// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021-2024, Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */ #include <linux/of_device.h> #include <linux/err.h> #include <linux/regulator/consumer.h> #include <linux/clk.h> #include <linux/of_irq.h> #include <video/mipi_display.h> #include "msm_drv.h" #include "msm_kms.h" #include "msm_mmu.h" #include "dsi_ctrl.h" #include "dsi_ctrl_hw.h" #include "dsi_clk.h" #include "dsi_display.h" #include "dsi_pwr.h" #include "dsi_catalog.h" #include "dsi_panel.h" #include "sde_dbg.h" #define DSI_CTRL_DEFAULT_LABEL "MDSS DSI CTRL" #define DSI_CTRL_TX_TO_MS 1200 #define TO_ON_OFF(x) ((x) ? "ON" : "OFF") #define CEIL(x, y) (((x) + ((y)-1)) / (y)) #define TICKS_IN_MICRO_SECOND 1000000 #define DSI_CTRL_DEBUG(c, fmt, ...) DRM_DEV_DEBUG(NULL, "[msm-dsi-debug]: %s: "\ fmt, c ? c->name : "inv", ##__VA_ARGS__) #define DSI_CTRL_ERR(c, fmt, ...) DRM_DEV_ERROR(NULL, "[msm-dsi-error]: %s: "\ fmt, c ? c->name : "inv", ##__VA_ARGS__) #define DSI_CTRL_INFO(c, fmt, ...) DRM_DEV_INFO(NULL, "[msm-dsi-info]: %s: "\ fmt, c->name, ##__VA_ARGS__) #define DSI_CTRL_WARN(c, fmt, ...) DRM_WARN("[msm-dsi-warn]: %s: " fmt,\ c ? c->name : "inv", ##__VA_ARGS__) struct dsi_ctrl_list_item { struct dsi_ctrl *ctrl; struct list_head list; }; static LIST_HEAD(dsi_ctrl_list); static DEFINE_MUTEX(dsi_ctrl_list_lock); static const enum dsi_ctrl_version dsi_ctrl_v2_2 = DSI_CTRL_VERSION_2_2; static const enum dsi_ctrl_version dsi_ctrl_v2_3 = DSI_CTRL_VERSION_2_3; static const enum dsi_ctrl_version dsi_ctrl_v2_4 = DSI_CTRL_VERSION_2_4; static const enum dsi_ctrl_version dsi_ctrl_v2_5 = DSI_CTRL_VERSION_2_5; static const enum dsi_ctrl_version dsi_ctrl_v2_6 = DSI_CTRL_VERSION_2_6; static const enum dsi_ctrl_version dsi_ctrl_v2_7 = DSI_CTRL_VERSION_2_7; static const enum dsi_ctrl_version dsi_ctrl_v2_8 = DSI_CTRL_VERSION_2_8; static const struct of_device_id msm_dsi_of_match[] = { { .compatible = "qcom,dsi-ctrl-hw-v2.2", .data = &dsi_ctrl_v2_2, }, { .compatible = "qcom,dsi-ctrl-hw-v2.3", .data = &dsi_ctrl_v2_3, }, { .compatible = "qcom,dsi-ctrl-hw-v2.4", .data = &dsi_ctrl_v2_4, }, { .compatible = "qcom,dsi-ctrl-hw-v2.5", .data = &dsi_ctrl_v2_5, }, { .compatible = "qcom,dsi-ctrl-hw-v2.6", .data = &dsi_ctrl_v2_6, }, { .compatible = "qcom,dsi-ctrl-hw-v2.7", .data = &dsi_ctrl_v2_7, }, { .compatible = "qcom,dsi-ctrl-hw-v2.8", .data = &dsi_ctrl_v2_8, }, {} }; #if IS_ENABLED(CONFIG_DEBUG_FS) static ssize_t debugfs_state_info_read(struct file *file, char __user *buff, size_t count, loff_t *ppos) { struct dsi_ctrl *dsi_ctrl = file->private_data; char *buf; u32 len = 0; if (!dsi_ctrl) return -ENODEV; if (*ppos) return 0; buf = kzalloc(SZ_4K, GFP_KERNEL); if (!buf) return -ENOMEM; /* Dump current state */ len += snprintf((buf + len), (SZ_4K - len), "Current State:\n"); len += snprintf((buf + len), (SZ_4K - len), "\tCTRL_ENGINE = %s\n", TO_ON_OFF(dsi_ctrl->current_state.controller_state)); len += snprintf((buf + len), (SZ_4K - len), "\tVIDEO_ENGINE = %s\n\tCOMMAND_ENGINE = %s\n", TO_ON_OFF(dsi_ctrl->current_state.vid_engine_state), TO_ON_OFF(dsi_ctrl->current_state.cmd_engine_state)); /* Dump clock information */ len += snprintf((buf + len), (SZ_4K - len), "\nClock Info:\n"); len += snprintf((buf + len), (SZ_4K - len), "\tBYTE_CLK = %u, PIXEL_CLK = %u, ESC_CLK = %u\n", dsi_ctrl->clk_freq.byte_clk_rate, dsi_ctrl->clk_freq.pix_clk_rate, dsi_ctrl->clk_freq.esc_clk_rate); if (len > count) len = count; len = min_t(size_t, len, SZ_4K); if (copy_to_user(buff, buf, len)) { kfree(buf); return -EFAULT; } *ppos += len; kfree(buf); return len; } static ssize_t debugfs_reg_dump_read(struct file *file, char __user *buff, size_t count, loff_t *ppos) { struct dsi_ctrl *dsi_ctrl = file->private_data; char *buf; u32 len = 0; struct dsi_clk_ctrl_info clk_info; int rc = 0; if (!dsi_ctrl) return -ENODEV; if (*ppos) return 0; buf = kzalloc(SZ_4K, GFP_KERNEL); if (!buf) return -ENOMEM; clk_info.client = DSI_CLK_REQ_DSI_CLIENT; clk_info.clk_type = DSI_CORE_CLK; clk_info.clk_state = DSI_CLK_ON; rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable DSI core clocks\n"); kfree(buf); return rc; } if (dsi_ctrl->hw.ops.reg_dump_to_buffer) len = dsi_ctrl->hw.ops.reg_dump_to_buffer(&dsi_ctrl->hw, buf, SZ_4K); clk_info.clk_state = DSI_CLK_OFF; rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to disable DSI core clocks\n"); kfree(buf); return rc; } if (len > count) len = count; len = min_t(size_t, len, SZ_4K); if (copy_to_user(buff, buf, len)) { kfree(buf); return -EFAULT; } *ppos += len; kfree(buf); return len; } static ssize_t debugfs_line_count_read(struct file *file, char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_ctrl *dsi_ctrl = file->private_data; char *buf; int rc = 0; u32 len = 0; size_t max_len = min_t(size_t, user_len, SZ_4K); if (!dsi_ctrl) return -ENODEV; if (*ppos) return 0; buf = kzalloc(max_len, GFP_KERNEL); if (ZERO_OR_NULL_PTR(buf)) return -ENOMEM; mutex_lock(&dsi_ctrl->ctrl_lock); len += scnprintf(buf, max_len, "Command triggered at line: %04x\n", dsi_ctrl->cmd_trigger_line); len += scnprintf((buf + len), max_len - len, "Command triggered at frame: %04x\n", dsi_ctrl->cmd_trigger_frame); len += scnprintf((buf + len), max_len - len, "Command successful at line: %04x\n", dsi_ctrl->cmd_success_line); len += scnprintf((buf + len), max_len - len, "Command successful at frame: %04x\n", dsi_ctrl->cmd_success_frame); mutex_unlock(&dsi_ctrl->ctrl_lock); if (len > max_len) len = max_len; if (copy_to_user(user_buf, buf, len)) { rc = -EFAULT; goto error; } *ppos += len; error: kfree(buf); return len; } static const struct file_operations state_info_fops = { .open = simple_open, .read = debugfs_state_info_read, }; static const struct file_operations reg_dump_fops = { .open = simple_open, .read = debugfs_reg_dump_read, }; static const struct file_operations cmd_dma_stats_fops = { .open = simple_open, .read = debugfs_line_count_read, }; static int dsi_ctrl_debugfs_init(struct dsi_ctrl *dsi_ctrl, struct dentry *parent) { int rc = 0; struct dentry *dir, *state_file, *reg_dump, *cmd_dma_logs; if (!dsi_ctrl || !parent) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } dir = debugfs_create_dir(dsi_ctrl->name, parent); if (IS_ERR_OR_NULL(dir)) { rc = PTR_ERR(dir); DSI_CTRL_ERR(dsi_ctrl, "debugfs create dir failed, rc=%d\n", rc); goto error; } state_file = debugfs_create_file("state_info", 0444, dir, dsi_ctrl, &state_info_fops); if (IS_ERR_OR_NULL(state_file)) { rc = PTR_ERR(state_file); DSI_CTRL_ERR(dsi_ctrl, "state file failed, rc=%d\n", rc); goto error_remove_dir; } reg_dump = debugfs_create_file("reg_dump", 0444, dir, dsi_ctrl, ®_dump_fops); if (IS_ERR_OR_NULL(reg_dump)) { rc = PTR_ERR(reg_dump); DSI_CTRL_ERR(dsi_ctrl, "reg dump file failed, rc=%d\n", rc); goto error_remove_dir; } debugfs_create_bool("enable_cmd_dma_stats", 0600, dir, &dsi_ctrl->enable_cmd_dma_stats); cmd_dma_logs = debugfs_create_file("cmd_dma_stats", 0444, dir, dsi_ctrl, &cmd_dma_stats_fops); if (IS_ERR_OR_NULL(cmd_dma_logs)) { rc = PTR_ERR(cmd_dma_logs); DSI_CTRL_ERR(dsi_ctrl, "Line count file failed, rc=%d\n", rc); goto error_remove_dir; } dsi_ctrl->debugfs_root = dir; return rc; error_remove_dir: debugfs_remove(dir); error: return rc; } static int dsi_ctrl_debugfs_deinit(struct dsi_ctrl *dsi_ctrl) { if (dsi_ctrl->debugfs_root) { debugfs_remove(dsi_ctrl->debugfs_root); dsi_ctrl->debugfs_root = NULL; } return 0; } #else static int dsi_ctrl_debugfs_init(struct dsi_ctrl *dsi_ctrl, struct dentry *parent) { char dbg_name[DSI_DEBUG_NAME_LEN]; snprintf(dbg_name, DSI_DEBUG_NAME_LEN, "dsi%d_ctrl", dsi_ctrl->cell_index); sde_dbg_reg_register_base(dbg_name, dsi_ctrl->hw.base, msm_iomap_size(dsi_ctrl->pdev, "dsi_ctrl")); return 0; } static int dsi_ctrl_debugfs_deinit(struct dsi_ctrl *dsi_ctrl) { return 0; } #endif /* CONFIG_DEBUG_FS */ static inline struct msm_gem_address_space* dsi_ctrl_get_aspace(struct dsi_ctrl *dsi_ctrl, int domain) { if (!dsi_ctrl || !dsi_ctrl->drm_dev) return NULL; return msm_gem_smmu_address_space_get(dsi_ctrl->drm_dev, domain); } static void dsi_ctrl_dma_cmd_wait_for_done(struct dsi_ctrl *dsi_ctrl) { int ret = 0; u32 status; u32 mask = DSI_CMD_MODE_DMA_DONE; struct dsi_ctrl_hw_ops dsi_hw_ops; dsi_hw_ops = dsi_ctrl->hw.ops; SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY); ret = wait_for_completion_timeout( &dsi_ctrl->irq_info.cmd_dma_done, msecs_to_jiffies(DSI_CTRL_TX_TO_MS)); if (ret == 0 && !atomic_read(&dsi_ctrl->dma_irq_trig)) { status = dsi_hw_ops.get_interrupt_status(&dsi_ctrl->hw); if (status & mask) { status |= (DSI_CMD_MODE_DMA_DONE | DSI_BTA_DONE); dsi_hw_ops.clear_interrupt_status(&dsi_ctrl->hw, status); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_CASE1); DSI_CTRL_WARN(dsi_ctrl, "dma_tx done but irq not triggered\n"); } else { SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_ERROR); DSI_CTRL_ERR(dsi_ctrl, "Command transfer failed\n"); } dsi_ctrl_disable_status_interrupt(dsi_ctrl, DSI_SINT_CMD_MODE_DMA_DONE); } SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_EXIT); } /** * dsi_ctrl_clear_dma_status - API to clear DMA status * @dsi_ctrl: DSI controller handle. */ static void dsi_ctrl_clear_dma_status(struct dsi_ctrl *dsi_ctrl) { struct dsi_ctrl_hw_ops dsi_hw_ops; u32 status = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return; } dsi_hw_ops = dsi_ctrl->hw.ops; mutex_lock(&dsi_ctrl->ctrl_lock); status = dsi_hw_ops.poll_dma_status(&dsi_ctrl->hw); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, status); status |= (DSI_CMD_MODE_DMA_DONE | DSI_BTA_DONE); dsi_hw_ops.clear_interrupt_status(&dsi_ctrl->hw, status); mutex_unlock(&dsi_ctrl->ctrl_lock); } static void dsi_ctrl_post_cmd_transfer(struct dsi_ctrl *dsi_ctrl) { struct dsi_ctrl_hw_ops dsi_hw_ops = dsi_ctrl->hw.ops; SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, dsi_ctrl->cell_index, dsi_ctrl->pending_cmd_flags); /* In case of broadcast messages, we poll on the slave controller. */ if ((dsi_ctrl->pending_cmd_flags & DSI_CTRL_CMD_BROADCAST) && !(dsi_ctrl->pending_cmd_flags & DSI_CTRL_CMD_BROADCAST_MASTER)) { dsi_ctrl_clear_dma_status(dsi_ctrl); } else if (!