_kms || !sde_kms->hw_uidle || !sde_kms->hw_uidle->ops.uidle_fal10_override) return; if (test_bit(SDE_UIDLE_WB_FAL_STATUS, &sde_kms->catalog->uidle_cfg.features)) return; /* * clone mode is the only scenario where we want to enable software override * of fal10 veto. */ clone_mode = sde_encoder_in_clone_mode(drm_enc); SDE_EVT32(DRMID(drm_enc), clone_mode, veto); if (clone_mode && veto) { sde_kms->hw_uidle->ops.uidle_fal10_override(sde_kms->hw_uidle, veto); sde_enc->fal10_veto_override = true; } else if (sde_enc->fal10_veto_override && !veto) { sde_kms->hw_uidle->ops.uidle_fal10_override(sde_kms->hw_uidle, veto); sde_enc->fal10_veto_override = false; } } static void _sde_encoder_pm_qos_add_request(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); struct msm_drm_private *priv; struct sde_kms *sde_kms; struct device *cpu_dev; struct cpumask *cpu_mask = NULL; int cpu = 0; u32 cpu_dma_latency; priv = drm_enc->dev->dev_private; sde_kms = to_sde_kms(priv->kms); if (!sde_kms->catalog || !sde_kms->catalog->perf.cpu_mask) return; cpu_dma_latency = sde_kms->catalog->perf.cpu_dma_latency; cpumask_clear(&sde_enc->valid_cpu_mask); if (sde_enc->mode_info.frame_rate > DEFAULT_FPS) cpu_mask = to_cpumask(&sde_kms->catalog->perf.cpu_mask_perf); if (!cpu_mask && sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) cpu_mask = to_cpumask(&sde_kms->catalog->perf.cpu_mask); if (!cpu_mask) return; for_each_cpu(cpu, cpu_mask) { cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { SDE_ERROR("%s: failed to get cpu%d device\n", __func__, cpu); return; } cpumask_set_cpu(cpu, &sde_enc->valid_cpu_mask); dev_pm_qos_add_request(cpu_dev, &sde_enc->pm_qos_cpu_req[cpu], DEV_PM_QOS_RESUME_LATENCY, cpu_dma_latency); SDE_EVT32_VERBOSE(DRMID(drm_enc), cpu_dma_latency, cpu); } } static void _sde_encoder_pm_qos_remove_request(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); struct device *cpu_dev; int cpu = 0; for_each_cpu(cpu, &sde_enc->valid_cpu_mask) { cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { SDE_ERROR("%s: failed to get cpu%d device\n", __func__, cpu); continue; } dev_pm_qos_remove_request(&sde_enc->pm_qos_cpu_req[cpu]); SDE_EVT32_VERBOSE(DRMID(drm_enc), cpu); } cpumask_clear(&sde_enc->valid_cpu_mask); } static bool _sde_encoder_is_autorefresh_enabled( struct sde_encoder_virt *sde_enc) { struct drm_connector *drm_conn; if (!sde_enc->cur_master || !(sde_enc->disp_info.capabilities & MSM_DISPLAY_CAP_CMD_MODE)) return false; drm_conn = sde_enc->cur_master->connector; if (!drm_conn || !drm_conn->state) return false; return sde_connector_get_property(drm_conn->state, CONNECTOR_PROP_AUTOREFRESH) ? true : false; } static bool _sde_encoder_is_autorefresh_status_busy(struct sde_encoder_virt *sde_enc) { if (!sde_enc->cur_master || !sde_enc->cur_master->hw_intf || !sde_enc->cur_master->hw_intf->ops.get_autorefresh_status) return false; return sde_enc->cur_master->hw_intf->ops.get_autorefresh_status( sde_enc->cur_master->hw_intf); } static void sde_configure_qdss(struct sde_encoder_virt *sde_enc, struct sde_hw_qdss *hw_qdss, struct sde_encoder_phys *phys, bool enable) { if (sde_enc->qdss_status == enable) return; sde_enc->qdss_status = enable; phys->hw_mdptop->ops.set_mdp_hw_events(phys->hw_mdptop, sde_enc->qdss_status); hw_qdss->ops.enable_qdss_events(hw_qdss, sde_enc->qdss_status); } static int _sde_encoder_wait_timeout(int32_t drm_id, int32_t hw_id, s64 timeout_ms, struct sde_encoder_wait_info *info) { int rc = 0; s64 wait_time_jiffies = msecs_to_jiffies(timeout_ms); ktime_t cur_ktime; ktime_t exp_ktime = ktime_add_ms(ktime_get(), timeout_ms); u32 curr_atomic_cnt = atomic_read(info->atomic_cnt); do { rc = wait_event_timeout(*(info->wq), atomic_read(info->atomic_cnt) == info->count_check, wait_time_jiffies); cur_ktime = ktime_get(); SDE_EVT32(drm_id, hw_id, rc, ktime_to_ms(cur_ktime), timeout_ms, atomic_read(info->atomic_cnt), info->count_check); /* Make an early exit if the condition is already satisfied */ if ((atomic_read(info->atomic_cnt) < info->count_check) && (info->count_check < curr_atomic_cnt)) { rc = true; break; } /* If we timed out, counter is valid and time is less, wait again */ } while ((atomic_read(info->atomic_cnt) != info->count_check) && (rc == 0) && (ktime_compare_safe(exp_ktime, cur_ktime) > 0)); return rc; } int sde_encoder_helper_hw_fence_extended_wait(struct sde_encoder_phys *phys_enc, struct sde_hw_ctl *ctl, struct sde_encoder_wait_info *wait_info, int wait_type) { int ret = -ETIMEDOUT; s64 standard_kickoff_timeout_ms = wait_info->timeout_ms; int timeout_iters = EXTENDED_KICKOFF_TIMEOUT_ITERS; wait_info->timeout_ms = EXTENDED_KICKOFF_TIMEOUT_MS; while (ret == -ETIMEDOUT && timeout_iters--) { ret = sde_encoder_helper_wait_for_irq(phys_enc, wait_type, wait_info); if (ret == -ETIMEDOUT) { /* if dma_fence is not signaled, keep waiting */ if (!sde_crtc_is_fence_signaled(phys_enc->parent->crtc)) continue; /* timed-out waiting and no sw-override support for hw-fences */ if (!ctl || !ctl->ops.hw_fence_trigger_sw_override) { SDE_ERROR("invalid argument(s)\n"); break; } /* * In case the sw and hw fences were triggered at the same time, * wait the standard kickoff time one more time. Only override if * we timeout again. */ wait_info->timeout_ms = standard_kickoff_timeout_ms; ret = sde_encoder_helper_wait_for_irq(phys_enc, wait_type, wait_info); if (ret == -ETIMEDOUT) { sde_encoder_helper_hw_fence_sw_override(phys_enc, ctl); /* * wait the original timeout time again if we * did sw override due to fence being signaled */ ret = sde_encoder_helper_wait_for_irq(phys_enc, wait_type, wait_info); } break; } } /* reset the timeout value */ wait_info->timeout_ms = standard_kickoff_timeout_ms; return ret; } bool sde_encoder_is_primary_display(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); return sde_enc && (sde_enc->disp_info.display_type == SDE_CONNECTOR_PRIMARY); } bool sde_encoder_is_built_in_display(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); return sde_enc && (sde_enc->disp_info.display_type == SDE_CONNECTOR_PRIMARY || sde_enc->disp_info.display_type == SDE_CONNECTOR_SECONDARY); } bool sde_encoder_is_dsi_display(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); return sde_enc && (sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DSI); } int sde_encoder_in_cont_splash(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); return sde_enc && sde_enc->cur_master && sde_enc->cur_master->cont_splash_enabled; } void sde_encoder_helper_report_irq_timeout(struct sde_encoder_phys *phys_enc, enum sde_intr_idx intr_idx) { SDE_EVT32(DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); SDE_ERROR_PHYS(phys_enc, "irq %d timeout\n", intr_idx); if (phys_enc->parent_ops.handle_frame_done) phys_enc->parent_ops.handle_frame_done( phys_enc->parent, phys_enc, SDE_ENCODER_FRAME_EVENT_ERROR); } int sde_encoder_helper_wait_for_irq(struct sde_encoder_phys *phys_enc, enum sde_intr_idx intr_idx, struct sde_encoder_wait_info *wait_info) { struct sde_encoder_irq *irq; u32 irq_status; int ret, i; if (!phys_enc || !phys_enc->hw_pp || !wait_info || intr_idx >= INTR_IDX_MAX) { SDE_ERROR("invalid params\n"); return -EINVAL; } irq = &phys_enc->irq[intr_idx]; /* note: do master / slave checking outside */ /* return EWOULDBLOCK since we know the wait isn't necessary */ if (phys_enc->enable_state == SDE_ENC_DISABLED) { SDE_ERROR_PHYS(phys_enc, "encoder is disabled\n"); SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, intr_idx, SDE_EVTLOG_ERROR); return -EWOULDBLOCK; } if (irq->irq_idx < 0) { SDE_DEBUG_PHYS(phys_enc, "irq %s hw %d disabled, skip wait\n", irq->name, irq->hw_idx); SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); return 0; } SDE_DEBUG_PHYS(phys_enc, "pending_cnt %d\n", atomic_read(wait_info->atomic_cnt)); SDE_EVT32_VERBOSE(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_ENTRY); /* * Some module X may disable interrupt for longer duration * and it may trigger all interrupts including timer interrupt * when module X again enable the interrupt. * That may cause interrupt wait timeout API in this API. * It is handled by split the wait timer in two halves. */ for (i = 0; i < EVT_TIME_OUT_SPLIT; i++) { ret = _sde_encoder_wait_timeout(DRMID(phys_enc->parent), irq->hw_idx, (wait_info->timeout_ms/EVT_TIME_OUT_SPLIT), wait_info); if (ret) break; } if (ret <= 0) { irq_status = sde_core_irq_read(phys_enc->sde_kms, irq->irq_idx, true); if (irq_status) { unsigned long flags; SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_CASE1); SDE_DEBUG_PHYS(phys_enc, "done but irq %d not triggered\n", irq->irq_idx); local_irq_save(flags); irq->cb.func(phys_enc, irq->irq_idx); local_irq_restore(flags); ret = 0; } else { ret = -ETIMEDOUT; SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt), irq_status, SDE_EVTLOG_ERROR); } } else { ret = 0; SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_CASE2); } SDE_EVT32_VERBOSE(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, ret, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt), SDE_EVTLOG_FUNC_EXIT); return ret; } int sde_encoder_helper_register_irq(struct sde_encoder_phys *phys_enc, enum sde_intr_idx intr_idx) { struct sde_encoder_irq *irq; int ret = 0; if (!phys_enc || intr_idx >= INTR_IDX_MAX) { SDE_ERROR("invalid params\n"); return -EINVAL; } irq = &phys_enc->irq[intr_idx]; if (irq->irq_idx >= 0) { SDE_DEBUG_PHYS(phys_enc, "skipping already registered irq %s type %d\n", irq->name, irq->intr_type); return 0; } irq->irq_idx = sde_core_irq_idx_lookup(phys_enc->sde_kms, irq->intr_type, irq->hw_idx); if (irq->irq_idx < 0) { SDE_ERROR_PHYS(phys_enc, "failed to lookup IRQ index for %s type:%d\n", irq->name, irq->intr_type); return -EINVAL; } ret = sde_core_irq_register_callback(phys_enc->sde_kms, irq->irq_idx, &irq->cb); if (ret) { SDE_ERROR_PHYS(phys_enc, "failed to register IRQ callback for %s\n", irq->name); irq->irq_idx = -EINVAL; return ret; } ret = sde_core_irq_enable(phys_enc->sde_kms, &irq->irq_idx, 1); if (ret) { SDE_ERROR_PHYS(phys_enc, "enable IRQ for intr:%s failed, irq_idx %d\n", irq->name, irq->irq_idx); sde_core_irq_unregister_callback(phys_enc->sde_kms, irq->irq_idx, &irq->cb); SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, SDE_EVTLOG_ERROR); irq->irq_idx = -EINVAL; return ret; } SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); SDE_DEBUG_PHYS(phys_enc, "registered irq %s idx: %d\n", irq->name, irq->irq_idx); return ret; } int sde_encoder_helper_unregister_irq(struct sde_encoder_phys *phys_enc, enum sde_intr_idx intr_idx) { struct sde_encoder_irq *irq; int ret; if (!phys_enc) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } irq = &phys_enc->irq[intr_idx]; /* silently skip irqs that weren't registered */ if (irq->irq_idx < 0) { SDE_ERROR( "extra unregister irq, enc%d intr_idx:0x%x hw_idx:0x%x irq_idx:0x%x\n", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, SDE_EVTLOG_ERROR); return 0; } ret = sde_core_irq_disable(phys_enc->sde_kms, &irq->irq_idx, 1); if (ret) SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, ret, SDE_EVTLOG_ERROR); ret = sde_core_irq_unregister_callback(phys_enc->sde_kms, irq->irq_idx, &irq->cb); if (ret) SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, ret, SDE_EVTLOG_ERROR); SDE_EVT32(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); SDE_DEBUG_PHYS(phys_enc, "unregistered %d\n", irq->irq_idx); irq->irq_idx = -EINVAL; return 0; } void sde_encoder_get_hw_resources(struct drm_encoder *drm_enc, struct sde_encoder_hw_resources *hw_res, struct drm_connector_state *conn_state) { struct sde_encoder_virt *sde_enc = NULL; int ret, i = 0; if (!hw_res || !drm_enc || !conn_state || !hw_res->comp_info) { SDE_ERROR("rc %d, drm_enc %d, res %d, state %d, comp-info %d\n", -EINVAL, !drm_enc, !hw_res, !conn_state, hw_res ? !hw_res->comp_info : 0); return; } sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "\n"); hw_res->display_num_of_h_tiles = sde_enc->display_num_of_h_tiles; hw_res->display_type = sde_enc->disp_info.display_type; /* Query resources used by phys encs, expected to be without overlap */ for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.get_hw_resources) phys->ops.get_hw_resources(phys, hw_res, conn_state); } /* * NOTE: Do not use sde_encoder_get_mode_info here as this function is * called from atomic_check phase. Use the below API to get mode * information of the temporary conn_state passed */ ret = sde_connector_state_get_topology(conn_state, &hw_res->topology); if (ret) SDE_ERROR("failed to get topology ret %d\n", ret); ret = sde_connector_state_get_compression_info(conn_state, hw_res->comp_info); if (ret) SDE_ERROR("failed to get compression info ret %d\n", ret); } void sde_encoder_destroy(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; int i = 0; unsigned int num_encs; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "\n"); num_encs = sde_enc->num_phys_encs; mutex_lock(&sde_enc->enc_lock); sde_rsc_client_destroy(sde_enc->rsc_client); for (i = 0; i < num_encs; i++) { struct sde_encoder_phys *phys; phys = sde_enc->phys_vid_encs[i]; if (phys && phys->ops.destroy) { phys->ops.destroy(phys); --sde_enc->num_phys_encs; sde_enc->phys_vid_encs[i] = NULL; sde_enc->phys_encs[i] = NULL; } phys = sde_enc->phys_cmd_encs[i]; if (phys && phys->ops.destroy) { phys->ops.destroy(phys); --sde_enc->num_phys_encs; sde_enc->phys_cmd_encs[i] = NULL; sde_enc->phys_encs[i] = NULL; } phys = sde_enc->phys_encs[i]; if (phys && phys->ops.destroy) { phys->ops.destroy(phys); --sde_enc->num_phys_encs; sde_enc->phys_encs[i] = NULL; } } if (sde_enc->num_phys_encs) SDE_ERROR_ENC(sde_enc, "expected 0 num_phys_encs not %d\n", sde_enc->num_phys_encs); sde_enc->num_phys_encs = 0; mutex_unlock(&sde_enc->enc_lock); drm_encoder_cleanup(drm_enc); mutex_destroy(&sde_enc->enc_lock); kfree(sde_enc->input_handler); sde_enc->input_handler = NULL; kfree(sde_enc); } void sde_encoder_helper_update_intf_cfg( struct sde_encoder_phys *phys_enc) { struct sde_encoder_virt *sde_enc; struct sde_hw_intf_cfg_v1 *intf_cfg; enum sde_3d_blend_mode mode_3d; if (!phys_enc || !phys_enc->hw_pp) { SDE_ERROR("invalid args, encoder %d\n", !phys_enc); return; } sde_enc = to_sde_encoder_virt(phys_enc->parent); intf_cfg = &sde_enc->cur_master->intf_cfg_v1; SDE_DEBUG_ENC(sde_enc, "intf_cfg updated for %d at idx %d\n", phys_enc->intf_idx, intf_cfg->intf_count); /* setup interface configuration */ if (intf_cfg->intf_count >= MAX_INTF_PER_CTL_V1) { pr_err("invalid inf_count %d\n", intf_cfg->intf_count); return; } intf_cfg->intf[intf_cfg->intf_count++] = phys_enc->intf_idx; if (phys_enc == sde_enc->cur_master) { if (sde_enc->cur_master->intf_mode == INTF_MODE_CMD) intf_cfg->intf_mode_sel = SDE_CTL_MODE_SEL_CMD; else intf_cfg->intf_mode_sel = SDE_CTL_MODE_SEL_VID; } /* configure this interface as master for split display */ if (phys_enc->split_role == ENC_ROLE_MASTER) intf_cfg->intf_master = phys_enc->hw_intf->idx; /* setup which pp blk will connect to this intf */ if (phys_enc->hw_intf->ops.bind_pingpong_blk) phys_enc->hw_intf->ops.bind_pingpong_blk( phys_enc->hw_intf, true, phys_enc->hw_pp->idx); /*setup merge_3d configuration */ mode_3d = sde_encoder_helper_get_3d_blend_mode(phys_enc); if (mode_3d && phys_enc->hw_pp->merge_3d && intf_cfg->merge_3d_count < MAX_MERGE_3D_PER_CTL_V1) intf_cfg->merge_3d[intf_cfg->merge_3d_count++] = phys_enc->hw_pp->merge_3d->idx; if (phys_enc->hw_pp->ops.setup_3d_mode) phys_enc->hw_pp->ops.setup_3d_mode(phys_enc->hw_pp, mode_3d); } void sde_encoder_helper_split_config( struct sde_encoder_phys *phys_enc, enum sde_intf interface) { struct sde_encoder_virt *sde_enc; struct split_pipe_cfg *cfg; struct sde_hw_mdp *hw_mdptop; enum sde_rm_topology_name topology; struct msm_display_info *disp_info; if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { SDE_ERROR("invalid arg(s), encoder %d\n", !phys_enc); return; } sde_enc = to_sde_encoder_virt(phys_enc->parent); hw_mdptop = phys_enc->hw_mdptop; disp_info = &sde_enc->disp_info; cfg = &phys_enc->hw_intf->cfg; memset(cfg, 0, sizeof(*cfg)); if (disp_info->intf_type != DRM_MODE_CONNECTOR_DSI) return; if (disp_info->capabilities & MSM_DISPLAY_SPLIT_LINK) cfg->split_link_en = true; /** * disable split modes since encoder will be operating in as the only * encoder, either for the entire use case in the case of, for example, * single DSI, or for this frame in the case of left/right only partial * update. */ if (phys_enc->split_role == ENC_ROLE_SOLO) { if (hw_mdptop->ops.setup_split_pipe) hw_mdptop->ops.setup_split_pipe(hw_mdptop, cfg); if (hw_mdptop->ops.setup_pp_split) hw_mdptop->ops.setup_pp_split(hw_mdptop, cfg); return; } cfg->en = true; cfg->mode = phys_enc->intf_mode; cfg->intf = interface; if (cfg->en && phys_enc->ops.needs_single_flush && phys_enc->ops.needs_single_flush(phys_enc)) cfg->split_flush_en = true; topology = sde_connector_get_topology_name(phys_enc->connector); if (topology == SDE_RM_TOPOLOGY_PPSPLIT) cfg->pp_split_slave = cfg->intf; else cfg->pp_split_slave = INTF_MAX; if (phys_enc->split_role == ENC_ROLE_MASTER) { SDE_DEBUG_ENC(sde_enc, "enable %d\n", cfg->en); if (hw_mdptop->ops.setup_split_pipe) hw_mdptop->ops.setup_split_pipe(hw_mdptop, cfg); } else if (sde_enc->hw_pp[0]) { /* * slave encoder * - determine split index from master index, * assume master is first pp */ cfg->pp_split_index = sde_enc->hw_pp[0]->idx - PINGPONG_0; SDE_DEBUG_ENC(sde_enc, "master using pp%d\n", cfg->pp_split_index); if (hw_mdptop->ops.setup_pp_split) hw_mdptop->ops.setup_pp_split(hw_mdptop, cfg); } } bool sde_encoder_in_clone_mode(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; int i = 0; if (!drm_enc) return false; sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc) return false; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->in_clone_mode) return true; } return false; } bool sde_encoder_is_cwb_disabling(struct drm_encoder *drm_enc, struct drm_crtc *crtc) { struct sde_encoder_virt *sde_enc; int i; if (!drm_enc) return false; sde_enc = to_sde_encoder_virt(drm_enc); if (sde_enc->disp_info.intf_type != DRM_MODE_CONNECTOR_VIRTUAL) return false; if (sde_enc->crtc != crtc) return false; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (sde_encoder_phys_is_cwb_disabling(phys, crtc)) return true; } return false; } void sde_encoder_set_clone_mode(struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state) { struct sde_encoder_virt *sde_enc; struct sde_crtc_state *sde_crtc_state; int i = 0; if (!drm_enc || !crtc_state) { SDE_DEBUG("invalid params\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); sde_crtc_state = to_sde_crtc_state(crtc_state); if ((sde_enc->disp_info.intf_type != DRM_MODE_CONNECTOR_VIRTUAL) || (!(sde_crtc_state->cwb_enc_mask & drm_encoder_mask(drm_enc)))) return; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys) { phys->in_clone_mode = true; SDE_DEBUG("enc:%d phys state:%d\n", DRMID(drm_enc), phys->enable_state); } } sde_crtc_state->cached_cwb_enc_mask = sde_crtc_state->cwb_enc_mask; sde_crtc_state->cwb_enc_mask = 0; } static int _sde_encoder_atomic_check_phys_enc(struct sde_encoder_virt *sde_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { const struct drm_display_mode *mode; struct drm_display_mode *adj_mode; int i = 0; int ret = 0; mode = &crtc_state->mode; adj_mode = &crtc_state->adjusted_mode; /* perform atomic check on the first physical encoder (master) */ for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.atomic_check) ret = phys->ops.atomic_check(phys, crtc_state, conn_state); else if (phys && phys->ops.mode_fixup) if (!phys->ops.mode_fixup(phys, mode, adj_mode)) ret = -EINVAL; if (ret) { SDE_ERROR_ENC(sde_enc, "mode unsupported, phys idx %d\n", i); break; } } return ret; } static int _sde_encoder_atomic_check_pu_roi(struct sde_encoder_virt *sde_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_connector_state *sde_conn_state, struct sde_crtc_state *sde_crtc_state) { struct drm_display_mode *mode = &crtc_state->adjusted_mode; int ret = 0; if (crtc_state->mode_changed || crtc_state->active_changed) { struct sde_rect mode_roi, roi; u32 width, height; sde_crtc_get_resolution(crtc_state->crtc, crtc_state, mode, &width, &height); mode_roi.x = 0; mode_roi.y = 0; mode_roi.w = width; mode_roi.h = height; if (sde_conn_state->rois.num_rects) { sde_kms_rect_merge_rectangles(&sde_conn_state->rois, &roi); if (!sde_kms_rect_is_equal(&mode_roi, &roi)) { SDE_ERROR_ENC(sde_enc, "roi (%d,%d,%d,%d) on connector invalid during modeset\n", roi.x, roi.y, roi.w, roi.h); ret = -EINVAL; } } if (sde_crtc_state->user_roi_list.num_rects) { sde_kms_rect_merge_rectangles(&sde_crtc_state->user_roi_list, &roi); if (!sde_kms_rect_is_equal(&mode_roi, &roi)) { SDE_ERROR_ENC(sde_enc, "roi (%d,%d,%d,%d) on crtc invalid during modeset\n", roi.x, roi.y, roi.w, roi.h); ret = -EINVAL; } } } return ret; } static int _sde_encoder_atomic_check_reserve(struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_encoder_virt *sde_enc, struct sde_kms *sde_kms, struct sde_connector *sde_conn, struct sde_connector_state *sde_conn_state) { int ret = 0; struct drm_display_mode *adj_mode = &crtc_state->adjusted_mode; struct msm_sub_mode sub_mode; if (sde_conn && msm_atomic_needs_modeset(crtc_state, conn_state)) { struct msm_display_topology *topology = NULL; sub_mode.dsc_mode = sde_connector_get_property(conn_state, CONNECTOR_PROP_DSC_MODE); sub_mode.pixel_format_mode = sde_connector_get_property(conn_state, CONNECTOR_PROP_BPP_MODE); ret = sde_connector_get_mode_info(&sde_conn->base, adj_mode, &sub_mode, &sde_conn_state->mode_info); if (ret) { SDE_ERROR_ENC(sde_enc, "failed to get mode info, rc = %d\n", ret); return ret; } if (sde_conn_state->mode_info.comp_info.comp_type && sde_conn_state->mode_info.comp_info.comp_ratio >= MSM_DISPLAY_COMPRESSION_RATIO_MAX) { SDE_ERROR_ENC(sde_enc, "invalid compression ratio: %d\n", sde_conn_state->mode_info.comp_info.comp_ratio); ret = -EINVAL; return ret; } /* Skip RM allocation for Primary during CWB usecase */ if ((!crtc_state->mode_changed && !crtc_state->active_changed && crtc_state->connectors_changed && !msm_is_private_mode_changed(conn_state) && (conn_state->crtc == conn_state->connector->state->crtc)) || (crtc_state->active_changed && !crtc_state->active)) goto skip_reserve; /* Reserve dynamic resources, indicating atomic_check phase */ ret = sde_rm_reserve(&sde_kms->rm, drm_enc, crtc_state, conn_state, true); if (ret) { if (ret != -EAGAIN) SDE_ERROR_ENC(sde_enc, "RM failed to reserve resources, rc = %d\n", ret); return ret; } skip_reserve: /** * Update connector state with the topology selected for the * resource set validated. Reset the topology if we are * de-activating crtc. */ if (crtc_state->active) { topology = &sde_conn_state->mode_info.topology; ret = sde_rm_update_topology(&sde_kms->rm, conn_state, topology); if (ret) { SDE_ERROR_ENC(sde_enc, "RM failed to update topology, rc: %d\n", ret); return ret; } } ret = sde_connector_set_blob_data(conn_state->connector, conn_state, CONNECTOR_PROP_SDE_INFO); if (ret) { SDE_ERROR_ENC(sde_enc, "connector failed to update info, rc: %d\n", ret); return ret; } } return ret; } bool sde_encoder_is_line_insertion_supported(struct drm_encoder *drm_enc) { struct sde_connector *sde_conn = NULL; struct sde_kms *sde_kms = NULL; struct drm_connector *conn = NULL; if (!drm_enc) { SDE_ERROR("invalid drm encoder\n"); return false; } sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return false; conn = sde_encoder_get_connector(sde_kms->dev, drm_enc); if (!conn || !conn->state) return false; sde_conn = to_sde_connector(conn); if (!sde_conn) return false; return sde_connector_is_line_insertion_supported(sde_conn); } static void _sde_encoder_get_qsync_fps_callback(struct drm_encoder *drm_enc, u32 *qsync_fps, struct drm_connector_state *conn_state) { struct sde_encoder_virt *sde_enc; int rc = 0; struct sde_connector *sde_conn; if (!qsync_fps) return; *qsync_fps = 0; if (!drm_enc) { SDE_ERROR("invalid drm encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->cur_master) { SDE_ERROR("invalid qsync settings %d\n", !sde_enc->cur_master); return; } sde_conn = to_sde_connector(sde_enc->cur_master->connector); if (sde_conn->ops.get_qsync_min_fps) rc = sde_conn->ops.get_qsync_min_fps(conn_state); if (rc < 0) { SDE_ERROR("invalid qsync min fps %d\n", rc); return; } *qsync_fps = rc; } static int _sde_encoder_avr_step_check(struct sde_connector *sde_conn, struct sde_connector_state *sde_conn_state) { u32 nom_fps = drm_mode_vrefresh(sde_conn_state->msm_mode.base); u32 min_fps, step_fps = 0; u32 vtotal = sde_conn_state->msm_mode.base->vtotal; u32 qsync_mode = sde_connector_get_property(&sde_conn_state->base, CONNECTOR_PROP_QSYNC_MODE); u32 avr_step_state = sde_connector_get_property(&sde_conn_state->base, CONNECTOR_PROP_AVR_STEP_STATE); if ((avr_step_state == AVR_STEP_NONE) || !sde_conn->ops.get_avr_step_fps) return 0; if (!qsync_mode && avr_step_state) { SDE_ERROR("invalid config: avr-step enabled without qsync\n"); return -EINVAL; } step_fps = sde_conn->ops.get_avr_step_fps(&sde_conn_state->base); _sde_encoder_get_qsync_fps_callback(sde_conn_state->base.best_encoder, &min_fps, &sde_conn_state->base); if (!min_fps || !nom_fps || step_fps % nom_fps || step_fps % min_fps || step_fps < nom_fps || (vtotal * nom_fps) % step_fps) { SDE_ERROR("invalid avr_step rate! nom:%u min:%u step:%u vtotal:%u\n", nom_fps, min_fps, step_fps, vtotal); return -EINVAL; } return 0; } static int _sde_encoder_atomic_check_qsync(struct sde_connector *sde_conn, struct sde_connector_state *sde_conn_state) { int rc = 0; bool qsync_dirty, has_modeset, ept; struct drm_connector_state *conn_state = &sde_conn_state->base; u32 qsync_mode; has_modeset = sde_crtc_atomic_check_has_modeset(conn_state->state, conn_state->crtc); qsync_dirty = msm_property_is_dirty(&sde_conn->property_info, &sde_conn_state->property_state, CONNECTOR_PROP_QSYNC_MODE); ept = msm_property_is_dirty(&sde_conn->property_info, &sde_conn_state->property_state, CONNECTOR_PROP_EPT); if (has_modeset && qsync_dirty && (msm_is_mode_seamless_poms(&sde_conn_state->msm_mode) || msm_is_mode_seamless_dyn_clk(&sde_conn_state->msm_mode))) { SDE_ERROR("invalid qsync update during modeset priv flag:%x\n", sde_conn_state->msm_mode.private_flags); return -EINVAL; } qsync_mode = sde_connector_get_property(conn_state, CONNECTOR_PROP_QSYNC_MODE); if (qsync_dirty || (qsync_mode && has_modeset)) rc = _sde_encoder_avr_step_check(sde_conn, sde_conn_state); return rc; } static int sde_encoder_virt_atomic_check( struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct sde_encoder_virt *sde_enc; struct sde_kms *sde_kms; const struct drm_display_mode *mode; struct drm_display_mode *adj_mode; struct sde_connector *sde_conn = NULL; struct sde_connector_state *sde_conn_state = NULL; struct sde_crtc_state *sde_crtc_state = NULL; enum sde_rm_topology_name old_top; enum sde_rm_topology_name top_name; struct msm_display_info *disp_info; int ret = 0; if (!drm_enc || !crtc_state || !conn_state) { SDE_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", !drm_enc, !crtc_state, !conn_state); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); disp_info = &sde_enc->disp_info; SDE_DEBUG_ENC(sde_enc, "\n"); sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return -EINVAL; mode = &crtc_state->mode; adj_mode = &crtc_state->adjusted_mode; sde_conn = to_sde_connector(conn_state->connector); sde_conn_state = to_sde_connector_state(conn_state); sde_crtc_state = to_sde_crtc_state(crtc_state); ret = sde_connector_set_msm_mode(conn_state, adj_mode); if (ret) return ret; SDE_EVT32(DRMID(drm_enc), crtc_state->mode_changed, crtc_state->active_changed, crtc_state->connectors_changed); ret = _sde_encoder_atomic_check_phys_enc(sde_enc, crtc_state, conn_state); if (ret) return ret; ret = _sde_encoder_atomic_check_pu_roi(sde_enc, crtc_state, conn_state, sde_conn_state, sde_crtc_state); if (ret) return ret; /** * record topology in previous atomic state to be able to handle * topology transitions correctly. */ old_top = sde_connector_get_property(conn_state, CONNECTOR_PROP_TOPOLOGY_NAME); ret = sde_connector_set_old_topology_name(conn_state, old_top); if (ret) return ret; ret = _sde_encoder_atomic_check_reserve(drm_enc, crtc_state, conn_state, sde_enc, sde_kms, sde_conn, sde_conn_state); if (ret) return ret; top_name = sde_connector_get_property(conn_state, CONNECTOR_PROP_TOPOLOGY_NAME); if ((disp_info->capabilities & MSM_DISPLAY_SPLIT_LINK) && crtc_state->active) { if ((top_name != SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE) && (top_name != SDE_RM_TOPOLOGY_DUALPIPE_DSCMERGE)) { SDE_ERROR_ENC(sde_enc, "Splitlink check failed, top_name:%d", top_name); return -EINVAL; } } ret = sde_connector_roi_v1_check_roi(conn_state); if (ret) { SDE_ERROR_ENC(sde_enc, "connector roi check failed, rc: %d", ret); return ret; } drm_mode_set_crtcinfo(adj_mode, 0); ret = _sde_encoder_atomic_check_qsync(sde_conn, sde_conn_state); SDE_EVT32(DRMID(drm_enc), adj_mode->flags, sde_conn_state->msm_mode.private_flags, old_top, drm_mode_vrefresh(adj_mode), adj_mode->hdisplay, adj_mode->vdisplay, adj_mode->htotal, adj_mode->vtotal, ret); return ret; } static void _sde_encoder_get_connector_roi( struct sde_encoder_virt *sde_enc, struct sde_rect *merged_conn_roi) { struct drm_connector *drm_conn; struct sde_connector_state *c_state; if (!sde_enc || !merged_conn_roi) return; drm_conn = sde_enc->phys_encs[0]->connector; if (!drm_conn || !drm_conn->state) return; c_state = to_sde_connector_state(drm_conn->state); sde_kms_rect_merge_rectangles(&c_state->rois, merged_conn_roi); } static int _sde_encoder_update_roi(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct drm_connector *drm_conn; struct drm_display_mode *adj_mode; struct sde_rect roi; if (!drm_enc) { SDE_ERROR("invalid encoder parameter\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->crtc || !sde_enc->crtc->state) { SDE_ERROR("invalid crtc parameter\n"); return -EINVAL; } if (!sde_enc->cur_master) { SDE_ERROR("invalid cur_master parameter\n"); return -EINVAL; } adj_mode = &sde_enc->cur_master->cached_mode; drm_conn = sde_enc->cur_master->connector; _sde_encoder_get_connector_roi(sde_enc, &roi); if (sde_kms_rect_is_null(&roi)) { roi.w = adj_mode->hdisplay; roi.h = adj_mode->vdisplay; } memcpy(&sde_enc->prv_conn_roi, &sde_enc->cur_conn_roi, sizeof(sde_enc->prv_conn_roi)); memcpy(&sde_enc->cur_conn_roi, &roi, sizeof(sde_enc->cur_conn_roi)); return 0; } static void _sde_encoder_update_ppb_size(struct drm_encoder *drm_enc) { struct sde_kms *sde_kms; struct sde_hw_mdp *hw_mdp; struct drm_display_mode *mode; struct sde_encoder_virt *sde_enc; u32 pixels_per_pp, num_lm_or_pp, latency_lines; int i; if (!drm_enc) { SDE_ERROR("invalid encoder parameter\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->cur_master || !sde_enc->cur_master->connector) { SDE_ERROR_ENC(sde_enc, "invalid master or conn\n"); return; } /* program only for realtime displays */ if (sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_VIRTUAL) return; sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) { SDE_ERROR_ENC(sde_enc, "invalid sde_kms\n"); return; } /* check if hw support is available, early return if not available */ if (sde_kms->catalog->ppb_sz_program == SDE_PPB_SIZE_THRU_NONE) return; hw_mdp = sde_kms->hw_mdp; if (!hw_mdp) { SDE_ERROR_ENC(sde_enc, "invalid mdp top\n"); return; } mode = &drm_enc->crtc->state->adjusted_mode; num_lm_or_pp = sde_enc->cur_channel_cnt; latency_lines = sde_kms->catalog->ppb_buf_max_lines; for (i = 0; i < num_lm_or_pp; i++) { struct sde_hw_pingpong *hw_pp = sde_enc->hw_pp[i]; if (!hw_pp) { SDE_ERROR_ENC(sde_enc, "invalid hw_pp i:%d pp_cnt:%d\n", i, num_lm_or_pp); return; } if (hw_pp->ops.set_ppb_fifo_size) { pixels_per_pp = mult_frac(mode->hdisplay, latency_lines, num_lm_or_pp); hw_pp->ops.set_ppb_fifo_size(hw_pp, pixels_per_pp); SDE_EVT32(DRMID(drm_enc), i, hw_pp->idx, mode->hdisplay, pixels_per_pp, sde_kms->catalog->ppb_sz_program, SDE_EVTLOG_FUNC_CASE1); SDE_DEBUG_ENC(sde_enc, "hw-pp i:%d pp_cnt:%d pixels_per_pp:%d\n", i, num_lm_or_pp, pixels_per_pp); } else if (hw_mdp->ops.set_ppb_fifo_size) { struct sde_connector *sde_conn = to_sde_connector(sde_enc->cur_master->connector); if (!sde_conn || !sde_conn->max_mode_width) { SDE_DEBUG_ENC(sde_enc, "failed to get max horizantal resolution\n"); return; } pixels_per_pp = mult_frac(sde_conn->max_mode_width, latency_lines, num_lm_or_pp); hw_mdp->ops.set_ppb_fifo_size(hw_mdp, hw_pp->idx, pixels_per_pp); SDE_EVT32(DRMID(drm_enc), i, hw_pp->idx, sde_conn->max_mode_width, pixels_per_pp, sde_kms->catalog->ppb_sz_program, SDE_EVTLOG_FUNC_CASE2); SDE_DEBUG_ENC(sde_enc, "hw-pp i:%d pp_cnt:%d pixels_per_pp:%d\n", i, num_lm_or_pp, pixels_per_pp); } else { SDE_ERROR_ENC(sde_enc, "invalid - ppb fifo size support is partial\n"); } } } void sde_encoder_helper_vsync_config(struct sde_encoder_phys *phys_enc, u32 vsync_source) { struct sde_vsync_source_cfg vsync_cfg = { 0 }; struct sde_kms *sde_kms; struct sde_hw_mdp *hw_mdptop; struct sde_encoder_virt *sde_enc; int i; sde_enc = to_sde_encoder_virt(phys_enc->parent); if (!sde_enc) { SDE_ERROR("invalid param sde_enc:%d\n", sde_enc != NULL); return; } else if (sde_enc->num_phys_encs > ARRAY_SIZE(sde_enc->hw_pp)) { SDE_ERROR("invalid num phys enc %d/%d\n", sde_enc->num_phys_encs, (int) ARRAY_SIZE(sde_enc->hw_pp)); return; } sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) { SDE_ERROR("invalid sde_kms\n"); return; } hw_mdptop = sde_kms->hw_mdp; if (!hw_mdptop) { SDE_ERROR("invalid mdptop\n"); return; } if (hw_mdptop->ops.setup_vsync_source) { for (i = 0; i < sde_enc->num_phys_encs; i++) vsync_cfg.ppnumber[i] = sde_enc->hw_pp[i]->idx; vsync_cfg.pp_count = sde_enc->num_phys_encs; vsync_cfg.frame_rate = sde_enc->mode_info.frame_rate; vsync_cfg.vsync_source = vsync_source; hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); } } static void _sde_encoder_update_vsync_source(struct sde_encoder_virt *sde_enc, struct msm_display_info *disp_info) { struct sde_encoder_phys *phys; struct sde_connector *sde_conn; int i; u32 vsync_source; if (!sde_enc || !disp_info) { SDE_ERROR("invalid param sde_enc:%d or disp_info:%d\n", sde_enc != NULL, disp_info != NULL); return; } else if (sde_enc->num_phys_encs > ARRAY_SIZE(sde_enc->hw_pp)) { SDE_ERROR("invalid num phys enc %d/%d\n", sde_enc->num_phys_encs, (int) ARRAY_SIZE(sde_enc->hw_pp)); return; } sde_conn = to_sde_connector(sde_enc->cur_master->connector); if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_CMD_MODE)) { if (disp_info->is_te_using_watchdog_timer || sde_conn->panel_dead) vsync_source = SDE_VSYNC_SOURCE_WD_TIMER_4 + sde_enc->te_source; else vsync_source = sde_enc->te_source; SDE_EVT32(DRMID(&sde_enc->base), vsync_source, disp_info->is_te_using_watchdog_timer); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->ops.setup_vsync_source) phys->ops.setup_vsync_source(phys, vsync_source, disp_info); } } } static void sde_encoder_control_te(struct sde_encoder_virt *sde_enc, bool enable) { struct sde_encoder_phys *phys; int i; if (!sde_enc) { SDE_ERROR("invalid sde encoder\n"); return; } for (i = 0; i < sde_enc->num_phys_encs && i < ARRAY_SIZE(sde_enc->phys_encs); i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->ops.control_te) phys->ops.control_te(phys, enable); } } int sde_encoder_helper_switch_vsync(struct drm_encoder *drm_enc, bool watchdog_te) { struct sde_encoder_virt *sde_enc; struct msm_display_info disp_info; if (!drm_enc) { pr_err("invalid drm encoder\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); sde_encoder_control_te(sde_enc, false); memcpy(&disp_info, &sde_enc->disp_info, sizeof(disp_info)); disp_info.is_te_using_watchdog_timer = watchdog_te; _sde_encoder_update_vsync_source(sde_enc, &disp_info); sde_encoder_control_te(sde_enc, true); return 0; } static int _sde_encoder_rsc_client_update_vsync_wait( struct drm_encoder *drm_enc, struct sde_encoder_virt *sde_enc, int wait_vblank_crtc_id) { int wait_refcount = 0, ret = 0; int pipe = -1; int wait_count = 0; struct drm_crtc *primary_crtc; struct drm_crtc *crtc; crtc = sde_enc->crtc; if (wait_vblank_crtc_id) wait_refcount = sde_rsc_client_get_vsync_refcount(sde_enc->rsc_client); SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id, wait_refcount, SDE_EVTLOG_FUNC_ENTRY); if (crtc->base.id != wait_vblank_crtc_id) { primary_crtc = drm_crtc_find(drm_enc->dev, NULL, wait_vblank_crtc_id); if (!primary_crtc) { SDE_ERROR_ENC(sde_enc, "failed to find primary crtc id %d\n", wait_vblank_crtc_id); return -EINVAL; } pipe = drm_crtc_index(primary_crtc); } /** * note: VBLANK is expected to be enabled at this point in * resource control state machine if on primary CRTC */ for (wait_count = 0; wait_count < MAX_RSC_WAIT; wait_count++) { if (sde_rsc_client_is_state_update_complete( sde_enc->rsc_client)) break; if (crtc->base.id == wait_vblank_crtc_id) ret = sde_encoder_wait_for_event(drm_enc, MSM_ENC_VBLANK); else drm_wait_one_vblank(drm_enc->dev, pipe); if (ret) { SDE_ERROR_ENC(sde_enc, "wait for vblank failed ret:%d\n", ret); /** * rsc hardware may hang without vsync. avoid rsc hang * by generating the vsync from watchdog timer. */ if (crtc->base.id == wait_vblank_crtc_id) sde_encoder_helper_switch_vsync(drm_enc, true); } } if (wait_count >= MAX_RSC_WAIT) SDE_EVT32(DRMID(drm_enc), wait_vblank_crtc_id, wait_count, SDE_EVTLOG_ERROR); if (wait_refcount) sde_rsc_client_reset_vsync_refcount(sde_enc->rsc_client); SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id, wait_refcount, SDE_EVTLOG_FUNC_EXIT); return ret; } static int _sde_encoder_rsc_state_trigger(struct drm_encoder *drm_enc, enum sde_rsc_state rsc_state) { struct sde_encoder_virt *sde_enc; struct msm_display_info *disp_info; struct sde_rsc_cmd_config *rsc_config; struct drm_crtc *crtc; int wait_vblank_crtc_id = SDE_RSC_INVALID_CRTC_ID; int ret; /** * Already checked drm_enc, sde_enc is valid in function * _sde_encoder_update_rsc_client() which pass the parameters * to this function. */ sde_enc = to_sde_encoder_virt(drm_enc); crtc = sde_enc->crtc; disp_info = &sde_enc->disp_info; rsc_config = &sde_enc->rsc_config; if (rsc_state != SDE_RSC_IDLE_STATE && !sde_enc->rsc_state_init && (disp_info->display_type == SDE_CONNECTOR_PRIMARY)) { /* update it only once */ sde_enc->rsc_state_init = true; ret = sde_rsc_client_state_update(sde_enc->rsc_client, rsc_state, rsc_config, crtc->base.id, &wait_vblank_crtc_id); } else { ret = sde_rsc_client_state_update(sde_enc->rsc_client, rsc_state, NULL, crtc->base.id, &wait_vblank_crtc_id); } /** * if RSC performed a state change that requires a VBLANK wait, it will * set wait_vblank_crtc_id to the CRTC whose VBLANK we must wait on. * * if we are the primary display, we will need to enable and wait * locally since we hold the commit thread * * if we are an external display, we must send a signal to the primary * to enable its VBLANK and wait one, since the RSC hardware is driven * by the primary panel's VBLANK signals */ SDE_EVT32_VERBOSE(DRMID(drm_enc), wait_vblank_crtc_id); if (ret) { SDE_ERROR_ENC(sde_enc, "sde rsc client update failed ret:%d\n", ret); } else if (wait_vblank_crtc_id != SDE_RSC_INVALID_CRTC_ID) { ret = _sde_encoder_rsc_client_update_vsync_wait(drm_enc, sde_enc, wait_vblank_crtc_id); } return ret; } static int _sde_encoder_update_rsc_client( struct drm_encoder *drm_enc, bool enable) { struct sde_encoder_virt *sde_enc; struct drm_crtc *crtc; enum sde_rsc_state rsc_state = SDE_RSC_IDLE_STATE; struct sde_rsc_cmd_config *rsc_config; int ret; struct msm_display_info *disp_info; struct msm_mode_info *mode_info; u32 qsync_mode = 0, v_front_porch; struct drm_display_mode *mode; bool is_vid_mode; struct drm_encoder *enc; #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) struct samsung_display_driver_data *vdd; #endif if (!drm_enc || !drm_enc->dev) { SDE_ERROR("invalid encoder arguments\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); mode_info = &sde_enc->mode_info; crtc = sde_enc->crtc; if (!sde_enc->crtc) { SDE_ERROR("invalid crtc parameter\n"); return -EINVAL; } disp_info = &sde_enc->disp_info; rsc_config = &sde_enc->rsc_config; if (!sde_enc->rsc_client) { SDE_DEBUG_ENC(sde_enc, "rsc client not created\n"); return 0; } /** * only primary command mode panel without Qsync can request CMD state. * all other panels/displays can request for VID state including * secondary command mode panel. * Clone mode encoder can request CLK STATE only. */ if (sde_enc->cur_master) { qsync_mode = sde_connector_get_qsync_mode( sde_enc->cur_master->connector); sde_enc->autorefresh_solver_disable = _sde_encoder_is_autorefresh_status_busy(sde_enc) || _sde_encoder_is_autorefresh_enabled(sde_enc); if (sde_enc->cur_master->ops.is_autoref_disable_pending) sde_enc->autorefresh_solver_disable = (sde_enc->autorefresh_solver_disable || sde_enc->cur_master->ops.is_autoref_disable_pending( sde_enc->cur_master)); } /* left primary encoder keep vote */ if (sde_encoder_in_clone_mode(drm_enc)) { SDE_EVT32(rsc_state, SDE_EVTLOG_FUNC_CASE1); return 0; } if ((disp_info->display_type != SDE_CONNECTOR_PRIMARY) || (disp_info->display_type && qsync_mode) || sde_enc->autorefresh_solver_disable || mode_info->disable_rsc_solver) rsc_state = enable ? SDE_RSC_CLK_STATE : SDE_RSC_IDLE_STATE; else if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) rsc_state = enable ? SDE_RSC_CMD_STATE : SDE_RSC_IDLE_STATE; else if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE)) rsc_state = enable ? SDE_RSC_VID_STATE : SDE_RSC_IDLE_STATE; drm_for_each_encoder(enc, drm_enc->dev) { if (enc->base.id != drm_enc->base.id && sde_encoder_in_cont_splash(enc)) rsc_state = SDE_RSC_CLK_STATE; } #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) if (!sde_enc->crtc) { SDE_DEBUG("invalid crtc\n"); return 0; } SDE_DEBUG("sde_enc->crtc->index %d \n", sde_enc->crtc->index); vdd = ss_get_vdd(sde_enc->crtc->index); if (!vdd) vdd = ss_get_vdd(PRIMARY_DISPLAY_NDX); if (vdd->rsc_4_frame_idle && rsc_state == SDE_RSC_CMD_STATE) rsc_state = SDE_RSC_CLK_STATE; if (vdd->vrr.support_vrr_based_bl) { if ((vdd->vrr.running_vrr_mdp || vdd->vrr.running_vrr) && (mode_info->frame_rate < 120)) { LCD_DEBUG(vdd, "During VRR (%d|%d): set max frame_rate: %d --> 120\n", vdd->vrr.running_vrr_mdp, vdd->vrr.running_vrr, mode_info->frame_rate); /* set maximum 120hz rsc fps */ mode_info->frame_rate = 120; vdd->vrr.keep_max_rsc_fps = true; } else if (!vdd->vrr.keep_max_rsc_fps && mode_info->frame_rate != mode_info->frame_rate_org) { LCD_DEBUG(vdd, "VRR fin(%d|%d): restore mode frame_rate: %d -> %d\n", vdd->vrr.running_vrr_mdp, vdd->vrr.running_vrr, mode_info->frame_rate, mode_info->frame_rate_org); mode_info->frame_rate = mode_info->frame_rate_org; } } #endif is_vid_mode = sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_VIDEO_MODE); mode = &sde_enc->crtc->state->mode; v_front_porch = mode->vsync_start - mode->vdisplay; /* compare specific items and reconfigure the rsc */ if ((rsc_config->fps != mode_info->frame_rate) || (rsc_config->vtotal != mode_info->vtotal) || (rsc_config->prefill_lines != mode_info->prefill_lines) || (rsc_config->jitter_numer != mode_info->jitter_numer) || (rsc_config->jitter_denom != mode_info->jitter_denom)) { rsc_config->fps = mode_info->frame_rate; rsc_config->vtotal = mode_info->vtotal; rsc_config->prefill_lines = mode_info->prefill_lines; rsc_config->jitter_numer = mode_info->jitter_numer; rsc_config->jitter_denom = mode_info->jitter_denom; sde_enc->rsc_state_init = false; } SDE_EVT32(DRMID(drm_enc), rsc_state, qsync_mode, rsc_config->fps, sde_enc->rsc_state_init); ret = _sde_encoder_rsc_state_trigger(drm_enc, rsc_state); return ret; } void sde_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) { struct sde_encoder_virt *sde_enc; int i; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.irq_control) phys->ops.irq_control(phys, enable); if (phys && phys->ops.dynamic_irq_control) phys->ops.dynamic_irq_control(phys, enable); } sde_kms_cpu_vote_for_irq(sde_encoder_get_kms(drm_enc), enable); } /* keep track of the userspace vblank during modeset */ static void _sde_encoder_modeset_helper_locked(struct drm_encoder *drm_enc, u32 sw_event) { struct sde_encoder_virt *sde_enc; bool enable; int i; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "sw_event:%d, vblank_enabled:%d\n", sw_event, sde_enc->vblank_enabled); /* nothing to do if vblank not enabled by userspace */ if (!sde_enc->vblank_enabled) return; /* disable vblank on pre_modeset */ if (sw_event == SDE_ENC_RC_EVENT_PRE_MODESET) enable = false; /* enable vblank on post_modeset */ else if (sw_event == SDE_ENC_RC_EVENT_POST_MODESET) enable = true; else return; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.control_vblank_irq) phys->ops.control_vblank_irq(phys, enable); } } struct sde_rsc_client *sde_encoder_get_rsc_client(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; if (!drm_enc) return NULL; sde_enc = to_sde_encoder_virt(drm_enc); return sde_enc->rsc_client; } static int _sde_encoder_resource_control_helper(struct drm_encoder *drm_enc, bool enable) { struct sde_kms *sde_kms; struct sde_encoder_virt *sde_enc; int rc; sde_enc = to_sde_encoder_virt(drm_enc); sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return -EINVAL; SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable); SDE_EVT32(DRMID(drm_enc), enable); if (!sde_enc->cur_master) { SDE_ERROR("encoder master not set\n"); return -EINVAL; } if (enable) { /* enable SDE core clks */ rc = pm_runtime_resume_and_get(drm_enc->dev->dev); if (rc < 0) { SDE_ERROR("failed to enable power resource %d\n", rc); SDE_EVT32(rc, SDE_EVTLOG_ERROR); return rc; } sde_enc->elevated_ahb_vote = true; /* enable DSI clks */ rc = sde_connector_clk_ctrl(sde_enc->cur_master->connector, true); if (rc) { SDE_ERROR("failed to enable clk control %d\n", rc); pm_runtime_put_sync(drm_enc->dev->dev); return rc; } /* enable all the irq */ sde_encoder_irq_control(drm_enc, true); _sde_encoder_pm_qos_add_request(drm_enc); } else { _sde_encoder_pm_qos_remove_request(drm_enc); /* disable all the irq */ sde_encoder_irq_control(drm_enc, false); /* disable DSI clks */ sde_connector_clk_ctrl(sde_enc->cur_master->connector, false); /* disable SDE core clks */ pm_runtime_put_sync(drm_enc->dev->dev); } return 0; } static void sde_encoder_misr_configure(struct drm_encoder *drm_enc, bool enable, u32 frame_count) { struct sde_encoder_virt *sde_enc; int i; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->misr_reconfigure) return; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (!phys || !phys->ops.setup_misr) continue; phys->ops.setup_misr(phys, enable, frame_count); } sde_enc->misr_reconfigure = false; } void sde_encoder_clear_fence_error_in_progress(struct sde_encoder_phys *phys_enc) { struct sde_crtc *sde_crtc; if (!phys_enc || !phys_enc->parent || !phys_enc->parent->crtc) { SDE_DEBUG("invalid sde_encoder_phys.