// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include "sde_kms.h" #include "sde_hw_lm.h" #include "sde_hw_ctl.h" #include "sde_hw_cdm.h" #include "sde_hw_dspp.h" #include "sde_hw_ds.h" #include "sde_hw_pingpong.h" #include "sde_hw_intf.h" #include "sde_hw_wb.h" #include "sde_encoder.h" #include "sde_connector.h" #include "sde_hw_dsc.h" #include "sde_hw_vdc.h" #include "sde_crtc.h" #include "sde_hw_qdss.h" #include "sde_vbif.h" #include "sde_hw_dnsc_blur.h" #define RESERVED_BY_OTHER(h, r) \ (((h)->rsvp && ((h)->rsvp->enc_id != (r)->enc_id)) ||\ ((h)->rsvp_nxt && ((h)->rsvp_nxt->enc_id != (r)->enc_id))) #define RESERVED_BY_CURRENT(h, r) \ (((h)->rsvp && ((h)->rsvp->enc_id == (r)->enc_id))) #define RM_RQ_LOCK(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_RESERVE_LOCK)) #define RM_RQ_CLEAR(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_RESERVE_CLEAR)) #define RM_RQ_DSPP(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_DSPP)) #define RM_RQ_DS(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_DS)) #define RM_RQ_CWB(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_CWB)) #define RM_RQ_DCWB(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_DCWB)) #define RM_RQ_DNSC_BLUR(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_DNSC_BLUR)) #define RM_RQ_CDM(r) ((r)->top_ctrl & BIT(SDE_RM_TOPCTL_CDM)) #define RM_IS_TOPOLOGY_MATCH(t, r) ((t).num_lm == (r).num_lm && \ (t).num_comp_enc == (r).num_enc && \ (t).num_intf == (r).num_intf && \ (t).comp_type == (r).comp_type) #define IS_COMPATIBLE_PP_DSC(p, d) (p % 2 == d % 2) /* ~one vsync poll time for rsvp_nxt to cleared by modeset from commit thread */ #define RM_NXT_CLEAR_POLL_TIMEOUT_US 33000 /** * toplogy information to be used when ctl path version does not * support driving more than one interface per ctl_path */ static const struct sde_rm_topology_def g_top_table[SDE_RM_TOPOLOGY_MAX] = { { SDE_RM_TOPOLOGY_NONE, 0, 0, 0, 0, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_SINGLEPIPE, 1, 0, 1, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_SINGLEPIPE_DSC, 1, 1, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_DUALPIPE, 2, 0, 2, 2, true, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_DUALPIPE_DSC, 2, 2, 2, 2, true, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE, 2, 0, 1, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE_DSC, 2, 1, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_DUALPIPE_DSCMERGE, 2, 2, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_PPSPLIT, 1, 0, 2, 1, true, MSM_DISPLAY_COMPRESSION_NONE }, }; /** * topology information to be used when the ctl path version * is SDE_CTL_CFG_VERSION_1_0_0 */ static const struct sde_rm_topology_def g_top_table_v1[SDE_RM_TOPOLOGY_MAX] = { { SDE_RM_TOPOLOGY_NONE, 0, 0, 0, 0, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_SINGLEPIPE, 1, 0, 1, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_SINGLEPIPE_DSC, 1, 1, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_SINGLEPIPE_VDC, 1, 1, 1, 1, false, MSM_DISPLAY_COMPRESSION_VDC }, { SDE_RM_TOPOLOGY_DUALPIPE, 2, 0, 2, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_DUALPIPE_DSC, 2, 2, 2, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE, 2, 0, 1, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE_DSC, 2, 1, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE_VDC, 2, 1, 1, 1, false, MSM_DISPLAY_COMPRESSION_VDC }, { SDE_RM_TOPOLOGY_DUALPIPE_DSCMERGE, 2, 2, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_PPSPLIT, 1, 0, 2, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_QUADPIPE_3DMERGE, 4, 0, 2, 1, false, MSM_DISPLAY_COMPRESSION_NONE }, { SDE_RM_TOPOLOGY_QUADPIPE_3DMERGE_DSC, 4, 3, 2, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_QUADPIPE_DSCMERGE, 4, 4, 2, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, { SDE_RM_TOPOLOGY_QUADPIPE_DSC4HSMERGE, 4, 4, 1, 1, false, MSM_DISPLAY_COMPRESSION_DSC }, }; char sde_hw_blk_str[SDE_HW_BLK_MAX][SDE_HW_BLK_NAME_LEN] = { "top", "sspp", "lm", "dspp", "ds", "ctl", "cdm", "pingpong", "intf", "wb", "dsc", "vdc", "merge_3d", "qdss", "dnsc_blur" }; /** * struct sde_rm_requirements - Reservation requirements parameter bundle * @top_ctrl: topology control preference from kernel client * @top: selected topology for the display * @hw_res: Hardware resources required as reported by the encoders * @conn_lm_mask: preferred LM mask of cwb requested display */ struct sde_rm_requirements { uint64_t top_ctrl; const struct sde_rm_topology_def *topology; struct sde_encoder_hw_resources hw_res; u32 conn_lm_mask; }; /** * struct sde_rm_rsvp - Use Case Reservation tagging structure * Used to tag HW blocks as reserved by a CRTC->Encoder->Connector chain * By using as a tag, rather than lists of pointers to HW blocks used * we can avoid some list management since we don't know how many blocks * of each type a given use case may require. * @list: List head for list of all reservations * @seq: Global RSVP sequence number for debugging, especially for * differentiating differenct allocations for same encoder. * @enc_id: Reservations are tracked by Encoder DRM object ID. * CRTCs may be connected to multiple Encoders. * An encoder or connector id identifies the display path. * @topology: DRM<->HW topology use case * @pending: True for pending rsvp-nxt, cleared when the rsvp is committed */ struct sde_rm_rsvp { struct list_head list; uint32_t seq; uint32_t enc_id; enum sde_rm_topology_name topology; bool pending; }; /** * struct sde_rm_hw_blk - hardware block tracking list member * @list: List head for list of all hardware blocks tracking items * @rsvp: Pointer to use case reservation if reserved by a client * @rsvp_nxt: Temporary pointer used during reservation to the incoming * request. Will be swapped into rsvp if proposal is accepted * @type: Type of hardware block this structure tracks * @id: Hardware ID number, within it's own space, ie. LM_X * @catalog: Pointer to the hardware catalog entry for this block * @hw: Pointer to the hardware register access object for this block */ struct sde_rm_hw_blk { struct list_head list; struct sde_rm_rsvp *rsvp; struct sde_rm_rsvp *rsvp_nxt; enum sde_hw_blk_type type; uint32_t id; struct sde_hw_blk_reg_map *hw; }; /** * sde_rm_dbg_rsvp_stage - enum of steps in making reservation for event logging */ enum sde_rm_dbg_rsvp_stage { SDE_RM_STAGE_BEGIN, SDE_RM_STAGE_AFTER_CLEAR, SDE_RM_STAGE_AFTER_RSVPNEXT, SDE_RM_STAGE_FINAL }; static void _sde_rm_inc_resource_info_lm(struct sde_rm *rm, struct msm_resource_caps_info *avail_res, struct sde_rm_hw_blk *blk) { struct sde_rm_hw_blk *blk2; const struct sde_lm_cfg *lm_cfg, *lm_cfg2; lm_cfg = to_sde_hw_mixer(blk->hw)->cap; /* Do not track & expose dummy mixers */ if (lm_cfg->dummy_mixer) return; avail_res->num_lm++; /* Check for 3d muxes by comparing paired lms */ list_for_each_entry(blk2, &rm->hw_blks[SDE_HW_BLK_LM], list) { lm_cfg2 = to_sde_hw_mixer(blk2->hw)->cap; /* * If the paired lm is free, or is reserved by the same encoder * set the bit for the 3d mux associated with the lm * counting these set bits will give an accurate count of available 3dmux */ if ((!blk2->rsvp || (blk->rsvp && blk2->rsvp->enc_id == blk->rsvp->enc_id)) && test_bit(lm_cfg->id, &lm_cfg2->lm_pair_mask)) set_bit(lm_cfg->merge_3d, &avail_res->merge_3d_mask); } avail_res->num_3dmux = hweight_long(avail_res->merge_3d_mask); } static void _sde_rm_dec_resource_info_lm(struct sde_rm *rm, struct msm_resource_caps_info *avail_res, struct sde_rm_hw_blk *blk) { const struct sde_lm_cfg *lm_cfg; lm_cfg = to_sde_hw_mixer(blk->hw)->cap; /* Do not track & expose dummy mixers */ if (lm_cfg->dummy_mixer) return; avail_res->num_lm--; /* * Clear the bit for the 3d mux associated with the lm * counting these set bits will give an accurate count of available 3dmux */ clear_bit(lm_cfg->merge_3d, &avail_res->merge_3d_mask); avail_res->num_3dmux = hweight_long(avail_res->merge_3d_mask); } static void _sde_rm_inc_resource_info(struct sde_rm *rm, struct msm_resource_caps_info *avail_res, struct sde_rm_hw_blk *blk) { enum sde_hw_blk_type type = blk->type; if (type == SDE_HW_BLK_LM) _sde_rm_inc_resource_info_lm(rm, avail_res, blk); else if (type == SDE_HW_BLK_CTL) avail_res->num_ctl++; else if (type == SDE_HW_BLK_DSC) avail_res->num_dsc++; else if (type == SDE_HW_BLK_VDC) avail_res->num_vdc++; } static void _sde_rm_dec_resource_info(struct sde_rm *rm, struct msm_resource_caps_info *avail_res, struct sde_rm_hw_blk *blk) { enum sde_hw_blk_type type = blk->type; if (type == SDE_HW_BLK_LM) _sde_rm_dec_resource_info_lm(rm, avail_res, blk); else if (type == SDE_HW_BLK_CTL) avail_res->num_ctl--; else if (type == SDE_HW_BLK_DSC) avail_res->num_dsc--; else if (type == SDE_HW_BLK_VDC) avail_res->num_vdc--; } void sde_rm_get_resource_info(struct sde_rm *rm, struct drm_encoder *drm_enc, struct msm_resource_caps_info *avail_res) { struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; const struct sde_lm_cfg *lm_cfg; bool is_built_in, is_pref; u32 lm_pref = (BIT(SDE_DISP_PRIMARY_PREF) | BIT(SDE_DISP_SECONDARY_PREF)); mutex_lock(&rm->rm_lock); /* Get all currently available resources */ memcpy(avail_res, &rm->avail_res, sizeof(rm->avail_res)); /** * When