(dsi_ctrl->pending_cmd_flags & DSI_CTRL_CMD_READ)) { /* Wait for read command transfer to complete is done in dsi_message_rx. */ dsi_ctrl_dma_cmd_wait_for_done(dsi_ctrl); } mutex_lock(&dsi_ctrl->ctrl_lock); if (dsi_ctrl->hw.reset_trig_ctrl) dsi_hw_ops.reset_trig_ctrl(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config); mutex_unlock(&dsi_ctrl->ctrl_lock); dsi_ctrl_transfer_cleanup(dsi_ctrl); } static void dsi_ctrl_post_cmd_transfer_work(struct work_struct *work) { struct dsi_ctrl *dsi_ctrl = NULL; dsi_ctrl = container_of(work, struct dsi_ctrl, post_cmd_tx_work); dsi_ctrl_post_cmd_transfer(dsi_ctrl); dsi_ctrl->post_tx_queued = false; } void dsi_ctrl_flush_cmd_dma_queue(struct dsi_ctrl *dsi_ctrl) { /* * If a command is triggered right after another command, * check if the previous command transfer is completed. If * transfer is done, cancel any work that has been * queued. Otherwise wait till the work is scheduled and * completed before triggering the next command by * flushing the workqueue. * * cancel_work_sync returns true if the work has not yet been scheduled, in that case as * we are cancelling the work we need to explicitly call the post_cmd_transfer API to * clean up the states. */ SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); if (atomic_read(&dsi_ctrl->dma_irq_trig)) { if (cancel_work_sync(&dsi_ctrl->post_cmd_tx_work)) { dsi_ctrl_post_cmd_transfer(dsi_ctrl); dsi_ctrl->post_tx_queued = false; } } else { flush_workqueue(dsi_ctrl->post_cmd_tx_workq); SDE_EVT32(SDE_EVTLOG_FUNC_CASE2); } } static int dsi_ctrl_check_state(struct dsi_ctrl *dsi_ctrl, enum dsi_ctrl_driver_ops op, u32 op_state) { int rc = 0; struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state; SDE_EVT32_VERBOSE(dsi_ctrl->cell_index, op, op_state); switch (op) { case DSI_CTRL_OP_POWER_STATE_CHANGE: if (state->power_state == op_state) { DSI_CTRL_ERR(dsi_ctrl, "No change in state, pwr_state=%d\n", op_state); rc = -EINVAL; } else if (state->power_state == DSI_CTRL_POWER_VREG_ON) { if (state->vid_engine_state == DSI_CTRL_ENGINE_ON) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d\n", op_state, state->vid_engine_state); rc = -EINVAL; } } break; case DSI_CTRL_OP_CMD_ENGINE: if (state->cmd_engine_state == op_state) { DSI_CTRL_ERR(dsi_ctrl, "No change in state, cmd_state=%d\n", op_state); rc = -EINVAL; } else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) || (state->controller_state != DSI_CTRL_ENGINE_ON)) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d\n", op, state->power_state, state->controller_state); rc = -EINVAL; } break; case DSI_CTRL_OP_VID_ENGINE: if (state->vid_engine_state == op_state) { DSI_CTRL_ERR(dsi_ctrl, "No change in state, cmd_state=%d\n", op_state); rc = -EINVAL; } else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) || (state->controller_state != DSI_CTRL_ENGINE_ON)) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d\n", op, state->power_state, state->controller_state); rc = -EINVAL; } break; case DSI_CTRL_OP_HOST_ENGINE: if (state->controller_state == op_state) { DSI_CTRL_ERR(dsi_ctrl, "No change in state, ctrl_state=%d\n", op_state); rc = -EINVAL; } else if (state->power_state != DSI_CTRL_POWER_VREG_ON) { DSI_CTRL_ERR(dsi_ctrl, "State error (link is off): op=%d:, %d\n", op_state, state->power_state); rc = -EINVAL; } else if ((op_state == DSI_CTRL_ENGINE_OFF) && ((state->cmd_engine_state != DSI_CTRL_ENGINE_OFF) || (state->vid_engine_state != DSI_CTRL_ENGINE_OFF))) { DSI_CTRL_ERR(dsi_ctrl, "State error (eng on): op=%d: %d, %d\n", op_state, state->cmd_engine_state, state->vid_engine_state); rc = -EINVAL; } break; case DSI_CTRL_OP_CMD_TX: if ((state->power_state != DSI_CTRL_POWER_VREG_ON) || (!state->host_initialized) || (state->cmd_engine_state != DSI_CTRL_ENGINE_ON)) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d, %d\n", op, state->power_state, state->host_initialized, state->cmd_engine_state); rc = -EINVAL; } break; case DSI_CTRL_OP_HOST_INIT: if (state->host_initialized == op_state) { DSI_CTRL_ERR(dsi_ctrl, "No change in state, host_init=%d\n", op_state); rc = -EINVAL; } else if (state->power_state != DSI_CTRL_POWER_VREG_ON) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d\n", op, state->power_state); rc = -EINVAL; } break; case DSI_CTRL_OP_TPG: if (state->tpg_enabled == op_state) { DSI_CTRL_ERR(dsi_ctrl, "No change in state, tpg_enabled=%d\n", op_state); rc = -EINVAL; } else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) || (state->controller_state != DSI_CTRL_ENGINE_ON)) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d, %d\n", op, state->power_state, state->controller_state); rc = -EINVAL; } break; case DSI_CTRL_OP_PHY_SW_RESET: if (state->power_state != DSI_CTRL_POWER_VREG_ON) { DSI_CTRL_ERR(dsi_ctrl, "State error: op=%d: %d\n", op, state->power_state); rc = -EINVAL; } break; case DSI_CTRL_OP_ASYNC_TIMING: if (state->vid_engine_state != op_state) { DSI_CTRL_ERR(dsi_ctrl, "Unexpected engine state vid_state=%d\n", op_state); rc = -EINVAL; } break; default: rc = -ENOTSUPP; break; } return rc; } bool dsi_ctrl_validate_host_state(struct dsi_ctrl *dsi_ctrl) { struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state; if (!state) { DSI_CTRL_ERR(dsi_ctrl, "Invalid host state for DSI controller\n"); return -EINVAL; } if (!state->host_initialized) return false; return true; } static void dsi_ctrl_update_state(struct dsi_ctrl *dsi_ctrl, enum dsi_ctrl_driver_ops op, u32 op_state) { struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state; switch (op) { case DSI_CTRL_OP_POWER_STATE_CHANGE: state->power_state = op_state; break; case DSI_CTRL_OP_CMD_ENGINE: state->cmd_engine_state = op_state; break; case DSI_CTRL_OP_VID_ENGINE: state->vid_engine_state = op_state; break; case DSI_CTRL_OP_HOST_ENGINE: state->controller_state = op_state; break; case DSI_CTRL_OP_HOST_INIT: state->host_initialized = (op_state == 1) ? true : false; break; case DSI_CTRL_OP_TPG: state->tpg_enabled = (op_state == 1) ? true : false; break; case DSI_CTRL_OP_CMD_TX: case DSI_CTRL_OP_PHY_SW_RESET: default: break; } } static int dsi_ctrl_init_regmap(struct platform_device *pdev, struct dsi_ctrl *ctrl) { int rc = 0; void __iomem *ptr; ptr = msm_ioremap(pdev, "dsi_ctrl", ctrl->name); if (IS_ERR(ptr)) { rc = PTR_ERR(ptr); return rc; } ctrl->hw.base = ptr; DSI_CTRL_DEBUG(ctrl, "map dsi_ctrl registers to %pK\n", ctrl->hw.base); switch (ctrl->version) { case DSI_CTRL_VERSION_2_2: case DSI_CTRL_VERSION_2_3: case DSI_CTRL_VERSION_2_4: case DSI_CTRL_VERSION_2_5: case DSI_CTRL_VERSION_2_6: case DSI_CTRL_VERSION_2_7: case DSI_CTRL_VERSION_2_8: ptr = msm_ioremap(pdev, "disp_cc_base", ctrl->name); if (IS_ERR(ptr)) { DSI_CTRL_ERR(ctrl, "disp_cc base address not found for\n"); rc = PTR_ERR(ptr); return rc; } ctrl->hw.disp_cc_base = ptr; ctrl->hw.mmss_misc_base = NULL; ptr = msm_ioremap(pdev, "mdp_intf_base", ctrl->name); if (!IS_ERR(ptr)) ctrl->hw.mdp_intf_base = ptr; break; default: break; } return rc; } static int dsi_ctrl_clocks_deinit(struct dsi_ctrl *ctrl) { struct dsi_core_clk_info *core = &ctrl->clk_info.core_clks; struct dsi_link_lp_clk_info *lp_link = &ctrl->clk_info.lp_link_clks; struct dsi_link_hs_clk_info *hs_link = &ctrl->clk_info.hs_link_clks; struct dsi_clk_link_set *rcg = &ctrl->clk_info.rcg_clks; if (core->mdp_core_clk) devm_clk_put(&ctrl->pdev->dev, core->mdp_core_clk); if (core->iface_clk) devm_clk_put(&ctrl->pdev->dev, core->iface_clk); if (core->core_mmss_clk) devm_clk_put(&ctrl->pdev->dev, core->core_mmss_clk); if (core->bus_clk) devm_clk_put(&ctrl->pdev->dev, core->bus_clk); if (core->mnoc_clk) devm_clk_put(&ctrl->pdev->dev, core->mnoc_clk); memset(core, 0x0, sizeof(*core)); if (hs_link->byte_clk) devm_clk_put(&ctrl->pdev->dev, hs_link->byte_clk); if (hs_link->pixel_clk) devm_clk_put(&ctrl->pdev->dev, hs_link->pixel_clk); if (lp_link->esc_clk) devm_clk_put(&ctrl->pdev->dev, lp_link->esc_clk); if (hs_link->byte_intf_clk) devm_clk_put(&ctrl->pdev->dev, hs_link->byte_intf_clk); memset(hs_link, 0x0, sizeof(*hs_link)); memset(lp_link, 0x0, sizeof(*lp_link)); if (rcg->byte_clk) devm_clk_put(&ctrl->pdev->dev, rcg->byte_clk); if (rcg->pixel_clk) devm_clk_put(&ctrl->pdev->dev, rcg->pixel_clk); memset(rcg, 0x0, sizeof(*rcg)); return 0; } static int dsi_ctrl_clocks_init(struct platform_device *pdev, struct dsi_ctrl *ctrl) { int rc = 0; struct dsi_core_clk_info *core = &ctrl->clk_info.core_clks; struct dsi_link_lp_clk_info *lp_link = &ctrl->clk_info.lp_link_clks; struct dsi_link_hs_clk_info *hs_link = &ctrl->clk_info.hs_link_clks; struct dsi_clk_link_set *rcg = &ctrl->clk_info.rcg_clks; struct dsi_clk_link_set *xo = &ctrl->clk_info.xo_clk; core->mdp_core_clk = devm_clk_get(&pdev->dev, "mdp_core_clk"); if (IS_ERR(core->mdp_core_clk)) { core->mdp_core_clk = NULL; DSI_CTRL_DEBUG(ctrl, "failed to get mdp_core_clk, rc=%d\n", rc); } core->iface_clk = devm_clk_get(&pdev->dev, "iface_clk"); if (IS_ERR(core->iface_clk)) { core->iface_clk = NULL; DSI_CTRL_DEBUG(ctrl, "failed to get iface_clk, rc=%d\n", rc); } core->core_mmss_clk = devm_clk_get(&pdev->dev, "core_mmss_clk"); if (IS_ERR(core->core_mmss_clk)) { core->core_mmss_clk = NULL; DSI_CTRL_DEBUG(ctrl, "failed to get core_mmss_clk, rc=%d\n", rc); } core->bus_clk = devm_clk_get(&pdev->dev, "bus_clk"); if (IS_ERR(core->bus_clk)) { core->bus_clk = NULL; DSI_CTRL_DEBUG(ctrl, "failed to get bus_clk, rc=%d\n", rc); } core->mnoc_clk = devm_clk_get(&pdev->dev, "mnoc_clk"); if (IS_ERR(core->mnoc_clk)) { core->mnoc_clk = NULL; DSI_CTRL_DEBUG(ctrl, "can't get mnoc clock, rc=%d\n", rc); } hs_link->byte_clk = devm_clk_get(&pdev->dev, "byte_clk"); if (IS_ERR(hs_link->byte_clk)) { rc = PTR_ERR(hs_link->byte_clk); DSI_CTRL_ERR(ctrl, "failed to get byte_clk, rc=%d\n", rc); goto fail; } hs_link->pixel_clk = devm_clk_get(&pdev->dev, "pixel_clk"); if (IS_ERR(hs_link->pixel_clk)) { rc = PTR_ERR(hs_link->pixel_clk); DSI_CTRL_ERR(ctrl, "failed to get pixel_clk, rc=%d\n", rc); goto fail; } lp_link->esc_clk = devm_clk_get(&pdev->dev, "esc_clk"); if (IS_ERR(lp_link->esc_clk)) { rc = PTR_ERR(lp_link->esc_clk); DSI_CTRL_ERR(ctrl, "failed to get esc_clk, rc=%d\n", rc); goto fail; } hs_link->byte_intf_clk = devm_clk_get(&pdev->dev, "byte_intf_clk"); if (IS_ERR(hs_link->byte_intf_clk)) { hs_link->byte_intf_clk = NULL; DSI_CTRL_DEBUG(ctrl, "can't find byte intf clk, rc=%d\n", rc); } rcg->byte_clk = devm_clk_get(&pdev->dev, "byte_clk_rcg"); if (IS_ERR(rcg->byte_clk)) { rc = PTR_ERR(rcg->byte_clk); DSI_CTRL_ERR(ctrl, "failed to get byte_clk_rcg, rc=%d\n", rc); goto fail; } rcg->pixel_clk = devm_clk_get(&pdev->dev, "pixel_clk_rcg"); if (IS_ERR(rcg->pixel_clk)) { rc = PTR_ERR(rcg->pixel_clk); DSI_CTRL_ERR(ctrl, "failed to get pixel_clk_rcg, rc=%d\n", rc); goto fail; } xo->byte_clk = devm_clk_get(&pdev->dev, "xo"); if (IS_ERR(xo->byte_clk)) { xo->byte_clk = NULL; DSI_CTRL_DEBUG(ctrl, "failed to get xo clk, rc=%d\n", rc); } xo->pixel_clk = xo->byte_clk; return 0; fail: dsi_ctrl_clocks_deinit(ctrl); return rc; } static int dsi_ctrl_supplies_deinit(struct dsi_ctrl *ctrl) { int i = 0; int rc = 0; struct dsi_regulator_info *regs; regs = &ctrl->pwr_info.digital; for (i = 0; i < regs->count; i++) { if (!regs->vregs[i].vreg) DSI_CTRL_ERR(ctrl, "vreg is NULL, should not reach here\n"); else devm_regulator_put(regs->vregs[i].vreg); } regs = &ctrl->pwr_info.host_pwr; for (i = 0; i < regs->count; i++) { if (!regs->vregs[i].vreg) DSI_CTRL_ERR(ctrl, "vreg is NULL, should not reach here\n"); else devm_regulator_put(regs->vregs[i].vreg); } if (!ctrl->pwr_info.host_pwr.vregs) { devm_kfree(&ctrl->pdev->dev, ctrl->pwr_info.host_pwr.vregs); ctrl->pwr_info.host_pwr.vregs = NULL; ctrl->pwr_info.host_pwr.count = 0; } if (!ctrl->pwr_info.digital.vregs) { devm_kfree(&ctrl->pdev->dev, ctrl->pwr_info.digital.vregs); ctrl->pwr_info.digital.vregs = NULL; ctrl->pwr_info.digital.count = 0; } return rc; } static int dsi_ctrl_supplies_init(struct platform_device *pdev, struct dsi_ctrl *ctrl) { int rc = 