\n"); return; } sde_crtc = to_sde_crtc(phys_enc->parent->crtc); if ((!phys_enc->sde_hw_fence_error_status) && (!sde_crtc->input_fence_status) && phys_enc->fence_error_handle_in_progress) { phys_enc->fence_error_handle_in_progress = false; SDE_EVT32(DRMID(phys_enc->parent), phys_enc->fence_error_handle_in_progress); } } static int sde_encoder_hw_fence_signal(struct sde_encoder_phys *phys_enc) { struct sde_hw_ctl *hw_ctl; struct sde_hw_fence_data *hwfence_data; int pending_kickoff_cnt = -1; int rc = 0; if (!phys_enc || !phys_enc->parent || !phys_enc->hw_ctl) { SDE_DEBUG("invalid parameters\n"); SDE_EVT32(SDE_EVTLOG_ERROR); return -EINVAL; } hw_ctl = phys_enc->hw_ctl; hwfence_data = &hw_ctl->hwfence_data; pending_kickoff_cnt = atomic_read(&phys_enc->pending_kickoff_cnt); /* out of order hw fence error signal is needed for video panel. */ if (sde_encoder_check_curr_mode(phys_enc->parent, MSM_DISPLAY_VIDEO_MODE)) { /* out of order hw fence error signal */ rc = msm_hw_fence_update_txq_error(hwfence_data->hw_fence_handle, phys_enc->sde_hw_fence_handle, phys_enc->sde_hw_fence_error_value, MSM_HW_FENCE_UPDATE_ERROR_WITH_MOVE); if (rc) { SDE_ERROR("msm_hw_fence_update_txq_error failed, rc = %d\n", rc); SDE_EVT32(DRMID(phys_enc->parent), rc, SDE_EVTLOG_ERROR); } /* wait for frame done to avoid out of order signalling for cmd mode. */ } else if (pending_kickoff_cnt) { SDE_EVT32(DRMID(phys_enc->parent), SDE_EVTLOG_FUNC_CASE1); rc = sde_encoder_wait_for_event(phys_enc->parent, MSM_ENC_TX_COMPLETE); if (rc && rc != -EWOULDBLOCK) { SDE_DEBUG("wait for frame done failed %d\n", rc); SDE_EVT32(DRMID(phys_enc->parent), rc, pending_kickoff_cnt, SDE_EVTLOG_ERROR); } } /* HW o/p fence override register */ if (hw_ctl->ops.trigger_output_fence_override) { hw_ctl->ops.trigger_output_fence_override(hw_ctl); SDE_DEBUG("trigger_output_fence_override executed.\n"); SDE_EVT32(DRMID(phys_enc->parent), SDE_EVTLOG_FUNC_CASE2); } SDE_EVT32(DRMID(phys_enc->parent), SDE_EVTLOG_FUNC_EXIT); return rc; } int sde_encoder_handle_dma_fence_out_of_order(struct drm_encoder *drm_enc) { struct drm_crtc *crtc; struct sde_crtc *sde_crtc; struct sde_crtc_state *cstate; struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys_enc; struct sde_fence_context *ctx; struct drm_connector *conn; bool is_vid; int i, fence_status = 0, pending_kickoff_cnt = 0, rc = 0; ktime_t time_stamp; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return false; } crtc = drm_enc->crtc; sde_crtc = to_sde_crtc(crtc); cstate = to_sde_crtc_state(crtc->state); sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc || !sde_enc->phys_encs[0]) { SDE_ERROR("invalid params\n"); return -EINVAL; } phys_enc = sde_enc->phys_encs[0]; ctx = sde_crtc->output_fence; time_stamp = ktime_get(); /* out of order sw fence error signal for video panel. * Hold the last good frame for video mode panel. */ if (phys_enc->sde_hw_fence_error_value) { fence_status = phys_enc->sde_hw_fence_error_value; phys_enc->sde_hw_fence_error_value = 0; } else { fence_status = sde_crtc->input_fence_status; } is_vid = sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE); SDE_EVT32(is_vid, fence_status, phys_enc->fence_error_handle_in_progress); if (is_vid) { /* update last_good_frame_fence_seqno after at least one good frame */ if (!phys_enc->fence_error_handle_in_progress) { ctx->sde_fence_error_ctx.last_good_frame_fence_seqno = ctx->sde_fence_error_ctx.curr_frame_fence_seqno - 1; phys_enc->fence_error_handle_in_progress = true; } /* signal release fence for vid panel */ sde_fence_error_ctx_update(ctx, fence_status, HANDLE_OUT_OF_ORDER); } else { /* * out of order sw fence error signal for CMD panel. * always wait frame done for cmd panel. * signal the sw fence error release fence for CMD panel. */ pending_kickoff_cnt = atomic_read(&phys_enc->pending_kickoff_cnt); if (pending_kickoff_cnt) { SDE_EVT32(DRMID(drm_enc), pending_kickoff_cnt, SDE_EVTLOG_FUNC_CASE1); rc = sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); if (rc && rc != -EWOULDBLOCK) { SDE_DEBUG("wait for frame done failed %d\n", rc); SDE_EVT32(DRMID(drm_enc), rc, pending_kickoff_cnt, SDE_EVTLOG_ERROR); } } /* update fence error context for cmd panel */ sde_fence_error_ctx_update(ctx, fence_status, SET_ERROR_ONLY_CMD_RELEASE); } sde_fence_signal(ctx, time_stamp, SDE_FENCE_SIGNAL, NULL); /** * clear flag in sde_fence_error_ctx after fence signal, * the last_good_frame_fence_seqno is supposed to be updated or cleared after * at least one good frame in case of constant fence error */ sde_fence_error_ctx_update(ctx, 0, NO_ERROR); /* signal retire fence */ for (i = 0; i < cstate->num_connectors; ++i) { conn = cstate->connectors[i]; sde_connector_fence_error_ctx_signal(conn, fence_status, is_vid); } SDE_EVT32(ctx->sde_fence_error_ctx.fence_error_status, ctx->sde_fence_error_ctx.fence_error_state, ctx->sde_fence_error_ctx.last_good_frame_fence_seqno, pending_kickoff_cnt); return rc; } int sde_encoder_hw_fence_error_handle(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys_enc; struct msm_drm_private *priv; struct msm_fence_error_client_entry *entry; int rc = 0; sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc || !sde_enc->phys_encs[0] || !sde_enc->phys_encs[0]->sde_hw_fence_error_status) return 0; SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_FUNC_ENTRY); phys_enc = sde_enc->phys_encs[0]; rc = sde_encoder_hw_fence_signal(phys_enc); if (rc) { SDE_DEBUG("sde_encoder_hw_fence_signal error, rc = %d.\n", rc); SDE_EVT32(DRMID(drm_enc), rc, SDE_EVTLOG_ERROR); } rc = sde_encoder_handle_dma_fence_out_of_order(phys_enc->parent); if (rc) { SDE_DEBUG("sde_encoder_handle_dma_fence_out_of_order failed, rc = %d\n", rc); SDE_EVT32(DRMID(phys_enc->parent), rc, SDE_EVTLOG_ERROR); } if (!phys_enc->sde_kms || !phys_enc->sde_kms->dev || !phys_enc->sde_kms->dev->dev_private) { SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_ERROR); return -EINVAL; } priv = phys_enc->sde_kms->dev->dev_private; list_for_each_entry(entry, &priv->fence_error_client_list, list) { if (!entry->ops.fence_error_handle_submodule) continue; SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_FUNC_CASE1); rc = entry->ops.fence_error_handle_submodule(phys_enc->hw_ctl, entry->data); if (rc) { SDE_ERROR("fence_error_handle_submodule failed for device: %d\n", entry->dev->id); SDE_EVT32(DRMID(drm_enc), rc, SDE_EVTLOG_ERROR); } } if (phys_enc->hw_ctl->ops.clear_flush_mask) { phys_enc->hw_ctl->ops.clear_flush_mask(phys_enc->hw_ctl, true); SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_FUNC_CASE2); } phys_enc->sde_hw_fence_error_status = false; SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_FUNC_EXIT); return rc; } static void sde_encoder_input_event_handler(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct drm_encoder *drm_enc = NULL; struct sde_encoder_virt *sde_enc = NULL; struct msm_drm_thread *disp_thread = NULL; struct msm_drm_private *priv = NULL; #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) struct samsung_display_driver_data *vdd = NULL; #endif if (!handle || !handle->handler || !handle->handler->private) { SDE_ERROR("invalid encoder for the input event\n"); return; } drm_enc = (struct drm_encoder *)handle->handler->private; if (!drm_enc->dev || !drm_enc->dev->dev_private) { SDE_ERROR("invalid parameters\n"); return; } priv = drm_enc->dev->dev_private; sde_enc = to_sde_encoder_virt(drm_enc); #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) if (!sde_enc->crtc) { SDE_DEBUG("invalid crtc\n"); return; } SDE_DEBUG("sde_enc->crtc->index %d\n", sde_enc->crtc->index); vdd = ss_get_vdd(sde_enc->crtc->index); if (!vdd) vdd = ss_get_vdd(PRIMARY_DISPLAY_NDX); if (ss_is_panel_off(vdd)) { SDE_DEBUG("invalid call during power off, idx %d\n", sde_enc->crtc->index); return; } #endif if (!sde_enc->crtc || (sde_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread))) { SDE_DEBUG_ENC(sde_enc, "invalid cached CRTC: %d or crtc index: %d\n", sde_enc->crtc == NULL, sde_enc->crtc ? sde_enc->crtc->index : -EINVAL); return; } SDE_EVT32_VERBOSE(DRMID(drm_enc)); disp_thread = &priv->disp_thread[sde_enc->crtc->index]; kthread_queue_work(&disp_thread->worker, &sde_enc->input_event_work); } void sde_encoder_control_idle_pc(struct drm_encoder *drm_enc, bool enable) { struct sde_encoder_virt *sde_enc; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); /* return early if there is no state change */ if (sde_enc->idle_pc_enabled == enable) return; sde_enc->idle_pc_enabled = enable; SDE_DEBUG("idle-pc state:%d\n", sde_enc->idle_pc_enabled); SDE_EVT32(sde_enc->idle_pc_enabled); } static void _sde_encoder_rc_restart_delayed(struct sde_encoder_virt *sde_enc, u32 sw_event) { struct drm_encoder *drm_enc = &sde_enc->base; struct msm_drm_private *priv; unsigned int lp, idle_pc_duration, frame_time_ms, fps; struct msm_drm_thread *disp_thread; unsigned int min_duration = IDLE_POWERCOLLAPSE_DURATION; unsigned int max_duration = IDLE_POWERCOLLAPSE_IN_EARLY_WAKEUP; /* return early if called from esd thread */ if (sde_enc->delay_kickoff) return; /* set idle timeout based on master connector's lp value */ if (sde_enc->cur_master) lp = sde_connector_get_lp( sde_enc->cur_master->connector); else lp = SDE_MODE_DPMS_ON; fps = sde_enc->mode_info.frame_rate; if ((lp == SDE_MODE_DPMS_LP1) || (lp == SDE_MODE_DPMS_LP2)) idle_pc_duration = IDLE_SHORT_TIMEOUT; else { frame_time_ms = 1000; do_div(frame_time_ms, fps); idle_pc_duration = max(4 * frame_time_ms, min_duration); idle_pc_duration = min(idle_pc_duration, max_duration); } priv = drm_enc->dev->dev_private; disp_thread = &priv->disp_thread[sde_enc->crtc->index]; kthread_mod_delayed_work( &disp_thread->worker, &sde_enc->delayed_off_work, msecs_to_jiffies(idle_pc_duration)); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, idle_pc_duration, SDE_EVTLOG_FUNC_CASE2); SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work scheduled\n", sw_event); } static void _sde_encoder_rc_cancel_delayed(struct sde_encoder_virt *sde_enc, u32 sw_event) { if (kthread_cancel_delayed_work_sync(&sde_enc->delayed_off_work)) SDE_DEBUG_ENC(sde_enc, "sw_event:%d, work cancelled\n", sw_event); } void sde_encoder_cancel_delayed_work(struct drm_encoder *encoder) { struct sde_encoder_virt *sde_enc; if (!encoder) return; sde_enc = to_sde_encoder_virt(encoder); _sde_encoder_rc_cancel_delayed(sde_enc, 0); } static void _sde_encoder_rc_kickoff_delayed(struct sde_encoder_virt *sde_enc, u32 sw_event) { if (_sde_encoder_is_autorefresh_enabled(sde_enc)) _sde_encoder_rc_cancel_delayed(sde_enc, sw_event); else _sde_encoder_rc_restart_delayed(sde_enc, sw_event); } static int _sde_encoder_rc_kickoff(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc, bool is_vid_mode) { int ret = 0; mutex_lock(&sde_enc->rc_lock); /* return if the resource control is already in ON state */ if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON) { #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) struct samsung_display_driver_data *vdd; if (!sde_enc->crtc) { SDE_DEBUG("invalid crtc\n"); } else { SDE_DEBUG("sde_enc->crtc->index %d \n", sde_enc->crtc->index); vdd = ss_get_vdd(sde_enc->crtc->index); if (!vdd) vdd = ss_get_vdd(PRIMARY_DISPLAY_NDX); if (vdd->vrr.support_vrr_based_bl) { if (vdd->vrr.keep_max_rsc_fps && !vdd->vrr.running_vrr_mdp && !vdd->vrr.running_vrr) { LCD_DEBUG(vdd, "VRR done, trigger rsc update to restore original rsc fps\n"); vdd->vrr.keep_max_rsc_fps = false; _sde_encoder_update_rsc_client(drm_enc, true); } } } #endif SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in ON state\n", sw_event); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_FUNC_CASE1); goto end; } else if (sde_enc->rc_state != SDE_ENC_RC_STATE_OFF && sde_enc->rc_state != SDE_ENC_RC_STATE_IDLE) { SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); goto end; } if (is_vid_mode && sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) { sde_encoder_irq_control(drm_enc, true); _sde_encoder_pm_qos_add_request(drm_enc); } else { /* enable all the clks and resources */ ret = _sde_encoder_resource_control_helper(drm_enc, true); if (ret) { SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); goto end; } _sde_encoder_update_rsc_client(drm_enc, true); } SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE1); sde_enc->rc_state = SDE_ENC_RC_STATE_ON; end: _sde_encoder_rc_kickoff_delayed(sde_enc, sw_event); mutex_unlock(&sde_enc->rc_lock); return ret; } static int _sde_encoder_rc_pre_stop(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc, bool is_vid_mode) { /* cancel delayed off work, if any */ _sde_encoder_rc_cancel_delayed(sde_enc, sw_event); mutex_lock(&sde_enc->rc_lock); if (is_vid_mode && sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) { sde_encoder_irq_control(drm_enc, true); } /* skip if is already OFF or IDLE, resources are off already */ else if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF || sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) { SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in %d state\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_FUNC_CASE3); goto end; } /** * IRQs are still enabled currently, which allows wait for * VBLANK which RSC may require to correctly transition to OFF */ _sde_encoder_update_rsc_client(drm_enc, false); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_PRE_OFF, SDE_EVTLOG_FUNC_CASE3); sde_enc->rc_state = SDE_ENC_RC_STATE_PRE_OFF; end: mutex_unlock(&sde_enc->rc_lock); return 0; } static int _sde_encoder_rc_stop(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc) { int ret = 0; mutex_lock(&sde_enc->rc_lock); /* return if the resource control is already in OFF state */ if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) { SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n", sw_event); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_FUNC_CASE4); goto end; } else if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON || sde_enc->rc_state == SDE_ENC_RC_STATE_MODESET) { SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); ret = -EINVAL; goto end; } /** * expect to arrive here only if in either idle state or pre-off * and in IDLE state the resources are already disabled */ if (sde_enc->rc_state == SDE_ENC_RC_STATE_PRE_OFF) _sde_encoder_resource_control_helper(drm_enc, false); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_OFF, SDE_EVTLOG_FUNC_CASE4); sde_enc->rc_state = SDE_ENC_RC_STATE_OFF; end: mutex_unlock(&sde_enc->rc_lock); return ret; } static int _sde_encoder_rc_pre_modeset(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc) { int ret = 0; mutex_lock(&sde_enc->rc_lock); if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) { SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n", sw_event); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_FUNC_CASE5); goto end; } else if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) { /* enable all the clks and resources */ ret = _sde_encoder_resource_control_helper(drm_enc, true); if (ret) { SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); goto end; } _sde_encoder_update_rsc_client(drm_enc, true); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE5); sde_enc->rc_state = SDE_ENC_RC_STATE_ON; } if (sde_encoder_has_dsc_hw_rev_2(sde_enc)) goto skip_wait; ret = sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); if (ret && ret != -EWOULDBLOCK) { SDE_ERROR_ENC(sde_enc, "wait for commit done returned %d\n", ret); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, ret, SDE_EVTLOG_ERROR); ret = -EINVAL; goto end; } skip_wait: SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_MODESET, SDE_EVTLOG_FUNC_CASE5); sde_enc->rc_state = SDE_ENC_RC_STATE_MODESET; _sde_encoder_pm_qos_remove_request(drm_enc); end: mutex_unlock(&sde_enc->rc_lock); return ret; } static int _sde_encoder_rc_post_modeset(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc) { int ret = 0; mutex_lock(&sde_enc->rc_lock); if (sde_enc->rc_state == SDE_ENC_RC_STATE_OFF) { SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc in OFF state\n", sw_event); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_FUNC_CASE5); goto end; } else if (sde_enc->rc_state != SDE_ENC_RC_STATE_MODESET) { SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc:%d !MODESET state\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); ret = -EINVAL; goto end; } /* toggle te bit to update vsync source for sim cmd mode panels */ if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_CMD_MODE) && sde_enc->disp_info.is_te_using_watchdog_timer) { sde_encoder_control_te(sde_enc, false); _sde_encoder_update_vsync_source(sde_enc, &sde_enc->disp_info); sde_encoder_control_te(sde_enc, true); } _sde_encoder_update_rsc_client(drm_enc, true); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_ON, SDE_EVTLOG_FUNC_CASE6); sde_enc->rc_state = SDE_ENC_RC_STATE_ON; _sde_encoder_pm_qos_add_request(drm_enc); end: mutex_unlock(&sde_enc->rc_lock); return ret; } static int _sde_encoder_rc_idle(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc, bool is_vid_mode) { struct msm_drm_private *priv; struct sde_kms *sde_kms; struct drm_crtc *crtc = drm_enc->crtc; struct sde_crtc *sde_crtc; struct sde_connector *sde_conn; int crtc_id = 0; priv = drm_enc->dev->dev_private; if (!crtc || !sde_enc->cur_master || !priv->kms) { SDE_ERROR("invalid args crtc:%d master:%d\n", !crtc, !sde_enc->cur_master); return -EINVAL; } sde_crtc = to_sde_crtc(crtc); sde_kms = to_sde_kms(priv->kms); sde_conn = to_sde_connector(sde_enc->cur_master->connector); mutex_lock(&sde_enc->rc_lock); if (sde_conn->panel_dead) { SDE_DEBUG_ENC(sde_enc, "skip idle. Panel in dead state\n"); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); goto end; } else if (sde_enc->rc_state != SDE_ENC_RC_STATE_ON) { SDE_DEBUG_ENC(sde_enc, "sw_event:%d, rc:%d !ON state\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); goto end; } else if (sde_crtc_frame_pending(sde_enc->crtc) || sde_crtc->kickoff_in_progress) { SDE_DEBUG_ENC(sde_enc, "skip idle entry"); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, sde_crtc_frame_pending(sde_enc->crtc), SDE_EVTLOG_ERROR); _sde_encoder_rc_kickoff_delayed(sde_enc, sw_event); goto end; } crtc_id = drm_crtc_index(crtc); /* * Avoid power collapse entry for writeback crtc since HAL does not repopulate * crtc, plane properties like luts for idlepc exit commit. Here is_vid_mode will * represents video mode panels and wfd baring CWB. */ if (is_vid_mode) { sde_encoder_irq_control(drm_enc, false); _sde_encoder_pm_qos_remove_request(drm_enc); } else { if (priv->event_thread[crtc_id].thread) kthread_flush_worker(&priv->event_thread[crtc_id].worker); /* disable all the clks and resources */ _sde_encoder_update_rsc_client(drm_enc, false); _sde_encoder_resource_control_helper(drm_enc, false); if (!sde_kms->perf.bw_vote_mode) memset(&sde_crtc->cur_perf, 0, sizeof(struct sde_core_perf_params)); } SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_IDLE, SDE_EVTLOG_FUNC_CASE7); sde_enc->rc_state = SDE_ENC_RC_STATE_IDLE; end: mutex_unlock(&sde_enc->rc_lock); return 0; } static int _sde_encoder_rc_early_wakeup(struct drm_encoder *drm_enc, u32 sw_event, struct sde_encoder_virt *sde_enc, struct msm_drm_private *priv, bool is_vid_mode) { bool autorefresh_enabled = false; struct msm_drm_thread *disp_thread; int ret = 0, idle_pc_duration = 0; if (!sde_enc->crtc || sde_enc->crtc->index >= ARRAY_SIZE(priv->disp_thread)) { SDE_DEBUG_ENC(sde_enc, "invalid crtc:%d or crtc index:%d , sw_event:%u\n", sde_enc->crtc == NULL, sde_enc->crtc ? sde_enc->crtc->index : -EINVAL, sw_event); return -EINVAL; } disp_thread = &priv->disp_thread[sde_enc->crtc->index]; mutex_lock(&sde_enc->rc_lock); if (sde_enc->rc_state == SDE_ENC_RC_STATE_ON) { if (sde_enc->cur_master && sde_enc->cur_master->ops.is_autorefresh_enabled) autorefresh_enabled = sde_enc->cur_master->ops.is_autorefresh_enabled( sde_enc->cur_master); if (autorefresh_enabled) { SDE_DEBUG_ENC(sde_enc, "not handling early wakeup since auto refresh is enabled\n"); goto end; } if (!sde_crtc_frame_pending(sde_enc->crtc)) { kthread_mod_delayed_work(&disp_thread->worker, &sde_enc->delayed_off_work, msecs_to_jiffies( IDLE_POWERCOLLAPSE_DURATION)); idle_pc_duration = IDLE_POWERCOLLAPSE_DURATION; } } else if (sde_enc->rc_state == SDE_ENC_RC_STATE_IDLE) { /* enable all the clks and resources */ ret = _sde_encoder_resource_control_helper(drm_enc, true); if (ret) { SDE_ERROR_ENC(sde_enc, "sw_event:%d, rc in state %d\n", sw_event, sde_enc->rc_state); SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_EVTLOG_ERROR); goto end; } _sde_encoder_update_rsc_client(drm_enc, true); /* * In some cases, commit comes with slight delay * (> 80 ms)after early wake up, prevent clock switch * off to avoid jank in next update. So, increase the * command mode idle timeout sufficiently to prevent * such case. */ kthread_mod_delayed_work(&disp_thread->worker, &sde_enc->delayed_off_work, msecs_to_jiffies( IDLE_POWERCOLLAPSE_IN_EARLY_WAKEUP)); idle_pc_duration = IDLE_POWERCOLLAPSE_IN_EARLY_WAKEUP; sde_enc->rc_state = SDE_ENC_RC_STATE_ON; } SDE_EVT32(DRMID(drm_enc), sw_event, sde_enc->rc_state, SDE_ENC_RC_STATE_ON, idle_pc_duration, SDE_EVTLOG_FUNC_CASE8); end: mutex_unlock(&sde_enc->rc_lock); return ret; } static int sde_encoder_resource_control(struct drm_encoder *drm_enc, u32 sw_event) { struct sde_encoder_virt *sde_enc; struct msm_drm_private *priv; int ret = 0; bool is_vid_mode = false; if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { SDE_ERROR("invalid encoder parameters, sw_event:%u\n", sw_event); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); priv = drm_enc->dev->dev_private; /* is_vid_mode represents vid mode panel and WFD for clocks and irq control. */ is_vid_mode = !