the encoder is null, assume display is external in order to return the count of * availalbe non-preferred LMs */ if (!drm_enc) is_built_in = false; else is_built_in = sde_encoder_is_built_in_display(drm_enc); for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { /* Add back resources allocated to the given encoder */ if (blk->rsvp && drm_enc && blk->rsvp->enc_id == drm_enc->base.id) { _sde_rm_inc_resource_info(rm, avail_res, blk); if (type == SDE_HW_BLK_LM) avail_res->num_lm_in_use++; } /** * Remove unallocated preferred lms that cannot reserved * by non built-in displays. */ if (type == SDE_HW_BLK_LM) { lm_cfg = to_sde_hw_mixer(blk->hw)->cap; is_pref = lm_cfg->features & lm_pref; if (!blk->rsvp && !blk->rsvp_nxt && !is_built_in && is_pref) _sde_rm_dec_resource_info(rm, avail_res, blk); } } } mutex_unlock(&rm->rm_lock); } static void _sde_rm_print_rsvps( struct sde_rm *rm, enum sde_rm_dbg_rsvp_stage stage) { struct sde_rm_rsvp *rsvp; struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; SDE_DEBUG("%d\n", stage); list_for_each_entry(rsvp, &rm->rsvps, list) { SDE_DEBUG("%d rsvp%s[s%ue%u] topology %d\n", stage, rsvp->pending ? "_nxt" : "", rsvp->seq, rsvp->enc_id, rsvp->topology); SDE_EVT32(stage, rsvp->seq, rsvp->enc_id, rsvp->topology, rsvp->pending); } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (!blk->rsvp && !blk->rsvp_nxt) continue; SDE_DEBUG("%d rsvp[s%ue%u->s%ue%u] %d %d\n", stage, (blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type, blk->id); SDE_EVT32(stage, (blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type, blk->id); } } } static void _sde_rm_print_rsvps_by_type( struct sde_rm *rm, enum sde_hw_blk_type type) { struct sde_rm_hw_blk *blk; list_for_each_entry(blk, &rm->hw_blks[type], list) { if (!blk->rsvp && !blk->rsvp_nxt) continue; SDE_ERROR("rsvp[s%ue%u->s%ue%u] %d %d\n", (blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type, blk->id); SDE_EVT32((blk->rsvp) ? blk->rsvp->seq : 0, (blk->rsvp) ? blk->rsvp->enc_id : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->seq : 0, (blk->rsvp_nxt) ? blk->rsvp_nxt->enc_id : 0, blk->type, blk->id); } } struct sde_hw_mdp *sde_rm_get_mdp(struct sde_rm *rm) { return rm->hw_mdp; } void sde_rm_init_hw_iter( struct sde_rm_hw_iter *iter, uint32_t enc_id, enum sde_hw_blk_type type) { memset(iter, 0, sizeof(*iter)); iter->enc_id = enc_id; iter->type = type; } enum sde_rm_topology_name sde_rm_get_topology_name(struct sde_rm *rm, struct msm_display_topology topology) { int i; for (i = 0; i < SDE_RM_TOPOLOGY_MAX; i++) if (RM_IS_TOPOLOGY_MATCH(rm->topology_tbl[i], topology)) return rm->topology_tbl[i].top_name; return SDE_RM_TOPOLOGY_NONE; } static bool _sde_rm_get_hw_locked(struct sde_rm *rm, struct sde_rm_hw_iter *i, bool list_forward) { struct list_head *blk_list; if (!rm || !i || i->type >= SDE_HW_BLK_MAX) { SDE_ERROR("invalid rm\n"); return false; } i->hw = NULL; blk_list = &rm->hw_blks[i->type]; if (i->blk && (&i->blk->list == blk_list)) { SDE_DEBUG("attempt resume iteration past last\n"); return false; } i->blk = list_prepare_entry(i->blk, blk_list, list); if (list_forward) { list_for_each_entry_continue(i->blk, blk_list, list) { struct sde_rm_rsvp *rsvp = i->blk->rsvp; if (i->blk->type != i->type) { SDE_ERROR("found incorrect block type %d on %d list\n", i->blk->type, i->type); return false; } if ((i->enc_id == 0) || (rsvp && rsvp->enc_id == i->enc_id)) { i->hw = i->blk->hw; SDE_DEBUG("found type %d id %d for enc %d\n", i->type, i->blk->id, i->enc_id); return true; } } } else { list_for_each_entry_continue_reverse(i->blk, blk_list, list) { struct sde_rm_rsvp *rsvp = i->blk->rsvp; if (i->blk->type != i->type) { SDE_ERROR("found incorrect block type %d on %d list\n", i->blk->type, i->type); return false; } if ((i->enc_id == 0) || (rsvp && rsvp->enc_id == i->enc_id)) { i->hw = i->blk->hw; SDE_DEBUG("found type %d id %d for enc %d\n", i->type, i->blk->id, i->enc_id); return true; } } } SDE_DEBUG("no match, type %d for enc %d\n", i->type, i->enc_id); return false; } static bool _sde_rm_request_hw_blk_locked(struct sde_rm *rm, struct sde_rm_hw_request *hw_blk_info) { struct list_head *blk_list; struct sde_rm_hw_blk *blk = NULL; if (!rm || !hw_blk_info || hw_blk_info->type >= SDE_HW_BLK_MAX) { SDE_ERROR("invalid rm\n"); return false; } hw_blk_info->hw = NULL; blk_list = &rm->hw_blks[hw_blk_info->type]; blk = list_prepare_entry(blk, blk_list, list); list_for_each_entry_continue(blk, blk_list, list) { if (blk->type != hw_blk_info->type) { SDE_ERROR("found incorrect block type %d on %d list\n", blk->type, hw_blk_info->type); return false; } if (blk->id == hw_blk_info->id) { hw_blk_info->hw = blk->hw; SDE_DEBUG("found type %d id %d\n", blk->type, blk->id); return true; } } SDE_DEBUG("no match, type %d id %d\n", hw_blk_info->type, hw_blk_info->id); return false; } bool sde_rm_get_hw(struct sde_rm *rm, struct sde_rm_hw_iter *i) { bool ret; mutex_lock(&rm->rm_lock); ret = _sde_rm_get_hw_locked(rm, i, true); mutex_unlock(&rm->rm_lock); return ret; } bool sde_rm_request_hw_blk(struct sde_rm *rm, struct sde_rm_hw_request *hw) { bool ret; mutex_lock(&rm->rm_lock); ret = _sde_rm_request_hw_blk_locked(rm, hw); mutex_unlock(&rm->rm_lock); return ret; } static void _sde_rm_hw_destroy(enum sde_hw_blk_type type, struct sde_hw_blk_reg_map *hw) { switch (type) { case SDE_HW_BLK_LM: sde_hw_lm_destroy(hw); break; case SDE_HW_BLK_DSPP: sde_hw_dspp_destroy(hw); break; case SDE_HW_BLK_DS: sde_hw_ds_destroy(hw); break; case SDE_HW_BLK_CTL: sde_hw_ctl_destroy(hw); break; case SDE_HW_BLK_CDM: sde_hw_cdm_destroy(hw); break; case SDE_HW_BLK_PINGPONG: sde_hw_pingpong_destroy(hw); break; case SDE_HW_BLK_INTF: sde_hw_intf_destroy(hw); break; case SDE_HW_BLK_WB: sde_hw_wb_destroy(hw); break; case SDE_HW_BLK_DSC: sde_hw_dsc_destroy(hw); break; case SDE_HW_BLK_VDC: sde_hw_vdc_destroy(hw); break; case SDE_HW_BLK_QDSS: sde_hw_qdss_destroy(hw); break; case SDE_HW_BLK_DNSC_BLUR: sde_hw_dnsc_blur_destroy(hw); break; case SDE_HW_BLK_SSPP: /* SSPPs are not managed by the resource manager */ case SDE_HW_BLK_TOP: /* Top is a singleton, not managed in hw_blks list */ case SDE_HW_BLK_MAX: default: SDE_ERROR("unsupported block type %d\n", type); break; } } static void _deinit_hw_fences(struct sde_rm *rm) { struct sde_rm_hw_iter iter; sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_CTL); while (_sde_rm_get_hw_locked(rm, &iter, true)) { struct sde_hw_ctl *ctl = to_sde_hw_ctl(iter.blk->hw); sde_hw_fence_deinit(ctl); } } int sde_rm_destroy(struct sde_rm *rm) { struct sde_rm_rsvp *rsvp_cur, *rsvp_nxt; struct sde_rm_hw_blk *hw_cur, *hw_nxt; enum sde_hw_blk_type type; if (!rm) { SDE_ERROR("invalid rm\n"); return -EINVAL; } _deinit_hw_fences(rm); list_for_each_entry_safe(rsvp_cur, rsvp_nxt, &rm->rsvps, list) { list_del(&rsvp_cur->list); kfree(rsvp_cur); } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry_safe(hw_cur, hw_nxt, &rm->hw_blks[type], list) { list_del(&hw_cur->list); _sde_rm_hw_destroy(hw_cur->type, hw_cur->hw); kfree(hw_cur); } } sde_hw_mdp_destroy(rm->hw_mdp); rm->hw_mdp = NULL; mutex_destroy(&rm->rm_lock); return 0; } static int _sde_rm_hw_blk_create( struct sde_rm *rm, struct sde_mdss_cfg *cat, void __iomem *mmio, enum sde_hw_blk_type type, uint32_t id, void *hw_catalog_info) { int rc; struct sde_rm_hw_blk *blk; struct sde_hw_mdp *hw_mdp; struct sde_hw_blk_reg_map *hw; struct sde_kms *sde_kms = to_sde_kms(ddev_to_msm_kms(rm->dev)); struct sde_vbif_clk_client clk_client = {0}; hw_mdp = rm->hw_mdp; switch (type) { case SDE_HW_BLK_LM: hw = sde_hw_lm_init(id, mmio, cat); break; case SDE_HW_BLK_DSPP: hw = sde_hw_dspp_init(id, mmio, cat); break; case SDE_HW_BLK_DS: hw = sde_hw_ds_init(id, mmio, cat); break; case SDE_HW_BLK_CTL: hw = sde_hw_ctl_init(id, mmio, cat); break; case SDE_HW_BLK_CDM: hw = sde_hw_cdm_init(id, mmio, cat, hw_mdp); break; case SDE_HW_BLK_PINGPONG: hw = sde_hw_pingpong_init(id, mmio, cat); break; case SDE_HW_BLK_INTF: hw = sde_hw_intf_init(id, mmio, cat); break; case SDE_HW_BLK_WB: hw = sde_hw_wb_init(id, mmio, cat, hw_mdp, &clk_client); break; case SDE_HW_BLK_DSC: hw = sde_hw_dsc_init(id, mmio, cat); break; case SDE_HW_BLK_VDC: hw = sde_hw_vdc_init(id, mmio, cat); break; case SDE_HW_BLK_QDSS: hw = sde_hw_qdss_init(id, mmio, cat); break; case SDE_HW_BLK_DNSC_BLUR: hw = sde_hw_dnsc_blur_init(id, mmio, cat); break; case SDE_HW_BLK_SSPP: /* SSPPs are not managed by the resource manager */ case SDE_HW_BLK_TOP: /* Top is a singleton, not managed in hw_blks list */ case SDE_HW_BLK_MAX: default: SDE_ERROR("unsupported block type %d\n", type); return -EINVAL; } if (IS_ERR_OR_NULL(hw)) { SDE_ERROR("failed hw object creation: type %d, err %ld\n", type, PTR_ERR(hw)); return -EFAULT; } blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (!blk) { _sde_rm_hw_destroy(type, hw); return -ENOMEM; } blk->type = type; blk->id = id; blk->hw = hw; list_add_tail(&blk->list, &rm->hw_blks[type]); _sde_rm_inc_resource_info(rm, &rm->avail_res, blk); if (sde_kms && sde_kms->catalog && test_bit(SDE_FEATURE_VBIF_CLK_SPLIT, sde_kms->catalog->features) && SDE_CLK_CTRL_VALID(clk_client.clk_ctrl)) { rc = sde_vbif_clk_register(sde_kms, &clk_client); if (rc) { SDE_ERROR("failed