0; int i = 0; struct dsi_regulator_info *regs; struct regulator *vreg = NULL; rc = dsi_pwr_get_dt_vreg_data(&pdev->dev, &ctrl->pwr_info.digital, "qcom,core-supply-entries"); if (rc) DSI_CTRL_DEBUG(ctrl, "failed to get digital supply, rc = %d\n", rc); rc = dsi_pwr_get_dt_vreg_data(&pdev->dev, &ctrl->pwr_info.host_pwr, "qcom,ctrl-supply-entries"); if (rc) { DSI_CTRL_ERR(ctrl, "failed to get host power supplies, rc = %d\n", rc); goto error_digital; } regs = &ctrl->pwr_info.digital; for (i = 0; i < regs->count; i++) { vreg = devm_regulator_get(&pdev->dev, regs->vregs[i].vreg_name); if (IS_ERR(vreg)) { DSI_CTRL_ERR(ctrl, "failed to get %s regulator\n", regs->vregs[i].vreg_name); rc = PTR_ERR(vreg); goto error_host_pwr; } regs->vregs[i].vreg = vreg; } regs = &ctrl->pwr_info.host_pwr; for (i = 0; i < regs->count; i++) { vreg = devm_regulator_get(&pdev->dev, regs->vregs[i].vreg_name); if (IS_ERR(vreg)) { DSI_CTRL_ERR(ctrl, "failed to get %s regulator\n", regs->vregs[i].vreg_name); for (--i; i >= 0; i--) devm_regulator_put(regs->vregs[i].vreg); rc = PTR_ERR(vreg); goto error_digital_put; } regs->vregs[i].vreg = vreg; } return rc; error_digital_put: regs = &ctrl->pwr_info.digital; for (i = 0; i < regs->count; i++) devm_regulator_put(regs->vregs[i].vreg); error_host_pwr: devm_kfree(&pdev->dev, ctrl->pwr_info.host_pwr.vregs); ctrl->pwr_info.host_pwr.vregs = NULL; ctrl->pwr_info.host_pwr.count = 0; error_digital: if (ctrl->pwr_info.digital.vregs) devm_kfree(&pdev->dev, ctrl->pwr_info.digital.vregs); ctrl->pwr_info.digital.vregs = NULL; ctrl->pwr_info.digital.count = 0; return rc; } static int dsi_ctrl_validate_panel_info(struct dsi_ctrl *dsi_ctrl, struct dsi_host_config *config) { int rc = 0; struct dsi_host_common_cfg *host_cfg = &config->common_config; if (config->panel_mode >= DSI_OP_MODE_MAX) { DSI_CTRL_ERR(dsi_ctrl, "Invalid dsi operation mode (%d)\n", config->panel_mode); rc = -EINVAL; goto err; } if ((host_cfg->data_lanes & (DSI_CLOCK_LANE - 1)) == 0) { DSI_CTRL_ERR(dsi_ctrl, "No data lanes are enabled\n"); rc = -EINVAL; goto err; } err: return rc; } /* Function returns number of bits per pxl */ int dsi_ctrl_pixel_format_to_bpp(enum dsi_pixel_format dst_format) { u32 bpp = 0; switch (dst_format) { case DSI_PIXEL_FORMAT_RGB111: bpp = 3; break; case DSI_PIXEL_FORMAT_RGB332: bpp = 8; break; case DSI_PIXEL_FORMAT_RGB444: bpp = 12; break; case DSI_PIXEL_FORMAT_RGB565: bpp = 16; break; case DSI_PIXEL_FORMAT_RGB666: case DSI_PIXEL_FORMAT_RGB666_LOOSE: bpp = 18; break; case DSI_PIXEL_FORMAT_RGB888: bpp = 24; break; case DSI_PIXEL_FORMAT_RGB101010: bpp = 30; break; default: bpp = 24; break; } return bpp; } static int dsi_ctrl_update_link_freqs(struct dsi_ctrl *dsi_ctrl, struct dsi_host_config *config, void *clk_handle, struct dsi_display_mode *mode) { int rc = 0; u32 num_of_lanes = 0; u32 bits_per_symbol = 16, num_of_symbols = 7; /* For Cphy */ u32 bpp, frame_time_us, byte_intf_clk_div; u64 h_period, v_period, bit_rate, pclk_rate, bit_rate_per_lane, byte_clk_rate, byte_intf_clk_rate; struct dsi_host_common_cfg *host_cfg = &config->common_config; struct dsi_split_link_config *split_link = &host_cfg->split_link; struct dsi_mode_info *timing = &config->video_timing; u64 dsi_transfer_time_us = mode->priv_info->dsi_transfer_time_us; u64 min_dsi_clk_hz = mode->priv_info->min_dsi_clk_hz; /* Get bits per pxl in destination format */ bpp = dsi_ctrl_pixel_format_to_bpp(host_cfg->dst_format); frame_time_us = mult_frac(1000, 1000, (timing->refresh_rate)); if (host_cfg->data_lanes & DSI_DATA_LANE_0) num_of_lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_1) num_of_lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_2) num_of_lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_3) num_of_lanes++; if (split_link->enabled) num_of_lanes = split_link->lanes_per_sublink; config->common_config.num_data_lanes = num_of_lanes; config->common_config.bpp = bpp; if (config->bit_clk_rate_hz_override != 0) { bit_rate = config->bit_clk_rate_hz_override * num_of_lanes; if (host_cfg->phy_type == DSI_PHY_TYPE_CPHY) { bit_rate *= bits_per_symbol; do_div(bit_rate, num_of_symbols); } } else if (config->panel_mode == DSI_OP_CMD_MODE) { /* Calculate the bit rate needed to match dsi transfer time */ if (host_cfg->phy_type == DSI_PHY_TYPE_CPHY) { min_dsi_clk_hz *= bits_per_symbol; do_div(min_dsi_clk_hz, num_of_symbols); } bit_rate = min_dsi_clk_hz * frame_time_us; do_div(bit_rate, dsi_transfer_time_us); bit_rate = bit_rate * num_of_lanes; } else { h_period = dsi_h_total_dce(timing); v_period = DSI_V_TOTAL(timing); bit_rate = h_period * v_period * timing->refresh_rate * bpp; } pclk_rate = bit_rate; do_div(pclk_rate, bpp); if (host_cfg->phy_type == DSI_PHY_TYPE_DPHY) { bit_rate_per_lane = bit_rate; do_div(bit_rate_per_lane, num_of_lanes); byte_clk_rate = bit_rate_per_lane; /** * Ensure that the byte clock rate is even to avoid failures * during set rate for byte intf clock. Round up to the nearest * even number for byte clk. */ byte_clk_rate = DIV_ROUND_CLOSEST(byte_clk_rate, 8); byte_clk_rate = ((byte_clk_rate + 1) & ~BIT(0)); byte_intf_clk_rate = byte_clk_rate; byte_intf_clk_div = host_cfg->byte_intf_clk_div; do_div(byte_intf_clk_rate, byte_intf_clk_div); config->bit_clk_rate_hz = byte_clk_rate * 8; } else { do_div(bit_rate, bits_per_symbol); bit_rate *= num_of_symbols; bit_rate_per_lane = bit_rate; do_div(bit_rate_per_lane, num_of_lanes); byte_clk_rate = bit_rate_per_lane; do_div(byte_clk_rate, 7); /* For CPHY, byte_intf_clk is same as byte_clk */ byte_intf_clk_rate = byte_clk_rate; config->bit_clk_rate_hz = byte_clk_rate * 7; } DSI_CTRL_DEBUG(dsi_ctrl, "bit_clk_rate = %llu, bit_clk_rate_per_lane = %llu\n", bit_rate, bit_rate_per_lane); DSI_CTRL_DEBUG(dsi_ctrl, "byte_clk_rate = %llu, byte_intf_clk = %llu\n", byte_clk_rate, byte_intf_clk_rate); DSI_CTRL_DEBUG(dsi_ctrl, "pclk_rate = %llu\n", pclk_rate); SDE_EVT32(dsi_ctrl->cell_index, bit_rate, byte_clk_rate, pclk_rate); dsi_ctrl->clk_freq.byte_clk_rate = byte_clk_rate; dsi_ctrl->clk_freq.byte_intf_clk_rate = byte_intf_clk_rate; dsi_ctrl->clk_freq.pix_clk_rate = pclk_rate; dsi_ctrl->clk_freq.esc_clk_rate = config->esc_clk_rate_hz; return rc; } static int dsi_ctrl_enable_supplies(struct dsi_ctrl *dsi_ctrl, bool enable) { int rc = 0; if (enable) { rc = pm_runtime_resume_and_get(dsi_ctrl->drm_dev->dev); if (rc < 0) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable power resource %d\n", rc); SDE_EVT32(rc, SDE_EVTLOG_ERROR); goto error; } if (!dsi_ctrl->current_state.host_initialized) { rc = dsi_pwr_enable_regulator( &dsi_ctrl->pwr_info.host_pwr, true); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable host power regs\n"); goto error_get_sync; } } rc = dsi_pwr_enable_regulator(&dsi_ctrl->pwr_info.digital, true); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable gdsc, rc=%d\n", rc); (void)dsi_pwr_enable_regulator( &dsi_ctrl->pwr_info.host_pwr, false ); goto error_get_sync; } return rc; } else { rc = dsi_pwr_enable_regulator(&dsi_ctrl->pwr_info.digital, false); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to disable gdsc, rc=%d\n", rc); goto error; } if (!dsi_ctrl->current_state.host_initialized) { rc = dsi_pwr_enable_regulator( &dsi_ctrl->pwr_info.host_pwr, false); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to disable host power regs\n"); goto error; } } pm_runtime_put_sync(dsi_ctrl->drm_dev->dev); return rc; } error_get_sync: pm_runtime_put_sync(dsi_ctrl->drm_dev->dev); error: return rc; } static int dsi_ctrl_copy_and_pad_cmd(struct dsi_ctrl *dsi_ctrl, const struct mipi_dsi_packet *packet, u8 **buffer, u32 *size) { int rc = 0; u8 *buf = NULL; u32 len, i; u8 cmd_type = 0; len = packet->size; len += 0x3; len &= ~0x03; /* Align to 32 bits */ buf = devm_kzalloc(&dsi_ctrl->pdev->dev, len * sizeof(u8), GFP_KERNEL); if (!buf) return -ENOMEM; for (i = 0; i < len; i++) { if (i >= packet->size) buf[i] = 0xFF; else if (i < sizeof(packet->header)) buf[i] = packet->header[i]; else buf[i] = packet->payload[i - sizeof(packet->header)]; } if (packet->payload_length > 0) buf[3] |= BIT(6); /* Swap BYTE order in the command buffer for MSM */ buf[0] = packet->header[1]; buf[1] = packet->header[2]; buf[2] = packet->header[0]; /* send embedded BTA for read commands */ cmd_type = buf[2] & 0x3f; if ((cmd_type == MIPI_DSI_DCS_READ) || (cmd_type == MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM) || (cmd_type == MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM) || (cmd_type == MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM)) buf[3] |= BIT(5); *buffer = buf; *size = len; return rc; } int dsi_ctrl_wait_for_cmd_mode_mdp_idle(struct dsi_ctrl *dsi_ctrl) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } if (dsi_ctrl->host_config.panel_mode != DSI_OP_CMD_MODE) return -EINVAL; mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl->hw.ops.wait_for_cmd_mode_mdp_idle(&dsi_ctrl->hw); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_message_validate_tx_mode(struct dsi_ctrl *dsi_ctrl, u32 cmd_len, u32 *flags) { int rc = 0; if (*flags & DSI_CTRL_CMD_FIFO_STORE) { /* if command size plus header is greater than fifo size */ if ((cmd_len + 4) > DSI_CTRL_MAX_CMD_FIFO_STORE_SIZE) { DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer Cmd in FIFO config\n"); return -ENOTSUPP; } if (!dsi_ctrl->hw.ops.kickoff_fifo_command) { DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer command,ops not defined\n"); return -ENOTSUPP; } } if (*flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) { if (*flags & DSI_CTRL_CMD_BROADCAST) { DSI_CTRL_ERR(dsi_ctrl, "Non embedded not supported with broadcast\n"); return -ENOTSUPP; } if (!dsi_ctrl->hw.ops.kickoff_command_non_embedded_mode) { DSI_CTRL_ERR(dsi_ctrl, " Cannot transfer command,ops not defined\n"); return -ENOTSUPP; } if ((cmd_len + 4) > SZ_4K) { DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer,size is greater than 4096\n"); return -ENOTSUPP; } } if (*flags & DSI_CTRL_CMD_FETCH_MEMORY) { if ((dsi_ctrl->cmd_len + cmd_len + 4) > SZ_4K) { DSI_CTRL_ERR(dsi_ctrl, "Cannot transfer,size is greater than 4096\n"); return -ENOTSUPP; } } return rc; } static void dsi_configure_command_scheduling(struct dsi_ctrl *dsi_ctrl, struct dsi_ctrl_cmd_dma_info *cmd_mem) { u32 line_no = 0, window = 0, sched_line_no = 0; struct dsi_ctrl_hw_ops dsi_hw_ops = dsi_ctrl->hw.ops; struct dsi_mode_info *timing = &(dsi_ctrl->host_config.video_timing); line_no = dsi_ctrl->host_config.common_config.dma_sched_line; window = dsi_ctrl->host_config.common_config.dma_sched_window; SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, line_no, window); /* * In case of command scheduling in video mode, the line at which * the command is scheduled can revert to the default value i.e. 1 * for the following cases: * 1) No schedule line defined by the panel. * 2) schedule line defined is greater than VFP. */ if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) && dsi_hw_ops.schedule_dma_cmd && (dsi_ctrl->current_state.vid_engine_state == DSI_CTRL_ENGINE_ON)) { sched_line_no = (line_no == 0) ? 