((sde_encoder_get_intf_mode(drm_enc) == INTF_MODE_CMD) || sde_encoder_in_clone_mode(drm_enc)); /* * when idle_pc is not supported, process only KICKOFF, STOP and MODESET * events and return early for other events (ie wb display). */ if (!sde_enc->idle_pc_enabled && (sw_event != SDE_ENC_RC_EVENT_KICKOFF && sw_event != SDE_ENC_RC_EVENT_PRE_MODESET && sw_event != SDE_ENC_RC_EVENT_POST_MODESET && sw_event != SDE_ENC_RC_EVENT_STOP && sw_event != SDE_ENC_RC_EVENT_PRE_STOP)) return 0; SDE_DEBUG_ENC(sde_enc, "sw_event:%d, idle_pc:%d\n", sw_event, sde_enc->idle_pc_enabled); SDE_EVT32_VERBOSE(DRMID(drm_enc), sw_event, sde_enc->idle_pc_enabled, sde_enc->rc_state, SDE_EVTLOG_FUNC_ENTRY); switch (sw_event) { case SDE_ENC_RC_EVENT_KICKOFF: ret = _sde_encoder_rc_kickoff(drm_enc, sw_event, sde_enc, is_vid_mode); break; case SDE_ENC_RC_EVENT_PRE_STOP: ret = _sde_encoder_rc_pre_stop(drm_enc, sw_event, sde_enc, is_vid_mode); break; case SDE_ENC_RC_EVENT_STOP: ret = _sde_encoder_rc_stop(drm_enc, sw_event, sde_enc); break; case SDE_ENC_RC_EVENT_PRE_MODESET: ret = _sde_encoder_rc_pre_modeset(drm_enc, sw_event, sde_enc); break; case SDE_ENC_RC_EVENT_POST_MODESET: ret = _sde_encoder_rc_post_modeset(drm_enc, sw_event, sde_enc); break; case SDE_ENC_RC_EVENT_ENTER_IDLE: ret = _sde_encoder_rc_idle(drm_enc, sw_event, sde_enc, is_vid_mode); break; case SDE_ENC_RC_EVENT_EARLY_WAKEUP: ret = _sde_encoder_rc_early_wakeup(drm_enc, sw_event, sde_enc, priv, is_vid_mode); break; default: SDE_EVT32(DRMID(drm_enc), sw_event, SDE_EVTLOG_ERROR); SDE_ERROR("unexpected sw_event: %d\n", sw_event); break; } SDE_EVT32_VERBOSE(DRMID(drm_enc), sw_event, sde_enc->idle_pc_enabled, sde_enc->rc_state, SDE_EVTLOG_FUNC_EXIT); return ret; } static void sde_encoder_virt_mode_switch(struct drm_encoder *drm_enc, enum sde_intf_mode intf_mode, struct msm_display_mode *adj_mode) { int i = 0; struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); bool poms_to_vid = msm_is_mode_seamless_poms_to_vid(adj_mode); bool poms_to_cmd = msm_is_mode_seamless_poms_to_cmd(adj_mode); if (poms_to_vid) sde_enc->disp_info.curr_panel_mode = MSM_DISPLAY_VIDEO_MODE; else if (poms_to_cmd) sde_enc->disp_info.curr_panel_mode = MSM_DISPLAY_CMD_MODE; _sde_encoder_update_rsc_client(drm_enc, true); if (intf_mode == INTF_MODE_CMD && poms_to_vid) { for (i = 0; i < sde_enc->num_phys_encs; i++) sde_enc->phys_encs[i] = sde_enc->phys_vid_encs[i]; SDE_DEBUG_ENC(sde_enc, "switch to video physical encoder\n"); SDE_EVT32(DRMID(&sde_enc->base), intf_mode, poms_to_cmd, poms_to_vid, SDE_EVTLOG_FUNC_CASE1); } else if (intf_mode == INTF_MODE_VIDEO && poms_to_cmd) { for (i = 0; i < sde_enc->num_phys_encs; i++) sde_enc->phys_encs[i] = sde_enc->phys_cmd_encs[i]; SDE_DEBUG_ENC(sde_enc, "switch to command physical encoder\n"); SDE_EVT32(DRMID(&sde_enc->base), intf_mode, poms_to_cmd, poms_to_vid, SDE_EVTLOG_FUNC_CASE2); } } struct drm_connector *sde_encoder_get_connector( struct drm_device *dev, struct drm_encoder *drm_enc) { struct drm_connector_list_iter conn_iter; struct drm_connector *conn = NULL, *conn_search; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn_search, &conn_iter) { if (conn_search->encoder == drm_enc) { conn = conn_search; break; } } drm_connector_list_iter_end(&conn_iter); return conn; } static void _sde_encoder_virt_populate_hw_res(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); struct sde_kms *sde_kms = sde_encoder_get_kms(drm_enc); struct sde_rm_hw_iter pp_iter, qdss_iter; struct sde_rm_hw_iter dsc_iter, vdc_iter; struct sde_rm_hw_request request_hw; int i, j; sde_enc->cur_channel_cnt = 0; sde_rm_init_hw_iter(&pp_iter, drm_enc->base.id, SDE_HW_BLK_PINGPONG); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { sde_enc->hw_pp[i] = NULL; if (!sde_rm_get_hw(&sde_kms->rm, &pp_iter)) break; sde_enc->hw_pp[i] = to_sde_hw_pingpong(pp_iter.hw); sde_enc->cur_channel_cnt++; } for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys) { sde_rm_init_hw_iter(&qdss_iter, drm_enc->base.id, SDE_HW_BLK_QDSS); for (j = 0; j < QDSS_MAX; j++) { if (sde_rm_get_hw(&sde_kms->rm, &qdss_iter)) { phys->hw_qdss = to_sde_hw_qdss(qdss_iter.hw); break; } } } } sde_rm_init_hw_iter(&dsc_iter, drm_enc->base.id, SDE_HW_BLK_DSC); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { sde_enc->hw_dsc[i] = NULL; if (!sde_rm_get_hw(&sde_kms->rm, &dsc_iter)) continue; sde_enc->hw_dsc[i] = to_sde_hw_dsc(dsc_iter.hw); } sde_rm_init_hw_iter(&vdc_iter, drm_enc->base.id, SDE_HW_BLK_VDC); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { sde_enc->hw_vdc[i] = NULL; if (!sde_rm_get_hw(&sde_kms->rm, &vdc_iter)) continue; sde_enc->hw_vdc[i] = to_sde_hw_vdc(vdc_iter.hw); } /* Get PP for DSC configuration */ for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { struct sde_hw_pingpong *pp = NULL; unsigned long features = 0; if (!sde_enc->hw_dsc[i]) continue; request_hw.id = sde_enc->hw_dsc[i]->idx; request_hw.type = SDE_HW_BLK_PINGPONG; if (!sde_rm_request_hw_blk(&sde_kms->rm, &request_hw)) break; pp = to_sde_hw_pingpong(request_hw.hw); features = pp->ops.get_hw_caps(pp); if (test_bit(SDE_PINGPONG_DSC, &features)) sde_enc->hw_dsc_pp[i] = pp; else sde_enc->hw_dsc_pp[i] = NULL; } } static int sde_encoder_virt_modeset_rc(struct drm_encoder *drm_enc, struct drm_display_mode *adj_mode, struct msm_display_mode *msm_mode, bool pre_modeset) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); enum sde_intf_mode intf_mode; struct drm_display_mode *old_adj_mode = NULL; int ret; bool is_cmd_mode = false, res_switch = false; if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) is_cmd_mode = true; if (pre_modeset) { if (sde_enc->cur_master) old_adj_mode = &sde_enc->cur_master->cached_mode; if (old_adj_mode && is_cmd_mode) res_switch = !drm_mode_match(old_adj_mode, adj_mode, DRM_MODE_MATCH_TIMINGS); if ((res_switch && sde_enc->disp_info.is_te_using_watchdog_timer) || sde_encoder_is_cwb_disabling(drm_enc, drm_enc->crtc)) { /* * add tx wait for sim panel to avoid wd timer getting * updated in middle of frame to avoid early vsync */ ret = sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); if (ret && ret != -EWOULDBLOCK) { SDE_ERROR_ENC(sde_enc, "wait for idle failed %d\n", ret); SDE_EVT32(DRMID(drm_enc), ret, SDE_EVTLOG_ERROR); return ret; } } intf_mode = sde_encoder_get_intf_mode(drm_enc); if (msm_is_mode_seamless_dms(msm_mode) || (msm_is_mode_seamless_dyn_clk(msm_mode) && is_cmd_mode)) { /* restore resource state before releasing them */ ret = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_PRE_MODESET); if (ret) { SDE_ERROR_ENC(sde_enc, "sde resource control failed: %d\n", ret); return ret; } /* * Disable dce before switching the mode and after pre- * modeset to guarantee previous kickoff has finished. */ sde_encoder_dce_disable(sde_enc); } else if (msm_is_mode_seamless_poms(msm_mode)) { _sde_encoder_modeset_helper_locked(drm_enc, SDE_ENC_RC_EVENT_PRE_MODESET); sde_encoder_virt_mode_switch(drm_enc, intf_mode, msm_mode); } } else { if (msm_is_mode_seamless_dms(msm_mode) || (msm_is_mode_seamless_dyn_clk(msm_mode) && is_cmd_mode)) sde_encoder_resource_control(&sde_enc->base, SDE_ENC_RC_EVENT_POST_MODESET); else if (msm_is_mode_seamless_poms(msm_mode)) _sde_encoder_modeset_helper_locked(drm_enc, SDE_ENC_RC_EVENT_POST_MODESET); } return 0; } static void sde_encoder_virt_mode_set(struct drm_encoder *drm_enc, struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { struct sde_encoder_virt *sde_enc; struct sde_kms *sde_kms; struct drm_connector *conn; struct drm_crtc_state *crtc_state; struct sde_crtc_state *sde_crtc_state; struct sde_connector_state *c_state; struct msm_display_mode *msm_mode; struct sde_crtc *sde_crtc; int i = 0, ret; int num_lm, num_intf, num_pp_per_intf; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) { SDE_ERROR("power resource is not enabled\n"); return; } sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return; sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "\n"); SDE_EVT32(DRMID(drm_enc)); /* * cache the crtc in sde_enc on enable for duration of use case * for correctly servicing asynchronous irq events and timers */ if (!drm_enc->crtc) { SDE_ERROR("invalid crtc\n"); return; } sde_enc->crtc = drm_enc->crtc; sde_crtc = to_sde_crtc(drm_enc->crtc); crtc_state = sde_crtc->base.state; sde_crtc_state = to_sde_crtc_state(crtc_state); if (!((sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_VIRTUAL) && ((sde_crtc_state->cached_cwb_enc_mask & drm_encoder_mask(drm_enc))))) sde_crtc_set_qos_dirty(drm_enc->crtc); /* get and store the mode_info */ conn = sde_encoder_get_connector(sde_kms->dev, drm_enc); if (!conn) { SDE_ERROR_ENC(sde_enc, "failed to find attached connector\n"); return; } else if (!conn->state) { SDE_ERROR_ENC(sde_enc, "invalid connector state\n"); return; } sde_connector_state_get_mode_info(conn->state, &sde_enc->mode_info); sde_encoder_dce_set_bpp(sde_enc->mode_info, sde_enc->crtc); c_state = to_sde_connector_state(conn->state); if (!c_state) { SDE_ERROR_ENC(sde_enc, "could not get connector state"); return; } /* cancel delayed off work, if any */ kthread_cancel_delayed_work_sync(&sde_enc->delayed_off_work); /* release resources before seamless mode change */ msm_mode = &c_state->msm_mode; ret = sde_encoder_virt_modeset_rc(drm_enc, adj_mode, msm_mode, true); if (ret) return; if ((sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_VIRTUAL) && ((sde_crtc_state->cached_cwb_enc_mask & drm_encoder_mask(drm_enc)))) { SDE_EVT32(DRMID(drm_enc), sde_crtc_state->cwb_enc_mask, sde_crtc_state->cached_cwb_enc_mask); sde_crtc_state->cwb_enc_mask = sde_crtc_state->cached_cwb_enc_mask; sde_encoder_set_clone_mode(drm_enc, crtc_state); sde_crtc->cached_encoder_mask |= drm_encoder_mask(drm_enc); } /* reserve dynamic resources now, indicating non test-only */ ret = sde_rm_reserve(&sde_kms->rm, drm_enc, drm_enc->crtc->state, conn->state, false); if (ret) { SDE_ERROR_ENC(sde_enc, "failed to reserve hw resources, %d\n", ret); return; } /* assign the reserved HW blocks to this encoder */ _sde_encoder_virt_populate_hw_res(drm_enc); /* determine left HW PP block to map to INTF */ num_lm = sde_enc->mode_info.topology.num_lm; num_intf = sde_enc->mode_info.topology.num_intf; num_pp_per_intf = num_lm / num_intf; if (!num_pp_per_intf) num_pp_per_intf = 1; /* perform mode_set on phys_encs */ for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys) { if (!sde_enc->hw_pp[i * num_pp_per_intf]) { SDE_ERROR_ENC(sde_enc, "invalid phys %d pp_per_intf %d", i, num_pp_per_intf); return; } phys->hw_pp = sde_enc->hw_pp[i * num_pp_per_intf]; phys->connector = conn; if (phys->ops.mode_set) phys->ops.mode_set(phys, mode, adj_mode, &sde_crtc->reinit_crtc_mixers); } } /* update resources after seamless mode change */ sde_encoder_virt_modeset_rc(drm_enc, adj_mode, msm_mode, false); } void sde_encoder_idle_pc_enter(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); /* * disable the vsync source after updating the * rsc state. rsc state update might have vsync wait * and vsync source must be disabled after it. * It will avoid generating any vsync from this point * till mode-2 entry. It is SW workaround for HW * limitation and should not be removed without * checking the updated design. */ sde_encoder_control_te(sde_enc, false); if (sde_enc->cur_master && sde_enc->cur_master->ops.idle_pc_cache_display_status) sde_enc->cur_master->ops.idle_pc_cache_display_status(sde_enc->cur_master); } static int _sde_encoder_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int rc = 0; handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = handler->name; rc = input_register_handle(handle); if (rc) { pr_err("failed to register input handle\n"); goto error; } rc = input_open_device(handle); if (rc) { pr_err("failed to open input device\n"); goto error_unregister; } return 0; error_unregister: input_unregister_handle(handle); error: kfree(handle); return rc; } static void _sde_encoder_input_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } /** * Structure for specifying event parameters on which to receive callbacks. * This structure will trigger a callback in case of a touch event (specified by * EV_ABS) where there is a change in X and Y coordinates, */ static const struct input_device_id sde_input_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { [BIT_WORD(ABS_MT_POSITION_X)] = BIT_MASK(ABS_MT_POSITION_X) | BIT_MASK(ABS_MT_POSITION_Y) }, }, { }, }; static void _sde_encoder_input_handler_register( struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); int rc; #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) static bool input_handler_registered = false; if (!input_handler_registered) input_handler_registered = true; else return; #endif if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE) || !sde_enc->input_event_enabled) return; if (sde_enc->input_handler && !sde_enc->input_handler->private) { sde_enc->input_handler->private = sde_enc; /* register input handler if not already registered */ rc = input_register_handler(sde_enc->input_handler); if (rc) { SDE_ERROR("input_handler_register failed, rc= %d\n", rc); kfree(sde_enc->input_handler); } } } #if !IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) /* CL 16617782 : Excessive delay in setPowerMode because of pending display off */ static void _sde_encoder_input_handler_unregister( struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE) || !sde_enc->input_event_enabled) return; if (sde_enc->input_handler && sde_enc->input_handler->private) { input_unregister_handler(sde_enc->input_handler); sde_enc->input_handler->private = NULL; } } #endif static int _sde_encoder_input_handler( struct sde_encoder_virt *sde_enc) { struct input_handler *input_handler = NULL; int rc = 0; if (sde_enc->input_handler) { SDE_ERROR_ENC(sde_enc, "input_handle is active. unexpected\n"); return -EINVAL; } input_handler = kzalloc(sizeof(*sde_enc->input_handler), GFP_KERNEL); if (!input_handler) return -ENOMEM; input_handler->event = sde_encoder_input_event_handler; input_handler->connect = _sde_encoder_input_connect; input_handler->disconnect = _sde_encoder_input_disconnect; input_handler->name = "sde"; input_handler->id_table = sde_input_ids; sde_enc->input_handler = input_handler; return rc; } static void _sde_encoder_virt_enable_helper(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; struct sde_kms *sde_kms; if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { SDE_ERROR("invalid parameters\n"); return; } sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return; sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc || !sde_enc->cur_master) { SDE_DEBUG("invalid sde encoder/master\n"); return; } if (sde_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort && sde_enc->cur_master->hw_mdptop && sde_enc->cur_master->hw_mdptop->ops.intf_audio_select) sde_enc->cur_master->hw_mdptop->ops.intf_audio_select( sde_enc->cur_master->hw_mdptop); if (sde_enc->cur_master->hw_mdptop && sde_enc->cur_master->hw_mdptop->ops.reset_ubwc && !sde_in_trusted_vm(sde_kms)) sde_enc->cur_master->hw_mdptop->ops.reset_ubwc( sde_enc->cur_master->hw_mdptop, sde_kms->catalog); if (sde_enc->cur_master->hw_ctl && sde_enc->cur_master->hw_ctl->ops.setup_intf_cfg_v1 && !sde_enc->cur_master->cont_splash_enabled) sde_enc->cur_master->hw_ctl->ops.setup_intf_cfg_v1( sde_enc->cur_master->hw_ctl, &sde_enc->cur_master->intf_cfg_v1); if (sde_enc->cur_master->hw_ctl) sde_fence_output_hw_fence_dir_write_init(sde_enc->cur_master->hw_ctl); _sde_encoder_update_vsync_source(sde_enc, &sde_enc->disp_info); if (!sde_encoder_in_cont_splash(drm_enc)) _sde_encoder_update_ppb_size(drm_enc); memset(&sde_enc->prv_conn_roi, 0, sizeof(sde_enc->prv_conn_roi)); memset(&sde_enc->cur_conn_roi, 0, sizeof(sde_enc->cur_conn_roi)); _sde_encoder_control_fal10_veto(drm_enc, true); } static void _sde_encoder_setup_dither(struct sde_encoder_phys *phys) { struct sde_kms *sde_kms; void *dither_cfg = NULL; int ret = 0, i = 0; size_t len = 0; enum sde_rm_topology_name topology; struct drm_encoder *drm_enc; struct msm_display_dsc_info *dsc = NULL; struct sde_encoder_virt *sde_enc; struct sde_hw_pingpong *hw_pp; u32 bpp, bpc; int num_lm; if (!phys || !phys->connector || !phys->hw_pp || !phys->hw_pp->ops.setup_dither || !phys->parent) return; sde_kms = sde_encoder_get_kms(phys->parent); if (!sde_kms) return; topology = sde_connector_get_topology_name(phys->connector); if ((topology == SDE_RM_TOPOLOGY_NONE) || ((topology == SDE_RM_TOPOLOGY_PPSPLIT) && (phys->split_role == ENC_ROLE_SLAVE))) return; drm_enc = phys->parent; sde_enc = to_sde_encoder_virt(drm_enc); dsc = &sde_enc->mode_info.comp_info.dsc_info; bpc = dsc->config.bits_per_component; bpp = dsc->config.bits_per_pixel; /* disable dither for 10 bpp or 10bpc dsc config or 30bpp without dsc */ if (bpp == 10 || bpc == 10 || sde_enc->mode_info.bpp == 30) { phys->hw_pp->ops.setup_dither(phys->hw_pp, NULL, 0); return; } ret = sde_connector_get_dither_cfg(phys->connector, phys->connector->state, &dither_cfg, &len, sde_enc->idle_pc_restore); /* skip reg writes when return values are invalid or no data */ if (ret && ret == -ENODATA) return; num_lm = sde_rm_topology_get_num_lm(&sde_kms->rm, topology); for (i = 0; i < num_lm; i++) { hw_pp = sde_enc->hw_pp[i]; phys->hw_pp->ops.setup_dither(hw_pp, dither_cfg, len); } } void sde_encoder_virt_restore(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; int i; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->cur_master) { SDE_DEBUG("virt encoder has no master\n"); return; } memset(&sde_enc->cur_master->intf_cfg_v1, 0, sizeof(sde_enc->cur_master->intf_cfg_v1)); sde_enc->idle_pc_restore = true; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (!phys) continue; if (phys->hw_ctl && phys->hw_ctl->ops.clear_pending_flush) phys->hw_ctl->ops.clear_pending_flush(phys->hw_ctl); if ((phys != sde_enc->cur_master) && phys->ops.restore) phys->ops.restore(phys); _sde_encoder_setup_dither(phys); } if (sde_enc->cur_master->ops.restore) sde_enc->cur_master->ops.restore(sde_enc->cur_master); _sde_encoder_virt_enable_helper(drm_enc); sde_encoder_control_te(sde_enc, true); /* * During IPC misr ctl register is reset. * Need to reconfigure misr after every IPC. */ if (atomic_read(&sde_enc->misr_enable)) sde_enc->misr_reconfigure = true; } static void sde_encoder_populate_encoder_phys(struct drm_encoder *drm_enc, struct sde_encoder_virt *sde_enc, struct msm_display_mode *msm_mode) { struct msm_compression_info *comp_info = &sde_enc->mode_info.comp_info; struct msm_display_info *disp_info = &sde_enc->disp_info; int i; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (!phys) continue; phys->comp_type = comp_info->comp_type; phys->comp_ratio = comp_info->comp_ratio; phys->frame_trigger_mode = sde_enc->frame_trigger_mode; phys->poms_align_vsync = disp_info->poms_align_vsync; if (phys->comp_type == MSM_DISPLAY_COMPRESSION_DSC) { phys->dsc_extra_pclk_cycle_cnt = comp_info->dsc_info.pclk_per_line; phys->dsc_extra_disp_width = comp_info->dsc_info.extra_width; phys->dce_bytes_per_line = comp_info->dsc_info.bytes_per_pkt * comp_info->dsc_info.pkt_per_line; } else if (phys->comp_type == MSM_DISPLAY_COMPRESSION_VDC) { phys->dce_bytes_per_line = comp_info->vdc_info.bytes_per_pkt * comp_info->vdc_info.pkt_per_line; } if (phys != sde_enc->cur_master) { /** * on DMS request, the encoder will be enabled * already. Invoke restore to reconfigure the * new mode. */ if ((msm_is_mode_seamless_dms(msm_mode) || msm_is_mode_seamless_dyn_clk(msm_mode)) && phys->ops.restore) phys->ops.restore(phys); else if (phys->ops.enable) phys->ops.enable(phys); } if (atomic_read(&sde_enc->misr_enable) && phys->ops.setup_misr && (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE))) phys->ops.setup_misr(phys, true, sde_enc->misr_frame_count); } if ((msm_is_mode_seamless_dms(msm_mode) || msm_is_mode_seamless_dyn_clk(msm_mode)) && sde_enc->cur_master->ops.restore) sde_enc->cur_master->ops.restore(sde_enc->cur_master); else if (sde_enc->cur_master->ops.enable) sde_enc->cur_master->ops.enable(sde_enc->cur_master); } static void sde_encoder_off_work(struct kthread_work *work) { struct sde_encoder_virt *sde_enc = container_of(work, struct sde_encoder_virt, delayed_off_work.work); struct drm_encoder *drm_enc; if (!sde_enc) { SDE_ERROR("invalid sde encoder\n"); return; } drm_enc = &sde_enc->base; SDE_ATRACE_BEGIN("sde_encoder_off_work"); sde_encoder_idle_request(drm_enc); SDE_ATRACE_END("sde_encoder_off_work"); } static void sde_encoder_virt_enable(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; bool has_master_enc = false; int i, ret = 0; struct sde_connector_state *c_state; struct drm_display_mode *cur_mode = NULL; struct msm_display_mode *msm_mode; if (!drm_enc || !drm_enc->crtc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) { SDE_ERROR("power resource is not enabled\n"); return; } if (!sde_enc->crtc) sde_enc->crtc = drm_enc->crtc; cur_mode = &sde_enc->base.crtc->state->adjusted_mode; SDE_DEBUG_ENC(sde_enc, "\n"); SDE_EVT32(DRMID(drm_enc), cur_mode->hdisplay, cur_mode->vdisplay); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.is_master && phys->ops.is_master(phys)) { SDE_DEBUG_ENC(sde_enc, "master is now idx %d\n", i); sde_enc->cur_master = phys; has_master_enc = true; break; } } if (!has_master_enc) { sde_enc->cur_master = NULL; SDE_ERROR("virt encoder has no master! num_phys %d\n", i); return; } _sde_encoder_input_handler_register(drm_enc); c_state = to_sde_connector_state(sde_enc->cur_master->connector->state); if (!c_state) { SDE_ERROR("invalid connector state\n"); return; } msm_mode = &c_state->msm_mode; if ((drm_enc->crtc->state->connectors_changed && sde_encoder_in_clone_mode(drm_enc)) || !