to register vbif client %d\n", clk_client.clk_ctrl); return -EFAULT; } } return 0; } static int _init_hw_fences(struct sde_rm *rm, bool use_ipcc, struct sde_kms *sde_kms) { struct sde_rm_hw_iter iter; int ret = 0; sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_CTL); while (_sde_rm_get_hw_locked(rm, &iter, true)) { struct sde_hw_ctl *ctl = to_sde_hw_ctl(iter.blk->hw); if (sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE] && sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]->mmu) { if (sde_hw_fence_init(ctl, sde_kms, use_ipcc, sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]->mmu)) { SDE_DEBUG("failed to init hw_fence idx:%d\n", ctl->idx); ret = -EINVAL; break; } } else { SDE_DEBUG("failed to init hw_fence idx:%d, no aspace to map memory\n", ctl->idx); ret = -EINVAL; break; } SDE_DEBUG("init hw-fence for ctl %d", iter.blk->id); } if (ret) _deinit_hw_fences(rm); return ret; } static int _sde_rm_hw_blk_create_new(struct sde_rm *rm, struct sde_mdss_cfg *cat, void __iomem *mmio, struct sde_kms *sde_kms) { int i, rc = 0; for (i = 0; i < cat->dspp_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_DSPP, cat->dspp[i].id, &cat->dspp[i]); if (rc) { SDE_ERROR("failed: dspp hw not available\n"); goto fail; } } if (cat->mdp[0].has_dest_scaler) { for (i = 0; i < cat->ds_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_DS, cat->ds[i].id, &cat->ds[i]); if (rc) { SDE_ERROR("failed: ds hw not available\n"); goto fail; } } } for (i = 0; i < cat->pingpong_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_PINGPONG, cat->pingpong[i].id, &cat->pingpong[i]); if (rc) { SDE_ERROR("failed: pp hw not available\n"); goto fail; } } for (i = 0; i < cat->dsc_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_DSC, cat->dsc[i].id, &cat->dsc[i]); if (rc) { SDE_ERROR("failed: dsc hw not available\n"); goto fail; } } for (i = 0; i < cat->vdc_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_VDC, cat->vdc[i].id, &cat->vdc[i]); if (rc) { SDE_ERROR("failed: vdc hw not available\n"); goto fail; } } for (i = 0; i < cat->intf_count; i++) { if (cat->intf[i].type == INTF_NONE) { SDE_DEBUG("skip intf %d with type none\n", i); continue; } rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_INTF, cat->intf[i].id, &cat->intf[i]); if (rc) { SDE_ERROR("failed: intf hw not available\n"); goto fail; } } for (i = 0; i < cat->wb_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_WB, cat->wb[i].id, &cat->wb[i]); if (rc) { SDE_ERROR("failed: wb hw not available\n"); goto fail; } } for (i = 0; i < cat->ctl_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_CTL, cat->ctl[i].id, &cat->ctl[i]); if (rc) { SDE_ERROR("failed: ctl hw not available\n"); goto fail; } } if (cat->hw_fence_rev) { if (_init_hw_fences(rm, test_bit(SDE_FEATURE_HW_FENCE_IPCC, cat->features), sde_kms)) { SDE_INFO("failed to init hw-fences, disabling hw-fences\n"); cat->hw_fence_rev = 0; } } for (i = 0; i < cat->cdm_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_CDM, cat->cdm[i].id, &cat->cdm[i]); if (rc) { SDE_ERROR("failed: cdm hw not available\n"); goto fail; } } for (i = 0; i < cat->dnsc_blur_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_DNSC_BLUR, cat->dnsc_blur[i].id, &cat->dnsc_blur[i]); if (rc) { SDE_ERROR("failed: dnsc_blur hw not available\n"); goto fail; } } for (i = 0; i < cat->qdss_count; i++) { rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_QDSS, cat->qdss[i].id, &cat->qdss[i]); if (rc) { SDE_ERROR("failed: qdss hw not available\n"); goto fail; } } fail: return rc; } #if IS_ENABLED(CONFIG_DEBUG_FS) static int _sde_rm_status_show(struct seq_file *s, void *data) { struct sde_rm *rm; struct sde_rm_hw_blk *blk; u32 type, allocated, unallocated; if (!s || !s->private) return -EINVAL; rm = s->private; for (type = SDE_HW_BLK_LM; type < SDE_HW_BLK_MAX; type++) { allocated = 0; unallocated = 0; list_for_each_entry(blk, &rm->hw_blks[type], list) { if (!blk->rsvp && !blk->rsvp_nxt) unallocated++; else allocated++; } seq_printf(s, "type:%d blk:%s allocated:%d unallocated:%d\n", type, sde_hw_blk_str[type], allocated, unallocated); } return 0; } static int _sde_rm_debugfs_status_open(struct inode *inode, struct file *file) { return single_open(file, _sde_rm_status_show, inode->i_private); } void sde_rm_debugfs_init(struct sde_rm *sde_rm, struct dentry *parent) { static const struct file_operations debugfs_rm_status_fops = { .open = _sde_rm_debugfs_status_open, .read = seq_read, }; debugfs_create_file("rm_status", 0400, parent, sde_rm, &debugfs_rm_status_fops); } #else void sde_rm_debugfs_init(struct sde_rm *rm, struct dentry *parent) { } #endif /* CONFIG_DEBUG_FS */ int sde_rm_init(struct sde_rm *rm) { struct sde_kms *sde_kms = container_of(rm, struct sde_kms, rm); struct sde_mdss_cfg *cat = sde_kms->catalog; void __iomem *mmio = sde_kms->mmio; struct drm_device *dev = sde_kms->dev; int i, rc = 0; enum sde_hw_blk_type type; if (!rm || !cat || !mmio || !dev) { SDE_ERROR("invalid input params\n"); return -EINVAL; } /* Clear, setup lists */ memset(rm, 0, sizeof(*rm)); mutex_init(&rm->rm_lock); INIT_LIST_HEAD(&rm->rsvps); for (type = 0; type < SDE_HW_BLK_MAX; type++) INIT_LIST_HEAD(&rm->hw_blks[type]); rm->dev = dev; if (IS_SDE_CTL_REV_100(cat->ctl_rev)) rm->topology_tbl = g_top_table_v1; else rm->topology_tbl = g_top_table; /* Some of the sub-blocks require an mdptop to be created */ rm->hw_mdp = sde_hw_mdptop_init(MDP_TOP, mmio, cat); if (IS_ERR_OR_NULL(rm->hw_mdp)) { rc = PTR_ERR(rm->hw_mdp); rm->hw_mdp = NULL; SDE_ERROR("failed: mdp hw not available\n"); goto fail; } /* Interrogate HW catalog and create tracking items for hw blocks */ for (i = 0; i < cat->mixer_count; i++) { struct sde_lm_cfg *lm = &cat->mixer[i]; if (lm->pingpong == PINGPONG_MAX) { SDE_ERROR("mixer %d without pingpong\n", lm->id); goto fail; } rc = _sde_rm_hw_blk_create(rm, cat, mmio, SDE_HW_BLK_LM, cat->mixer[i].id, &cat->mixer[i]); if (rc) { SDE_ERROR("failed: lm hw not available\n"); goto fail; } if (!rm->lm_max_width) { rm->lm_max_width = lm->sblk->maxwidth; } else if (rm->lm_max_width != lm->sblk->maxwidth) { /* * Don't expect to have hw where lm max widths differ. * If found, take the min. */ SDE_ERROR("unsupported: lm maxwidth differs\n"); if (rm->lm_max_width > lm->sblk->maxwidth) rm->lm_max_width = lm->sblk->maxwidth; } } rc = _sde_rm_hw_blk_create_new(rm, cat, mmio, sde_kms); if (!rc) return 0; fail: sde_rm_destroy(rm); return rc; } static bool _sde_rm_check_lm( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, const struct sde_lm_cfg *lm_cfg, struct sde_rm_hw_blk *lm, struct sde_rm_hw_blk **dspp, struct sde_rm_hw_blk **ds, struct sde_rm_hw_blk **pp) { bool is_valid_dspp, is_valid_ds, ret = true; is_valid_dspp = (lm_cfg->dspp != DSPP_MAX) ? true : false; is_valid_ds = (lm_cfg->ds != DS_MAX) ? true : false; /** * RM_RQ_X: specification of which LMs to choose * is_valid_X: indicates whether LM is tied with block X * ret: true if given LM matches the user requirement, * false otherwise */ if (RM_RQ_DSPP(reqs) && RM_RQ_DS(reqs)) ret = (is_valid_dspp && is_valid_ds); else if (RM_RQ_DSPP(reqs)) ret = is_valid_dspp; else if (RM_RQ_DS(reqs)) ret = is_valid_ds; if (!ret) { SDE_DEBUG( "fail:lm(%d)req_dspp(%d)dspp(%d)req_ds(%d)ds(%d)\n", lm_cfg->id, (bool)(RM_RQ_DSPP(reqs)), lm_cfg->dspp, (bool)(RM_RQ_DS(reqs)), lm_cfg->ds); return ret; } return true; } static bool _sde_rm_reserve_dspp( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, const struct sde_lm_cfg *lm_cfg, struct sde_rm_hw_blk *lm, struct sde_rm_hw_blk **dspp) { struct sde_rm_hw_iter iter; if (lm_cfg->dspp != DSPP_MAX) { sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_DSPP); while (_sde_rm_get_hw_locked(rm, &iter, true)) { if (iter.blk->id == lm_cfg->dspp) { *dspp = iter.blk; break; } } if (!*dspp) { SDE_DEBUG("lm %d failed to retrieve dspp %d\n", lm->id, lm_cfg->dspp); return false; } if (RESERVED_BY_OTHER(*dspp, rsvp)) { SDE_DEBUG("lm %d dspp %d already reserved\n", lm->id, (*dspp)->id); return false; } } return true; } static bool _sde_rm_reserve_ds( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, const struct sde_lm_cfg *lm_cfg, struct sde_rm_hw_blk *lm, struct sde_rm_hw_blk **ds) { struct sde_rm_hw_iter iter; if (lm_cfg->ds != DS_MAX) { sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_DS); while (_sde_rm_get_hw_locked(rm, &iter, true)) { if (iter.blk->id == lm_cfg->ds) { *ds = iter.blk; break; } } if (!*ds) { SDE_DEBUG("lm %d failed to retrieve ds %d\n", lm->id, lm_cfg->ds); return false; } if (RESERVED_BY_OTHER(*ds, rsvp)) { SDE_DEBUG("lm %d ds %d already reserved\n", lm->id, (*ds)->id); return false; } } return true; } static bool _sde_rm_reserve_pp( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, const struct sde_lm_cfg *lm_cfg, const struct sde_pingpong_cfg *pp_cfg, struct sde_rm_hw_blk *lm, struct sde_rm_hw_blk **dspp, struct sde_rm_hw_blk **ds, struct sde_rm_hw_blk **pp) { struct sde_rm_hw_iter iter; sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_PINGPONG); while (_sde_rm_get_hw_locked(rm, &iter, true)) { if (iter.blk->id == lm_cfg->pingpong) { *pp = iter.blk; break; } } if (!