1 : line_no; if (timing) { if (sched_line_no >= timing->v_front_porch) sched_line_no = 1; sched_line_no += timing->v_back_porch + timing->v_sync_width + timing->v_active; } dsi_hw_ops.schedule_dma_cmd(&dsi_ctrl->hw, sched_line_no); } /* * In case of command scheduling in command mode, set the maximum * possible size of the DMA start window in case no schedule line and * window size properties are defined by the panel. */ if ((dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) && dsi_hw_ops.configure_cmddma_window) { sched_line_no = (line_no == 0) ? TEARCHECK_WINDOW_SIZE : line_no; window = (window == 0) ? timing->v_active : window; sched_line_no += timing->v_active; dsi_hw_ops.configure_cmddma_window(&dsi_ctrl->hw, cmd_mem, sched_line_no, window); } SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_EXIT, sched_line_no, window); } static u32 calculate_schedule_line(struct dsi_ctrl *dsi_ctrl, u32 flags) { u32 line_no = 0x1; struct dsi_mode_info *timing; /* check if custom dma scheduling line needed */ if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) && (flags & DSI_CTRL_CMD_CUSTOM_DMA_SCHED)) line_no = dsi_ctrl->host_config.common_config.dma_sched_line; timing = &(dsi_ctrl->host_config.video_timing); if (timing) line_no += timing->v_back_porch + timing->v_sync_width + timing->v_active; return line_no; } static void dsi_kickoff_msg_tx(struct dsi_ctrl *dsi_ctrl, const struct mipi_dsi_msg *msg, struct dsi_ctrl_cmd_dma_fifo_info *cmd, struct dsi_ctrl_cmd_dma_info *cmd_mem, u32 flags) { u32 hw_flags = 0; struct dsi_ctrl_hw_ops dsi_hw_ops = dsi_ctrl->hw.ops; struct dsi_split_link_config *split_link; split_link = &(dsi_ctrl->host_config.common_config.split_link); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, flags, msg->flags); if (dsi_hw_ops.splitlink_cmd_setup && split_link->enabled) dsi_hw_ops.splitlink_cmd_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config, flags); if (dsi_hw_ops.init_cmddma_trig_ctrl) dsi_hw_ops.init_cmddma_trig_ctrl(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config); /* * Always enable DMA scheduling for video mode panel. * * In video mode panel, if the DMA is triggered very close to * the beginning of the active window and the DMA transfer * happens in the last line of VBP, then the HW state will * stay in ‘wait’ and return to ‘idle’ in the first line of VFP. * But somewhere in the middle of the active window, if SW * disables DSI command mode engine while the HW is still * waiting and re-enable after timing engine is OFF. So the * HW never ‘sees’ another vblank line and hence it gets * stuck in the ‘wait’ state. */ if ((flags & DSI_CTRL_CMD_CUSTOM_DMA_SCHED) || (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE)) dsi_configure_command_scheduling(dsi_ctrl, cmd_mem); dsi_ctrl->cmd_mode = (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE); hw_flags |= (flags & DSI_CTRL_CMD_DEFER_TRIGGER) ? DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER : 0; if (flags & DSI_CTRL_CMD_LAST_COMMAND) hw_flags |= DSI_CTRL_CMD_LAST_COMMAND; if (flags & DSI_CTRL_CMD_DEFER_TRIGGER) { if (flags & DSI_CTRL_CMD_FETCH_MEMORY) { if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) { dsi_hw_ops.kickoff_command_non_embedded_mode( &dsi_ctrl->hw, cmd_mem, hw_flags); } else { dsi_hw_ops.kickoff_command( &dsi_ctrl->hw, cmd_mem, hw_flags); } } else if (flags & DSI_CTRL_CMD_FIFO_STORE) { dsi_hw_ops.kickoff_fifo_command(&dsi_ctrl->hw, cmd, hw_flags); } } if (!(flags & DSI_CTRL_CMD_DEFER_TRIGGER)) { atomic_set(&dsi_ctrl->dma_irq_trig, 0); dsi_ctrl_enable_status_interrupt(dsi_ctrl, DSI_SINT_CMD_MODE_DMA_DONE, NULL); reinit_completion(&dsi_ctrl->irq_info.cmd_dma_done); if (flags & DSI_CTRL_CMD_FETCH_MEMORY) { if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) { dsi_hw_ops.kickoff_command_non_embedded_mode( &dsi_ctrl->hw, cmd_mem, hw_flags); } else { dsi_hw_ops.kickoff_command( &dsi_ctrl->hw, cmd_mem, hw_flags); } } else if (flags & DSI_CTRL_CMD_FIFO_STORE) { dsi_hw_ops.kickoff_fifo_command(&dsi_ctrl->hw, cmd, hw_flags); } if (dsi_ctrl->enable_cmd_dma_stats) { u32 reg = dsi_hw_ops.log_line_count(&dsi_ctrl->hw, dsi_ctrl->cmd_mode); dsi_ctrl->cmd_trigger_line = (reg & 0xFFFF); dsi_ctrl->cmd_trigger_frame = ((reg >> 16) & 0xFFFF); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_CASE1, dsi_ctrl->cmd_trigger_line, dsi_ctrl->cmd_trigger_frame); } dsi_hw_ops.reset_cmd_fifo(&dsi_ctrl->hw); /* * DSI 2.2 needs a soft reset whenever we send non-embedded * mode command followed by embedded mode. Otherwise it will * result in smmu write faults with DSI as client. */ if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) { if (dsi_ctrl->version < DSI_CTRL_VERSION_2_4) dsi_hw_ops.soft_reset(&dsi_ctrl->hw); dsi_ctrl->cmd_len = 0; } } } static int dsi_message_tx(struct dsi_ctrl *dsi_ctrl, struct dsi_cmd_desc *cmd_desc) { int rc = 0; struct mipi_dsi_packet packet; struct dsi_ctrl_cmd_dma_fifo_info cmd; struct dsi_ctrl_cmd_dma_info cmd_mem; const struct mipi_dsi_msg *msg; u32 length = 0; u8 *buffer = NULL; u32 cnt = 0; u8 *cmdbuf; u32 *flags; msg = &cmd_desc->msg; flags = &cmd_desc->ctrl_flags; /* Validate the mode before sending the command */ rc = dsi_message_validate_tx_mode(dsi_ctrl, msg->tx_len, flags); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Cmd tx validation failed, cannot transfer cmd\n"); rc = -ENOTSUPP; goto error; } SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, *flags, dsi_ctrl->cmd_len); if (*flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) { cmd_mem.offset = dsi_ctrl->cmd_buffer_iova; cmd_mem.en_broadcast = (*flags & DSI_CTRL_CMD_BROADCAST) ? true : false; cmd_mem.is_master = (*flags & DSI_CTRL_CMD_BROADCAST_MASTER) ? true : false; cmd_mem.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ? true : false; cmd_mem.datatype = msg->type; cmd_mem.length = msg->tx_len; dsi_ctrl->cmd_len = msg->tx_len; memcpy(dsi_ctrl->vaddr, msg->tx_buf, msg->tx_len); DSI_CTRL_DEBUG(dsi_ctrl, "non-embedded mode , size of command =%zd\n", msg->tx_len); goto kickoff; } rc = mipi_dsi_create_packet(&packet, msg); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to create message packet, rc=%d\n", rc); goto error; } rc = dsi_ctrl_copy_and_pad_cmd(dsi_ctrl, &packet, &buffer, &length); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to copy message, rc=%d\n", rc); goto error; } /* * In case of broadcast CMD length cannot be greater than 512 bytes * as specified by HW limitations. Need to overwrite the flags to * set the LAST_COMMAND flag to ensure no command transfer failures. */ if ((*flags & DSI_CTRL_CMD_FETCH_MEMORY) && (*flags & DSI_CTRL_CMD_BROADCAST)) { if (((dsi_ctrl->cmd_len + length) > 240) && !(*flags & DSI_CTRL_CMD_LAST_COMMAND)) { *flags |= DSI_CTRL_CMD_LAST_COMMAND; SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_CASE1, *flags); } } if (*flags & DSI_CTRL_CMD_LAST_COMMAND) buffer[3] |= BIT(7);//set the last cmd bit in header. if (*flags & DSI_CTRL_CMD_FETCH_MEMORY) { /* Embedded mode config is selected */ cmd_mem.offset = dsi_ctrl->cmd_buffer_iova; cmd_mem.en_broadcast = (*flags & DSI_CTRL_CMD_BROADCAST) ? true : false; cmd_mem.is_master = (*flags & DSI_CTRL_CMD_BROADCAST_MASTER) ? true : false; cmd_mem.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ? true : false; cmdbuf = (u8 *)(dsi_ctrl->vaddr); for (cnt = 0; cnt < length; cnt++) cmdbuf[dsi_ctrl->cmd_len + cnt] = buffer[cnt]; dsi_ctrl->cmd_len += length; msm_gem_sync(dsi_ctrl->tx_cmd_buf); if (*flags & DSI_CTRL_CMD_LAST_COMMAND) { cmd_mem.length = dsi_ctrl->cmd_len; dsi_ctrl->cmd_len = 0; } else { goto error; } } else if (*flags & DSI_CTRL_CMD_FIFO_STORE) { cmd.command = (u32 *)buffer; cmd.size = length; cmd.en_broadcast = (*flags & DSI_CTRL_CMD_BROADCAST) ? true : false; cmd.is_master = (*flags & DSI_CTRL_CMD_BROADCAST_MASTER) ? true : false; cmd.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ? true : false; } kickoff: dsi_kickoff_msg_tx(dsi_ctrl, msg, &cmd, &cmd_mem, *flags); error: if (buffer) devm_kfree(&dsi_ctrl->pdev->dev, buffer); return rc; } static int dsi_set_max_return_size(struct dsi_ctrl *dsi_ctrl, struct dsi_cmd_desc *rx_cmd, u32 size) { int rc = 0; const struct mipi_dsi_msg *rx_msg = &rx_cmd->msg; u8 tx[2] = { (u8)(size & 0xFF), (u8)(size >> 8) }; u16 dflags = rx_msg->flags; struct dsi_cmd_desc cmd= { .msg.channel = rx_msg->channel, .msg.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, .msg.tx_len = 2, .msg.tx_buf = tx, .msg.flags = rx_msg->flags, }; /* remove last message flag to batch max packet cmd to read command */ dflags &= ~BIT(3); cmd.msg.flags = dflags; cmd.ctrl_flags = DSI_CTRL_CMD_FETCH_MEMORY; rc = dsi_message_tx(dsi_ctrl, &cmd); if (rc) DSI_CTRL_ERR(dsi_ctrl, "failed to send max return size packet, rc=%d\n", rc); return rc; } /* Helper functions to support DCS read operation */ static int dsi_parse_short_read1_resp(const struct mipi_dsi_msg *msg, unsigned char *buff) { u8 *data = msg->rx_buf; int read_len = 1; if (!data) return 0; /* remove dcs type */ if (msg->rx_len >= 1) data[0] = buff[1]; else read_len = 0; return read_len; } static int dsi_parse_short_read2_resp(const struct mipi_dsi_msg *msg, unsigned char *buff) { u8 *data = msg->rx_buf; int read_len = 2; if (!data) return 0; /* remove dcs type */ if (msg->rx_len >= 2) { data[0] = buff[1]; data[1] = buff[2]; } else { read_len = 0; } return read_len; } static int dsi_parse_long_read_resp(const struct mipi_dsi_msg *msg, unsigned char *buff) { if (!msg->rx_buf) return 0; /* remove dcs type */ if (msg->rx_buf && msg->rx_len) memcpy(msg->rx_buf, buff + 4, msg->rx_len); return msg->rx_len; } static int dsi_message_rx(struct dsi_ctrl *dsi_ctrl, struct dsi_cmd_desc *cmd_desc) { int rc = 0; u32 rd_pkt_size, total_read_len, hw_read_cnt; u32 current_read_len = 0, total_bytes_read = 0; bool short_resp = false; bool read_done = false; u32 dlen, diff, rlen; unsigned char *buff = NULL; char cmd; const struct mipi_dsi_msg *msg; u32 buffer_sz = 0, header_offset = 0; u8 *head = NULL; if (!cmd_desc) { DSI_CTRL_ERR(dsi_ctrl, "Invalid command\n"); rc = -EINVAL; goto error; } msg = &cmd_desc->msg; rlen = msg->rx_len; if (msg->rx_len <= 2) { short_resp = true; rd_pkt_size = msg->rx_len; total_read_len = 4; /* * buffer size: header + data * No 32 bits alignment issue, thus offset is 0 */ buffer_sz = 4; } else { short_resp = false; current_read_len = 10; if (msg->rx_len < current_read_len) rd_pkt_size = msg->rx_len; else rd_pkt_size = current_read_len; total_read_len = current_read_len + 6; /* * buffer size: header + data + footer, rounded up to 4 bytes. * Out of bound can occur if rx_len is not aligned to size 4. */ buffer_sz = 4 + msg->rx_len + 2; buffer_sz = ALIGN(buffer_sz, 4); if (buffer_sz < 16) buffer_sz = 16; } buff = kzalloc(buffer_sz, GFP_KERNEL); if (!buff) { rc = -ENOMEM; goto error; } head = buff; while (!read_done) { rc = dsi_set_max_return_size(dsi_ctrl, cmd_desc, rd_pkt_size); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to set max return packet