(msm_is_mode_seamless_vrr(msm_mode) || msm_is_mode_seamless_dms(msm_mode) || msm_is_mode_seamless_dyn_clk(msm_mode))) kthread_init_delayed_work(&sde_enc->delayed_off_work, sde_encoder_off_work); ret = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF); if (ret) { SDE_ERROR_ENC(sde_enc, "sde resource control failed: %d\n", ret); return; } if (sde_encoder_is_built_in_display(drm_enc) && msm_is_mode_seamless_poms(&c_state->msm_mode)) drm_crtc_vblank_put(sde_enc->crtc); memset(&sde_enc->cur_master->intf_cfg_v1, 0, sizeof(sde_enc->cur_master->intf_cfg_v1)); /* turn off vsync_in to update tear check configuration */ sde_encoder_control_te(sde_enc, false); sde_encoder_populate_encoder_phys(drm_enc, sde_enc, msm_mode); _sde_encoder_virt_enable_helper(drm_enc); sde_encoder_control_te(sde_enc, true); } void sde_encoder_virt_reset(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); struct sde_kms *sde_kms = sde_encoder_get_kms(drm_enc); int i = 0; _sde_encoder_control_fal10_veto(drm_enc, false); for (i = 0; i < sde_enc->num_phys_encs; i++) { if (sde_enc->phys_encs[i]) { sde_enc->phys_encs[i]->cont_splash_enabled = false; sde_enc->phys_encs[i]->connector = NULL; sde_enc->phys_encs[i]->hw_ctl = NULL; } atomic_set(&sde_enc->frame_done_cnt[i], 0); } sde_enc->cur_master = NULL; /* * clear the cached crtc in sde_enc on use case finish, after all the * outstanding events and timers have been completed */ sde_enc->crtc = NULL; memset(&sde_enc->mode_info, 0, sizeof(sde_enc->mode_info)); SDE_DEBUG_ENC(sde_enc, "encoder disabled\n"); sde_rm_release(&sde_kms->rm, drm_enc, false); } static void sde_encoder_wait_for_vsync_event_complete(struct sde_encoder_virt *sde_enc) { u32 timeout_ms = DEFAULT_KICKOFF_TIMEOUT_MS; int i, ret; if (sde_enc->cur_master) timeout_ms = sde_enc->cur_master->kickoff_timeout_ms; ret = wait_event_timeout(sde_enc->vsync_event_wq, !sde_enc->vblank_enabled, msecs_to_jiffies(timeout_ms)); SDE_EVT32(timeout_ms, ret); if (!ret) { SDE_ERROR("vsync event complete timed out %d\n", ret); SDE_EVT32(ret, SDE_EVTLOG_ERROR); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.control_vblank_irq) phys->ops.control_vblank_irq(phys, false); } } } static void _sde_encoder_helper_virt_disable(struct drm_encoder *drm_enc) { int i; struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_encoder_in_clone_mode(drm_enc)) { /* disable autorefresh */ for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.disable_autorefresh && phys->ops.wait_for_vsync_on_autorefresh_busy) { phys->ops.disable_autorefresh(phys); phys->ops.wait_for_vsync_on_autorefresh_busy(phys); } } /* wait for idle */ sde_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); } } static void sde_encoder_virt_disable(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; struct sde_connector *sde_conn; struct sde_kms *sde_kms; struct sde_connector_state *c_state = NULL; enum sde_intf_mode intf_mode; int ret, i = 0; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } else if (!drm_enc->dev) { SDE_ERROR("invalid dev\n"); return; } else if (!drm_enc->dev->dev_private) { SDE_ERROR("invalid dev_private\n"); return; } if (!sde_kms_power_resource_is_enabled(drm_enc->dev)) { SDE_ERROR("power resource is not enabled\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->cur_master) { SDE_ERROR("Invalid cur_master\n"); return; } sde_conn = to_sde_connector(sde_enc->cur_master->connector); SDE_DEBUG_ENC(sde_enc, "\n"); sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) return; c_state = to_sde_connector_state(sde_enc->cur_master->connector->state); if (!c_state) { SDE_ERROR("invalid connector state\n"); return; } intf_mode = sde_encoder_get_intf_mode(drm_enc); SDE_EVT32(DRMID(drm_enc)); _sde_encoder_helper_virt_disable(drm_enc); #if !IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) /* CL 16617782 : Excessive delay in setPowerMode because of pending display off */ _sde_encoder_input_handler_unregister(drm_enc); #endif flush_delayed_work(&sde_conn->status_work); if (sde_encoder_is_built_in_display(drm_enc) && msm_is_mode_seamless_poms(&c_state->msm_mode)) drm_crtc_vblank_get(sde_enc->crtc); /* * For primary command mode and video mode encoders, execute the * resource control pre-stop operations before the physical encoders * are disabled, to allow the rsc to transition its states properly. * * For other encoder types, rsc should not be enabled until after * they have been fully disabled, so delay the pre-stop operations * until after the physical disable calls have returned. */ if (sde_enc->disp_info.display_type == SDE_CONNECTOR_PRIMARY && (intf_mode == INTF_MODE_CMD || intf_mode == INTF_MODE_VIDEO)) { sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_PRE_STOP); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.disable) phys->ops.disable(phys); } } else { sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.disable) phys->ops.disable(phys); } sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_PRE_STOP); } /* * wait for any pending vsync timestamp event to sf * to ensure vbalnk irq is disabled. */ if (sde_enc->vblank_enabled && !msm_is_mode_seamless_poms(&c_state->msm_mode)) sde_encoder_wait_for_vsync_event_complete(sde_enc); /* * disable dce after the transfer is complete (for command mode) * and after physical encoder is disabled, to make sure timing * engine is already disabled (for video mode). */ if (!sde_in_trusted_vm(sde_kms)) sde_encoder_dce_disable(sde_enc); sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_STOP); /* reset connector topology name property */ if (sde_enc->cur_master && sde_enc->cur_master->connector && sde_enc->crtc && sde_enc->crtc->state->active_changed) { ret = sde_rm_update_topology(&sde_kms->rm, sde_enc->cur_master->connector->state, NULL); if (ret) { SDE_ERROR_ENC(sde_enc, "RM failed to update topology, rc: %d\n", ret); return; } } if (!sde_encoder_in_clone_mode(drm_enc)) sde_encoder_virt_reset(drm_enc); } static void _trigger_encoder_hw_fences_override(struct sde_kms *sde_kms, struct sde_hw_ctl *ctl) { /* trigger hw-fences override signal */ if (sde_kms && sde_kms->catalog->hw_fence_rev && ctl->ops.hw_fence_trigger_sw_override) ctl->ops.hw_fence_trigger_sw_override(ctl); } void sde_encoder_helper_phys_disable(struct sde_encoder_phys *phys_enc, struct sde_encoder_phys_wb *wb_enc) { struct sde_encoder_virt *sde_enc; struct sde_hw_ctl *ctl = phys_enc->hw_ctl; struct sde_ctl_flush_cfg cfg; struct sde_hw_dsc *hw_dsc = NULL; int i; bool is_regdma_blocking = false, is_vid_mode = false; ctl->ops.reset(ctl); sde_encoder_helper_reset_mixers(phys_enc, NULL); sde_enc = to_sde_encoder_virt(phys_enc->parent); if (wb_enc) { if (wb_enc->hw_wb->ops.bind_pingpong_blk) { wb_enc->hw_wb->ops.bind_pingpong_blk(wb_enc->hw_wb, false, phys_enc->hw_pp->idx); if (ctl->ops.update_bitmask) ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_WB, wb_enc->hw_wb->idx, true); } } else { for (i = 0; i < sde_enc->num_phys_encs; i++) { if (sde_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk) { phys_enc->hw_intf->ops.bind_pingpong_blk( sde_enc->phys_encs[i]->hw_intf, false, sde_enc->phys_encs[i]->hw_pp->idx); if (ctl->ops.update_bitmask) ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_INTF, sde_enc->phys_encs[i]->hw_intf->idx, true); } } } if (phys_enc->hw_pp && phys_enc->hw_pp->ops.reset_3d_mode) { phys_enc->hw_pp->ops.reset_3d_mode(phys_enc->hw_pp); if (ctl->ops.update_bitmask && phys_enc->hw_pp->merge_3d) ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_MERGE_3D, phys_enc->hw_pp->merge_3d->idx, true); } if (phys_enc->hw_cdm && phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp) { phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm, false, phys_enc->hw_pp->idx); if (ctl->ops.update_bitmask) ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_CDM, phys_enc->hw_cdm->idx, true); } if (phys_enc->hw_dnsc_blur && phys_enc->hw_dnsc_blur->ops.bind_pingpong_blk && phys_enc->hw_pp) { phys_enc->hw_dnsc_blur->ops.bind_pingpong_blk(phys_enc->hw_dnsc_blur, false, phys_enc->hw_pp->idx, phys_enc->in_clone_mode); if (ctl->ops.update_dnsc_blur_bitmask) ctl->ops.update_dnsc_blur_bitmask(ctl, phys_enc->hw_dnsc_blur->idx, true); } if (phys_enc == sde_enc->cur_master && phys_enc->hw_pp && ctl->ops.reset_post_disable) ctl->ops.reset_post_disable(ctl, &phys_enc->intf_cfg_v1, phys_enc->hw_pp->merge_3d ? phys_enc->hw_pp->merge_3d->idx : 0); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { hw_dsc = sde_enc->hw_dsc[i]; if (hw_dsc && hw_dsc->ops.bind_pingpong_blk) { hw_dsc->ops.bind_pingpong_blk(hw_dsc, false, PINGPONG_MAX); if (ctl->ops.update_bitmask) ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_DSC, hw_dsc->idx, true); } } _trigger_encoder_hw_fences_override(phys_enc->sde_kms, ctl); sde_crtc_disable_cp_features(sde_enc->base.crtc); if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_VIDEO_MODE)) is_vid_mode = true; is_regdma_blocking = (is_vid_mode || _sde_encoder_is_autorefresh_enabled(sde_enc)); ctl->ops.reg_dma_flush(ctl, is_regdma_blocking); ctl->ops.get_pending_flush(ctl, &cfg); SDE_EVT32(DRMID(phys_enc->parent), cfg.pending_flush_mask); ctl->ops.trigger_flush(ctl); ctl->ops.trigger_start(ctl); ctl->ops.clear_pending_flush(ctl); } void sde_encoder_helper_phys_reset(struct sde_encoder_phys *phys_enc) { struct sde_hw_ctl *ctl = phys_enc->hw_ctl; struct sde_ctl_flush_cfg cfg; ctl->ops.reset(ctl); sde_encoder_helper_reset_mixers(phys_enc, NULL); ctl->ops.get_pending_flush(ctl, &cfg); SDE_EVT32(DRMID(phys_enc->parent), cfg.pending_flush_mask); ctl->ops.trigger_flush(ctl); ctl->ops.trigger_start(ctl); } static enum sde_intf sde_encoder_get_intf(struct sde_mdss_cfg *catalog, enum sde_intf_type type, u32 controller_id) { int i = 0; for (i = 0; i < catalog->intf_count; i++) { if (catalog->intf[i].type == type && catalog->intf[i].controller_id == controller_id) { return catalog->intf[i].id; } } return INTF_MAX; } static enum sde_wb sde_encoder_get_wb(struct sde_mdss_cfg *catalog, enum sde_intf_type type, u32 controller_id) { if (controller_id < catalog->wb_count) return catalog->wb[controller_id].id; return WB_MAX; } void sde_encoder_hw_fence_status(struct sde_kms *sde_kms, struct drm_crtc *crtc, struct sde_hw_ctl *hw_ctl) { u64 start_timestamp, end_timestamp; if (!sde_kms || !hw_ctl || !sde_kms->hw_mdp) { SDE_ERROR("invalid inputs\n"); return; } if ((sde_kms->debugfs_hw_fence & SDE_INPUT_HW_FENCE_TIMESTAMP) && sde_kms->hw_mdp->ops.hw_fence_input_status) { sde_kms->hw_mdp->ops.hw_fence_input_status(sde_kms->hw_mdp, &start_timestamp, &end_timestamp); trace_sde_hw_fence_status(crtc->base.id, "input", start_timestamp, end_timestamp); } if ((sde_kms->debugfs_hw_fence & SDE_OUTPUT_HW_FENCE_TIMESTAMP) && hw_ctl->ops.hw_fence_output_status) { hw_ctl->ops.hw_fence_output_status(hw_ctl, &start_timestamp, &end_timestamp); trace_sde_hw_fence_status(crtc->base.id, "output", start_timestamp, end_timestamp); } } void sde_encoder_perf_uidle_status(struct sde_kms *sde_kms, struct drm_crtc *crtc) { struct sde_hw_uidle *uidle; struct sde_uidle_cntr cntr; struct sde_uidle_status status; if (!sde_kms || !crtc || !sde_kms->hw_uidle) { pr_err("invalid params %d %d\n", !sde_kms, !crtc); return; } /* check if perf counters are enabled and setup */ if (!sde_kms->catalog->uidle_cfg.perf_cntr_en) return; uidle = sde_kms->hw_uidle; if ((sde_kms->catalog->uidle_cfg.debugfs_perf & SDE_PERF_UIDLE_STATUS) && uidle->ops.uidle_get_status) { uidle->ops.uidle_get_status(uidle, &status); trace_sde_perf_uidle_status( crtc->base.id, status.uidle_danger_status_0, status.uidle_danger_status_1, status.uidle_safe_status_0, status.uidle_safe_status_1, status.uidle_idle_status_0, status.uidle_idle_status_1, status.uidle_fal_status_0, status.uidle_fal_status_1, status.uidle_status, status.uidle_en_fal10); } if ((sde_kms->catalog->uidle_cfg.debugfs_perf & SDE_PERF_UIDLE_CNT) && uidle->ops.uidle_get_cntr) { uidle->ops.uidle_get_cntr(uidle, &cntr); trace_sde_perf_uidle_cntr( crtc->base.id, cntr.fal1_gate_cntr, cntr.fal10_gate_cntr, cntr.fal_wait_gate_cntr, cntr.fal1_num_transitions_cntr, cntr.fal10_num_transitions_cntr, cntr.min_gate_cntr, cntr.max_gate_cntr); } } static void sde_encoder_vblank_callback(struct drm_encoder *drm_enc, struct sde_encoder_phys *phy_enc) { struct sde_encoder_virt *sde_enc = NULL; unsigned long lock_flags; ktime_t ts = 0; if (!drm_enc || !phy_enc || !phy_enc->sde_kms) return; SDE_ATRACE_BEGIN("encoder_vblank_callback"); sde_enc = to_sde_encoder_virt(drm_enc); /* * calculate accurate vsync timestamp when available * set current time otherwise */ if (test_bit(SDE_FEATURE_HW_VSYNC_TS, phy_enc->sde_kms->catalog->features)) ts = sde_encoder_calc_last_vsync_timestamp(drm_enc); if (!ts) ts = ktime_get(); spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags); phy_enc->last_vsync_timestamp = ts; if (phy_enc->ops.is_master && phy_enc->ops.is_master(phy_enc)) atomic_inc(&sde_enc->vsync_cnt); /* update count for debugfs */ atomic_inc(&phy_enc->vsync_cnt); if (sde_enc->crtc_vblank_cb) sde_enc->crtc_vblank_cb(sde_enc->crtc_vblank_cb_data, ts); spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags); if (phy_enc->sde_kms->catalog->uidle_cfg.debugfs_perf) sde_encoder_perf_uidle_status(phy_enc->sde_kms, sde_enc->crtc); if (phy_enc->sde_kms->debugfs_hw_fence) sde_encoder_hw_fence_status(phy_enc->sde_kms, sde_enc->crtc, phy_enc->hw_ctl); SDE_EVT32(DRMID(drm_enc), ktime_to_us(ts), atomic_read(&sde_enc->vsync_cnt)); SDE_ATRACE_END("encoder_vblank_callback"); } static void sde_encoder_underrun_callback(struct drm_encoder *drm_enc, struct sde_encoder_phys *phy_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); if (!phy_enc) return; SDE_ATRACE_BEGIN("encoder_underrun_callback"); atomic_inc(&phy_enc->underrun_cnt); SDE_EVT32(DRMID(drm_enc), atomic_read(&phy_enc->underrun_cnt)); if (sde_enc->cur_master && sde_enc->cur_master->ops.get_underrun_line_count) sde_enc->cur_master->ops.get_underrun_line_count( sde_enc->cur_master); trace_sde_encoder_underrun(DRMID(drm_enc), atomic_read(&phy_enc->underrun_cnt)); if (phy_enc->sde_kms && phy_enc->sde_kms->catalog->uidle_cfg.debugfs_perf) sde_encoder_perf_uidle_status(phy_enc->sde_kms, sde_enc->crtc); SDE_DBG_CTRL("stop_ftrace"); SDE_DBG_CTRL("panic_underrun"); SDE_ATRACE_END("encoder_underrun_callback"); } void sde_encoder_register_vblank_callback(struct drm_encoder *drm_enc, void (*vbl_cb)(void *, ktime_t), void *vbl_data) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); unsigned long lock_flags; bool enable; int i; enable = vbl_cb ? true : false; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } SDE_DEBUG_ENC(sde_enc, "enable:%d\n", enable); SDE_EVT32(DRMID(drm_enc), enable); spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags); sde_enc->crtc_vblank_cb = vbl_cb; sde_enc->crtc_vblank_cb_data = vbl_data; spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys && phys->ops.control_vblank_irq) phys->ops.control_vblank_irq(phys, enable); } sde_enc->vblank_enabled = enable; if (!enable) wake_up_all(&sde_enc->vsync_event_wq); } void sde_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, void (*frame_event_cb)(void *, u32 event, ktime_t ts), struct drm_crtc *crtc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); unsigned long lock_flags; bool enable; enable = frame_event_cb ? true : false; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } SDE_DEBUG_ENC(sde_enc, "\n"); SDE_EVT32(DRMID(drm_enc), enable, 0); spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags); sde_enc->crtc_frame_event_cb = frame_event_cb; sde_enc->crtc_frame_event_cb_data.crtc = crtc; spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags); } static void sde_encoder_frame_done_callback( struct drm_encoder *drm_enc, struct sde_encoder_phys *ready_phys, u32 event) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); struct sde_kms *sde_kms = sde_encoder_get_kms(&sde_enc->base); unsigned int i; bool trigger = true; bool is_cmd_mode = false; enum sde_rm_topology_name topology = SDE_RM_TOPOLOGY_NONE; ktime_t ts = 0; if (!sde_kms || !sde_enc->cur_master) { SDE_ERROR("invalid param: sde_kms %pK, cur_master %pK\n", sde_kms, sde_enc->cur_master); return; } sde_enc->crtc_frame_event_cb_data.connector = sde_enc->cur_master->connector; if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) is_cmd_mode = true; /* get precise vsync timestamp for retire fence, if precise vsync timestamp is enabled */ if (test_bit(SDE_FEATURE_HW_VSYNC_TS, sde_kms->catalog->features) && (event & SDE_ENCODER_FRAME_EVENT_SIGNAL_RETIRE_FENCE) && (!(event & (SDE_ENCODER_FRAME_EVENT_ERROR | SDE_ENCODER_FRAME_EVENT_PANEL_DEAD)))) ts = sde_encoder_calc_last_vsync_timestamp(drm_enc); /* * get current ktime for other events and when precise timestamp is not * available for retire-fence */ if (!ts) ts = ktime_get(); if (event & (SDE_ENCODER_FRAME_EVENT_DONE | SDE_ENCODER_FRAME_EVENT_ERROR | SDE_ENCODER_FRAME_EVENT_PANEL_DEAD) && is_cmd_mode && !sde_encoder_check_ctl_done_support(drm_enc)) { if (ready_phys->connector) topology = sde_connector_get_topology_name( ready_phys->connector); /* One of the physical encoders has become idle */ for (i = 0; i < sde_enc->num_phys_encs; i++) { if (sde_enc->phys_encs[i] == ready_phys) { SDE_EVT32_VERBOSE(DRMID(drm_enc), i, atomic_read(&sde_enc->frame_done_cnt[i])); if (!atomic_add_unless( &sde_enc->frame_done_cnt[i], 1, 2)) { SDE_EVT32(DRMID(drm_enc), event, ready_phys->intf_idx, SDE_EVTLOG_ERROR); SDE_ERROR_ENC(sde_enc, "intf idx:%d, event:%d\n", ready_phys->intf_idx, event); return; } } if (topology != SDE_RM_TOPOLOGY_PPSPLIT && atomic_read(&sde_enc->frame_done_cnt[i]) == 0) trigger = false; } if (trigger) { if (sde_enc->crtc_frame_event_cb) sde_enc->crtc_frame_event_cb( &sde_enc->crtc_frame_event_cb_data, event, ts); for (i = 0; i < sde_enc->num_phys_encs; i++) atomic_add_unless(&sde_enc->frame_done_cnt[i], -1, 0); } } else if (sde_enc->crtc_frame_event_cb) { sde_enc->crtc_frame_event_cb(&sde_enc->crtc_frame_event_cb_data, event, ts); } } int sde_encoder_idle_request(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; if (!drm_enc) { SDE_ERROR("invalid drm encoder\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); sde_encoder_resource_control(&sde_enc->base, SDE_ENC_RC_EVENT_ENTER_IDLE); return 0; } /** * _sde_encoder_update_retire_txq - update tx queue for a retire hw fence * phys: Pointer to physical encoder structure * */ static inline void _sde_encoder_update_retire_txq(struct sde_encoder_phys *phys, struct sde_kms *sde_kms) { struct sde_connector *c_conn; int line_count; c_conn = to_sde_connector(phys->connector); if (!c_conn) { SDE_ERROR("invalid connector"); return; } line_count = sde_connector_get_property(phys->connector->state, CONNECTOR_PROP_EARLY_FENCE_LINE); if (c_conn->hwfence_wb_retire_fences_enable) sde_fence_update_hw_fences_txq(c_conn->retire_fence, false, line_count, sde_kms->debugfs_hw_fence); } /** * _sde_encoder_trigger_flush - trigger flush for a physical encoder * drm_enc: Pointer to drm encoder structure * phys: Pointer to physical encoder structure * extra_flush: Additional bit mask to include in flush trigger * config_changed: if true new config is applied, avoid increment of retire * count if false */ static inline void _sde_encoder_trigger_flush(struct drm_encoder *drm_enc, struct sde_encoder_phys *phys, struct sde_ctl_flush_cfg *extra_flush, bool config_changed) { struct sde_hw_ctl *ctl; unsigned long lock_flags; struct sde_encoder_virt *sde_enc; int pend_ret_fence_cnt; struct sde_connector *c_conn; #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) struct samsung_display_driver_data *vdd = NULL; #endif if (!drm_enc || !phys) { SDE_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", !drm_enc, !phys); return; } sde_enc = to_sde_encoder_virt(drm_enc); c_conn = to_sde_connector(phys->connector); if (!phys->hw_pp) { SDE_ERROR("invalid pingpong hw\n"); return; } ctl = phys->hw_ctl; if (!ctl || !phys->ops.trigger_flush) { SDE_ERROR("missing ctl/trigger cb\n"); return; } if (phys->split_role == ENC_ROLE_SKIP) { SDE_DEBUG_ENC(to_sde_encoder_virt(phys->parent), "skip flush pp%d ctl%d\n", phys->hw_pp->idx - PINGPONG_0, ctl->idx - CTL_0); return; } #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) if (sde_enc->crtc) vdd = ss_get_vdd(sde_enc->crtc->index); else SDE_DEBUG("invalid crtc\n"); if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE) && sde_enc->crtc && vdd) { /* If video mode, opt, fingermask off */ if (vdd->support_optical_fingerprint && vdd->finger_mask_updated && !vdd->finger_mask) { SDE_INFO("[FINGER MASK] mask state:%d updated:%d\n", vdd->finger_mask, vdd->finger_mask_updated); /* block frame update which causes blink shot */ atomic_inc(&vdd->block_commit_cnt); ss_wait_for_vsync(vdd, 1, 0); } } #endif /* update pending counts and trigger kickoff ctl flush atomically */ spin_lock_irqsave(&sde_enc->enc_spinlock, lock_flags); if (phys->ops.is_master && phys->ops.is_master(phys) && config_changed) { atomic_inc(&phys->pending_retire_fence_cnt); atomic_inc(&phys->pending_ctl_start_cnt); } pend_ret_fence_cnt = atomic_read(&phys->pending_retire_fence_cnt); if (phys->hw_intf && phys->hw_intf->cap->type == INTF_DP && ctl->ops.update_bitmask) { /* perform peripheral flush on every frame update for dp dsc */ if (phys->comp_type == MSM_DISPLAY_COMPRESSION_DSC && phys->comp_ratio && c_conn->ops.update_pps) c_conn->ops.update_pps(phys->connector, NULL, c_conn->display); ctl->ops.update_bitmask(ctl, SDE_HW_FLUSH_PERIPH, phys->hw_intf->idx, 1); } /* update flush mask to ignore fence error frame commit */ if (ctl->ops.clear_flush_mask && phys->fence_error_handle_in_progress) { ctl->ops.clear_flush_mask(ctl, false); SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_FUNC_CASE1); } if ((extra_flush && extra_flush->pending_flush_mask) && ctl->ops.update_pending_flush) ctl->ops.update_pending_flush(ctl, extra_flush); phys->ops.trigger_flush(phys); spin_unlock_irqrestore(&sde_enc->enc_spinlock, lock_flags); #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) if (sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_VIDEO_MODE) && sde_enc->crtc && vdd) { SDE_DEBUG("[FINGER MASK]mask state:%d updated:%d\n", vdd->finger_mask, vdd->finger_mask_updated); /* If video mode, opt, fingermask off */ if (vdd->support_optical_fingerprint && vdd->finger_mask_updated && !vdd->finger_mask) { ss_brightness_dcs(vdd, 0, BACKLIGHT_FINGERMASK_OFF); /* allow frame update */ atomic_add_unless(&vdd->block_commit_cnt, -1, 0); wake_up_all(&vdd->block_commit_wq); } } #endif if (ctl->ops.get_pending_flush) { struct sde_ctl_flush_cfg pending_flush = {0,}; ctl->ops.get_pending_flush(ctl, &pending_flush); SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0, ctl->idx - CTL_0, pending_flush.pending_flush_mask, pend_ret_fence_cnt); } else { SDE_EVT32(DRMID(drm_enc), phys->intf_idx - INTF_0, ctl->idx - CTL_0, pend_ret_fence_cnt); } } /** * _sde_encoder_trigger_start - trigger start for a physical encoder * phys: Pointer to physical encoder structure */ static inline void _sde_encoder_trigger_start(struct sde_encoder_phys *phys) { struct sde_hw_ctl *ctl; struct sde_encoder_virt *sde_enc; if (!phys) { SDE_ERROR("invalid argument(s)\n"); return; } if (!phys->hw_pp) { SDE_ERROR("invalid pingpong hw\n"); return; } if (!phys->parent) { SDE_ERROR("invalid parent\n"); return; } /* avoid ctrl start for encoder in clone mode */ if (phys->in_clone_mode) return; ctl = phys->hw_ctl; sde_enc = to_sde_encoder_virt(phys->parent); if (phys->split_role == ENC_ROLE_SKIP) { SDE_DEBUG_ENC(sde_enc, "skip start pp%d ctl%d\n", phys->hw_pp->idx - PINGPONG_0, ctl->idx - CTL_0); return; } if (phys->ops.trigger_start && phys->enable_state != SDE_ENC_DISABLED) phys->ops.trigger_start(phys); } void sde_encoder_helper_trigger_flush(struct sde_encoder_phys *phys_enc) { struct sde_hw_ctl *ctl; if (!phys_enc) { SDE_ERROR("invalid encoder\n"); return; } ctl = phys_enc->hw_ctl; if (ctl && ctl->ops.trigger_flush) ctl->ops.trigger_flush(ctl); } void sde_encoder_helper_trigger_start(struct sde_encoder_phys *phys_enc) { struct sde_hw_ctl *ctl; if (!phys_enc) { SDE_ERROR("invalid encoder\n"); return; } ctl = phys_enc->hw_ctl; if (ctl && ctl->ops.trigger_start) { ctl->ops.trigger_start(ctl); SDE_EVT32(DRMID(phys_enc->parent), ctl->idx - CTL_0); } } void sde_encoder_helper_hw_reset(struct sde_encoder_phys *phys_enc) { struct sde_encoder_virt *sde_enc; struct sde_connector *sde_con; void *sde_con_disp; struct sde_hw_ctl *ctl; int rc; if (!phys_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(phys_enc->parent); ctl = phys_enc->hw_ctl; if (!ctl || !ctl->ops.reset) return; SDE_DEBUG_ENC(sde_enc, "ctl %d reset\n", ctl->idx); SDE_EVT32(DRMID(phys_enc->parent), ctl->idx); if (phys_enc->ops.is_master && phys_enc->ops.is_master(phys_enc) && phys_enc->connector) { sde_con = to_sde_connector(phys_enc->connector); sde_con_disp = sde_connector_get_display(phys_enc->connector); if (sde_con->ops.soft_reset) { rc = sde_con->ops.soft_reset(sde_con_disp); if (rc) { SDE_ERROR_ENC(sde_enc, "connector soft reset failure\n"); SDE_DBG_DUMP(SDE_DBG_BUILT_IN_ALL, "panic"); } } } phys_enc->enable_state = SDE_ENC_ENABLED; } void sde_encoder_helper_update_out_fence_txq(struct sde_encoder_virt *sde_enc, bool is_vid) { struct sde_crtc *sde_crtc; struct sde_kms *sde_kms = NULL; if (!sde_enc || !sde_enc->crtc) { SDE_ERROR("invalid encoder %d\n", !sde_enc); return; } sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) { SDE_ERROR("invalid kms\n"); return; } sde_crtc = to_sde_crtc(sde_enc->crtc); SDE_EVT32(DRMID(sde_enc->crtc), is_vid); sde_fence_update_hw_fences_txq(sde_crtc->output_fence, is_vid, 0, sde_kms ? sde_kms->debugfs_hw_fence : 0); } /** * _sde_encoder_kickoff_phys - handle physical encoder kickoff * Iterate through the physical encoders and perform consolidated flush * and/or control start triggering as needed. This is done in the virtual * encoder rather than the individual physical ones in order to handle * use cases that require visibility into multiple physical encoders at * a time. * sde_enc: Pointer to virtual encoder structure * config_changed: if true new config is applied. Avoid regdma_flush and * incrementing the retire count if false. */ static void _sde_encoder_kickoff_phys(struct sde_encoder_virt *sde_enc, bool config_changed) { struct sde_hw_ctl *ctl; uint32_t i; struct sde_ctl_flush_cfg pending_flush = {0,}; u32 pending_kickoff_cnt; struct msm_drm_private *priv = NULL; struct sde_kms *sde_kms = NULL; struct sde_crtc_misr_info crtc_misr_info = {false, 0}; bool is_regdma_blocking = false, is_vid_mode = false; struct sde_crtc *sde_crtc; if (!sde_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_crtc = to_sde_crtc(sde_enc->crtc); /* reset input fence status and skip flush for fence error case. */ if (sde_crtc && sde_crtc->input_fence_status < 0) { if (!sde_encoder_in_clone_mode(&sde_enc->base)) sde_crtc->input_fence_status = 0; SDE_EVT32(DRMID(&sde_enc->base), sde_encoder_in_clone_mode(&sde_enc->base), sde_crtc->input_fence_status); goto handle_elevated_ahb_vote; } if (sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_VIDEO_MODE)) is_vid_mode = true; is_regdma_blocking = (is_vid_mode || _sde_encoder_is_autorefresh_enabled(sde_enc)); /* don't perform flush/start operations for slave encoders */ for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; enum sde_rm_topology_name topology = SDE_RM_TOPOLOGY_NONE; if (!phys || phys->enable_state == SDE_ENC_DISABLED) continue; ctl = phys->hw_ctl; if (!ctl) continue; if (phys->connector) topology = sde_connector_get_topology_name( phys->connector); if (!phys->ops.needs_single_flush || !phys->ops.needs_single_flush(phys)) { if (config_changed && ctl->ops.reg_dma_flush) ctl->ops.reg_dma_flush(ctl, is_regdma_blocking); _sde_encoder_trigger_flush(&sde_enc->base, phys, 0x0, config_changed); } else if (ctl->ops.get_pending_flush) { ctl->ops.get_pending_flush(ctl, &pending_flush); } } /* for split flush, combine pending flush masks and send to master */ if (pending_flush.pending_flush_mask && sde_enc->cur_master) { ctl = sde_enc->cur_master->hw_ctl; if (config_changed && ctl->ops.reg_dma_flush) ctl->ops.reg_dma_flush(ctl, is_regdma_blocking); _sde_encoder_trigger_flush(&sde_enc->base, sde_enc->cur_master, &pending_flush, config_changed); } /* update pending_kickoff_cnt AFTER flush but before trigger start */ for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (!phys || phys->enable_state == SDE_ENC_DISABLED) continue; if (!phys->ops.needs_single_flush || !phys->ops.needs_single_flush(phys)) { pending_kickoff_cnt = sde_encoder_phys_inc_pending(phys); SDE_EVT32(pending_kickoff_cnt, SDE_EVTLOG_FUNC_CASE1); } else { pending_kickoff_cnt = sde_encoder_phys_inc_pending(phys); SDE_EVT32(pending_kickoff_cnt, pending_flush.pending_flush_mask, SDE_EVTLOG_FUNC_CASE2); } } if (atomic_read(&sde_enc->misr_enable)) sde_encoder_misr_configure(&sde_enc->base, true, sde_enc->misr_frame_count); sde_crtc_get_misr_info(sde_enc->crtc, &crtc_misr_info); if (crtc_misr_info.misr_enable && sde_crtc && sde_crtc->misr_reconfigure) { sde_crtc_misr_setup(sde_enc->crtc, true, crtc_misr_info.misr_frame_count); sde_crtc->misr_reconfigure = false; } _sde_encoder_trigger_start(sde_enc->cur_master); handle_elevated_ahb_vote: if (sde_enc->elevated_ahb_vote) { sde_kms = sde_encoder_get_kms(&sde_enc->base); priv = sde_enc->base.dev->dev_private; if (sde_kms != NULL) { sde_power_scale_reg_bus(&priv->phandle, VOTE_INDEX_LOW, false); } sde_enc->elevated_ahb_vote = false; } } static void _sde_encoder_ppsplit_swap_intf_for_right_only_update( struct drm_encoder *drm_enc, unsigned long *affected_displays, int num_active_phys) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *master; enum sde_rm_topology_name topology; bool is_right_only; if (!drm_enc || !affected_displays) return; sde_enc = to_sde_encoder_virt(drm_enc); master = sde_enc->cur_master; if (!master || !master->connector) return; topology = sde_connector_get_topology_name(master->connector); if (topology != SDE_RM_TOPOLOGY_PPSPLIT) return; /* * For pingpong split, the slave pingpong won't generate IRQs. For * right-only updates, we can't swap pingpongs, or simply swap the * master/slave assignment, we actually have to swap the interfaces * so that the master physical encoder will use a pingpong/interface * that generates irqs on which to wait. */ is_right_only = !test_bit(0, affected_displays) && test_bit(1, affected_displays); if (is_right_only && !sde_enc->intfs_swapped) { /* right-only update swap interfaces */ swap(sde_enc->phys_encs[0]->intf_idx, sde_enc->phys_encs[1]->intf_idx); sde_enc->intfs_swapped = true; } else if (!is_right_only && sde_enc->intfs_swapped) { /* left-only or full update, swap back */ swap(sde_enc->phys_encs[0]->intf_idx, sde_enc->phys_encs[1]->intf_idx); sde_enc->intfs_swapped = false; } SDE_DEBUG_ENC(sde_enc, "right_only %d swapped %d phys0->intf%d, phys1->intf%d\n", is_right_only, sde_enc->intfs_swapped, sde_enc->phys_encs[0]->intf_idx - INTF_0, sde_enc->phys_encs[1]->intf_idx - INTF_0); SDE_EVT32(DRMID(drm_enc), is_right_only, sde_enc->intfs_swapped, sde_enc->phys_encs[0]->intf_idx - INTF_0, sde_enc->phys_encs[1]->intf_idx - INTF_0, *affected_displays); /* ppsplit always uses master since ppslave invalid for irqs*/ if (num_active_phys == 1) *affected_displays = BIT(0); } static void _sde_encoder_update_master(struct drm_encoder *drm_enc, struct sde_encoder_kickoff_params *params) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys; int i, num_active_phys; bool master_assigned = false; if (!drm_enc || !params) return; sde_enc = to_sde_encoder_virt(drm_enc); if (sde_enc->num_phys_encs <= 1) return; /* count bits set */ num_active_phys = hweight_long(params->affected_displays); SDE_DEBUG_ENC(sde_enc, "affected_displays 0x%lx num_active_phys %d\n", params->affected_displays, num_active_phys); SDE_EVT32_VERBOSE(DRMID(drm_enc), params->affected_displays, num_active_phys); /* for left/right only update, ppsplit master switches interface */ _sde_encoder_ppsplit_swap_intf_for_right_only_update(drm_enc, ¶ms->affected_displays, num_active_phys); for (i = 0; i < sde_enc->num_phys_encs; i++) { enum sde_enc_split_role prv_role, new_role; bool active = false; phys = sde_enc->phys_encs[i]; if (!phys || !phys->ops.update_split_role || !phys->hw_pp) continue; active = test_bit(i, ¶ms->affected_displays); prv_role = phys->split_role; if (active && num_active_phys == 1) new_role = ENC_ROLE_SOLO; else if (active && !master_assigned) new_role = ENC_ROLE_MASTER; else if (active) new_role = ENC_ROLE_SLAVE; else new_role = ENC_ROLE_SKIP; phys->ops.update_split_role(phys, new_role); if (new_role == ENC_ROLE_SOLO || new_role == ENC_ROLE_MASTER) { sde_enc->cur_master = phys; master_assigned = true; } SDE_DEBUG_ENC(sde_enc, "pp %d role prv %d new %d active %d\n", phys->hw_pp->idx - PINGPONG_0, prv_role, phys->split_role, active); SDE_EVT32(DRMID(drm_enc), params->affected_displays, phys->hw_pp->idx - PINGPONG_0, prv_role, phys->split_role, active, num_active_phys); } } bool sde_encoder_check_curr_mode(struct drm_encoder *drm_enc, u32 mode) { struct sde_encoder_virt *sde_enc; struct msm_display_info *disp_info; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return false; } sde_enc = to_sde_encoder_virt(drm_enc); disp_info = &sde_enc->disp_info; return (disp_info->curr_panel_mode == mode); } void sde_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys; unsigned int i; struct sde_hw_ctl *ctl; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } sde_enc = to_sde_encoder_virt(drm_enc); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->hw_ctl && (phys == sde_enc->cur_master) && sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) { ctl = phys->hw_ctl; if (ctl->ops.trigger_pending) /* update only for command mode primary ctl */ ctl->ops.trigger_pending(ctl); } } sde_enc->idle_pc_restore = false; } static void sde_encoder_esd_trigger_work_handler(struct kthread_work *work) { struct sde_encoder_virt *sde_enc = container_of(work, struct sde_encoder_virt, esd_trigger_work); if (!sde_enc) { SDE_ERROR("invalid sde encoder\n"); return; } sde_encoder_resource_control(&sde_enc->base, SDE_ENC_RC_EVENT_KICKOFF); } static void sde_encoder_input_event_work_handler(struct kthread_work *work) { struct sde_encoder_virt *sde_enc = container_of(work, struct sde_encoder_virt, input_event_work); if (!sde_enc || !sde_enc->input_handler) { SDE_ERROR("invalid args sde encoder\n"); return; } if (!sde_enc->input_handler->private) { SDE_DEBUG_ENC(sde_enc, "input handler is unregistered\n"); return; } sde_encoder_resource_control(&sde_enc->base, SDE_ENC_RC_EVENT_EARLY_WAKEUP); } static void sde_encoder_early_wakeup_work_handler(struct kthread_work *work) { struct sde_encoder_virt *sde_enc = container_of(work, struct sde_encoder_virt, early_wakeup_work); struct sde_kms *sde_kms = to_sde_kms(ddev_to_msm_kms(sde_enc->base.dev)); if (!sde_kms) return; sde_vm_lock(sde_kms); if (!sde_vm_owns_hw(sde_kms)) { sde_vm_unlock(sde_kms); SDE_DEBUG("skip early wakeup for ENC-%d, HW is owned by other VM\n", DRMID(&sde_enc->base)); return; } SDE_ATRACE_BEGIN("encoder_early_wakeup"); sde_encoder_resource_control(&sde_enc->base, SDE_ENC_RC_EVENT_EARLY_WAKEUP); SDE_ATRACE_END("encoder_early_wakeup"); sde_vm_unlock(sde_kms); } void sde_encoder_early_wakeup(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = NULL; struct msm_drm_thread *disp_thread = NULL; struct msm_drm_private *priv = NULL; priv = drm_enc->dev->dev_private; sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) { SDE_DEBUG_ENC(sde_enc, "should only early wake up command mode display\n"); return; } if (!sde_enc->crtc || (sde_enc->crtc->index >= ARRAY_SIZE(priv->event_thread))) { SDE_DEBUG_ENC(sde_enc, "invalid CRTC: %d or crtc index: %d\n", sde_enc->crtc == NULL, sde_enc->crtc ? sde_enc->crtc->index : -EINVAL); return; } disp_thread = &priv->disp_thread[sde_enc->crtc->index]; SDE_ATRACE_BEGIN("queue_early_wakeup_work"); kthread_queue_work(&disp_thread->worker, &sde_enc->early_wakeup_work); SDE_ATRACE_END("queue_early_wakeup_work"); } void sde_encoder_handle_hw_fence_error(int ctl_idx, struct sde_kms *sde_kms, u32 handle, int error) { struct drm_encoder *drm_enc; struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *cur_master; struct sde_crtc *sde_crtc; struct sde_crtc_state *sde_crtc_state; bool encoder_detected = false; bool handle_fence_error; SDE_EVT32(ctl_idx, handle, error, SDE_EVTLOG_FUNC_ENTRY); if (!sde_kms || !sde_kms->dev) { SDE_ERROR("Invalid sde_kms or sde_kms->dev\n"); return; } drm_for_each_encoder(drm_enc, sde_kms->dev) { sde_enc = to_sde_encoder_virt(drm_enc); if (sde_enc && sde_enc->phys_encs[0] && sde_enc->phys_encs[0]->hw_ctl && sde_enc->phys_encs[0]->hw_ctl->idx == ctl_idx) { encoder_detected = true; cur_master = sde_enc->phys_encs[0]; SDE_EVT32(ctl_idx, SDE_EVTLOG_FUNC_CASE1); break; } } if (!encoder_detected) { SDE_DEBUG("failed to get the sde_encoder_phys.\n"); SDE_EVT32(ctl_idx, SDE_EVTLOG_FUNC_CASE2, SDE_EVTLOG_ERROR); return; } if (!cur_master->parent || !cur_master->parent->crtc || !cur_master->parent->crtc->state) { SDE_DEBUG("unexpected null pointer in cur_master.\n"); SDE_EVT32(ctl_idx, SDE_EVTLOG_FUNC_CASE3, SDE_EVTLOG_ERROR); return; } sde_crtc = to_sde_crtc(cur_master->parent->crtc); sde_crtc_state = to_sde_crtc_state(cur_master->parent->crtc->state); handle_fence_error = sde_crtc_get_property(sde_crtc_state, CRTC_PROP_HANDLE_FENCE_ERROR); if (!handle_fence_error) { SDE_DEBUG("userspace not enabled handle fence error in kernel.\n"); SDE_EVT32(ctl_idx, SDE_EVTLOG_FUNC_CASE4); return; } cur_master->sde_hw_fence_handle = handle; if (error) { sde_crtc->handle_fence_error_bw_update = true; cur_master->sde_hw_fence_error_status = true; cur_master->sde_hw_fence_error_value = error; } atomic_add_unless(&cur_master->pending_retire_fence_cnt, -1, 0); wake_up_all(&cur_master->pending_kickoff_wq); SDE_EVT32(ctl_idx, error, SDE_EVTLOG_FUNC_EXIT); } int sde_encoder_poll_line_counts(struct drm_encoder *drm_enc) { static const uint64_t timeout_us = 50000; static const uint64_t sleep_us = 20; struct sde_encoder_virt *sde_enc; ktime_t cur_ktime, exp_ktime; uint32_t line_count, tmp, i; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_enc->cur_master || !sde_enc->cur_master->ops.get_line_count) { SDE_DEBUG_ENC(sde_enc, "can't get master line count\n"); SDE_EVT32(DRMID(drm_enc), SDE_EVTLOG_ERROR); return -EINVAL; } exp_ktime = ktime_add_ms(ktime_get(), timeout_us / 1000); line_count = sde_enc->cur_master->ops.get_line_count( sde_enc->cur_master); for (i = 0; i < (timeout_us * 2 / sleep_us); ++i) { tmp = line_count; line_count = sde_enc->cur_master->ops.get_line_count( sde_enc->cur_master); if (line_count < tmp) { SDE_EVT32(DRMID(drm_enc), line_count); return 0; } cur_ktime = ktime_get(); if (ktime_compare_safe(exp_ktime, cur_ktime) <= 0) break; usleep_range(sleep_us / 2, sleep_us); } SDE_EVT32(DRMID(drm_enc), line_count, SDE_EVTLOG_ERROR); return -ETIMEDOUT; } static int _helper_flush_qsync(struct sde_encoder_phys *phys_enc) { struct drm_encoder *drm_enc; struct sde_rm_hw_iter rm_iter; bool lm_valid = false; bool intf_valid = false; if (!phys_enc || !phys_enc->parent) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } drm_enc = phys_enc->parent; /* Flush the interfaces for AVR update or Qsync with INTF TE */ if (phys_enc->intf_mode == INTF_MODE_VIDEO || (phys_enc->intf_mode == INTF_MODE_CMD && phys_enc->has_intf_te)) { sde_rm_init_hw_iter(&rm_iter, drm_enc->base.id, SDE_HW_BLK_INTF); while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &rm_iter)) { struct sde_hw_intf *hw_intf = to_sde_hw_intf(rm_iter.hw); if (!hw_intf) continue; if (phys_enc->hw_ctl->ops.update_bitmask) phys_enc->hw_ctl->ops.update_bitmask( phys_enc->hw_ctl, SDE_HW_FLUSH_INTF, hw_intf->idx, 1); intf_valid = true; } if (!intf_valid) { SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc), "intf not found to flush\n"); return -EFAULT; } } else { sde_rm_init_hw_iter(&rm_iter, drm_enc->base.id, SDE_HW_BLK_LM); while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &rm_iter)) { struct sde_hw_mixer *hw_lm = to_sde_hw_mixer(rm_iter.hw); if (!hw_lm) continue; /* update LM flush for HW without INTF TE */ if (phys_enc->hw_ctl->ops.update_bitmask_mixer) phys_enc->hw_ctl->ops.update_bitmask_mixer( phys_enc->hw_ctl, hw_lm->idx, 1); lm_valid = true; } if (!lm_valid) { SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc), "lm not found to flush\n"); return -EFAULT; } } return 0; } #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) #include int ss_get_vdd_ndx_from_state(struct drm_atomic_state *old_state) { struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state; int i; struct drm_encoder *encoder; struct drm_device *dev; struct sde_encoder_virt *sde_enc = NULL; struct sde_encoder_phys *phys; struct sde_connector *c_conn; struct dsi_display *display; struct samsung_display_driver_data *vdd; int ndx = -EINVAL; for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { if (crtc->state->active) { dev = crtc->dev; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc == crtc) sde_enc = to_sde_encoder_virt(encoder); } } } if (!sde_enc) return -ENODEV; /* TOOD: remove below W/A and debug why panic occurs in video mode (DP) or writeback case */ if (sde_enc->disp_info.intf_type != DRM_MODE_CONNECTOR_DSI) return MAX_DISPLAY_NDX; for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys) { c_conn = to_sde_connector(phys->connector); if (!c_conn) return -ENODEV; display = c_conn->display; if (!display) return -ENODEV; vdd = display->panel->panel_private; ndx = vdd->ndx; } } return ndx; } #endif static void _sde_encoder_helper_hdr_plus_mempool_update( struct sde_encoder_virt *sde_enc) { struct sde_connector_dyn_hdr_metadata *dhdr_meta = NULL; struct sde_hw_mdp *mdptop = NULL; sde_enc->dynamic_hdr_updated = false; if (sde_enc->cur_master) { mdptop = sde_enc->cur_master->hw_mdptop; dhdr_meta = sde_connector_get_dyn_hdr_meta( sde_enc->cur_master->connector); } if (!mdptop || !dhdr_meta || !dhdr_meta->dynamic_hdr_update) return; if (mdptop->ops.set_hdr_plus_metadata) { sde_enc->dynamic_hdr_updated = true; mdptop->ops.set_hdr_plus_metadata( mdptop, dhdr_meta->dynamic_hdr_payload, dhdr_meta->dynamic_hdr_payload_size, sde_enc->cur_master->intf_idx == INTF_0 ? 