*pp) { SDE_ERROR("failed to get pp on lm %d\n", lm_cfg->pingpong); return false; } if (RESERVED_BY_OTHER(*pp, rsvp)) { SDE_DEBUG("lm %d pp %d already reserved\n", lm->id, (*pp)->id); *dspp = NULL; *ds = NULL; return false; } pp_cfg = to_sde_hw_pingpong((*pp)->hw)->caps; if ((reqs->topology->top_name == SDE_RM_TOPOLOGY_PPSPLIT) && !(test_bit(SDE_PINGPONG_SPLIT, &pp_cfg->features))) { SDE_DEBUG("pp %d doesn't support ppsplit\n", pp_cfg->id); *dspp = NULL; *ds = NULL; return false; } return true; } /** * _sde_rm_check_lm_and_get_connected_blks - check if proposed layer mixer meets * proposed use case requirements, incl. hardwired dependent blocks like * pingpong, and dspp. * @rm: sde resource manager handle * @rsvp: reservation currently being created * @reqs: proposed use case requirements * @lm: proposed layer mixer, function checks if lm, and all other hardwired * blocks connected to the lm (pp, dspp) are available and appropriate * @dspp: output parameter, dspp block attached to the layer mixer. * NULL if dspp was not available, or not matching requirements. * @pp: output parameter, pingpong block attached to the layer mixer. * NULL if dspp was not available, or not matching requirements. * @primary_lm: if non-null, this function check if lm is compatible primary_lm * as well as satisfying all other requirements * @Return: true if lm matches all requirements, false otherwise */ static bool _sde_rm_check_lm_and_get_connected_blks( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_rm_hw_blk *lm, struct sde_rm_hw_blk **dspp, struct sde_rm_hw_blk **ds, struct sde_rm_hw_blk **pp, struct sde_rm_hw_blk *primary_lm, u32 conn_lm_mask) { const struct sde_lm_cfg *lm_cfg = to_sde_hw_mixer(lm->hw)->cap; const struct sde_pingpong_cfg *pp_cfg; bool ret, is_conn_primary, is_conn_secondary; u32 lm_primary_pref, lm_secondary_pref, cwb_pref, dcwb_pref; *dspp = NULL; *ds = NULL; *pp = NULL; if (lm_cfg->features & BIT(SDE_MIXER_IS_VIRTUAL)) { SDE_DEBUG("lm %d hw block is removed and it is a virtual mixer", lm_cfg->id); return false; } lm_primary_pref = lm_cfg->features & BIT(SDE_DISP_PRIMARY_PREF); lm_secondary_pref = lm_cfg->features & BIT(SDE_DISP_SECONDARY_PREF); cwb_pref = lm_cfg->features & BIT(SDE_DISP_CWB_PREF); dcwb_pref = lm_cfg->features & BIT(SDE_DISP_DCWB_PREF); is_conn_primary = (reqs->hw_res.display_type == SDE_CONNECTOR_PRIMARY) ? true : false; is_conn_secondary = (reqs->hw_res.display_type == SDE_CONNECTOR_SECONDARY) ? true : false; SDE_DEBUG("check lm %d: dspp %d ds %d pp %d features %ld disp type %d\n", lm_cfg->id, lm_cfg->dspp, lm_cfg->ds, lm_cfg->pingpong, lm_cfg->features, (int)reqs->hw_res.display_type); /* Check if this layer mixer is a peer of the proposed primary LM */ if (primary_lm) { const struct sde_lm_cfg *prim_lm_cfg = to_sde_hw_mixer(primary_lm->hw)->cap; if (!test_bit(lm_cfg->id, &prim_lm_cfg->lm_pair_mask)) { SDE_DEBUG("lm %d not peer of lm %d\n", lm_cfg->id, prim_lm_cfg->id); return false; } } /* bypass rest of the checks if LM for primary display is found */ if (!lm_primary_pref && !lm_secondary_pref) { /* Check lm for valid requirements */ ret = _sde_rm_check_lm(rm, rsvp, reqs, lm_cfg, lm, dspp, ds, pp); if (!ret) return ret; /** * If CWB is enabled and LM is not CWB supported * then return false. */ if ((RM_RQ_CWB(reqs) && !cwb_pref) || (RM_RQ_DCWB(reqs) && !dcwb_pref)) { SDE_DEBUG("fail: cwb/dcwb supported lm not allocated\n"); return false; } else if (!RM_RQ_DCWB(reqs) && dcwb_pref) { SDE_DEBUG("fail: dcwb supported dummy lm incorrectly allocated\n"); return false; } else if (RM_RQ_DCWB(reqs) && dcwb_pref && conn_lm_mask && ((ffs(conn_lm_mask) % 2) == ((lm_cfg->id + 1) % 2))) { SDE_DEBUG("fail: dcwb:%d trying to match lm:%d\n", lm_cfg->id, ffs(conn_lm_mask)); return false; } } else if ((!is_conn_primary && lm_primary_pref) || (!is_conn_secondary && lm_secondary_pref)) { SDE_DEBUG( "display preference is not met. display_type: %d lm_features: %lx\n", (int)reqs->hw_res.display_type, lm_cfg->features); return false; } /* Already reserved? */ if (RESERVED_BY_OTHER(lm, rsvp)) { SDE_DEBUG("lm %d already reserved\n", lm_cfg->id); return false; } /* Reserve dspp */ ret = _sde_rm_reserve_dspp(rm, rsvp, lm_cfg, lm, dspp); if (!ret) return ret; /* Reserve ds */ ret = _sde_rm_reserve_ds(rm, rsvp, lm_cfg, lm, ds); if (!ret) return ret; /* Reserve pp */ ret = _sde_rm_reserve_pp(rm, rsvp, reqs, lm_cfg, pp_cfg, lm, dspp, ds, pp); if (!ret) return ret; return true; } static int _sde_rm_reserve_lms( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, u8 *_lm_ids) { struct sde_rm_hw_blk *lm[MAX_BLOCKS]; struct sde_rm_hw_blk *dspp[MAX_BLOCKS]; struct sde_rm_hw_blk *ds[MAX_BLOCKS]; struct sde_rm_hw_blk *pp[MAX_BLOCKS]; struct sde_rm_hw_iter iter_i, iter_j; u32 lm_mask = 0, conn_lm_mask = 0; int lm_count = 0; int i, rc = 0; if (!reqs->topology->num_lm) { SDE_DEBUG("invalid number of lm: %d\n", reqs->topology->num_lm); return 0; } if (RM_RQ_DCWB(reqs)) conn_lm_mask = reqs->conn_lm_mask; /* Find a primary mixer */ sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_LM); while (lm_count != reqs->topology->num_lm && _sde_rm_get_hw_locked(rm, &iter_i, true)) { if (lm_mask & (1 << iter_i.blk->id)) continue; lm[lm_count] = iter_i.blk; dspp[lm_count] = NULL; ds[lm_count] = NULL; pp[lm_count] = NULL; SDE_DEBUG("blk id = %d, _lm_ids[%d] = %d\n", iter_i.blk->id, lm_count, _lm_ids ? _lm_ids[lm_count] : -1); if (_lm_ids && (lm[lm_count])->id != _lm_ids[lm_count]) continue; if (!_sde_rm_check_lm_and_get_connected_blks( rm, rsvp, reqs, lm[lm_count], &dspp[lm_count], &ds[lm_count], &pp[lm_count], NULL, conn_lm_mask)) continue; lm_mask |= (1 << iter_i.blk->id); ++lm_count; /* Return if peer is not needed */ if (lm_count == reqs->topology->num_lm) break; if (RM_RQ_DCWB(reqs)) conn_lm_mask = conn_lm_mask & ~BIT(ffs(conn_lm_mask) - 1); /* Valid primary mixer found, find matching peers */ sde_rm_init_hw_iter(&iter_j, 0, SDE_HW_BLK_LM); while (_sde_rm_get_hw_locked(rm, &iter_j, true)) { if (lm_mask & (1 << iter_j.blk->id)) continue; lm[lm_count] = iter_j.blk; dspp[lm_count] = NULL; ds[lm_count] = NULL; pp[lm_count] = NULL; if (!_sde_rm_check_lm_and_get_connected_blks( rm, rsvp, reqs, iter_j.blk, &dspp[lm_count], &ds[lm_count], &pp[lm_count], iter_i.blk, conn_lm_mask)) continue; SDE_DEBUG("blk id = %d, _lm_ids[%d] = %d\n", iter_j.blk->id, lm_count, _lm_ids ? _lm_ids[lm_count] : -1); if (_lm_ids && (lm[lm_count])->id != _lm_ids[lm_count]) continue; lm_mask |= (1 << iter_j.blk->id); ++lm_count; if (RM_RQ_DCWB(reqs)) conn_lm_mask = conn_lm_mask & ~BIT(ffs(conn_lm_mask) - 1); break; } /* Rollback primary LM if peer is not found */ if (!iter_j.hw) { lm_mask &= ~(1 << iter_i.blk->id); --lm_count; } } if (lm_count != reqs->topology->num_lm) { SDE_DEBUG("unable to find appropriate mixers\n"); return -ENAVAIL; } for (i = 0; i < lm_count; i++) { lm[i]->rsvp_nxt = rsvp; pp[i]->rsvp_nxt = rsvp; if (dspp[i]) dspp[i]->rsvp_nxt = rsvp; if (ds[i]) ds[i]->rsvp_nxt = rsvp; SDE_EVT32(lm[i]->type, rsvp->enc_id, lm[i]->id, pp[i]->id, dspp[i] ? dspp[i]->id : 0, ds[i] ? ds[i]->id : 0); } if (reqs->topology->top_name == SDE_RM_TOPOLOGY_PPSPLIT) { /* reserve a free PINGPONG_SLAVE block */ rc = -ENAVAIL; sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_PINGPONG); while (_sde_rm_get_hw_locked(rm, &iter_i, true)) { const struct sde_hw_pingpong *pp = to_sde_hw_pingpong(iter_i.blk->hw); const struct sde_pingpong_cfg *pp_cfg = pp->caps; if (!(test_bit(SDE_PINGPONG_SLAVE, &pp_cfg->features))) continue; if (RESERVED_BY_OTHER(iter_i.blk, rsvp)) continue; iter_i.blk->rsvp_nxt = rsvp; rc = 0; break; } } return rc; } static int _sde_rm_reserve_ctls( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, const struct sde_rm_topology_def *top, u8 *_ctl_ids) { struct sde_rm_hw_blk *ctls[MAX_BLOCKS]; struct sde_rm_hw_iter iter, curr; int i = 0; if (!top->num_ctl) { SDE_DEBUG("invalid number of ctl: %d\n", top->num_ctl); return 0; } memset(&ctls, 0, sizeof(ctls)); sde_rm_init_hw_iter(&curr, rsvp->enc_id, SDE_HW_BLK_CTL); sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_CTL); while (_sde_rm_get_hw_locked(rm, &iter, true)) { const struct sde_hw_ctl *ctl = to_sde_hw_ctl(iter.blk->hw); unsigned long features = ctl->caps->features; bool has_split_display, has_ppsplit, primary_pref; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; has_split_display = BIT(SDE_CTL_SPLIT_DISPLAY) & features; has_ppsplit = BIT(SDE_CTL_PINGPONG_SPLIT) & features; primary_pref = BIT(SDE_CTL_PRIMARY_PREF) & features; SDE_DEBUG("ctl %d caps 0x%lX\n", iter.blk->id, features); /* * bypass rest feature checks on finding CTL preferred * for primary displays. */ if (!primary_pref && !_ctl_ids) { if (top->needs_split_display != has_split_display) continue; if (top->top_name == SDE_RM_TOPOLOGY_PPSPLIT && !has_ppsplit) continue; } else if (!(reqs->hw_res.display_type == SDE_CONNECTOR_PRIMARY && primary_pref) && !