size, rc=%d\n", rc); goto error; } /* clear RDBK_DATA registers before proceeding */ dsi_ctrl->hw.ops.clear_rdbk_register(&dsi_ctrl->hw); rc = dsi_message_tx(dsi_ctrl, cmd_desc); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Message transmission failed, rc=%d\n", rc); goto error; } /* Wait for read command transfer success */ dsi_ctrl_dma_cmd_wait_for_done(dsi_ctrl); /* * wait before reading rdbk_data register, if any delay is * required after sending the read command. */ if (cmd_desc->post_wait_ms) usleep_range(cmd_desc->post_wait_ms * 1000, ((cmd_desc->post_wait_ms * 1000) + 10)); dlen = dsi_ctrl->hw.ops.get_cmd_read_data(&dsi_ctrl->hw, buff, total_bytes_read, total_read_len, rd_pkt_size, &hw_read_cnt); if (!dlen) goto error; if (short_resp) break; if (rlen <= current_read_len) { diff = current_read_len - rlen; read_done = true; } else { diff = 0; rlen -= current_read_len; } dlen -= 2; /* 2 bytes of CRC */ dlen -= diff; buff += dlen; total_bytes_read += dlen; if (!read_done) { current_read_len = 14; /* Not first read */ if (rlen < current_read_len) rd_pkt_size += rlen; else rd_pkt_size += current_read_len; } } buff = head; if (hw_read_cnt < 16 && !short_resp) header_offset = (16 - hw_read_cnt); else header_offset = 0; /* parse the data read from panel */ cmd = buff[header_offset]; switch (cmd) { case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: DSI_CTRL_ERR(dsi_ctrl, "Rx ACK_ERROR 0x%x\n", cmd); rc = 0; break; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: rc = dsi_parse_short_read1_resp(msg, &buff[header_offset]); break; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: rc = dsi_parse_short_read2_resp(msg, &buff[header_offset]); break; case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: rc = dsi_parse_long_read_resp(msg, &buff[header_offset]); break; default: DSI_CTRL_WARN(dsi_ctrl, "Invalid response: 0x%x\n", cmd); rc = 0; } error: kfree(buff); return rc; } static int dsi_enable_ulps(struct dsi_ctrl *dsi_ctrl) { int rc = 0; u32 lanes = 0; u32 ulps_lanes; lanes = dsi_ctrl->host_config.common_config.data_lanes; rc = dsi_ctrl->hw.ops.wait_for_lane_idle(&dsi_ctrl->hw, lanes); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "lanes not entering idle, skip ULPS\n"); return rc; } if (!dsi_ctrl->hw.ops.ulps_ops.ulps_request || !dsi_ctrl->hw.ops.ulps_ops.ulps_exit) { DSI_CTRL_DEBUG(dsi_ctrl, "DSI controller ULPS ops not present\n"); return 0; } if (!dsi_is_type_cphy(&dsi_ctrl->host_config.common_config)) lanes |= DSI_CLOCK_LANE; dsi_ctrl->hw.ops.ulps_ops.ulps_request(&dsi_ctrl->hw, lanes); ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw); if ((lanes & ulps_lanes) != lanes) { DSI_CTRL_ERR(dsi_ctrl, "Failed to enter ULPS, request=0x%x, actual=0x%x\n", lanes, ulps_lanes); rc = -EIO; } return rc; } static int dsi_disable_ulps(struct dsi_ctrl *dsi_ctrl) { int rc = 0; u32 ulps_lanes, lanes = 0; dsi_ctrl->hw.ops.clear_phy0_ln_err(&dsi_ctrl->hw); if (!dsi_ctrl->hw.ops.ulps_ops.ulps_request || !dsi_ctrl->hw.ops.ulps_ops.ulps_exit) { DSI_CTRL_DEBUG(dsi_ctrl, "DSI controller ULPS ops not present\n"); return 0; } lanes = dsi_ctrl->host_config.common_config.data_lanes; if (!dsi_is_type_cphy(&dsi_ctrl->host_config.common_config)) lanes |= DSI_CLOCK_LANE; ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw); if ((lanes & ulps_lanes) != lanes) DSI_CTRL_ERR(dsi_ctrl, "Mismatch between lanes in ULPS\n"); lanes &= ulps_lanes; dsi_ctrl->hw.ops.ulps_ops.ulps_exit(&dsi_ctrl->hw, lanes); ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw); if (ulps_lanes & lanes) { DSI_CTRL_ERR(dsi_ctrl, "Lanes (0x%x) stuck in ULPS\n", ulps_lanes); rc = -EIO; } return rc; } void dsi_ctrl_toggle_error_interrupt_status(struct dsi_ctrl *dsi_ctrl, bool enable) { if (!enable) { dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw, 0); } else { if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE && !dsi_ctrl->host_config.u.video_engine.bllp_lp11_en && !dsi_ctrl->host_config.u.video_engine.eof_bllp_lp11_en) dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw, 0xFF00A0); else dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw, 0xFF00E0); } } static int dsi_ctrl_drv_state_init(struct dsi_ctrl *dsi_ctrl) { int rc = 0; bool splash_enabled = false; struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state; if (!splash_enabled) { state->power_state = DSI_CTRL_POWER_VREG_OFF; state->cmd_engine_state = DSI_CTRL_ENGINE_OFF; state->vid_engine_state = DSI_CTRL_ENGINE_OFF; } return rc; } static int dsi_ctrl_buffer_deinit(struct dsi_ctrl *dsi_ctrl) { struct msm_gem_address_space *aspace = NULL; if (dsi_ctrl->tx_cmd_buf) { aspace = dsi_ctrl_get_aspace(dsi_ctrl, MSM_SMMU_DOMAIN_UNSECURE); if (!aspace) { DSI_CTRL_ERR(dsi_ctrl, "failed to get address space\n"); return -ENOMEM; } msm_gem_put_iova(dsi_ctrl->tx_cmd_buf, aspace); mutex_lock(&dsi_ctrl->drm_dev->struct_mutex); msm_gem_free_object(dsi_ctrl->tx_cmd_buf); mutex_unlock(&dsi_ctrl->drm_dev->struct_mutex); dsi_ctrl->tx_cmd_buf = NULL; } return 0; } int dsi_ctrl_buffer_init(struct dsi_ctrl *dsi_ctrl) { int rc = 0; u64 iova = 0; struct msm_gem_address_space *aspace = NULL; aspace = dsi_ctrl_get_aspace(dsi_ctrl, MSM_SMMU_DOMAIN_UNSECURE); if (!aspace) { DSI_CTRL_ERR(dsi_ctrl, "failed to get address space\n"); return -ENOMEM; } dsi_ctrl->tx_cmd_buf = msm_gem_new(dsi_ctrl->drm_dev, SZ_4K, MSM_BO_UNCACHED); if (IS_ERR(dsi_ctrl->tx_cmd_buf)) { rc = PTR_ERR(dsi_ctrl->tx_cmd_buf); DSI_CTRL_ERR(dsi_ctrl, "failed to allocate gem, rc=%d\n", rc); dsi_ctrl->tx_cmd_buf = NULL; goto error; } dsi_ctrl->cmd_buffer_size = SZ_4K; rc = msm_gem_get_iova(dsi_ctrl->tx_cmd_buf, aspace, &iova); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to get iova, rc=%d\n", rc); (void)dsi_ctrl_buffer_deinit(dsi_ctrl); goto error; } if (iova & 0x07) { DSI_CTRL_ERR(dsi_ctrl, "Tx command buffer is not 8 byte aligned\n"); rc = -ENOTSUPP; (void)dsi_ctrl_buffer_deinit(dsi_ctrl); goto error; } error: return rc; } static int dsi_enable_io_clamp(struct dsi_ctrl *dsi_ctrl, bool enable, bool ulps_enabled) { u32 lanes = 0; if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) lanes = dsi_ctrl->host_config.common_config.data_lanes; lanes |= DSI_CLOCK_LANE; if (enable) dsi_ctrl->hw.ops.clamp_enable(&dsi_ctrl->hw, lanes, ulps_enabled); else dsi_ctrl->hw.ops.clamp_disable(&dsi_ctrl->hw, lanes, ulps_enabled); return 0; } static int dsi_ctrl_dts_parse(struct dsi_ctrl *dsi_ctrl, struct device_node *of_node) { u32 index = 0, frame_threshold_time_us = 0; int rc = 0; if (!dsi_ctrl || !of_node) { DSI_CTRL_ERR(dsi_ctrl, "invalid dsi_ctrl:%d or of_node:%d\n", dsi_ctrl != NULL, of_node != NULL); return -EINVAL; } rc = of_property_read_u32(of_node, "cell-index", &index); if (rc) { DSI_CTRL_DEBUG(dsi_ctrl, "cell index not set, default to 0\n"); index = 0; } dsi_ctrl->cell_index = index; dsi_ctrl->name = of_get_property(of_node, "label", NULL); if (!dsi_ctrl->name) dsi_ctrl->name = DSI_CTRL_DEFAULT_LABEL; dsi_ctrl->null_insertion_enabled = of_property_read_bool(of_node, "qcom,null-insertion-enabled"); dsi_ctrl->split_link_supported = of_property_read_bool(of_node, "qcom,split-link-supported"); dsi_ctrl->phy_pll_bypass = of_property_read_bool(of_node, "qcom,dsi-phy-pll-bypass"); rc = of_property_read_u32(of_node, "frame-threshold-time-us", &frame_threshold_time_us); if (rc) { DSI_CTRL_DEBUG(dsi_ctrl, "frame-threshold-time not specified, defaulting\n"); frame_threshold_time_us = 2666; } dsi_ctrl->frame_threshold_time_us = frame_threshold_time_us; dsi_ctrl->dsi_ctrl_shared = of_property_read_bool(of_node, "qcom,dsi-ctrl-shared"); return 0; } static int dsi_ctrl_dev_probe(struct platform_device *pdev) { struct dsi_ctrl *dsi_ctrl; struct dsi_ctrl_list_item *item; const struct of_device_id *id; enum dsi_ctrl_version version; int rc = 0; id = of_match_node(msm_dsi_of_match, pdev->dev.of_node); if (!id) return -ENODEV; version = *(enum dsi_ctrl_version *)id->data; item = devm_kzalloc(&pdev->dev, sizeof(*item), GFP_KERNEL); if (!item) return -ENOMEM; dsi_ctrl = devm_kzalloc(&pdev->dev, sizeof(*dsi_ctrl), GFP_KERNEL); if (!dsi_ctrl) return -ENOMEM; dsi_ctrl->version = version; dsi_ctrl->irq_info.irq_num = -1; dsi_ctrl->irq_info.irq_stat_mask = 0x0; INIT_WORK(&dsi_ctrl->post_cmd_tx_work, dsi_ctrl_post_cmd_transfer_work); atomic_set(&dsi_ctrl->dma_irq_trig, 0); spin_lock_init(&dsi_ctrl->irq_info.irq_lock); rc = dsi_ctrl_dts_parse(dsi_ctrl, pdev->dev.of_node); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "dts parse failed, rc = %d\n", rc); goto fail; } rc = dsi_ctrl_init_regmap(pdev, dsi_ctrl); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to parse register information, rc = %d\n", rc); goto fail; } rc = dsi_ctrl_supplies_init(pdev, dsi_ctrl); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to parse voltage supplies, rc = %d\n", rc); goto fail; } rc = dsi_ctrl_clocks_init(pdev, dsi_ctrl); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to parse clock information, rc = %d\n", rc); goto fail_supplies; } rc = dsi_catalog_ctrl_setup(&dsi_ctrl->hw, dsi_ctrl->version, dsi_ctrl->cell_index, dsi_ctrl->phy_pll_bypass, dsi_ctrl->null_insertion_enabled); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Catalog does not support version (%d)\n", dsi_ctrl->version); goto fail_clks; } item->ctrl = dsi_ctrl; sde_dbg_dsi_ctrl_register(dsi_ctrl->hw.base, dsi_ctrl->name); mutex_lock(&dsi_ctrl_list_lock); list_add(&item->list, &dsi_ctrl_list); mutex_unlock(&dsi_ctrl_list_lock); mutex_init(&dsi_ctrl->ctrl_lock); dsi_ctrl->secure_mode = false; dsi_ctrl->pdev = pdev; platform_set_drvdata(pdev, dsi_ctrl); DSI_CTRL_INFO(dsi_ctrl, "Probe successful\n"); return 0; fail_clks: (void)dsi_ctrl_clocks_deinit(dsi_ctrl); fail_supplies: (void)dsi_ctrl_supplies_deinit(dsi_ctrl); fail: return rc; } static int dsi_ctrl_dev_remove(struct platform_device *pdev) { int rc = 0; struct dsi_ctrl *dsi_ctrl; struct list_head *pos, *tmp; dsi_ctrl = platform_get_drvdata(pdev); mutex_lock(&dsi_ctrl_list_lock); list_for_each_safe(pos, tmp, &dsi_ctrl_list) { struct dsi_ctrl_list_item *n = list_entry(pos, struct dsi_ctrl_list_item, list); if (n->ctrl == dsi_ctrl) { list_del(&n->list); break; } } mutex_unlock(&dsi_ctrl_list_lock); mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl_isr_configure(dsi_ctrl, false); rc = dsi_ctrl_supplies_deinit(dsi_ctrl); if (rc) DSI_CTRL_ERR(dsi_ctrl, "failed to deinitialize voltage supplies, rc=%d\n", rc); rc = dsi_ctrl_clocks_deinit(dsi_ctrl); if (rc) DSI_CTRL_ERR(dsi_ctrl, "failed to deinitialize clocks, rc=%d\n", rc); atomic_set(&dsi_ctrl->dma_irq_trig, 0); mutex_unlock(&dsi_ctrl->ctrl_lock); mutex_destroy(&dsi_ctrl->ctrl_lock); devm_kfree(&pdev->dev, dsi_ctrl); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver dsi_ctrl_driver = { .probe = dsi_ctrl_dev_probe, .remove = dsi_ctrl_dev_remove, .driver = { .name = "drm_dsi_ctrl", .of_match_table = msm_dsi_of_match, .suppress_bind_attrs = true, }, }; int dsi_ctrl_get_io_resources(struct msm_io_res *io_res) { int rc = 0; struct dsi_ctrl_list_item *dsi_ctrl; mutex_lock(&dsi_ctrl_list_lock); list_for_each_entry(dsi_ctrl, &dsi_ctrl_list, list) { rc = msm_dss_get_io_mem(dsi_ctrl->ctrl->pdev, &io_res->mem); if (rc) { DSI_CTRL_ERR(dsi_ctrl->ctrl, "failed to get io mem, rc = %d\n", rc); return rc; } } mutex_unlock(&dsi_ctrl_list_lock); return rc; } /** * dsi_ctrl_check_resource() - check if DSI controller is probed * @of_node: of_node of the DSI controller. * * Checks if the DSI controller has been probed and is available. * * Return: status of DSI controller */ bool dsi_ctrl_check_resource(struct device_node *of_node) { struct list_head *pos, *tmp; struct dsi_ctrl *ctrl = NULL; mutex_lock(&dsi_ctrl_list_lock); list_for_each_safe(pos, tmp, &dsi_ctrl_list) { struct dsi_ctrl_list_item *n; n = list_entry(pos, struct dsi_ctrl_list_item, list); if (!n->ctrl || !n->ctrl->pdev) break; if (n->ctrl->pdev->dev.of_node == of_node) { ctrl = n->ctrl; break; } } mutex_unlock(&dsi_ctrl_list_lock); return ctrl ? true : false; } /** * dsi_ctrl_get() - get a dsi_ctrl handle from an of_node * @of_node: of_node of the DSI controller. * * Gets the DSI controller handle for the corresponding of_node. The ref count * is incremented to one and all subsequent gets will fail until the original * clients calls a put. * * Return: DSI Controller handle. */ struct dsi_ctrl *dsi_ctrl_get(struct device_node *of_node) { struct list_head *pos, *tmp; struct dsi_ctrl *ctrl = NULL; mutex_lock(&dsi_ctrl_list_lock); list_for_each_safe(pos, tmp, &dsi_ctrl_list) { struct dsi_ctrl_list_item *n; n = list_entry(pos, struct dsi_ctrl_list_item, list); if (n->ctrl->pdev->dev.of_node == of_node) { ctrl = n->ctrl; break; } } mutex_unlock(&dsi_ctrl_list_lock); if (!ctrl) { DSI_CTRL_ERR(ctrl, "Device with of node not found rc=%d\n", -EPROBE_DEFER); ctrl = ERR_PTR(-EPROBE_DEFER); return ctrl; } mutex_lock(&ctrl->ctrl_lock); if ((ctrl->dsi_ctrl_shared && ctrl->refcount == 2) || (!ctrl->dsi_ctrl_shared && ctrl->refcount == 1)) { DSI_CTRL_ERR(ctrl, "Device in use\n"); mutex_unlock(&ctrl->ctrl_lock); ctrl = ERR_PTR(-EBUSY); return ctrl; } ctrl->refcount++; mutex_unlock(&ctrl->ctrl_lock); return ctrl; } /** * dsi_ctrl_put() - releases a dsi controller handle. * @dsi_ctrl: DSI controller handle. * * Releases the DSI controller. Driver will clean up all resources and puts back * the DSI controller into reset state. */ void dsi_ctrl_put(struct dsi_ctrl *dsi_ctrl) { mutex_lock(&dsi_ctrl->ctrl_lock); if (dsi_ctrl->refcount == 0) DSI_CTRL_ERR(dsi_ctrl, "Unbalanced %s call\n", __func__); else dsi_ctrl->refcount--; mutex_unlock(&dsi_ctrl->ctrl_lock); } /** * dsi_ctrl_drv_init() - initialize dsi controller driver. * @dsi_ctrl: DSI controller handle. * @parent: Parent directory for debug fs. * * Initializes DSI controller driver. Driver should be initialized after * dsi_ctrl_get() succeeds. * * Return: error code. */ int dsi_ctrl_drv_init(struct dsi_ctrl *dsi_ctrl, struct dentry *parent) { char dbg_name[DSI_DEBUG_NAME_LEN]; int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_drv_state_init(dsi_ctrl); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to initialize driver state, rc=%d\n", rc); goto error; } rc = dsi_ctrl_debugfs_init(dsi_ctrl, parent); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to init debug fs, rc=%d\n", rc); goto error; } snprintf(dbg_name, DSI_DEBUG_NAME_LEN, "dsi%d_ctrl", dsi_ctrl->cell_index); sde_dbg_reg_register_base(dbg_name, dsi_ctrl->hw.base, msm_iomap_size(dsi_ctrl->pdev, "dsi_ctrl"), msm_get_phys_addr(dsi_ctrl->pdev, "dsi_ctrl"), SDE_DBG_DSI); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_drv_deinit() - de-initializes dsi controller driver * @dsi_ctrl: DSI controller handle. * * Releases all resources acquired by dsi_ctrl_drv_init(). * * Return: error code. */ int dsi_ctrl_drv_deinit(struct dsi_ctrl *dsi_ctrl) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_debugfs_deinit(dsi_ctrl); if (rc) DSI_CTRL_ERR(dsi_ctrl, "failed to release debugfs root, rc=%d\n", rc); rc = dsi_ctrl_buffer_deinit(dsi_ctrl); if (rc) DSI_CTRL_ERR(dsi_ctrl, "Failed to free cmd buffers, rc=%d\n", rc); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_clk_cb_register(struct dsi_ctrl *dsi_ctrl, struct clk_ctrl_cb *clk_cb) { if (!dsi_ctrl || !clk_cb) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } dsi_ctrl->clk_cb.priv = clk_cb->priv; dsi_ctrl->clk_cb.dsi_clk_cb = clk_cb->dsi_clk_cb; return 0; } /** * dsi_ctrl_phy_sw_reset() - perform a PHY software reset * @dsi_ctrl: DSI controller handle. * * Performs a PHY software reset on the DSI controller. Reset should be done * when the controller power state is DSI_CTRL_POWER_CORE_CLK_ON and the PHY is * not enabled. * * This function will fail if driver is in any other state. * * Return: error code. */ int dsi_ctrl_phy_sw_reset(struct dsi_ctrl *dsi_ctrl) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_PHY_SW_RESET, 0x0); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } dsi_ctrl->hw.ops.phy_sw_reset(&dsi_ctrl->hw); DSI_CTRL_DEBUG(dsi_ctrl, "PHY soft reset done\n"); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_PHY_SW_RESET, 0x0); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_seamless_timing_update() - update only controller timing * @dsi_ctrl: DSI controller handle. * @timing: New DSI timing info * * Updates host timing values to conduct a seamless transition to new timing * For example, to update the porch values in a dynamic fps switch. * * Return: error code. */ int dsi_ctrl_async_timing_update(struct dsi_ctrl *dsi_ctrl, struct dsi_mode_info *timing) { struct dsi_mode_info *host_mode; int rc = 0; if (!dsi_ctrl || !timing) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_ASYNC_TIMING, DSI_CTRL_ENGINE_ON); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto exit; } host_mode = &dsi_ctrl->host_config.video_timing; memcpy(host_mode, timing, sizeof(*host_mode)); dsi_ctrl->hw.ops.set_timing_db(&dsi_ctrl->hw, true); dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw, host_mode); exit: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_timing_db_update() - update only controller Timing DB * @dsi_ctrl: DSI controller handle. * @enable: Enable/disable Timing DB register * @pf_time_in_us: Programmable fetch time in micro-seconds * * Update timing db register value during dfps usecases * * Return: error code. */ int dsi_ctrl_timing_db_update(struct dsi_ctrl *dsi_ctrl, bool enable, u32 pf_time_in_us) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid dsi_ctrl\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_ASYNC_TIMING, DSI_CTRL_ENGINE_ON); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto exit; } /* * Add HW recommended delay for dfps feature. * When prefetch is enabled, MDSS HW works on 2 vsync * boundaries i.e. mdp_vsync and panel_vsync. * In the current implementation we are only waiting * for mdp_vsync. We need to make sure that interface * flush is after panel_vsync. So, added the recommended * delays after dfps update. */ if (pf_time_in_us > 2000) { DSI_CTRL_ERR(dsi_ctrl, "Programmable fetch time check failed, pf_time_in_us=%u\n", pf_time_in_us); pf_time_in_us = 2000; } usleep_range(pf_time_in_us, pf_time_in_us + 10); dsi_ctrl->hw.ops.set_timing_db(&dsi_ctrl->hw, enable); exit: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_timing_setup(struct dsi_ctrl *dsi_ctrl) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) { dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config, &dsi_ctrl->host_config.u.cmd_engine); dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw, &dsi_ctrl->host_config.video_timing, &dsi_ctrl->host_config.common_config, 0x0, &dsi_ctrl->roi); dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, true); } else { dsi_ctrl->hw.ops.video_engine_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config, &dsi_ctrl->host_config.u.video_engine); dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw, &dsi_ctrl->host_config.video_timing); dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, true); } mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_setup(struct dsi_ctrl *dsi_ctrl) { int rc = 0; rc = dsi_ctrl_timing_setup(dsi_ctrl); if (rc) return -EINVAL; mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.setup_lane_map(&dsi_ctrl->hw, &dsi_ctrl->host_config.lane_map); dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config); dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, 0x0); dsi_ctrl_toggle_error_interrupt_status(dsi_ctrl, true); dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, true); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_set_roi(struct dsi_ctrl *dsi_ctrl, struct dsi_rect *roi, bool *changed) { int rc = 0; if (!dsi_ctrl || !roi || !changed) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); if ((!dsi_rect_is_equal(&dsi_ctrl->roi, roi)) || dsi_ctrl->modeupdated) { *changed = true; memcpy(&dsi_ctrl->roi, roi, sizeof(dsi_ctrl->roi)); dsi_ctrl->modeupdated = false; } else *changed = false; mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_config_clk_gating() - Enable/disable DSI PHY clk gating. * @dsi_ctrl: DSI controller handle. * @enable: Enable/disable DSI PHY clk gating * @clk_selection: clock to enable/disable clock gating * * Return: error code. */ int dsi_ctrl_config_clk_gating(struct dsi_ctrl *dsi_ctrl, bool enable, enum dsi_clk_gate_type clk_selection) { if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } if (dsi_ctrl->hw.ops.config_clk_gating) dsi_ctrl->hw.ops.config_clk_gating(&dsi_ctrl->hw, enable, clk_selection); return 0; } /** * dsi_ctrl_phy_reset_config() - Mask/unmask propagation of ahb reset signal * to DSI PHY hardware. * @dsi_ctrl: DSI controller handle. * @enable: Mask/unmask the PHY reset signal. * * Return: error code. */ int dsi_ctrl_phy_reset_config(struct dsi_ctrl *dsi_ctrl, bool enable) { if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } if (dsi_ctrl->hw.ops.phy_reset_config) dsi_ctrl->hw.ops.phy_reset_config(&dsi_ctrl->hw, enable); return 0; } static bool dsi_ctrl_check_for_spurious_error_interrupts( struct dsi_ctrl *dsi_ctrl) { const unsigned long intr_check_interval = msecs_to_jiffies(1000); const unsigned int interrupt_threshold = 15; unsigned long jiffies_now = jiffies; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid DSI controller structure\n"); return false; } if (dsi_ctrl->jiffies_start == 0) dsi_ctrl->jiffies_start = jiffies; dsi_ctrl->error_interrupt_count++; if ((jiffies_now - dsi_ctrl->jiffies_start) < intr_check_interval) { if (dsi_ctrl->error_interrupt_count > interrupt_threshold) { SDE_EVT32_IRQ(dsi_ctrl->cell_index, dsi_ctrl->error_interrupt_count, interrupt_threshold); return true; } } else { dsi_ctrl->jiffies_start = jiffies; dsi_ctrl->error_interrupt_count = 1; } return false; } static void dsi_ctrl_handle_error_status(struct dsi_ctrl *dsi_ctrl, unsigned long error) { struct dsi_event_cb_info cb_info; struct dsi_display *display; bool skip_irq_enable = false; bool is_spurious_interrupt = false; cb_info = dsi_ctrl->irq_info.irq_err_cb; /* disable error interrupts */ if (dsi_ctrl->hw.ops.error_intr_ctrl) dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, false); /* clear error interrupts first */ if (dsi_ctrl->hw.ops.clear_error_status) dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw, error); /* check for spurious interrupts */ if (dsi_ctrl_check_for_spurious_error_interrupts(dsi_ctrl)) is_spurious_interrupt = true; /* DTLN PHY error */ if (error & 0x3000E00) pr_err_ratelimited("[%s] dsi PHY contention error: 0x%lx\n", dsi_ctrl->name, error); /* ignore TX timeout if blpp_lp11 is disabled */ if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE && !dsi_ctrl->host_config.u.video_engine.bllp_lp11_en && !dsi_ctrl->host_config.u.video_engine.eof_bllp_lp11_en) error &= ~DSI_HS_TX_TIMEOUT; /* TX timeout error */ if (error & 0xE0) { if (error & 0xA0) { if (cb_info.event_cb) { cb_info.event_idx = DSI_LP_Rx_TIMEOUT; (void)cb_info.event_cb(cb_info.event_usr_ptr, cb_info.event_idx, dsi_ctrl->cell_index, 0, 0, 0, 0); } } } /* DSI FIFO OVERFLOW error */ if (error & 0xF0000) { u32 mask = 0; if (dsi_ctrl->hw.ops.get_error_mask) mask = dsi_ctrl->hw.ops.get_error_mask(&dsi_ctrl->hw); /* no need to report FIFO overflow if already masked */ if (cb_info.event_cb && !