0 : 1); } } void sde_encoder_needs_hw_reset(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); struct sde_encoder_phys *phys; int i; for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->ops.hw_reset) phys->ops.hw_reset(phys); } } static int _sde_encoder_prepare_for_kickoff_processing(struct drm_encoder *drm_enc, struct sde_encoder_kickoff_params *params, struct sde_encoder_virt *sde_enc, struct sde_kms *sde_kms, bool needs_hw_reset, bool is_cmd_mode) { int rc, ret = 0; /* if any phys needs reset, reset all phys, in-order */ if (needs_hw_reset) sde_encoder_needs_hw_reset(drm_enc); _sde_encoder_update_master(drm_enc, params); _sde_encoder_update_roi(drm_enc); if (sde_enc->cur_master && sde_enc->cur_master->connector) { rc = sde_connector_pre_kickoff(sde_enc->cur_master->connector); if (rc) { SDE_ERROR_ENC(sde_enc, "kickoff conn%d failed rc %d\n", sde_enc->cur_master->connector->base.id, rc); ret = rc; } } #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) /* QC display driver prevent DMS before without first frame update (commit). * In above case, it returns error for DMS and it causes kernel panic, in result. * To prevent the limitation, allow DMS before first frame update, and sets proper DSC setting. */ if (sde_enc->cur_master) { #else if (sde_enc->cur_master && ((is_cmd_mode && sde_enc->cur_master->cont_splash_enabled) || !sde_enc->cur_master->cont_splash_enabled)) { #endif rc = sde_encoder_dce_setup(sde_enc, params); if (rc) { SDE_ERROR_ENC(sde_enc, "failed to setup DSC: %d\n", rc); ret = rc; } } sde_encoder_dce_flush(sde_enc); if (sde_enc->cur_master && !sde_enc->cur_master->cont_splash_enabled) sde_configure_qdss(sde_enc, sde_enc->cur_master->hw_qdss, sde_enc->cur_master, sde_kms->qdss_enabled); return ret; } void _sde_encoder_delay_kickoff_processing(struct sde_encoder_virt *sde_enc) { ktime_t current_ts, ept_ts; u32 avr_step_fps, min_fps = 0, qsync_mode, fps; u64 timeout_us = 0, ept, next_vsync_time_ns; bool is_cmd_mode; char atrace_buf[64]; struct drm_connector *drm_conn; struct msm_mode_info *info = &sde_enc->mode_info; struct sde_kms *sde_kms = sde_encoder_get_kms(&sde_enc->base); struct sde_encoder_phys *phy_enc = sde_enc->cur_master; #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) return; #endif if (!sde_enc->cur_master || !sde_enc->cur_master->connector || !sde_kms) return; drm_conn = sde_enc->cur_master->connector; ept = sde_connector_get_property(drm_conn->state, CONNECTOR_PROP_EPT); if (!ept) return; qsync_mode = sde_connector_get_property(drm_conn->state, CONNECTOR_PROP_QSYNC_MODE); if (qsync_mode) _sde_encoder_get_qsync_fps_callback(&sde_enc->base, &min_fps, drm_conn->state); /* use min qsync fps, if feature is enabled; otherwise min default fps */ min_fps = min_fps ? min_fps : DEFAULT_MIN_FPS; fps = sde_encoder_get_fps(&sde_enc->base); min_fps = min(min_fps, fps); is_cmd_mode = sde_encoder_check_curr_mode(&sde_enc->base, MSM_DISPLAY_CMD_MODE); /* for cmd mode with qsync - EPT_FPS will be used to delay the processing */ if (test_bit(SDE_FEATURE_EPT_FPS, sde_kms->catalog->features) && is_cmd_mode && qsync_mode) { SDE_DEBUG("enc:%d, ept:%llu not applicable for cmd mode with qsync enabled", DRMID(&sde_enc->base), ept); return; } avr_step_fps = info->avr_step_fps; current_ts = ktime_get_ns(); /* ept is in ns and avr_step is mulitple of refresh rate */ ept_ts = avr_step_fps ? ept - DIV_ROUND_UP(NSEC_PER_SEC, avr_step_fps) + NSEC_PER_MSEC : ept - EPT_BACKOFF_THRESHOLD; /* ept time already elapsed */ if (ept_ts <= current_ts) { SDE_DEBUG("enc:%d, ept elapsed; ept:%llu, ept_ts:%llu, current_ts:%llu\n", DRMID(&sde_enc->base), ept, ept_ts, current_ts); SDE_EVT32(DRMID(&sde_enc->base), qsync_mode, avr_step_fps, min_fps, fps, ktime_to_us(current_ts), ktime_to_us(ept_ts), SDE_EVTLOG_FUNC_CASE1); return; } next_vsync_time_ns = DIV_ROUND_UP(NSEC_PER_SEC, fps) + phy_enc->last_vsync_timestamp; /* ept time is within last & next vsync expected with current fps */ if (!qsync_mode && (ept_ts < next_vsync_time_ns)) { SDE_EVT32(DRMID(&sde_enc->base), qsync_mode, avr_step_fps, min_fps, fps, ktime_to_us(current_ts), ktime_to_us(ept), ktime_to_us(ept_ts), ktime_to_us(next_vsync_time_ns), is_cmd_mode, SDE_EVTLOG_FUNC_CASE2); return; } timeout_us = DIV_ROUND_UP((ept_ts - current_ts), 1000); /* validate timeout is not beyond 10 seconds */ if (timeout_us > MAX_EPT_TIMEOUT_US) { pr_err_ratelimited( "enc:%d, invalid timeout_us:%llu; ept:%llu, ept_ts:%llu, cur_ts:%llu min_fps:%d, fps:%d, qsync_mode:%d, avr_step_fps:%d\n", DRMID(&sde_enc->base), timeout_us, ept, ept_ts, current_ts, min_fps, fps, qsync_mode, avr_step_fps); SDE_EVT32(DRMID(&sde_enc->base), qsync_mode, avr_step_fps, min_fps, fps, ktime_to_us(current_ts), ktime_to_us(ept_ts), timeout_us, SDE_EVTLOG_ERROR); return; } snprintf(atrace_buf, sizeof(atrace_buf), "schedule_timeout_%llu", ept); SDE_ATRACE_BEGIN(atrace_buf); usleep_range((timeout_us - USEC_PER_MSEC), timeout_us); SDE_ATRACE_END(atrace_buf); SDE_EVT32(DRMID(&sde_enc->base), qsync_mode, avr_step_fps, min_fps, fps, ktime_to_us(current_ts), ktime_to_us(ept_ts), timeout_us, SDE_EVTLOG_FUNC_CASE3); } int sde_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, struct sde_encoder_kickoff_params *params) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys, *cur_master; struct sde_kms *sde_kms = NULL; struct sde_crtc *sde_crtc; bool needs_hw_reset = false, is_cmd_mode; int i, rc, ret = 0; struct msm_display_info *disp_info; if (!drm_enc || !params || !drm_enc->dev || !drm_enc->dev->dev_private) { SDE_ERROR("invalid args\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return -EINVAL; disp_info = &sde_enc->disp_info; sde_crtc = to_sde_crtc(sde_enc->crtc); SDE_DEBUG_ENC(sde_enc, "\n"); SDE_EVT32(DRMID(drm_enc)); cur_master = sde_enc->cur_master; is_cmd_mode = sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE); if (cur_master && cur_master->connector) sde_enc->frame_trigger_mode = sde_connector_get_property(cur_master->connector->state, CONNECTOR_PROP_CMD_FRAME_TRIGGER_MODE); _sde_encoder_helper_hdr_plus_mempool_update(sde_enc); /* prepare for next kickoff, may include waiting on previous kickoff */ SDE_ATRACE_BEGIN("sde_encoder_prepare_for_kickoff"); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; params->frame_trigger_mode = sde_enc->frame_trigger_mode; params->recovery_events_enabled = sde_enc->recovery_events_enabled; if (phys) { if (phys->ops.prepare_for_kickoff) { rc = phys->ops.prepare_for_kickoff( phys, params); if (rc) ret = rc; } if (phys->enable_state == SDE_ENC_ERR_NEEDS_HW_RESET) needs_hw_reset = true; _sde_encoder_setup_dither(phys); if (sde_enc->cur_master && sde_connector_is_qsync_updated( sde_enc->cur_master->connector)) _helper_flush_qsync(phys); } } if (is_cmd_mode && sde_enc->cur_master && (sde_connector_is_qsync_updated(sde_enc->cur_master->connector) || _sde_encoder_is_autorefresh_enabled(sde_enc))) _sde_encoder_update_rsc_client(drm_enc, true); rc = sde_encoder_resource_control(drm_enc, SDE_ENC_RC_EVENT_KICKOFF); if (rc) { SDE_ERROR_ENC(sde_enc, "resource kickoff failed rc %d\n", rc); ret = rc; goto end; } ret = _sde_encoder_prepare_for_kickoff_processing(drm_enc, params, sde_enc, sde_kms, needs_hw_reset, is_cmd_mode); end: SDE_ATRACE_END("sde_encoder_prepare_for_kickoff"); return ret; } void sde_encoder_kickoff(struct drm_encoder *drm_enc, bool config_changed) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys; struct sde_kms *sde_kms; unsigned int i; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return; } SDE_ATRACE_BEGIN("encoder_kickoff"); sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "\n"); if (sde_enc->delay_kickoff) { u32 loop_count = 20; u32 sleep = DELAY_KICKOFF_POLL_TIMEOUT_US / loop_count; for (i = 0; i < loop_count; i++) { usleep_range(sleep, sleep * 2); if (!sde_enc->delay_kickoff) break; } SDE_EVT32(DRMID(drm_enc), i, SDE_EVTLOG_FUNC_CASE1); } /* update txq for any output retire hw-fence (wb-path) */ sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) { SDE_ERROR("invalid sde_kms\n"); return; } if (sde_enc->cur_master) _sde_encoder_update_retire_txq(sde_enc->cur_master, sde_kms); /* delay frame kickoff based on expected present time */ _sde_encoder_delay_kickoff_processing(sde_enc); /* All phys encs are ready to go, trigger the kickoff */ _sde_encoder_kickoff_phys(sde_enc, config_changed); /* allow phys encs to handle any post-kickoff business */ for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->ops.handle_post_kickoff) phys->ops.handle_post_kickoff(phys); } if (sde_enc->autorefresh_solver_disable && !_sde_encoder_is_autorefresh_enabled(sde_enc)) _sde_encoder_update_rsc_client(drm_enc, true); SDE_ATRACE_END("encoder_kickoff"); } void sde_encoder_helper_get_pp_line_count(struct drm_encoder *drm_enc, struct sde_hw_pp_vsync_info *info) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys; int i, ret; if (!drm_enc || !info) return; sde_enc = to_sde_encoder_virt(drm_enc); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->hw_intf && phys->hw_pp && phys->hw_intf->ops.get_vsync_info) { ret = phys->hw_intf->ops.get_vsync_info( phys->hw_intf, &info[i]); if (!ret) { info[i].pp_idx = phys->hw_pp->idx - PINGPONG_0; info[i].intf_idx = phys->hw_intf->idx - INTF_0; } } } } void sde_encoder_get_transfer_time(struct drm_encoder *drm_enc, u32 *transfer_time_us) { struct sde_encoder_virt *sde_enc; struct msm_mode_info *info; if (!drm_enc || !transfer_time_us) { SDE_ERROR("bad arg: encoder:%d transfer_time:%d\n", !drm_enc, !transfer_time_us); return; } sde_enc = to_sde_encoder_virt(drm_enc); info = &sde_enc->mode_info; *transfer_time_us = info->mdp_transfer_time_us; } u32 sde_encoder_helper_get_kickoff_timeout_ms(struct drm_encoder *drm_enc) { struct drm_encoder *src_enc = drm_enc; struct sde_encoder_virt *sde_enc; struct sde_kms *sde_kms; u32 qsync_mode = 0, qsync_min_fps = 0; u32 fps; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return DEFAULT_KICKOFF_TIMEOUT_MS; } sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return DEFAULT_KICKOFF_TIMEOUT_MS; if (sde_encoder_in_clone_mode(drm_enc)) src_enc = sde_crtc_get_src_encoder_of_clone(drm_enc->crtc); if (!src_enc) return DEFAULT_KICKOFF_TIMEOUT_MS; if (test_bit(SDE_FEATURE_EMULATED_ENV, sde_kms->catalog->features)) return MAX_KICKOFF_TIMEOUT_MS; sde_enc = to_sde_encoder_virt(src_enc); fps = sde_enc->mode_info.frame_rate; if (sde_enc->cur_master) qsync_mode = sde_connector_get_qsync_mode(sde_enc->cur_master->connector); qsync_min_fps = sde_enc->mode_info.qsync_min_fps; if (qsync_mode && qsync_min_fps) fps = min(fps, qsync_min_fps); if (!fps || fps >= DEFAULT_TIMEOUT_FPS_THRESHOLD) return DEFAULT_KICKOFF_TIMEOUT_MS; else return (SEC_TO_MILLI_SEC / fps) * 2; } void sde_encoder_reset_kickoff_timeout_ms(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc = to_sde_encoder_virt(drm_enc); if (!sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CMD_MODE)) return; for (int i = 0; i < sde_enc->num_phys_encs; i++) { if (sde_enc->phys_encs[i]) sde_enc->phys_encs[i]->kickoff_timeout_ms = sde_encoder_helper_get_kickoff_timeout_ms(drm_enc); } } int sde_encoder_get_avr_status(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *master; bool is_vid_mode; if (!drm_enc) return -EINVAL; sde_enc = to_sde_encoder_virt(drm_enc); master = sde_enc->cur_master; is_vid_mode = sde_encoder_check_curr_mode(drm_enc, MSM_DISPLAY_CAP_VID_MODE); if (!master || !is_vid_mode || !sde_connector_get_qsync_mode(master->connector)) return -ENODATA; if (!master->hw_intf->ops.get_avr_status) return -EOPNOTSUPP; return master->hw_intf->ops.get_avr_status(master->hw_intf); } int sde_encoder_helper_reset_mixers(struct sde_encoder_phys *phys_enc, struct drm_framebuffer *fb) { struct drm_encoder *drm_enc; struct sde_hw_mixer_cfg mixer; struct sde_rm_hw_iter lm_iter; bool lm_valid = false; if (!phys_enc || !phys_enc->parent) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } drm_enc = phys_enc->parent; memset(&mixer, 0, sizeof(mixer)); /* reset associated CTL/LMs */ if (phys_enc->hw_ctl->ops.clear_all_blendstages) phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl); sde_rm_init_hw_iter(&lm_iter, drm_enc->base.id, SDE_HW_BLK_LM); while (sde_rm_get_hw(&phys_enc->sde_kms->rm, &lm_iter)) { struct sde_hw_mixer *hw_lm = to_sde_hw_mixer(lm_iter.hw); if (!hw_lm) continue; /* need to flush LM to remove it */ if (phys_enc->hw_ctl->ops.update_bitmask_mixer) phys_enc->hw_ctl->ops.update_bitmask_mixer( phys_enc->hw_ctl, hw_lm->idx, 1); if (fb) { /* assume a single LM if targeting a frame buffer */ if (lm_valid) continue; mixer.out_height = fb->height; mixer.out_width = fb->width; if (hw_lm->ops.setup_mixer_out) hw_lm->ops.setup_mixer_out(hw_lm, &mixer); } lm_valid = true; /* only enable border color on LM */ if (phys_enc->hw_ctl->ops.setup_blendstage) phys_enc->hw_ctl->ops.setup_blendstage( phys_enc->hw_ctl, hw_lm->idx, NULL, false); } if (!lm_valid) { SDE_ERROR_ENC(to_sde_encoder_virt(drm_enc), "lm not found\n"); return -EFAULT; } return 0; } void sde_encoder_helper_hw_fence_sw_override(struct sde_encoder_phys *phys_enc, struct sde_hw_ctl *ctl) { if (!ctl || !ctl->ops.hw_fence_trigger_sw_override) return; SDE_EVT32(DRMID(phys_enc->parent), ctl->idx, ctl->ops.get_hw_fence_status ? ctl->ops.get_hw_fence_status(ctl) : SDE_EVTLOG_ERROR); sde_encoder_helper_reset_mixers(phys_enc, NULL); ctl->ops.hw_fence_trigger_sw_override(ctl); } int sde_encoder_prepare_commit(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys; int i, rc = 0, ret = 0; struct sde_hw_ctl *ctl; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); /* update the qsync parameters for the current frame */ if (sde_enc->cur_master) sde_connector_set_qsync_params( sde_enc->cur_master->connector); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (phys && phys->ops.prepare_commit) phys->ops.prepare_commit(phys); if (phys && phys->enable_state == SDE_ENC_ERR_NEEDS_HW_RESET) ret = -ETIMEDOUT; if (phys && phys->hw_ctl) { ctl = phys->hw_ctl; /* * avoid clearing the pending flush during the first * frame update after idle power collpase as the * restore path would have updated the pending flush */ if (!sde_enc->idle_pc_restore && ctl->ops.clear_pending_flush) ctl->ops.clear_pending_flush(ctl); } } if (sde_enc->cur_master && sde_enc->cur_master->connector) { rc = sde_connector_prepare_commit( sde_enc->cur_master->connector); if (rc) SDE_ERROR_ENC(sde_enc, "prepare commit failed conn %d rc %d\n", sde_enc->cur_master->connector->base.id, rc); } return ret; } void sde_encoder_helper_setup_misr(struct sde_encoder_phys *phys_enc, bool enable, u32 frame_count) { if (!phys_enc) return; if (phys_enc->hw_intf && phys_enc->hw_intf->ops.setup_misr) phys_enc->hw_intf->ops.setup_misr(phys_enc->hw_intf, enable, frame_count); } int sde_encoder_helper_collect_misr(struct sde_encoder_phys *phys_enc, bool nonblock, u32 *misr_value) { if (!phys_enc) return -EINVAL; return phys_enc->hw_intf && phys_enc->hw_intf->ops.collect_misr ? phys_enc->hw_intf->ops.collect_misr(phys_enc->hw_intf, nonblock, misr_value) : -ENOTSUPP; } #if IS_ENABLED(CONFIG_DEBUG_FS) static int _sde_encoder_status_show(struct seq_file *s, void *data) { struct sde_encoder_virt *sde_enc; int i; if (!s || !s->private) return -EINVAL; sde_enc = s->private; mutex_lock(&sde_enc->enc_lock); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (!phys) continue; seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", phys->intf_idx - INTF_0, atomic_read(&phys->vsync_cnt), atomic_read(&phys->underrun_cnt)); switch (phys->intf_mode) { case INTF_MODE_VIDEO: seq_puts(s, "mode: video\n"); break; case INTF_MODE_CMD: seq_puts(s, "mode: command\n"); break; case INTF_MODE_WB_BLOCK: seq_puts(s, "mode: wb block\n"); break; case INTF_MODE_WB_LINE: seq_puts(s, "mode: wb line\n"); break; default: seq_puts(s, "mode: ???\n"); break; } } mutex_unlock(&sde_enc->enc_lock); return 0; } static int _sde_encoder_debugfs_status_open(struct inode *inode, struct file *file) { return single_open(file, _sde_encoder_status_show, inode->i_private); } static ssize_t _sde_encoder_misr_setup(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct sde_encoder_virt *sde_enc; char buf[MISR_BUFF_SIZE + 1]; size_t buff_copy; u32 frame_count, enable; struct sde_kms *sde_kms = NULL; struct drm_encoder *drm_enc; if (!file || !file->private_data) return -EINVAL; sde_enc = file->private_data; if (!sde_enc) return -EINVAL; sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) return -EINVAL; drm_enc = &sde_enc->base; if (sde_kms_is_secure_session_inprogress(sde_kms)) { SDE_DEBUG_ENC(sde_enc, "misr enable/disable not allowed\n"); return -ENOTSUPP; } buff_copy = min_t(size_t, count, MISR_BUFF_SIZE); if (copy_from_user(buf, user_buf, buff_copy)) return -EINVAL; buf[buff_copy] = 0; /* end of string */ if (sscanf(buf, "%u %u", &enable, &frame_count) != 2) return -EINVAL; atomic_set(&sde_enc->misr_enable, enable); sde_enc->misr_reconfigure = true; sde_enc->misr_frame_count = frame_count; return count; } static ssize_t _sde_encoder_misr_read(struct file *file, char __user *user_buff, size_t count, loff_t *ppos) { struct sde_encoder_virt *sde_enc; struct sde_kms *sde_kms = NULL; struct drm_encoder *drm_enc; int i = 0, len = 0; char buf[MISR_BUFF_SIZE + 1] = {'\0'}; int rc; if (*ppos) return 0; if (!file || !file->private_data) return -EINVAL; sde_enc = file->private_data; sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) return -EINVAL; if (sde_kms_is_secure_session_inprogress(sde_kms)) { SDE_DEBUG_ENC(sde_enc, "misr read not allowed\n"); return -ENOTSUPP; } drm_enc = &sde_enc->base; rc = pm_runtime_resume_and_get(drm_enc->dev->dev); if (rc < 0) { SDE_ERROR("failed to enable power resource %d\n", rc); SDE_EVT32(rc, SDE_EVTLOG_ERROR); return rc; } sde_vm_lock(sde_kms); if (!sde_vm_owns_hw(sde_kms)) { SDE_DEBUG("op not supported due to HW unavailablity\n"); rc = -EOPNOTSUPP; goto end; } if (!atomic_read(&sde_enc->misr_enable)) { len += scnprintf(buf + len, MISR_BUFF_SIZE - len, "disabled\n"); goto buff_check; } for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; u32 misr_value = 0; if (!phys || !phys->ops.collect_misr) { len += scnprintf(buf + len, MISR_BUFF_SIZE - len, "invalid\n"); SDE_ERROR_ENC(sde_enc, "invalid misr ops\n"); continue; } rc = phys->ops.collect_misr(phys, false, &misr_value); if (rc) { len += scnprintf(buf + len, MISR_BUFF_SIZE - len, "invalid\n"); SDE_ERROR_ENC(sde_enc, "failed to collect misr %d\n", rc); continue; } else { len += scnprintf(buf + len, MISR_BUFF_SIZE - len, "Intf idx:%d\n", phys->intf_idx - INTF_0); len += scnprintf(buf + len, MISR_BUFF_SIZE - len, "0x%x\n", misr_value); } } buff_check: if (count <= len) { len = 0; goto end; } if (copy_to_user(user_buff, buf, len)) { len = -EFAULT; goto end; } *ppos += len; /* increase offset */ end: sde_vm_unlock(sde_kms); pm_runtime_put_sync(drm_enc->dev->dev); return len; } static int _sde_encoder_init_debugfs(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_kms *sde_kms; int i; static const struct file_operations debugfs_status_fops = { .open = _sde_encoder_debugfs_status_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations debugfs_misr_fops = { .open = simple_open, .read = _sde_encoder_misr_read, .write = _sde_encoder_misr_setup, }; char name[SDE_NAME_SIZE]; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) { SDE_ERROR("invalid sde_kms\n"); return -EINVAL; } snprintf(name, SDE_NAME_SIZE, "encoder%u", drm_enc->base.id); /* create overall sub-directory for the encoder */ sde_enc->debugfs_root = debugfs_create_dir(name, drm_enc->dev->primary->debugfs_root); if (!sde_enc->debugfs_root) return -ENOMEM; /* don't error check these */ debugfs_create_file("status", 0400, sde_enc->debugfs_root, sde_enc, &debugfs_status_fops); debugfs_create_file("misr_data", 0600, sde_enc->debugfs_root, sde_enc, &debugfs_misr_fops); debugfs_create_bool("idle_power_collapse", 0600, sde_enc->debugfs_root, &sde_enc->idle_pc_enabled); debugfs_create_u32("frame_trigger_mode", 0400, sde_enc->debugfs_root, &sde_enc->frame_trigger_mode); debugfs_create_x32("dynamic_irqs_config", 0600, sde_enc->debugfs_root, (u32 *)&sde_enc->dynamic_irqs_config); for (i = 0; i < sde_enc->num_phys_encs; i++) if (sde_enc->phys_encs[i] && sde_enc->phys_encs[i]->ops.late_register) sde_enc->phys_encs[i]->ops.late_register( sde_enc->phys_encs[i], sde_enc->debugfs_root); return 0; } static void _sde_encoder_destroy_debugfs(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; if (!drm_enc) return; sde_enc = to_sde_encoder_virt(drm_enc); debugfs_remove_recursive(sde_enc->debugfs_root); } #else static int _sde_encoder_init_debugfs(struct drm_encoder *drm_enc) { return 0; } static void _sde_encoder_destroy_debugfs(struct drm_encoder *drm_enc) { } #endif /* CONFIG_DEBUG_FS */ static int sde_encoder_late_register(struct drm_encoder *encoder) { return _sde_encoder_init_debugfs(encoder); } static void sde_encoder_early_unregister(struct drm_encoder *encoder) { _sde_encoder_destroy_debugfs(encoder); } static int sde_encoder_virt_add_phys_encs( struct msm_display_info *disp_info, struct sde_encoder_virt *sde_enc, struct sde_enc_phys_init_params *params) { struct sde_encoder_phys *enc = NULL; u32 display_caps = disp_info->capabilities; SDE_DEBUG_ENC(sde_enc, "\n"); /* * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types * in this function, check up-front. */ if (sde_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= ARRAY_SIZE(sde_enc->phys_encs)) { SDE_ERROR_ENC(sde_enc, "too many physical encoders %d\n", sde_enc->num_phys_encs); return -EINVAL; } if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { enc = sde_encoder_phys_vid_init(params); if (IS_ERR_OR_NULL(enc)) { SDE_ERROR_ENC(sde_enc, "failed to init vid enc: %ld\n", PTR_ERR(enc)); return !enc ? -EINVAL : PTR_ERR(enc); } sde_enc->phys_vid_encs[sde_enc->num_phys_encs] = enc; } if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { enc = sde_encoder_phys_cmd_init(params); if (IS_ERR_OR_NULL(enc)) { SDE_ERROR_ENC(sde_enc, "failed to init cmd enc: %ld\n", PTR_ERR(enc)); return !enc ? -EINVAL : PTR_ERR(enc); } sde_enc->phys_cmd_encs[sde_enc->num_phys_encs] = enc; } if (disp_info->curr_panel_mode == MSM_DISPLAY_VIDEO_MODE) sde_enc->phys_encs[sde_enc->num_phys_encs] = sde_enc->phys_vid_encs[sde_enc->num_phys_encs]; else sde_enc->phys_encs[sde_enc->num_phys_encs] = sde_enc->phys_cmd_encs[sde_enc->num_phys_encs]; ++sde_enc->num_phys_encs; return 0; } static