_ctl_ids) { SDE_DEBUG( "display pref not met. display_type: %d primary_pref: %d\n", reqs->hw_res.display_type, primary_pref); continue; } if (_sde_rm_get_hw_locked(rm, &curr, true) && (curr.blk->id != iter.blk->id)) { SDE_EVT32(curr.blk->id, iter.blk->id, SDE_EVTLOG_FUNC_CASE1); SDE_DEBUG("ctl in use:%d avoiding new:%d\n", curr.blk->id, iter.blk->id); continue; } ctls[i] = iter.blk; SDE_DEBUG("blk id = %d, _ctl_ids[%d] = %d\n", iter.blk->id, i, _ctl_ids ? _ctl_ids[i] : -1); if (_ctl_ids && (ctls[i]->id != _ctl_ids[i])) continue; SDE_DEBUG("ctl %d match\n", iter.blk->id); if (++i == top->num_ctl) break; } if (i != top->num_ctl) return -ENAVAIL; for (i = 0; i < ARRAY_SIZE(ctls) && i < top->num_ctl; i++) { ctls[i]->rsvp_nxt = rsvp; SDE_EVT32(ctls[i]->type, rsvp->enc_id, ctls[i]->id); } return 0; } static bool _sde_rm_check_dsc(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_hw_blk *dsc, struct sde_rm_hw_blk *paired_dsc, struct sde_rm_hw_blk *pp_blk, int num_dsc_enc, uint32_t un_paired_dsc_id) { const struct sde_dsc_cfg *dsc_cfg = to_sde_hw_dsc(dsc->hw)->caps; /* Already reserved? */ if (RESERVED_BY_OTHER(dsc, rsvp)) { SDE_DEBUG("dsc %d already reserved\n", dsc_cfg->id); return false; } /** * This check is required for routing even numbered DSC * blks to any of the even numbered PP blks and odd numbered * DSC blks to any of the odd numbered PP blks. */ if (!pp_blk || !IS_COMPATIBLE_PP_DSC(pp_blk->id, dsc->id)) { SDE_DEBUG("dsc %d can't match of pp %d\n", dsc_cfg->id, pp_blk ? pp_blk->id : -1); return false; } /* Check if this dsc is a peer of the proposed paired DSC */ if (paired_dsc) { const struct sde_dsc_cfg *paired_dsc_cfg = to_sde_hw_dsc(paired_dsc->hw)->caps; if (!test_bit(dsc_cfg->id, paired_dsc_cfg->dsc_pair_mask)) { SDE_DEBUG("dsc %d not peer of dsc %d\n", dsc_cfg->id, paired_dsc_cfg->id); return false; } } else { /** * For topologies, where there is a single DSC requirement, * Try to allocate unpaired DSCs first such that, pairable * DSCs are available for other displays. */ if (num_dsc_enc == 1 && un_paired_dsc_id > 0 && un_paired_dsc_id != dsc->id && IS_COMPATIBLE_PP_DSC(pp_blk->id, un_paired_dsc_id)) { SDE_DEBUG("number of dsc %d, dsc %d can't match of pp %d\n", num_dsc_enc, un_paired_dsc_id, pp_blk ? pp_blk->id : -1); return false; } } return true; } static bool _sde_rm_check_vdc(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_hw_blk *vdc) { const struct sde_vdc_cfg *vdc_cfg = to_sde_hw_vdc(vdc->hw)->caps; /* Already reserved? */ if (RESERVED_BY_OTHER(vdc, rsvp)) { SDE_DEBUG("vdc %d already reserved\n", vdc_cfg->id); return false; } return true; } static void sde_rm_get_rsvp_nxt_hw_blks( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, int type, struct sde_rm_hw_blk **blk_arr, bool list_forward) { struct sde_rm_hw_blk *blk; int i = 0; if (list_forward) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp_nxt && blk->rsvp_nxt->seq == rsvp->seq) blk_arr[i++] = blk; } } else { list_for_each_entry_reverse(blk, &rm->hw_blks[type], list) { if (blk->rsvp_nxt && blk->rsvp_nxt->seq == rsvp->seq) blk_arr[i++] = blk; } } } static uint32_t _sde_rm_reserve_un_paired_dsc( struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_rm *rm) { const struct sde_dsc_cfg *dsc_cfg; struct sde_rm_hw_iter iter_i; if (reqs->topology->num_comp_enc != 1) return 0; sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_DSC); while (_sde_rm_get_hw_locked(rm, &iter_i, true)) { dsc_cfg = to_sde_hw_dsc(iter_i.blk->hw)->caps; if (RESERVED_BY_OTHER(iter_i.blk, rsvp)) continue; if (!dsc_cfg->dsc_pair_mask[0]) return iter_i.blk->id; } return 0; } static int _sde_rm_reserve_dsc( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, u8 *_dsc_ids) { struct sde_rm_hw_iter iter_i, iter_j; struct sde_rm_hw_blk *dsc[MAX_BLOCKS]; u32 reserve_mask = 0, un_paired_dsc_id; struct sde_rm_hw_blk *pp[MAX_BLOCKS]; int alloc_count = 0; int num_dsc_enc; struct msm_display_dsc_info *dsc_info; bool list_forward = false; struct drm_encoder *encoder; int i; if (reqs->hw_res.comp_info->comp_type != MSM_DISPLAY_COMPRESSION_DSC) { SDE_DEBUG("compression blk dsc not required\n"); return 0; } num_dsc_enc = reqs->topology->num_comp_enc; dsc_info = &reqs->hw_res.comp_info->dsc_info; if ((!num_dsc_enc) || !dsc_info) { SDE_DEBUG("invalid topoplogy params: %d, %d\n", num_dsc_enc, !(dsc_info == NULL)); return 0; } sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_DSC); drm_for_each_encoder(encoder, rm->dev) { /* backwards allocate DSC modules for non built-in case */ if (encoder->base.id == rsvp ->enc_id) list_forward = sde_encoder_is_dsi_display(encoder); } un_paired_dsc_id = _sde_rm_reserve_un_paired_dsc(rsvp, reqs, rm); sde_rm_get_rsvp_nxt_hw_blks(rm, rsvp, SDE_HW_BLK_PINGPONG, pp, list_forward); /* Find a first DSC */ while (alloc_count != num_dsc_enc && _sde_rm_get_hw_locked(rm, &iter_i, list_forward)) { int req_index = list_forward ? alloc_count : (num_dsc_enc - alloc_count - 1); const struct sde_hw_dsc *hw_dsc = to_sde_hw_dsc(iter_i.blk->hw); unsigned long features = hw_dsc->caps->features; bool has_422_420_support = BIT(SDE_DSC_NATIVE_422_EN) & features; if (reserve_mask & (1 << iter_i.blk->id)) continue; if (_dsc_ids && (iter_i.blk->id != _dsc_ids[req_index])) continue; /* if this hw block does not support required feature */ if (!_dsc_ids && (dsc_info->config.native_422 || dsc_info->config.native_420) && !has_422_420_support) continue; if (!_sde_rm_check_dsc(rm, rsvp, iter_i.blk, NULL, pp[alloc_count], num_dsc_enc, un_paired_dsc_id)) continue; SDE_DEBUG("blk id = %d, _dsc_ids[%d] = %d\n", iter_i.blk->id, alloc_count, _dsc_ids ? _dsc_ids[req_index] : -1); /* reset and restart from current block if allocated dsc blocks are not contiguous */ if (alloc_count >= 1 && (abs(dsc[alloc_count - 1]->id - iter_i.blk->id) != 1)) { reserve_mask = 0; alloc_count = 0; } reserve_mask |= (1 << iter_i.blk->id); dsc[alloc_count++] = iter_i.blk; /* Return if peer is not needed */ if (alloc_count == num_dsc_enc) break; /* Valid first dsc found, find matching peers */ sde_rm_init_hw_iter(&iter_j, 0, SDE_HW_BLK_DSC); while (_sde_rm_get_hw_locked(rm, &iter_j, list_forward)) { req_index = list_forward ? alloc_count : (num_dsc_enc - alloc_count - 1); if (reserve_mask & (1 << iter_j.blk->id)) continue; if (_dsc_ids && (iter_j.blk->id != _dsc_ids[req_index])) continue; if (!_sde_rm_check_dsc(rm, rsvp, iter_j.blk, iter_i.blk, pp[alloc_count], num_dsc_enc, 0)) continue; SDE_DEBUG("blk id = %d, _dsc_ids[%d] = %d\n", iter_j.blk->id, alloc_count, _dsc_ids ? _dsc_ids[req_index] : -1); reserve_mask |= (1 << iter_j.blk->id); dsc[alloc_count++] = iter_j.blk; break; } /* Rollback primary DSC if peer is not found */ if (!iter_j.hw) { reserve_mask &= ~(1 << iter_i.blk->id); --alloc_count; } } if (alloc_count != num_dsc_enc) { SDE_ERROR("couldn't reserve %d dsc blocks for enc id %d\n", num_dsc_enc, rsvp->enc_id); return -EINVAL; } for (i = 0; i < alloc_count; i++) { if (!dsc[i]) break; dsc[i]->rsvp_nxt = rsvp; SDE_EVT32(dsc[i]->type, rsvp->enc_id, dsc[i]->id); } return 0; } static int _sde_rm_reserve_vdc( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, const struct sde_rm_topology_def *top, u8 *_vdc_ids) { struct sde_rm_hw_iter iter_i; struct sde_rm_hw_blk *vdc[MAX_BLOCKS]; int alloc_count = 0; int num_vdc_enc = top->num_comp_enc; int i; if (!top->num_comp_enc) return 0; if (reqs->hw_res.comp_info->comp_type != MSM_DISPLAY_COMPRESSION_VDC) return 0; sde_rm_init_hw_iter(&iter_i, 0, SDE_HW_BLK_VDC); /* Find a VDC */ while (alloc_count != num_vdc_enc && _sde_rm_get_hw_locked(rm, &iter_i, true)) { memset(&vdc, 0, sizeof(vdc)); alloc_count = 0; if (_vdc_ids && (iter_i.blk->id != _vdc_ids[alloc_count])) continue; if (!_sde_rm_check_vdc(rm, rsvp, iter_i.blk)) continue; SDE_DEBUG("blk id = %d, _vdc_ids[%d] = %d\n", iter_i.blk->id, alloc_count, _vdc_ids ? _vdc_ids[alloc_count] : -1); vdc[alloc_count++] = iter_i.blk; } if (alloc_count != num_vdc_enc) { SDE_ERROR("couldn't reserve %d vdc blocks for enc id %d\n", num_vdc_enc, rsvp->enc_id); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(vdc); i++) { if (!vdc[i]) break; vdc[i]->rsvp_nxt = rsvp; SDE_EVT32(vdc[i]->type, rsvp->enc_id, vdc[i]->id); } return 0; } static int _sde_rm_reserve_qdss( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, const struct sde_rm_topology_def *top, u8 *_qdss_ids) { struct sde_rm_hw_iter iter; struct msm_drm_private *priv = rm->dev->dev_private; struct sde_kms *sde_kms; if (!priv->kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } sde_kms = to_sde_kms(priv->kms); sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_QDSS); while (_sde_rm_get_hw_locked(rm, &iter, true)) { if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; SDE_DEBUG("blk id = %d\n", iter.blk->id); iter.blk->rsvp_nxt = rsvp; SDE_EVT32(iter.blk->type, rsvp->enc_id, iter.blk->id); return 0; } if (!iter.hw && sde_kms->catalog->qdss_count) { SDE_DEBUG("couldn't reserve qdss for type %d id %d\n", SDE_HW_BLK_QDSS, iter.blk->id); return -ENAVAIL; } return 0; } static int _sde_rm_reserve_dnsc_blur(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, uint32_t id, enum sde_hw_blk_type type) { struct sde_rm_hw_iter iter; sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_DNSC_BLUR); while (_sde_rm_get_hw_locked(rm, &iter, true)) { struct sde_hw_dnsc_blur *dnsc_blur = to_sde_hw_dnsc_blur(iter.blk->hw); bool match = false; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; if ((type == SDE_HW_BLK_WB) && (id != WB_MAX)) match = test_bit(id, &dnsc_blur->caps->wb_connect); SDE_DEBUG("type %d id %d, dnsc_blur wbs %lu match %d\n", type, id, dnsc_blur->caps->wb_connect, match); if (!match) continue; iter.blk->rsvp_nxt = rsvp; SDE_EVT32(iter.blk->type, rsvp->enc_id, iter.blk->id); break; } if (!iter.hw) { SDE_ERROR("couldn't reserve dnsc_blur for type %d id %d\n", type, id); return -ENAVAIL; } return 0; } static int _sde_rm_reserve_cdm( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, uint32_t id, enum sde_hw_blk_type type) { struct sde_rm_hw_iter iter; sde_rm_init_hw_iter(&iter, 0, SDE_HW_BLK_CDM); while (_sde_rm_get_hw_locked(rm, &iter, true)) { const struct sde_hw_cdm *cdm = to_sde_hw_cdm(iter.blk->hw); const struct sde_cdm_cfg *caps = cdm->caps; bool match = false; if (RESERVED_BY_OTHER(iter.blk, rsvp)) continue; if (type == SDE_HW_BLK_INTF && id != INTF_MAX) match = test_bit(id, &caps->intf_connect); else if (type == SDE_HW_BLK_WB && id != WB_MAX) match = test_bit(id, &caps->wb_connect); SDE_DEBUG("type %d id %d, cdm intfs %lu wbs %lu match %d\n", type, id, caps->intf_connect, caps->wb_connect, match); if (!match) continue; iter.blk->rsvp_nxt = rsvp; SDE_EVT32(iter.blk->type, rsvp->enc_id, iter.blk->id); break; } if (!iter.hw) { SDE_ERROR("couldn't reserve cdm for type %d id %d\n", type, id); return -ENAVAIL; } return 0; } static int _sde_rm_reserve_intf_or_wb(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, uint32_t id, enum sde_hw_blk_type type, struct sde_rm_requirements *reqs) { struct sde_encoder_hw_resources *hw_res = &reqs->hw_res; struct sde_rm_hw_iter iter; int ret = 0; /* Find the block entry in the rm, and note the reservation */ sde_rm_init_hw_iter(&iter, 0, type); while (_sde_rm_get_hw_locked(rm, &iter, true)) { if (iter.blk->id != id) continue; if (RESERVED_BY_OTHER(iter.blk, rsvp)) { SDE_ERROR("type %d id %d already reserved\n", type, id); return -ENAVAIL; } iter.blk->rsvp_nxt = rsvp; SDE_EVT32(iter.blk->type, rsvp->enc_id, iter.blk->id); break; } /* Shouldn't happen since wbs / intfs are fixed at probe */ if (!iter.hw) { SDE_ERROR("couldn't find type %d id %d\n", type, id); return -EINVAL; } /* Expected only one intf or wb will request cdm */ if (hw_res->needs_cdm || RM_RQ_CDM(reqs)) { ret = _sde_rm_reserve_cdm(rm, rsvp, id, type); if (ret) return ret; } if (RM_RQ_DNSC_BLUR(reqs)) ret = _sde_rm_reserve_dnsc_blur(rm, rsvp, id, type); return ret; } static int _sde_rm_reserve_intf_related_hw(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs) { struct sde_encoder_hw_resources *hw_res = &reqs->hw_res; int i, ret = 0; u32 id; for (i = 0; i < ARRAY_SIZE(hw_res->intfs); i++) { if (hw_res->intfs[i] == INTF_MODE_NONE) continue; id = i + INTF_0; ret = _sde_rm_reserve_intf_or_wb(rm, rsvp, id, SDE_HW_BLK_INTF, reqs); if (ret) return ret; } for (i = 0; i < ARRAY_SIZE(hw_res->wbs); i++) { if (hw_res->wbs[i] == INTF_MODE_NONE) continue; id = i + WB_0; ret = _sde_rm_reserve_intf_or_wb(rm, rsvp, id, SDE_HW_BLK_WB, reqs); if (ret) return ret; } return ret; } static bool _sde_rm_is_display_in_cont_splash(struct sde_kms *sde_kms, struct drm_encoder *enc) { int i; struct sde_splash_display *splash_dpy; for (i = 0; i < MAX_DSI_DISPLAYS; i++) { splash_dpy = &sde_kms->splash_data.splash_display[i]; if (splash_dpy->encoder == enc) return splash_dpy->cont_splash_enabled; } return false; } static int _sde_rm_make_lm_rsvp(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_splash_display *splash_display) { int ret, i; u8 *hw_ids = NULL; /* Check if splash data provided lm_ids */ if (splash_display) { hw_ids = splash_display->lm_ids; for (i = 0; i < splash_display->lm_cnt; i++) SDE_DEBUG("splash_display->lm_ids[%d] = %d\n", i, splash_display->lm_ids[i]); if (splash_display->lm_cnt != reqs->topology->num_lm) SDE_DEBUG("Configured splash LMs != needed LM cnt\n"); } /* * Assign LMs and blocks whose usage is tied to them: * DSPP & Pingpong. */ ret = _sde_rm_reserve_lms(rm, rsvp, reqs, hw_ids); return ret; } static int _sde_rm_make_ctl_rsvp(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_splash_display *splash_display) { int ret, i; u8 *hw_ids = NULL; struct sde_rm_topology_def topology; /* Check if splash data provided ctl_ids */ if (splash_display) { hw_ids = splash_display->ctl_ids; for (i = 0; i < splash_display->ctl_cnt; i++) SDE_DEBUG("splash_display->ctl_ids[%d] = %d\n", i, splash_display->ctl_ids[i]); } /* * Do assignment preferring to give away low-resource CTLs first: * - Check mixers without Split Display * - Only then allow to grab from CTLs with split display capability */ ret = _sde_rm_reserve_ctls(rm, rsvp, reqs, reqs->topology, hw_ids); if (ret && !reqs->topology->needs_split_display && reqs->topology->num_ctl > SINGLE_CTL) { memcpy(&topology, reqs->topology, sizeof(topology)); topology.needs_split_display = true; ret = _sde_rm_reserve_ctls(rm, rsvp, reqs, &topology, hw_ids); } return ret; } /* * Returns number of dsc hw blocks previously owned by this encoder. * Returns 0 if not found or error */ static int _sde_rm_find_prev_dsc(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, u8 *prev_dsc, u32 max_cnt) { int i = 0; struct sde_rm_hw_iter iter_dsc; if ((!prev_dsc) || (max_cnt < MAX_DATA_PATH_PER_DSIPLAY)) return 0; sde_rm_init_hw_iter(&iter_dsc, 0, SDE_HW_BLK_DSC); while (_sde_rm_get_hw_locked(rm, &iter_dsc, true)) { if (RESERVED_BY_CURRENT(iter_dsc.blk, rsvp)) prev_dsc[i++] = iter_dsc.blk->id; if (i >= MAX_DATA_PATH_PER_DSIPLAY) return 0; } return i; } static int _sde_rm_make_dsc_rsvp(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_splash_display *splash_display) { int i; u8 *hw_ids = NULL; u8 prev_dsc[MAX_DATA_PATH_PER_DSIPLAY] = {0,}; /* Check if splash data provided dsc_ids */ if (splash_display) { hw_ids = splash_display->dsc_ids; if (splash_display->dsc_cnt) reqs->hw_res.comp_info->comp_type = MSM_DISPLAY_COMPRESSION_DSC; for (i = 0; i < splash_display->dsc_cnt; i++) SDE_DEBUG("splash_data.dsc_ids[%d] = %d\n", i, splash_display->dsc_ids[i]); } /* * find if this encoder has previously allocated dsc hw blocks, use same dsc blocks * if found to avoid switching dsc encoders during each modeset, as currently we * dont have feasible way of decoupling previously owned dsc blocks by resetting * respective dsc encoders mux control and flush them from commit path */ if (!hw_ids && _sde_rm_find_prev_dsc(rm, rsvp, prev_dsc, MAX_DATA_PATH_PER_DSIPLAY)) return _sde_rm_reserve_dsc(rm, rsvp, reqs, prev_dsc); else return _sde_rm_reserve_dsc(rm, rsvp, reqs, hw_ids); } static int _sde_rm_make_vdc_rsvp(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs, struct sde_splash_display *splash_display) { int ret, i; u8 *hw_ids = NULL; /* Check if splash data provided vdc_ids */ if (splash_display) { hw_ids = splash_display->vdc_ids; for (i = 0; i < splash_display->vdc_cnt; i++) SDE_DEBUG("splash_data.vdc_ids[%d] = %d\n", i, splash_display->vdc_ids[i]); } ret = _sde_rm_reserve_vdc(rm, rsvp, reqs, reqs->topology, hw_ids); return ret; } static int _sde_rm_make_next_rsvp(struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_rm_rsvp *rsvp, struct sde_rm_requirements *reqs) { struct msm_drm_private *priv; struct sde_kms *sde_kms; struct sde_splash_display *splash_display = NULL; struct sde_splash_data *splash_data; int i, ret; priv = enc->dev->dev_private; sde_kms = to_sde_kms(priv->kms); splash_data = &sde_kms->splash_data; if (_sde_rm_is_display_in_cont_splash(sde_kms, enc)) { for (i = 0; i < ARRAY_SIZE(splash_data->splash_display); i++) { if (enc == splash_data->splash_display[i].encoder) splash_display = &splash_data->splash_display[i]; } if (!splash_display) { SDE_ERROR("rm is in cont_splash but data not found\n"); return -EINVAL; } } /* Create reservation info, tag reserved blocks with it as we go */ rsvp->seq = ++rm->rsvp_next_seq; rsvp->enc_id = enc->base.id; rsvp->topology = reqs->topology->top_name; rsvp->pending = true; list_add_tail(&rsvp->list, &rm->rsvps); ret = _sde_rm_make_lm_rsvp(rm, rsvp, reqs, splash_display); if (ret) { SDE_ERROR("unable to find appropriate mixers\n"); _sde_rm_print_rsvps_by_type(rm, SDE_HW_BLK_LM); return ret; } ret = _sde_rm_make_ctl_rsvp(rm, rsvp, reqs, splash_display); if (ret) { SDE_ERROR("unable to find appropriate CTL\n"); return ret; } /* Assign INTFs, WBs, and blks whose usage is tied to them: CTL & CDM */ ret = _sde_rm_reserve_intf_related_hw(rm, rsvp, reqs); if (ret) return ret; ret = _sde_rm_make_dsc_rsvp(rm, rsvp, reqs, splash_display); if (ret) return ret; ret = _sde_rm_make_vdc_rsvp(rm, rsvp, reqs, splash_display); if (ret) return ret; ret = _sde_rm_reserve_qdss(rm, rsvp, reqs->topology, NULL); if (ret) return ret; return ret; } static int _sde_rm_update_active_only_pipes( struct sde_splash_display *splash_display, u32 active_pipes_mask) { struct sde_sspp_index_info *pipe_info; int i; if (!active_pipes_mask) { return 0; } else if (!splash_display) { SDE_ERROR("invalid splash display provided\n"); return -EINVAL; } pipe_info = &splash_display->pipe_info; for (i = SSPP_VIG0; i < SSPP_MAX; i++) { if (!