(mask & 0xf0000)) { cb_info.event_idx = DSI_FIFO_OVERFLOW; display = cb_info.event_usr_ptr; display->is_spurious_interrupt = is_spurious_interrupt; (void)cb_info.event_cb(cb_info.event_usr_ptr, cb_info.event_idx, dsi_ctrl->cell_index, 0, 0, 0, 0); skip_irq_enable = true; } } /* DSI FIFO UNDERFLOW error */ if (error & 0xF00000) { if (cb_info.event_cb) { cb_info.event_idx = DSI_FIFO_UNDERFLOW; display = cb_info.event_usr_ptr; display->is_spurious_interrupt = is_spurious_interrupt; (void)cb_info.event_cb(cb_info.event_usr_ptr, cb_info.event_idx, dsi_ctrl->cell_index, 0, 0, 0, 0); skip_irq_enable = true; } } /* DSI PLL UNLOCK error */ if (error & BIT(8)) DSI_CTRL_ERR(dsi_ctrl, "dsi PLL unlock error: 0x%lx\n", error); /* ACK error */ if (error & 0xF) DSI_CTRL_ERR(dsi_ctrl, "ack error: 0x%lx\n", error); /* * DSI Phy can go into bad state during ESD influence. This can * manifest as various types of spurious error interrupts on * DSI controller. This check will allow us to handle afore mentioned * case and prevent us from re enabling interrupts until a full ESD * recovery is completed. */ if (is_spurious_interrupt && dsi_ctrl->esd_check_underway) { dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw); return; } /* enable back DSI interrupts */ if (dsi_ctrl->hw.ops.error_intr_ctrl && !skip_irq_enable) dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, true); } /** * dsi_ctrl_isr - interrupt service routine for DSI CTRL component * @irq: Incoming IRQ number * @ptr: Pointer to user data structure (struct dsi_ctrl) * Returns: IRQ_HANDLED if no further action required */ static irqreturn_t dsi_ctrl_isr(int irq, void *ptr) { struct dsi_ctrl *dsi_ctrl; struct dsi_event_cb_info cb_info; unsigned long flags; uint32_t status = 0x0, i; uint64_t errors = 0x0; if (!ptr) return IRQ_NONE; dsi_ctrl = ptr; /* check status interrupts */ if (dsi_ctrl->hw.ops.get_interrupt_status) status = dsi_ctrl->hw.ops.get_interrupt_status(&dsi_ctrl->hw); /* check error interrupts */ if (dsi_ctrl->hw.ops.get_error_status) errors = dsi_ctrl->hw.ops.get_error_status(&dsi_ctrl->hw); /* clear interrupts */ if (dsi_ctrl->hw.ops.clear_interrupt_status) dsi_ctrl->hw.ops.clear_interrupt_status(&dsi_ctrl->hw, 0x0); SDE_EVT32_IRQ(dsi_ctrl->cell_index, status, errors); /* handle DSI error recovery */ if (status & DSI_ERROR) dsi_ctrl_handle_error_status(dsi_ctrl, errors); if (status & DSI_CMD_MODE_DMA_DONE) { if (dsi_ctrl->enable_cmd_dma_stats) { u32 reg = dsi_ctrl->hw.ops.log_line_count(&dsi_ctrl->hw, dsi_ctrl->cmd_mode); dsi_ctrl->cmd_success_line = (reg & 0xFFFF); dsi_ctrl->cmd_success_frame = ((reg >> 16) & 0xFFFF); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_CASE1, dsi_ctrl->cmd_success_line, dsi_ctrl->cmd_success_frame); } dsi_ctrl->cmd_success_ts = ktime_get(); atomic_set(&dsi_ctrl->dma_irq_trig, 1); dsi_ctrl_disable_status_interrupt(dsi_ctrl, DSI_SINT_CMD_MODE_DMA_DONE); complete_all(&dsi_ctrl->irq_info.cmd_dma_done); } if (status & DSI_CMD_FRAME_DONE) { dsi_ctrl_disable_status_interrupt(dsi_ctrl, DSI_SINT_CMD_FRAME_DONE); complete_all(&dsi_ctrl->irq_info.cmd_frame_done); } if (status & DSI_VIDEO_MODE_FRAME_DONE) { dsi_ctrl_disable_status_interrupt(dsi_ctrl, DSI_SINT_VIDEO_MODE_FRAME_DONE); complete_all(&dsi_ctrl->irq_info.vid_frame_done); } if (status & DSI_BTA_DONE) { u32 fifo_overflow_mask = (DSI_DLN0_HS_FIFO_OVERFLOW | DSI_DLN1_HS_FIFO_OVERFLOW | DSI_DLN2_HS_FIFO_OVERFLOW | DSI_DLN3_HS_FIFO_OVERFLOW); dsi_ctrl_disable_status_interrupt(dsi_ctrl, DSI_SINT_BTA_DONE); complete_all(&dsi_ctrl->irq_info.bta_done); if (dsi_ctrl->hw.ops.clear_error_status) dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw, fifo_overflow_mask); } for (i = 0; status && i < DSI_STATUS_INTERRUPT_COUNT; ++i) { if (status & 0x1) { spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags); cb_info = dsi_ctrl->irq_info.irq_stat_cb[i]; spin_unlock_irqrestore( &dsi_ctrl->irq_info.irq_lock, flags); if (cb_info.event_cb) (void)cb_info.event_cb(cb_info.event_usr_ptr, cb_info.event_idx, dsi_ctrl->cell_index, irq, 0, 0, 0); } status >>= 1; } return IRQ_HANDLED; } /** * _dsi_ctrl_setup_isr - register ISR handler * @dsi_ctrl: Pointer to associated dsi_ctrl structure * Returns: Zero on success */ static int _dsi_ctrl_setup_isr(struct dsi_ctrl *dsi_ctrl) { int irq_num, rc; if (!dsi_ctrl) return -EINVAL; if (dsi_ctrl->irq_info.irq_num != -1) return 0; init_completion(&dsi_ctrl->irq_info.cmd_dma_done); init_completion(&dsi_ctrl->irq_info.vid_frame_done); init_completion(&dsi_ctrl->irq_info.cmd_frame_done); init_completion(&dsi_ctrl->irq_info.bta_done); irq_num = platform_get_irq(dsi_ctrl->pdev, 0); if (irq_num < 0) { DSI_CTRL_ERR(dsi_ctrl, "Failed to get IRQ number, %d\n", irq_num); rc = irq_num; } else { rc = devm_request_threaded_irq(&dsi_ctrl->pdev->dev, irq_num, dsi_ctrl_isr, NULL, 0, "dsi_ctrl", dsi_ctrl); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to request IRQ, %d\n", rc); } else { dsi_ctrl->irq_info.irq_num = irq_num; disable_irq_nosync(irq_num); DSI_CTRL_INFO(dsi_ctrl, "IRQ %d registered\n", irq_num); } } return rc; } /** * _dsi_ctrl_destroy_isr - unregister ISR handler * @dsi_ctrl: Pointer to associated dsi_ctrl structure */ static void _dsi_ctrl_destroy_isr(struct dsi_ctrl *dsi_ctrl) { if (!dsi_ctrl || !dsi_ctrl->pdev || dsi_ctrl->irq_info.irq_num < 0) return; if (dsi_ctrl->irq_info.irq_num != -1) { devm_free_irq(&dsi_ctrl->pdev->dev, dsi_ctrl->irq_info.irq_num, dsi_ctrl); dsi_ctrl->irq_info.irq_num = -1; } } void dsi_ctrl_enable_status_interrupt(struct dsi_ctrl *dsi_ctrl, uint32_t intr_idx, struct dsi_event_cb_info *event_info) { unsigned long flags; if (!dsi_ctrl || dsi_ctrl->irq_info.irq_num == -1 || intr_idx >= DSI_STATUS_INTERRUPT_COUNT) return; SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, intr_idx, dsi_ctrl->irq_info.irq_num, dsi_ctrl->irq_info.irq_stat_mask, dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]); spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags); if (dsi_ctrl->irq_info.irq_stat_refcount[intr_idx] == 0) { /* enable irq on first request */ if (dsi_ctrl->irq_info.irq_stat_mask == 0) enable_irq(dsi_ctrl->irq_info.irq_num); /* update hardware mask */ dsi_ctrl->irq_info.irq_stat_mask |= BIT(intr_idx); dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, dsi_ctrl->irq_info.irq_stat_mask); } if (intr_idx == DSI_SINT_CMD_MODE_DMA_DONE) dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, dsi_ctrl->irq_info.irq_stat_mask); ++(dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]); if (event_info) dsi_ctrl->irq_info.irq_stat_cb[intr_idx] = *event_info; spin_unlock_irqrestore(&dsi_ctrl->irq_info.irq_lock, flags); } void dsi_ctrl_disable_status_interrupt(struct dsi_ctrl *dsi_ctrl, uint32_t intr_idx) { unsigned long flags; if (!dsi_ctrl || intr_idx >= DSI_STATUS_INTERRUPT_COUNT) return; SDE_EVT32_IRQ(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, intr_idx, dsi_ctrl->irq_info.irq_num, dsi_ctrl->irq_info.irq_stat_mask, dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]); spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags); if (dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]) if (--(dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]) == 0) { dsi_ctrl->irq_info.irq_stat_mask &= ~BIT(intr_idx); dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, dsi_ctrl->irq_info.irq_stat_mask); /* don't need irq if no lines are enabled */ if (dsi_ctrl->irq_info.irq_stat_mask == 0 && dsi_ctrl->irq_info.irq_num != -1) disable_irq_nosync(dsi_ctrl->irq_info.irq_num); } spin_unlock_irqrestore(&dsi_ctrl->irq_info.irq_lock, flags); } int dsi_ctrl_host_timing_update(struct dsi_ctrl *dsi_ctrl) { if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); if (dsi_ctrl->hw.ops.host_setup) dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config); if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) { if (dsi_ctrl->hw.ops.cmd_engine_setup) dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config, &dsi_ctrl->host_config.u.cmd_engine); if (dsi_ctrl->hw.ops.setup_cmd_stream) dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw, &dsi_ctrl->host_config.video_timing, &dsi_ctrl->host_config.common_config, 0x0, NULL); } else { DSI_CTRL_ERR(dsi_ctrl, "invalid panel mode for resolution switch\n"); mutex_unlock(&dsi_ctrl->ctrl_lock); return -EINVAL; } mutex_unlock(&dsi_ctrl->ctrl_lock); return 0; } /** * dsi_ctrl_update_host_state() - Update the host initialization state. * @dsi_ctrl: DSI controller handle. * @op: ctrl driver ops * @enable: boolean signifying host state. * * Update the host status only while exiting from ulps during suspend state. * * Return: error code. */ int dsi_ctrl_update_host_state(struct dsi_ctrl *dsi_ctrl, enum dsi_ctrl_driver_ops op, bool enable) { int rc = 0; u32 state = enable ? 