int sde_encoder_virt_add_phys_enc_wb(struct sde_encoder_virt *sde_enc, struct sde_enc_phys_init_params *params) { struct sde_encoder_phys *enc = NULL; if (!sde_enc) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } SDE_DEBUG_ENC(sde_enc, "\n"); if (sde_enc->num_phys_encs + 1 >= ARRAY_SIZE(sde_enc->phys_encs)) { SDE_ERROR_ENC(sde_enc, "too many physical encoders %d\n", sde_enc->num_phys_encs); return -EINVAL; } enc = sde_encoder_phys_wb_init(params); if (IS_ERR_OR_NULL(enc)) { SDE_ERROR_ENC(sde_enc, "failed to init wb enc: %ld\n", PTR_ERR(enc)); return !enc ? -EINVAL : PTR_ERR(enc); } sde_enc->phys_encs[sde_enc->num_phys_encs] = enc; ++sde_enc->num_phys_encs; return 0; } static int sde_encoder_setup_display(struct sde_encoder_virt *sde_enc, struct sde_kms *sde_kms, struct msm_display_info *disp_info, int *drm_enc_mode) { int ret = 0; int i = 0; enum sde_intf_type intf_type; struct sde_encoder_virt_ops parent_ops = { sde_encoder_vblank_callback, sde_encoder_underrun_callback, sde_encoder_frame_done_callback, _sde_encoder_get_qsync_fps_callback, }; struct sde_enc_phys_init_params phys_params; if (!sde_enc || !sde_kms) { SDE_ERROR("invalid arg(s), enc %d kms %d\n", !sde_enc, !sde_kms); return -EINVAL; } memset(&phys_params, 0, sizeof(phys_params)); phys_params.sde_kms = sde_kms; phys_params.parent = &sde_enc->base; phys_params.parent_ops = parent_ops; phys_params.enc_spinlock = &sde_enc->enc_spinlock; phys_params.vblank_ctl_lock = &sde_enc->vblank_ctl_lock; atomic_set(&sde_enc->vsync_cnt, 0); SDE_DEBUG("\n"); if (disp_info->intf_type == DRM_MODE_CONNECTOR_DSI) { *drm_enc_mode = DRM_MODE_ENCODER_DSI; intf_type = INTF_DSI; } else if (disp_info->intf_type == DRM_MODE_CONNECTOR_HDMIA) { *drm_enc_mode = DRM_MODE_ENCODER_TMDS; intf_type = INTF_HDMI; } else if (disp_info->intf_type == DRM_MODE_CONNECTOR_DisplayPort) { if (disp_info->capabilities & MSM_DISPLAY_CAP_MST_MODE) *drm_enc_mode = DRM_MODE_ENCODER_DPMST; else *drm_enc_mode = DRM_MODE_ENCODER_TMDS; intf_type = INTF_DP; } else if (disp_info->intf_type == DRM_MODE_CONNECTOR_VIRTUAL) { *drm_enc_mode = DRM_MODE_ENCODER_VIRTUAL; intf_type = INTF_WB; } else { SDE_ERROR_ENC(sde_enc, "unsupported display interface type\n"); return -EINVAL; } WARN_ON(disp_info->num_of_h_tiles < 1); sde_enc->display_num_of_h_tiles = disp_info->num_of_h_tiles; sde_enc->te_source = disp_info->te_source; SDE_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); sde_enc->idle_pc_enabled = test_bit(SDE_FEATURE_IDLE_PC, sde_kms->catalog->features); sde_enc->input_event_enabled = test_bit(SDE_FEATURE_TOUCH_WAKEUP, sde_kms->catalog->features); #if IS_ENABLED(CONFIG_DISPLAY_SAMSUNG) sde_enc->input_event_enabled = true; SDE_INFO("input_event_enabled %d\n", sde_enc->input_event_enabled); #endif sde_enc->ctl_done_supported = test_bit(SDE_FEATURE_CTL_DONE, sde_kms->catalog->features); mutex_lock(&sde_enc->enc_lock); for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { /* * Left-most tile is at index 0, content is controller id * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right */ u32 controller_id = disp_info->h_tile_instance[i]; if (disp_info->num_of_h_tiles > 1) { if (i == 0) phys_params.split_role = ENC_ROLE_MASTER; else phys_params.split_role = ENC_ROLE_SLAVE; } else { phys_params.split_role = ENC_ROLE_SOLO; } SDE_DEBUG("h_tile_instance %d = %d, split_role %d\n", i, controller_id, phys_params.split_role); if (intf_type == INTF_WB) { phys_params.intf_idx = INTF_MAX; phys_params.wb_idx = sde_encoder_get_wb( sde_kms->catalog, intf_type, controller_id); if (phys_params.wb_idx == WB_MAX) { SDE_ERROR_ENC(sde_enc, "could not get wb: type %d, id %d\n", intf_type, controller_id); ret = -EINVAL; } } else { phys_params.wb_idx = WB_MAX; phys_params.intf_idx = sde_encoder_get_intf( sde_kms->catalog, intf_type, controller_id); if (phys_params.intf_idx == INTF_MAX) { SDE_ERROR_ENC(sde_enc, "could not get wb: type %d, id %d\n", intf_type, controller_id); ret = -EINVAL; } } if (!ret) { if (intf_type == INTF_WB) ret = sde_encoder_virt_add_phys_enc_wb(sde_enc, &phys_params); else ret = sde_encoder_virt_add_phys_encs( disp_info, sde_enc, &phys_params); if (ret) SDE_ERROR_ENC(sde_enc, "failed to add phys encs\n"); } } for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *vid_phys = sde_enc->phys_vid_encs[i]; struct sde_encoder_phys *cmd_phys = sde_enc->phys_cmd_encs[i]; if (vid_phys) { atomic_set(&vid_phys->vsync_cnt, 0); atomic_set(&vid_phys->underrun_cnt, 0); } if (cmd_phys) { atomic_set(&cmd_phys->vsync_cnt, 0); atomic_set(&cmd_phys->underrun_cnt, 0); } } mutex_unlock(&sde_enc->enc_lock); return ret; } static const struct drm_encoder_helper_funcs sde_encoder_helper_funcs = { .mode_set = sde_encoder_virt_mode_set, .disable = sde_encoder_virt_disable, .enable = sde_encoder_virt_enable, .atomic_check = sde_encoder_virt_atomic_check, }; static const struct drm_encoder_funcs sde_encoder_funcs = { .destroy = sde_encoder_destroy, .late_register = sde_encoder_late_register, .early_unregister = sde_encoder_early_unregister, }; struct drm_encoder *sde_encoder_init(struct drm_device *dev, struct msm_display_info *disp_info) { struct msm_drm_private *priv = dev->dev_private; struct sde_kms *sde_kms = to_sde_kms(priv->kms); struct drm_encoder *drm_enc = NULL; struct sde_encoder_virt *sde_enc = NULL; int drm_enc_mode = DRM_MODE_ENCODER_NONE; char name[SDE_NAME_SIZE]; int ret = 0, i, intf_index = INTF_MAX; struct sde_encoder_phys *phys = NULL; sde_enc = kzalloc(sizeof(*sde_enc), GFP_KERNEL); if (!sde_enc) { ret = -ENOMEM; goto fail; } mutex_init(&sde_enc->enc_lock); ret = sde_encoder_setup_display(sde_enc, sde_kms, disp_info, &drm_enc_mode); if (ret) goto fail; sde_enc->cur_master = NULL; spin_lock_init(&sde_enc->enc_spinlock); mutex_init(&sde_enc->vblank_ctl_lock); for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) atomic_set(&sde_enc->frame_done_cnt[i], 0); drm_enc = &sde_enc->base; drm_encoder_init(dev, drm_enc, &sde_encoder_funcs, drm_enc_mode, NULL); drm_encoder_helper_add(drm_enc, &sde_encoder_helper_funcs); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (!phys) continue; if (phys->ops.is_master && phys->ops.is_master(phys)) intf_index = phys->intf_idx - INTF_0; } snprintf(name, SDE_NAME_SIZE, "rsc_enc%u", drm_enc->base.id); sde_enc->rsc_client = sde_rsc_client_create(SDE_RSC_INDEX, name, (disp_info->display_type == SDE_CONNECTOR_PRIMARY) ? SDE_RSC_PRIMARY_DISP_CLIENT : SDE_RSC_EXTERNAL_DISP_CLIENT, intf_index + 1); if (IS_ERR_OR_NULL(sde_enc->rsc_client)) { SDE_DEBUG("sde rsc client create failed :%ld\n", PTR_ERR(sde_enc->rsc_client)); sde_enc->rsc_client = NULL; } if (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE && sde_enc->input_event_enabled) { ret = _sde_encoder_input_handler(sde_enc); if (ret) SDE_ERROR( "input handler registration failed, rc = %d\n", ret); } /* Keep posted start as default configuration in driver if SBLUT is supported on target. Do not allow HAL to override driver's default frame trigger mode. */ if(sde_kms->catalog->dma_cfg.reg_dma_blks[REG_DMA_TYPE_SB].valid) sde_enc->frame_trigger_mode = FRAME_DONE_WAIT_POSTED_START; mutex_init(&sde_enc->rc_lock); init_waitqueue_head(&sde_enc->vsync_event_wq); kthread_init_delayed_work(&sde_enc->delayed_off_work, sde_encoder_off_work); sde_enc->vblank_enabled = false; sde_enc->qdss_status = false; kthread_init_work(&sde_enc->input_event_work, sde_encoder_input_event_work_handler); kthread_init_work(&sde_enc->early_wakeup_work, sde_encoder_early_wakeup_work_handler); kthread_init_work(&sde_enc->esd_trigger_work, sde_encoder_esd_trigger_work_handler); memcpy(&sde_enc->disp_info, disp_info, sizeof(*disp_info)); SDE_DEBUG_ENC(sde_enc, "created\n"); return drm_enc; fail: SDE_ERROR("failed to create encoder\n"); if (drm_enc) sde_encoder_destroy(drm_enc); return ERR_PTR(ret); } int sde_encoder_wait_for_event(struct drm_encoder *drm_enc, enum msm_event_wait event) { int (*fn_wait)(struct sde_encoder_phys *phys_enc) = NULL; struct sde_encoder_virt *sde_enc = NULL; int i, ret = 0; char atrace_buf[32]; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(drm_enc); SDE_DEBUG_ENC(sde_enc, "\n"); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; switch (event) { case MSM_ENC_COMMIT_DONE: fn_wait = phys->ops.wait_for_commit_done; break; case MSM_ENC_TX_COMPLETE: fn_wait = phys->ops.wait_for_tx_complete; break; case MSM_ENC_VBLANK: fn_wait = phys->ops.wait_for_vblank; break; case MSM_ENC_ACTIVE_REGION: fn_wait = phys->ops.wait_for_active; break; default: SDE_ERROR_ENC(sde_enc, "unknown wait event %d\n", event); return -EINVAL; } if (phys && fn_wait) { snprintf(atrace_buf, sizeof(atrace_buf), "wait_completion_event_%d", event); SDE_ATRACE_BEGIN(atrace_buf); ret = fn_wait(phys); SDE_ATRACE_END(atrace_buf); if (ret) { SDE_ERROR_ENC(sde_enc, "intf_type:%d, event:%d i:%d, failed:%d\n", sde_enc->disp_info.intf_type, event, i, ret); SDE_EVT32(DRMID(drm_enc), sde_enc->disp_info.intf_type, event, i, ret, SDE_EVTLOG_ERROR); return ret; } } } return ret; } void sde_encoder_helper_get_jitter_bounds_ns(u32 frame_rate, u32 jitter_num, u32 jitter_denom, ktime_t *l_bound, ktime_t *u_bound) { ktime_t jitter_ns, frametime_ns; frametime_ns = (1 * 1000000000) / frame_rate; jitter_ns = jitter_num * frametime_ns; do_div(jitter_ns, jitter_denom * 100); *l_bound = frametime_ns - jitter_ns; *u_bound = frametime_ns + jitter_ns; } u32 sde_encoder_get_fps(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; if (!drm_enc) { SDE_ERROR("invalid encoder\n"); return 0; } sde_enc = to_sde_encoder_virt(drm_enc); return sde_enc->mode_info.frame_rate; } enum sde_intf_mode sde_encoder_get_intf_mode(struct drm_encoder *encoder) { struct sde_encoder_virt *sde_enc = NULL; int i; if (!encoder) { SDE_ERROR("invalid encoder\n"); return INTF_MODE_NONE; } sde_enc = to_sde_encoder_virt(encoder); if (sde_enc->cur_master) return sde_enc->cur_master->intf_mode; for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (phys) return phys->intf_mode; } return INTF_MODE_NONE; } u32 sde_encoder_get_frame_count(struct drm_encoder *encoder) { struct sde_encoder_virt *sde_enc = NULL; if (!encoder) { SDE_ERROR("invalid encoder\n"); return 0; } sde_enc = to_sde_encoder_virt(encoder); return atomic_read(&sde_enc->vsync_cnt); } bool sde_encoder_get_vblank_timestamp(struct drm_encoder *encoder, ktime_t *tvblank) { struct sde_encoder_virt *sde_enc = NULL; struct sde_encoder_phys *phys; if (!encoder) { SDE_ERROR("invalid encoder\n"); return false; } sde_enc = to_sde_encoder_virt(encoder); phys = sde_enc->cur_master; if (!phys) return false; *tvblank = phys->last_vsync_timestamp; return *tvblank ? true : false; } static void _sde_encoder_cache_hw_res_cont_splash( struct drm_encoder *encoder, struct sde_kms *sde_kms) { int i, idx; struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys_enc; struct sde_rm_hw_iter dsc_iter, pp_iter, ctl_iter, intf_iter; sde_enc = to_sde_encoder_virt(encoder); sde_rm_init_hw_iter(&pp_iter, encoder->base.id, SDE_HW_BLK_PINGPONG); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { sde_enc->hw_pp[i] = NULL; if (!sde_rm_get_hw(&sde_kms->rm, &pp_iter)) break; sde_enc->hw_pp[i] = to_sde_hw_pingpong(pp_iter.hw); } sde_rm_init_hw_iter(&dsc_iter, encoder->base.id, SDE_HW_BLK_DSC); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { sde_enc->hw_dsc[i] = NULL; if (!sde_rm_get_hw(&sde_kms->rm, &dsc_iter)) break; sde_enc->hw_dsc[i] = to_sde_hw_dsc(dsc_iter.hw); } /* * If we have multiple phys encoders with one controller, make * sure to populate the controller pointer in both phys encoders. */ for (idx = 0; idx < sde_enc->num_phys_encs; idx++) { phys_enc = sde_enc->phys_encs[idx]; phys_enc->hw_ctl = NULL; sde_rm_init_hw_iter(&ctl_iter, encoder->base.id, SDE_HW_BLK_CTL); for (i = 0; i < sde_enc->num_phys_encs; i++) { if (sde_rm_get_hw(&sde_kms->rm, &ctl_iter)) { phys_enc->hw_ctl = to_sde_hw_ctl(ctl_iter.hw); pr_debug("HW CTL intf_idx:%d hw_ctl:[0x%pK]\n", phys_enc->intf_idx, phys_enc->hw_ctl); } } } sde_rm_init_hw_iter(&intf_iter, encoder->base.id, SDE_HW_BLK_INTF); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; phys->hw_intf = NULL; if (!sde_rm_get_hw(&sde_kms->rm, &intf_iter)) break; phys->hw_intf = to_sde_hw_intf(intf_iter.hw); } } /** * sde_encoder_update_caps_for_cont_splash - update encoder settings during * device bootup when cont_splash is enabled * @drm_enc: Pointer to drm encoder structure * @splash_display: Pointer to sde_splash_display corresponding to this encoder * @enable: boolean indicates enable or displae state of splash * @Return: true if successful in updating the encoder structure */ int sde_encoder_update_caps_for_cont_splash(struct drm_encoder *encoder, struct sde_splash_display *splash_display, bool enable) { struct sde_encoder_virt *sde_enc; struct msm_drm_private *priv; struct sde_kms *sde_kms; struct drm_connector *conn = NULL; struct sde_connector *sde_conn = NULL; struct sde_connector_state *sde_conn_state = NULL; struct drm_display_mode *drm_mode = NULL; struct sde_encoder_phys *phys_enc; struct drm_bridge *bridge; int ret = 0, i; struct msm_sub_mode sub_mode; if (!encoder) { SDE_ERROR("invalid drm enc\n"); return -EINVAL; } sde_enc = to_sde_encoder_virt(encoder); sde_kms = sde_encoder_get_kms(&sde_enc->base); if (!sde_kms) { SDE_ERROR("invalid sde_kms\n"); return -EINVAL; } priv = encoder->dev->dev_private; if (!priv->num_connectors) { SDE_ERROR_ENC(sde_enc, "No connectors registered\n"); return -EINVAL; } SDE_DEBUG_ENC(sde_enc, "num of connectors: %d\n", priv->num_connectors); SDE_DEBUG_ENC(sde_enc, "enable: %d\n", enable); if (!enable) { for (i = 0; i < sde_enc->num_phys_encs; i++) { phys_enc = sde_enc->phys_encs[i]; if (phys_enc) phys_enc->cont_splash_enabled = false; } return ret; } if (!splash_display) { SDE_ERROR_ENC(sde_enc, "invalid splash data\n"); return -EINVAL; } for (i = 0; i < priv->num_connectors; i++) { SDE_DEBUG_ENC(sde_enc, "connector id: %d\n", priv->connectors[i]->base.id); sde_conn = to_sde_connector(priv->connectors[i]); if (!sde_conn->encoder) { SDE_DEBUG_ENC(sde_enc, "encoder not attached to connector\n"); continue; } if (sde_conn->encoder->base.id == encoder->base.id) { conn = (priv->connectors[i]); break; } } if (!conn || !conn->state) { SDE_ERROR_ENC(sde_enc, "connector not found\n"); return -EINVAL; } sde_conn_state = to_sde_connector_state(conn->state); if (!sde_conn->ops.get_mode_info) { SDE_ERROR_ENC(sde_enc, "conn: get_mode_info ops not found\n"); return -EINVAL; } sub_mode.dsc_mode = splash_display->dsc_cnt ? MSM_DISPLAY_DSC_MODE_ENABLED : MSM_DISPLAY_DSC_MODE_DISABLED; drm_mode = &encoder->crtc->state->adjusted_mode; ret = sde_connector_get_mode_info(&sde_conn->base, drm_mode, &sub_mode, &sde_conn_state->mode_info); if (ret) { SDE_ERROR_ENC(sde_enc, "conn: ->get_mode_info failed. ret=%d\n", ret); return ret; } if (sde_conn->encoder) { conn->state->best_encoder = sde_conn->encoder; SDE_DEBUG_ENC(sde_enc, "configured cstate->best_encoder to ID = %d\n", conn->state->best_encoder->base.id); } else { SDE_ERROR_ENC(sde_enc, "No encoder mapped to connector=%d\n", conn->base.id); } sde_enc->crtc = encoder->crtc; ret = sde_rm_reserve(&sde_kms->rm, encoder, encoder->crtc->state, conn->state, false); if (ret) { SDE_ERROR_ENC(sde_enc, "failed to reserve hw resources, %d\n", ret); return ret; } SDE_DEBUG_ENC(sde_enc, "connector topology = %llu\n", sde_connector_get_topology_name(conn)); SDE_DEBUG_ENC(sde_enc, "hdisplay = %d, vdisplay = %d\n", drm_mode->hdisplay, drm_mode->vdisplay); drm_set_preferred_mode(conn, drm_mode->hdisplay, drm_mode->vdisplay); bridge = drm_bridge_chain_get_first_bridge(encoder); if (bridge) { SDE_DEBUG_ENC(sde_enc, "Bridge mapped to encoder\n"); /* * For cont-splash use case, we update the mode * configurations manually. This will skip the * usually mode set call when actual frame is * pushed from framework. The bridge needs to * be updated with the current drm mode by * calling the bridge mode set ops. */ drm_bridge_chain_mode_set(bridge, drm_mode, drm_mode); } else { SDE_ERROR_ENC(sde_enc, "No bridge attached to encoder\n"); } _sde_encoder_cache_hw_res_cont_splash(encoder, sde_kms); for (i = 0; i < sde_enc->num_phys_encs; i++) { struct sde_encoder_phys *phys = sde_enc->phys_encs[i]; if (!phys) { SDE_ERROR_ENC(sde_enc, "phys encoders not initialized\n"); return -EINVAL; } /* update connector for master and slave phys encoders */ phys->connector = conn; phys->cont_splash_enabled = true; phys->hw_pp = sde_enc->hw_pp[i]; if (phys->ops.cont_splash_mode_set) phys->ops.cont_splash_mode_set(phys, drm_mode); if (phys->ops.is_master && phys->ops.is_master(phys)) sde_enc->cur_master = phys; } return ret; } int sde_encoder_display_failure_notification(struct drm_encoder *enc, bool skip_pre_kickoff) { struct msm_drm_thread *event_thread = NULL; struct msm_drm_private *priv = NULL; struct sde_encoder_virt *sde_enc = NULL; if (!enc || !enc->dev || !enc->dev->dev_private) { SDE_ERROR("invalid parameters\n"); return -EINVAL; } priv = enc->dev->dev_private; sde_enc = to_sde_encoder_virt(enc); if (!sde_enc->crtc || (sde_enc->crtc->index >= ARRAY_SIZE(priv->event_thread))) { SDE_DEBUG_ENC(sde_enc, "invalid cached CRTC: %d or crtc index: %d\n", sde_enc->crtc == NULL, sde_enc->crtc ? sde_enc->crtc->index : -EINVAL); return -EINVAL; } SDE_EVT32_VERBOSE(DRMID(enc)); event_thread = &priv->event_thread[sde_enc->crtc->index]; if (!skip_pre_kickoff) { sde_enc->delay_kickoff = true; kthread_queue_work(&event_thread->worker, &sde_enc->esd_trigger_work); kthread_flush_work(&sde_enc->esd_trigger_work); } /* * panel may stop generating te signal (vsync) during esd failure. rsc * hardware may hang without vsync. Avoid rsc hang by generating the * vsync from watchdog timer instead of panel. */ sde_encoder_helper_switch_vsync(enc, true); if (!skip_pre_kickoff) { sde_encoder_wait_for_event(enc, MSM_ENC_TX_COMPLETE); sde_enc->delay_kickoff = false; } return 0; } bool sde_encoder_recovery_events_enabled(struct drm_encoder *encoder) { struct sde_encoder_virt *sde_enc; if (!encoder) { SDE_ERROR("invalid drm enc\n"); return false; } sde_enc = to_sde_encoder_virt(encoder); return sde_enc->recovery_events_enabled; } void sde_encoder_enable_recovery_event(struct drm_encoder *encoder) { struct sde_encoder_virt *sde_enc; if (!encoder) { SDE_ERROR("invalid drm enc\n"); return; } sde_enc = to_sde_encoder_virt(encoder); sde_enc->recovery_events_enabled = true; } bool sde_encoder_needs_dsc_disable(struct drm_encoder *drm_enc) { struct sde_kms *sde_kms; struct drm_connector *conn; struct sde_connector_state *conn_state; if (!drm_enc) return false; sde_kms = sde_encoder_get_kms(drm_enc); if (!sde_kms) return false; conn = sde_encoder_get_connector(sde_kms->dev, drm_enc); if (!conn || !conn->state) return false; conn_state = to_sde_connector_state(conn->state); return TOPOLOGY_DSC_MODE(conn_state->old_topology_name); } struct sde_hw_ctl *sde_encoder_get_hw_ctl(struct sde_connector *c_conn) { struct drm_encoder *drm_enc; struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *cur_master; struct sde_hw_ctl *hw_ctl = NULL; if (!c_conn || !c_conn->hwfence_wb_retire_fences_enable) goto exit; /* get encoder to find the hw_ctl for this connector */ drm_enc = c_conn->encoder; if (!drm_enc) goto exit; sde_enc = to_sde_encoder_virt(drm_enc); cur_master = sde_enc->phys_encs[0]; if (!cur_master || !cur_master->hw_ctl) goto exit; hw_ctl = cur_master->hw_ctl; SDE_DEBUG("conn hw_ctl idx:%d intf_mode:%d\n", hw_ctl->idx, cur_master->intf_mode); exit: return hw_ctl; } void sde_encoder_add_data_to_minidump_va(struct drm_encoder *drm_enc) { struct sde_encoder_virt *sde_enc; struct sde_encoder_phys *phys_enc; u32 i; sde_enc = to_sde_encoder_virt(drm_enc); for( i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) { phys_enc = sde_enc->phys_encs[i]; if(phys_enc && phys_enc->ops.add_to_minidump) phys_enc->ops.add_to_minidump(phys_enc); phys_enc = sde_enc->phys_cmd_encs[i]; if(phys_enc && phys_enc->ops.add_to_minidump) phys_enc->ops.add_to_minidump(phys_enc); phys_enc = sde_enc->phys_vid_encs[i]; if(phys_enc && phys_enc->ops.add_to_minidump) phys_enc->ops.add_to_minidump(phys_enc); } } void sde_encoder_misr_sign_event_notify(struct drm_encoder *drm_enc) { struct drm_event event; struct drm_connector *connector; struct sde_connector *c_conn = NULL; struct sde_connector_state *c_state = NULL; struct sde_encoder_virt *sde_enc = NULL; struct sde_encoder_phys *phys = NULL; u32 current_misr_value[MAX_DSI_DISPLAYS] = {0}; int rc = 0, i = 0; bool misr_updated = false, roi_updated = false; struct msm_roi_list *prev_roi, *c_state_roi; if (!drm_enc) return; sde_enc = to_sde_encoder_virt(drm_enc); if (!atomic_read(&sde_enc->misr_enable)) { SDE_DEBUG("MISR is disabled\n"); return; } connector = sde_enc->cur_master->connector; if (!connector) return; c_conn = to_sde_connector(connector); c_state = to_sde_connector_state(connector->state); atomic64_set(&c_conn->previous_misr_sign.num_valid_misr, 0); for (i = 0; i < sde_enc->num_phys_encs; i++) { phys = sde_enc->phys_encs[i]; if (!phys || !phys->ops.collect_misr) { SDE_DEBUG("invalid misr ops idx:%d\n", i); continue; } rc = phys->ops.collect_misr(phys, true, ¤t_misr_value[i]); if (rc) { SDE_ERROR("failed to collect misr %d\n", rc); return; } atomic64_inc(&c_conn->previous_misr_sign.num_valid_misr); } for (i = 0; i < sde_enc->num_phys_encs; i++) { if (current_misr_value[i] != c_conn->previous_misr_sign.misr_sign_value[i]) { c_conn->previous_misr_sign.misr_sign_value[i] = current_misr_value[i]; misr_updated = true; } } prev_roi = &c_conn->previous_misr_sign.roi_list; c_state_roi = &c_state->rois; if (prev_roi->num_rects != c_state_roi->num_rects) { roi_updated = true; } else { for (i = 0; i < prev_roi->num_rects; i++) { if (IS_ROI_UPDATED(prev_roi->roi[i], c_state_roi->roi[i])) roi_updated = true; } } if (roi_updated) memcpy(&c_conn->previous_misr_sign.roi_list, &c_state->rois, sizeof(c_state->rois)); if (misr_updated || roi_updated) { event.type = DRM_EVENT_MISR_SIGN; event.length = sizeof(c_conn->previous_misr_sign); msm_mode_object_event_notify(&connector->base, connector->dev, &event, (u8 *)&c_conn->previous_misr_sign); } }