(active_pipes_mask & BIT(i))) continue; if (test_bit(i, pipe_info->pipes) || test_bit(i, pipe_info->virt_pipes)) continue; /* * A pipe is active but not staged indicates a non-pixel * plane. Register both rectangles as we can't differentiate */ set_bit(i, pipe_info->pipes); set_bit(i, pipe_info->virt_pipes); SDE_DEBUG("pipe %d is active:0x%x but not staged\n", i, active_pipes_mask); } return 0; } /** * _sde_rm_get_hw_blk_for_cont_splash - retrieve the LM blocks on given CTL * and populate the connected HW blk ids in sde_splash_display * @rm: Pointer to resource manager structure * @ctl: Pointer to CTL hardware block * @splash_display: Pointer to struct sde_splash_display * return: number of active LM blocks for this CTL block */ static int _sde_rm_get_hw_blk_for_cont_splash(struct sde_rm *rm, struct sde_hw_ctl *ctl, struct sde_splash_display *splash_display) { u32 active_pipes_mask = 0; struct sde_rm_hw_iter iter_lm, iter_dsc; struct sde_kms *sde_kms; size_t pipes_per_lm; if (!rm || !ctl || !splash_display) { SDE_ERROR("invalid input parameters\n"); return 0; } sde_kms = container_of(rm, struct sde_kms, rm); sde_rm_init_hw_iter(&iter_lm, 0, SDE_HW_BLK_LM); sde_rm_init_hw_iter(&iter_dsc, 0, SDE_HW_BLK_DSC); while (_sde_rm_get_hw_locked(rm, &iter_lm, true)) { if (splash_display->lm_cnt >= MAX_DATA_PATH_PER_DSIPLAY) break; if (ctl->ops.get_staged_sspp) { // reset bordercolor from previous LM splash_display->pipe_info.bordercolor = false; pipes_per_lm = ctl->ops.get_staged_sspp( ctl, iter_lm.blk->id, &splash_display->pipe_info); if (pipes_per_lm || splash_display->pipe_info.bordercolor) { splash_display->lm_ids[splash_display->lm_cnt++] = iter_lm.blk->id; SDE_DEBUG("lm_cnt=%d lm_id %d pipe_cnt%d\n", splash_display->lm_cnt, iter_lm.blk->id - LM_0, pipes_per_lm); } } } if (ctl->ops.get_active_pipes) active_pipes_mask = ctl->ops.get_active_pipes(ctl); if (_sde_rm_update_active_only_pipes(splash_display, active_pipes_mask)) return 0; while (_sde_rm_get_hw_locked(rm, &iter_dsc, true)) { if (ctl->ops.read_active_status && !(ctl->ops.read_active_status(ctl, SDE_HW_BLK_DSC, iter_dsc.blk->id))) continue; splash_display->dsc_ids[splash_display->dsc_cnt++] = iter_dsc.blk->id; SDE_DEBUG("CTL[%d] path, using dsc[%d]\n", ctl->idx, iter_dsc.blk->id - DSC_0); } return splash_display->lm_cnt; } int sde_rm_cont_splash_res_init(struct msm_drm_private *priv, struct sde_rm *rm, struct sde_splash_data *splash_data, struct sde_mdss_cfg *cat) { struct sde_rm_hw_iter iter_c; int index = 0, ctl_top_cnt, splash_disp_count = 0; struct sde_kms *sde_kms = NULL; struct sde_hw_mdp *hw_mdp; struct sde_splash_display *splash_display; u8 intf_sel; if (!priv || !rm || !cat || !splash_data) { SDE_ERROR("invalid input parameters\n"); return -EINVAL; } SDE_DEBUG("mixer_count=%d, ctl_count=%d, dsc_count=%d\n", cat->mixer_count, cat->ctl_count, cat->dsc_count); ctl_top_cnt = cat->ctl_count; if (!priv->kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } sde_kms = to_sde_kms(priv->kms); hw_mdp = sde_rm_get_mdp(rm); sde_rm_init_hw_iter(&iter_c, 0, SDE_HW_BLK_CTL); while (_sde_rm_get_hw_locked(rm, &iter_c, true) && (splash_disp_count < splash_data->num_splash_displays)) { struct sde_hw_ctl *ctl = to_sde_hw_ctl(iter_c.blk->hw); if (!ctl->ops.get_ctl_intf) { SDE_ERROR("get_ctl_intf not initialized\n"); return -EINVAL; } intf_sel = ctl->ops.get_ctl_intf(ctl); if (intf_sel) { splash_display = &splash_data->splash_display[index ? 1 : 0]; SDE_DEBUG("finding resources for display=%d ctl=%d\n", index, iter_c.blk->id - CTL_0); _sde_rm_get_hw_blk_for_cont_splash(rm, ctl, splash_display); splash_display->cont_splash_enabled = true; splash_display->ctl_ids[splash_display->ctl_cnt++] = iter_c.blk->id; splash_disp_count++; } index++; } return 0; } static struct drm_connector *_sde_rm_get_connector( struct drm_encoder *enc) { struct drm_connector *conn = NULL, *conn_search; struct sde_connector *c_conn = NULL; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(enc->dev, &conn_iter); drm_for_each_connector_iter(conn_search, &conn_iter) { c_conn = to_sde_connector(conn_search); if (c_conn->encoder == enc) { conn = conn_search; break; } } drm_connector_list_iter_end(&conn_iter); return conn; } static int _sde_rm_populate_requirements( struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct sde_mdss_cfg *cfg, struct sde_rm_requirements *reqs) { const struct drm_display_mode *mode = &crtc_state->mode; struct drm_encoder *encoder_iter; struct drm_connector *conn; int i, num_lm; reqs->top_ctrl = sde_connector_get_property(conn_state, CONNECTOR_PROP_TOPOLOGY_CONTROL); sde_encoder_get_hw_resources(enc, &reqs->hw_res, conn_state); for (i = 0; i < SDE_RM_TOPOLOGY_MAX; i++) { if (RM_IS_TOPOLOGY_MATCH(rm->topology_tbl[i], reqs->hw_res.topology)) { reqs->topology = &rm->topology_tbl[i]; break; } } if (!reqs->topology) { SDE_ERROR("invalid topology for the display\n"); return -EINVAL; } /* * select dspp HW block for all dsi displays and ds for only * primary dsi display. */ if (conn_state->connector->connector_type == DRM_MODE_CONNECTOR_DSI) { if (!RM_RQ_DSPP(reqs)) reqs->top_ctrl |= BIT(SDE_RM_TOPCTL_DSPP); if (!RM_RQ_DS(reqs) && rm->hw_mdp->caps->has_dest_scaler && sde_encoder_is_primary_display(enc)) reqs->top_ctrl |= BIT(SDE_RM_TOPCTL_DS); } /** * Set the requirement for LM which has CWB support if CWB is * found enabled. */ if ((!RM_RQ_CWB(reqs) || !RM_RQ_DCWB(reqs)) && sde_crtc_state_in_clone_mode(enc, crtc_state)) { if (test_bit(SDE_FEATURE_DEDICATED_CWB, cfg->features)) reqs->top_ctrl |= BIT(SDE_RM_TOPCTL_DCWB); else reqs->top_ctrl |= BIT(SDE_RM_TOPCTL_CWB); /* * topology selection based on conn mode is not valid for CWB * as WB conn populates modes based on max_mixer_width check * but primary can be using dual LMs. This topology override for * CWB is to check number of datapath active in primary and * allocate same number of LM/PP blocks reserved for CWB */ reqs->topology = &rm->topology_tbl[SDE_RM_TOPOLOGY_DUALPIPE_3DMERGE]; num_lm = sde_crtc_get_num_datapath(crtc_state->crtc, conn_state->connector, crtc_state); if (num_lm == 1) reqs->topology = &rm->topology_tbl[SDE_RM_TOPOLOGY_SINGLEPIPE]; else if (num_lm == 0) SDE_ERROR("Primary layer mixer is not set\n"); SDE_EVT32(num_lm, reqs->topology->num_lm, reqs->topology->top_name, reqs->topology->num_ctl); } if (RM_RQ_DCWB(reqs)) { drm_for_each_encoder_mask(encoder_iter, enc->dev, crtc_state->encoder_mask) { if (drm_encoder_mask(encoder_iter) == drm_encoder_mask(enc)) continue; conn = _sde_rm_get_connector(encoder_iter); if (conn) reqs->conn_lm_mask = to_sde_connector(conn)->lm_mask; break; } } SDE_DEBUG("top_ctrl: 0x%llX num_h_tiles: %d\n", reqs->top_ctrl, reqs->hw_res.display_num_of_h_tiles); SDE_DEBUG("num_lm: %d num_ctl: %d topology: %d split_display: %d mask: 0x%llX\n", reqs->topology->num_lm, reqs->topology->num_ctl, reqs->topology->top_name, reqs->topology->needs_split_display, reqs->conn_lm_mask); SDE_EVT32(mode->hdisplay, rm->lm_max_width, reqs->topology->num_lm, reqs->top_ctrl, reqs->topology->top_name, reqs->topology->num_ctl, reqs->conn_lm_mask); return 0; } static struct sde_rm_rsvp *_sde_rm_get_rsvp(struct sde_rm *rm, struct drm_encoder *enc, bool nxt) { struct sde_rm_rsvp *i; if (!rm || !enc) { SDE_ERROR("invalid params\n"); return NULL; } if (list_empty(&rm->rsvps)) return NULL; list_for_each_entry(i, &rm->rsvps, list) if (i->pending == nxt && i->enc_id == enc->base.id) return i; return NULL; } static struct sde_rm_rsvp *_sde_rm_get_rsvp_nxt(struct sde_rm *rm, struct drm_encoder *enc) { return _sde_rm_get_rsvp(rm, enc, true); } static struct sde_rm_rsvp *_sde_rm_get_rsvp_cur(struct sde_rm *rm, struct drm_encoder *enc) { return _sde_rm_get_rsvp(rm, enc, false); } int sde_rm_update_topology(struct sde_rm *rm, struct drm_connector_state *conn_state, struct msm_display_topology *topology) { int i, ret = 0; struct msm_display_topology top; enum sde_rm_topology_name top_name = SDE_RM_TOPOLOGY_NONE; if (!conn_state) return -EINVAL; if (topology) { top = *topology; for (i = 0; i < SDE_RM_TOPOLOGY_MAX; i++) if (RM_IS_TOPOLOGY_MATCH(rm->topology_tbl[i], top)) { top_name = rm->topology_tbl[i].top_name; break; } } ret = msm_property_set_property( sde_connector_get_propinfo(conn_state->connector), sde_connector_get_property_state(conn_state), CONNECTOR_PROP_TOPOLOGY_NAME, top_name); return ret; } bool sde_rm_topology_is_group(struct sde_rm *rm, struct drm_crtc_state *state, enum sde_rm_topology_group group) { int i, ret = 0; struct sde_crtc_state *cstate; struct drm_connector *conn; struct drm_connector_state *conn_state; struct msm_display_topology topology; enum sde_rm_topology_name name; if ((!rm) || (!state) || (!state->state)) { pr_err("invalid arguments: rm:%d state:%d atomic state:%d\n", !rm, !state, state ? (!state->state) : 0); return false; } cstate = to_sde_crtc_state(state); for (i = 0; i < cstate->num_connectors; i++) { conn = cstate->connectors[i]; if (!conn) { SDE_DEBUG("invalid connector\n"); continue; } conn_state = drm_atomic_get_new_connector_state(state->state, conn); if (!conn_state) { SDE_DEBUG("%s invalid connector state\n", conn->name); continue; } ret = sde_connector_state_get_topology(conn_state, &topology); if (ret) { SDE_DEBUG("%s invalid topology\n", conn->name); continue; } name = sde_rm_get_topology_name(rm, topology); switch (group) { case SDE_RM_TOPOLOGY_GROUP_SINGLEPIPE: if (TOPOLOGY_SINGLEPIPE_MODE(name)) return true; break; case SDE_RM_TOPOLOGY_GROUP_DUALPIPE: if (TOPOLOGY_DUALPIPE_MODE(name)) return true; break; case SDE_RM_TOPOLOGY_GROUP_QUADPIPE: if (TOPOLOGY_QUADPIPE_MODE(name)) return true; break; case SDE_RM_TOPOLOGY_GROUP_3DMERGE: if (topology.num_lm > topology.num_intf && !topology.num_enc) return true; break; case SDE_RM_TOPOLOGY_GROUP_3DMERGE_DSC: if (topology.num_lm > topology.num_enc && topology.num_enc) return true; break; case SDE_RM_TOPOLOGY_GROUP_DSCMERGE: if (topology.num_lm == topology.num_enc && topology.num_enc) return true; break; default: SDE_ERROR("invalid topology group\n"); return false; } } return false; } /** * _sde_rm_release_rsvp - release resources and release a reservation * @rm: KMS handle * @rsvp: RSVP pointer to release and release resources for */ static void _sde_rm_release_rsvp( struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct drm_connector *conn) { struct sde_rm_rsvp *rsvp_c, *rsvp_n; struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; if (!rsvp) return; SDE_DEBUG("rel rsvp %d enc %d\n", rsvp->seq, rsvp->enc_id); list_for_each_entry_safe(rsvp_c, rsvp_n, &rm->rsvps, list) { if (rsvp == rsvp_c) { list_del(&rsvp_c->list); break; } } for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp == rsvp) { blk->rsvp = NULL; SDE_DEBUG("rel rsvp %d enc %d %d %d\n", rsvp->seq, rsvp->enc_id, blk->type, blk->id); _sde_rm_inc_resource_info(rm, &rm->avail_res, blk); } if (blk->rsvp_nxt == rsvp) { blk->rsvp_nxt = NULL; SDE_DEBUG("rel rsvp_nxt %d enc %d %d %d\n", rsvp->seq, rsvp->enc_id, blk->type, blk->id); } } } kfree(rsvp); } void sde_rm_release(struct sde_rm *rm, struct drm_encoder *enc, bool nxt) { struct sde_rm_rsvp *rsvp; struct drm_connector *conn = NULL; struct msm_drm_private *priv; struct sde_kms *sde_kms; uint64_t top_ctrl = 0; if (!rm || !enc) { SDE_ERROR("invalid params\n"); return; } priv = enc->dev->dev_private; if (!priv->kms) { SDE_ERROR("invalid kms\n"); return; } sde_kms = to_sde_kms(priv->kms); mutex_lock(&rm->rm_lock); rsvp = _sde_rm_get_rsvp(rm, enc, nxt); if (!rsvp) { SDE_DEBUG("failed to find rsvp for enc %d, nxt %d", enc->base.id, nxt); goto end; } if (_sde_rm_is_display_in_cont_splash(sde_kms, enc)) { _sde_rm_release_rsvp(rm, rsvp, conn); goto end; } conn = _sde_rm_get_connector(enc); if (!conn) { SDE_EVT32(enc->base.id, 0x0, 0xffffffff); _sde_rm_release_rsvp(rm, rsvp, conn); SDE_DEBUG("failed to get conn for enc %d nxt %d\n", enc->base.id, nxt); goto end; } top_ctrl = sde_connector_get_property(conn->state, CONNECTOR_PROP_TOPOLOGY_CONTROL); SDE_EVT32(enc->base.id, conn->base.id, rsvp->seq, top_ctrl, nxt); if (top_ctrl & BIT(SDE_RM_TOPCTL_RESERVE_LOCK)) { SDE_DEBUG("rsvp[s%de%d] not releasing locked resources\n", rsvp->seq, rsvp->enc_id); } else { SDE_DEBUG("release rsvp[s%de%d]\n", rsvp->seq, rsvp->enc_id); _sde_rm_release_rsvp(rm, rsvp, conn); } end: mutex_unlock(&rm->rm_lock); } static void _sde_rm_commit_rsvp(struct sde_rm *rm, struct sde_rm_rsvp *rsvp, struct drm_connector_state *conn_state) { struct sde_rm_hw_blk *blk; enum sde_hw_blk_type type; /* Swap next rsvp to be the active */ for (type = 0; type < SDE_HW_BLK_MAX; type++) { list_for_each_entry(blk, &rm->hw_blks[type], list) { if (blk->rsvp_nxt && conn_state->best_encoder->base.id == blk->rsvp_nxt->enc_id) { blk->rsvp = blk->rsvp_nxt; blk->rsvp_nxt = NULL; _sde_rm_dec_resource_info(rm, &rm->avail_res, blk); } } } rsvp->pending = false; SDE_DEBUG("rsrv enc %d topology %d\n", rsvp->enc_id, rsvp->topology); SDE_EVT32(rsvp->enc_id, rsvp->topology); } static void _sde_rm_populate_dp_lm_mask(struct sde_rm *rm, struct drm_connector *conn) { struct sde_connector *c_conn = NULL; struct sde_rm_hw_blk *blk; if (!rm || !conn) { SDE_ERROR("invalid arguments\n"); return; } if (conn->connector_type != DRM_MODE_CONNECTOR_DisplayPort) return; c_conn = to_sde_connector(conn); if (!c_conn || !c_conn->encoder) return; list_for_each_entry(blk, &rm->hw_blks[SDE_HW_BLK_LM], list) { if (!blk->rsvp) continue; if (blk->rsvp->enc_id == c_conn->encoder->base.id) c_conn->lm_mask |= BIT(blk->id - 1); } SDE_DEBUG("conn lm_mask %d for conn %d enc %d\n", c_conn->lm_mask, conn->base.id, c_conn->encoder->base.id); SDE_EVT32(c_conn->encoder->base.id, conn->base.id, c_conn->lm_mask); } /* call this only after rm_mutex held */ struct sde_rm_rsvp *_sde_rm_poll_get_rsvp_nxt_locked(struct sde_rm *rm, struct drm_encoder *enc) { int i; u32 loop_count = 20; struct sde_rm_rsvp *rsvp_nxt = NULL; u32 sleep = RM_NXT_CLEAR_POLL_TIMEOUT_US / loop_count; for (i = 0; i < loop_count; i++) { rsvp_nxt = _sde_rm_get_rsvp_nxt(rm, enc); if (!rsvp_nxt) return rsvp_nxt; mutex_unlock(&rm->rm_lock); SDE_DEBUG("iteration i:%d sleep range:%uus to %uus\n", i, sleep, sleep * 2); usleep_range(sleep, sleep * 2); mutex_lock(&rm->rm_lock); } /* make sure to get latest rsvp_next to avoid use after free issues */ return _sde_rm_get_rsvp_nxt(rm, enc); } int sde_rm_reserve( struct sde_rm *rm, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, bool test_only) { struct sde_rm_rsvp *rsvp_cur, *rsvp_nxt; struct sde_rm_requirements reqs = {0,}; struct msm_drm_private *priv; struct sde_kms *sde_kms; struct msm_compression_info *comp_info; int ret = 0; if (!rm || !enc || !crtc_state || !conn_state) { SDE_ERROR("invalid arguments\n"); return -EINVAL; } if (!enc->dev || !enc->dev->dev_private) { SDE_ERROR("drm device invalid\n"); return -EINVAL; } priv = enc->dev->dev_private; if (!priv->kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } sde_kms = to_sde_kms(priv->kms); /* Check if this is just a page-flip */ if (!_sde_rm_is_display_in_cont_splash(sde_kms, enc) && !msm_atomic_needs_modeset(crtc_state, conn_state)) return 0; comp_info = kzalloc(sizeof(*comp_info), GFP_KERNEL); if (!comp_info) return -ENOMEM; SDE_DEBUG("reserving hw for conn %d enc %d crtc %d test_only %d\n", conn_state->connector->base.id, enc->base.id, crtc_state->crtc->base.id, test_only); SDE_EVT32(enc->base.id, conn_state->connector->base.id, test_only); mutex_lock(&rm->rm_lock); _sde_rm_print_rsvps(rm, SDE_RM_STAGE_BEGIN); rsvp_cur = _sde_rm_get_rsvp_cur(rm, enc); rsvp_nxt = _sde_rm_get_rsvp_nxt(rm, enc); /* * RM currently relies on rsvp_nxt assigned to the hw blocks to * commit rsvps. This rsvp_nxt can be cleared by a back to back * check_only commit with modeset when its predecessor atomic * commit is delayed / not committed the reservation yet. * Poll for rsvp_nxt clear, allow the check_only commit if rsvp_nxt * gets cleared and bailout if it does not get cleared before timeout. */ if (test_only && rsvp_nxt) { rsvp_nxt = _sde_rm_poll_get_rsvp_nxt_locked(rm, enc); rsvp_cur = _sde_rm_get_rsvp_cur(rm, enc); if (rsvp_nxt) { pr_err("poll timeout cur %d nxt %d enc %d\n", (rsvp_cur) ? rsvp_cur->seq : -1, rsvp_nxt->seq, enc->base.id); SDE_EVT32(enc->base.id, (rsvp_cur) ? rsvp_cur->seq : -1, rsvp_nxt->seq, SDE_EVTLOG_ERROR); ret = -EAGAIN; goto end; } } if (!test_only && rsvp_nxt) goto commit_rsvp; reqs.hw_res.comp_info = comp_info; ret = _sde_rm_populate_requirements(rm, enc, crtc_state, conn_state, sde_kms->catalog, &reqs); if (ret) { SDE_ERROR("failed to populate hw requirements\n"); goto end; } /* * We only support one active reservation per-hw-block. But to implement * transactional semantics for test-only, and for allowing failure while * modifying your existing reservation, over the course of this * function we can have two reservations: * Current: Existing reservation * Next: Proposed reservation. The proposed reservation may fail, or may * be discarded if in test-only mode. * If reservation is successful, and we're not in test-only, then we * replace the current with the next. */ rsvp_nxt = kzalloc(sizeof(*rsvp_nxt), GFP_KERNEL); if (!rsvp_nxt) { ret = -ENOMEM; goto end; } /* * User can request that we clear out any reservation during the * atomic_check phase by using this CLEAR bit */ if (rsvp_cur && test_only && RM_RQ_CLEAR(&reqs)) { SDE_DEBUG("test_only & CLEAR: clear rsvp[s%de%d]\n", rsvp_cur->seq, rsvp_cur->enc_id); _sde_rm_release_rsvp(rm, rsvp_cur, conn_state->connector); rsvp_cur = NULL; _sde_rm_print_rsvps(rm, SDE_RM_STAGE_AFTER_CLEAR); } /* Check the proposed reservation, store it in hw's "next" field */ ret = _sde_rm_make_next_rsvp(rm, enc, crtc_state, conn_state, rsvp_nxt, &reqs); _sde_rm_print_rsvps(rm, SDE_RM_STAGE_AFTER_RSVPNEXT); if (ret) { SDE_ERROR("failed to reserve hw resources: %d, test_only %d\n", ret, test_only); _sde_rm_release_rsvp(rm, rsvp_nxt, conn_state->connector); goto end; } else if (test_only && !RM_RQ_LOCK(&reqs)) { /* * Normally, if test_only, test the reservation and then undo * However, if the user requests LOCK, then keep the reservation * made during the atomic_check phase. */ SDE_DEBUG("test_only: rsvp[s%de%d]\n", rsvp_nxt->seq, rsvp_nxt->enc_id); goto end; } else { if (test_only && RM_RQ_LOCK(&reqs)) SDE_DEBUG("test_only & LOCK: lock rsvp[s%de%d]\n", rsvp_nxt->seq, rsvp_nxt->enc_id); } commit_rsvp: _sde_rm_release_rsvp(rm, rsvp_cur, conn_state->connector); _sde_rm_commit_rsvp(rm, rsvp_nxt, conn_state); _sde_rm_populate_dp_lm_mask(rm, conn_state->connector); end: kfree(comp_info); _sde_rm_print_rsvps(rm, SDE_RM_STAGE_FINAL); mutex_unlock(&rm->rm_lock); return ret; }