0x1 : 0x0; if (!dsi_ctrl) return rc; mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, op, state); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } dsi_ctrl_update_state(dsi_ctrl, op, state); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_host_init() - Initialize DSI host hardware. * @dsi_ctrl: DSI controller handle. * @skip_op: Boolean to indicate few operations can be skipped. * Set during the cont-splash or trusted-vm enable case. * * Initializes DSI controller hardware with host configuration provided by * dsi_ctrl_update_host_config(). Initialization can be performed only during * DSI_CTRL_POWER_CORE_CLK_ON state and after the PHY SW reset has been * performed. * * Return: error code. */ int dsi_ctrl_host_init(struct dsi_ctrl *dsi_ctrl, bool skip_op) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x1); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } /* * For continuous splash/trusted vm usecases we omit hw operations * as bootloader/primary vm takes care of them respectively */ if (!skip_op) { dsi_ctrl->hw.ops.setup_lane_map(&dsi_ctrl->hw, &dsi_ctrl->host_config.lane_map); dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config); if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) { dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config, &dsi_ctrl->host_config.u.cmd_engine); dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw, &dsi_ctrl->host_config.video_timing, &dsi_ctrl->host_config.common_config, 0x0, NULL); } else { dsi_ctrl->hw.ops.video_engine_setup(&dsi_ctrl->hw, &dsi_ctrl->host_config.common_config, &dsi_ctrl->host_config.u.video_engine); dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw, &dsi_ctrl->host_config.video_timing); } } dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, 0x0); dsi_ctrl_toggle_error_interrupt_status(dsi_ctrl, true); DSI_CTRL_DEBUG(dsi_ctrl, "Host initialization complete, skip op: %d\n", skip_op); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x1); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_isr_configure() - API to register/deregister dsi isr * @dsi_ctrl: DSI controller handle. * @enable: variable to control register/deregister isr */ void dsi_ctrl_isr_configure(struct dsi_ctrl *dsi_ctrl, bool enable) { if (!dsi_ctrl) return; mutex_lock(&dsi_ctrl->ctrl_lock); if (enable) _dsi_ctrl_setup_isr(dsi_ctrl); else _dsi_ctrl_destroy_isr(dsi_ctrl); mutex_unlock(&dsi_ctrl->ctrl_lock); } void dsi_ctrl_hs_req_sel(struct dsi_ctrl *dsi_ctrl, bool sel_phy) { if (!dsi_ctrl) return; mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.hs_req_sel(&dsi_ctrl->hw, sel_phy); mutex_unlock(&dsi_ctrl->ctrl_lock); } void dsi_ctrl_set_continuous_clk(struct dsi_ctrl *dsi_ctrl, bool enable) { if (!dsi_ctrl) return; mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.set_continuous_clk(&dsi_ctrl->hw, enable); mutex_unlock(&dsi_ctrl->ctrl_lock); } int dsi_ctrl_soft_reset(struct dsi_ctrl *dsi_ctrl) { if (!dsi_ctrl) return -EINVAL; mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw); mutex_unlock(&dsi_ctrl->ctrl_lock); DSI_CTRL_DEBUG(dsi_ctrl, "Soft reset complete\n"); return 0; } int dsi_ctrl_reset(struct dsi_ctrl *dsi_ctrl, int mask) { int rc = 0; if (!dsi_ctrl) return -EINVAL; mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl->hw.ops.ctrl_reset(&dsi_ctrl->hw, mask); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_get_hw_version(struct dsi_ctrl *dsi_ctrl) { int rc = 0; if (!dsi_ctrl) return -EINVAL; mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl->hw.ops.get_hw_version(&dsi_ctrl->hw); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_vid_engine_en(struct dsi_ctrl *dsi_ctrl, bool on) { int rc = 0; if (!dsi_ctrl) return -EINVAL; mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, on); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } int dsi_ctrl_setup_avr(struct dsi_ctrl *dsi_ctrl, bool enable) { if (!dsi_ctrl) return -EINVAL; if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) { mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.setup_avr(&dsi_ctrl->hw, enable); mutex_unlock(&dsi_ctrl->ctrl_lock); } return 0; } /** * dsi_ctrl_host_deinit() - De-Initialize DSI host hardware. * @dsi_ctrl: DSI controller handle. * * De-initializes DSI controller hardware. It can be performed only during * DSI_CTRL_POWER_CORE_CLK_ON state after LINK clocks have been turned off. * * Return: error code. */ int dsi_ctrl_host_deinit(struct dsi_ctrl *dsi_ctrl) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x0); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); DSI_CTRL_ERR(dsi_ctrl, "driver state check failed, rc=%d\n", rc); goto error; } DSI_CTRL_DEBUG(dsi_ctrl, "Host deinitization complete\n"); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x0); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_update_host_config() - update dsi host configuration * @dsi_ctrl: DSI controller handle. * @config: DSI host configuration. * @flags: dsi_mode_flags modifying the behavior * * Updates driver with new Host configuration to use for host initialization. * This function call will only update the software context. The stored * configuration information will be used when the host is initialized. * * Return: error code. */ int dsi_ctrl_update_host_config(struct dsi_ctrl *ctrl, struct dsi_host_config *config, struct dsi_display_mode *mode, int flags, void *clk_handle) { int rc = 0; if (!ctrl || !config) { DSI_CTRL_ERR(ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&ctrl->ctrl_lock); rc = dsi_ctrl_validate_panel_info(ctrl, config); if (rc) { DSI_CTRL_ERR(ctrl, "panel validation failed, rc=%d\n", rc); goto error; } if (!(flags & (DSI_MODE_FLAG_SEAMLESS | DSI_MODE_FLAG_VRR | DSI_MODE_FLAG_DYN_CLK))) { /* * for dynamic clk switch case link frequence would * be updated dsi_display_dynamic_clk_switch(). */ rc = dsi_ctrl_update_link_freqs(ctrl, config, clk_handle, mode); if (rc) { DSI_CTRL_ERR(ctrl, "failed to update link frequency, rc=%d\n", rc); goto error; } } DSI_CTRL_DEBUG(ctrl, "Host config updated\n"); memcpy(&ctrl->host_config, config, sizeof(ctrl->host_config)); ctrl->mode_bounds.x = ctrl->host_config.video_timing.h_active * ctrl->horiz_index; ctrl->mode_bounds.y = 0; ctrl->mode_bounds.w = ctrl->host_config.video_timing.h_active; ctrl->mode_bounds.h = ctrl->host_config.video_timing.v_active; memcpy(&ctrl->roi, &ctrl->mode_bounds, sizeof(ctrl->mode_bounds)); ctrl->modeupdated = true; ctrl->roi.x = 0; error: mutex_unlock(&ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_validate_timing() - validate a video timing configuration * @dsi_ctrl: DSI controller handle. * @timing: Pointer to timing data. * * Driver will validate if the timing configuration is supported on the * controller hardware. * * Return: error code if timing is not supported. */ int dsi_ctrl_validate_timing(struct dsi_ctrl *dsi_ctrl, struct dsi_mode_info *mode) { int rc = 0; if (!dsi_ctrl || !mode) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } return rc; } /** * dsi_ctrl_transfer_prepare() - Set up a command transfer * @dsi_ctrl: DSI controller handle. * @flags: Controller flags of the command. * * Command transfer requires command engine to be enabled, along with * clock votes and masking the overflow bits. * * Return: error code. */ int dsi_ctrl_transfer_prepare(struct dsi_ctrl *dsi_ctrl, u32 flags) { int rc = 0; struct dsi_clk_ctrl_info clk_info; u32 mask = BIT(DSI_FIFO_OVERFLOW); if (!dsi_ctrl) return -EINVAL; if ((flags & DSI_CTRL_CMD_FETCH_MEMORY) && (dsi_ctrl->cmd_len != 0)) return rc; SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, dsi_ctrl->cell_index, flags); /* Vote for clocks, gdsc, enable command engine, mask overflow */ rc = pm_runtime_resume_and_get(dsi_ctrl->drm_dev->dev); if (rc < 0) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable power resource %d\n", rc); SDE_EVT32(rc, SDE_EVTLOG_ERROR); return rc; } clk_info.client = DSI_CLK_REQ_DSI_CLIENT; clk_info.clk_type = DSI_ALL_CLKS; clk_info.clk_state = DSI_CLK_ON; rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable clocks\n"); goto error_disable_gdsc; } /* Wait till any previous ASYNC waits are scheduled and completed */ if (dsi_ctrl->post_tx_queued) dsi_ctrl_flush_cmd_dma_queue(dsi_ctrl); mutex_lock(&dsi_ctrl->ctrl_lock); if (!(flags & DSI_CTRL_CMD_READ)) dsi_ctrl_mask_error_status_interrupts(dsi_ctrl, mask, true); rc = dsi_ctrl_set_cmd_engine_state(dsi_ctrl, DSI_CTRL_ENGINE_ON, false); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable command engine: %d\n", rc); mutex_unlock(&dsi_ctrl->ctrl_lock); goto error_disable_clks; } mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; error_disable_clks: clk_info.clk_state = DSI_CLK_OFF; (void)dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info); error_disable_gdsc: (void)pm_runtime_put_sync(dsi_ctrl->drm_dev->dev); return rc; } /** * dsi_ctrl_cmd_transfer() - Transfer commands on DSI link * @dsi_ctrl: DSI controller handle. * @cmd: Command description to transfer on DSI link. * * Command transfer can be done only when command engine is enabled. The * transfer API will block until either the command transfer finishes or * the timeout value is reached. If the trigger is deferred, it will return * without triggering the transfer. Command parameters are programmed to * hardware. * * Return: error code. */ int dsi_ctrl_cmd_transfer(struct dsi_ctrl *dsi_ctrl, struct dsi_cmd_desc *cmd) { int rc = 0; if (!dsi_ctrl || !cmd) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); if (cmd->ctrl_flags & DSI_CTRL_CMD_READ) { rc = dsi_message_rx(dsi_ctrl, cmd); if (rc <= 0) DSI_CTRL_ERR(dsi_ctrl, "read message failed read length, rc=%d\n", rc); } else { rc = dsi_message_tx(dsi_ctrl, cmd); if (rc) DSI_CTRL_ERR(dsi_ctrl, "command msg transfer failed, rc = %d\n", rc); } cmd->ts = dsi_ctrl->cmd_success_ts; dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_CMD_TX, 0x0); mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } void dsi_ctrl_transfer_cleanup(struct dsi_ctrl *dsi_ctrl) { int rc = 0; struct dsi_clk_ctrl_info clk_info; u32 mask = BIT(DSI_FIFO_OVERFLOW); mutex_lock(&dsi_ctrl->ctrl_lock); SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, dsi_ctrl->cell_index, dsi_ctrl->pending_cmd_flags); /* Command engine disable, unmask overflow, remove vote on clocks and gdsc */ rc = dsi_ctrl_set_cmd_engine_state(dsi_ctrl, DSI_CTRL_ENGINE_OFF, false); if (rc) DSI_CTRL_ERR(dsi_ctrl, "failed to disable command engine\n"); if (!(dsi_ctrl->pending_cmd_flags & DSI_CTRL_CMD_READ)) dsi_ctrl_mask_error_status_interrupts(dsi_ctrl, mask, false); mutex_unlock(&dsi_ctrl->ctrl_lock); clk_info.client = DSI_CLK_REQ_DSI_CLIENT; clk_info.clk_type = DSI_ALL_CLKS; clk_info.clk_state = DSI_CLK_OFF; rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info); if (rc) DSI_CTRL_ERR(dsi_ctrl, "failed to disable clocks\n"); (void)pm_runtime_put_sync(dsi_ctrl->drm_dev->dev); } /** * dsi_ctrl_transfer_unprepare() - Clean up post a command transfer * @dsi_ctrl: DSI controller handle. * @flags: Controller flags of the command * * After the DSI controller has been programmed to trigger a DCS command * the post transfer API is used to check for success and clean up the * resources. Depending on the controller flags, this check is either * scheduled on the same thread or queued. * */ void dsi_ctrl_transfer_unprepare(struct dsi_ctrl *dsi_ctrl, u32 flags) { if (!dsi_ctrl) return; dsi_ctrl->pending_cmd_flags = flags; if (!(flags & DSI_CTRL_CMD_LAST_COMMAND)) return; SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, dsi_ctrl->cell_index, flags); if (flags & DSI_CTRL_CMD_ASYNC_WAIT) { dsi_ctrl->post_tx_queued = true; queue_work(dsi_ctrl->post_cmd_tx_workq, &dsi_ctrl->post_cmd_tx_work); } else { dsi_ctrl->post_tx_queued = false; dsi_ctrl_post_cmd_transfer(dsi_ctrl); } } /** * dsi_ctrl_cmd_tx_trigger() - Trigger a deferred command. * @dsi_ctrl: DSI controller handle. * @flags: Modifiers. * * Return: error code. */ int dsi_ctrl_cmd_tx_trigger(struct dsi_ctrl *dsi_ctrl, u32 flags) { int rc = 0; struct dsi_ctrl_hw_ops dsi_hw_ops; u32 v_total = 0, fps = 0, cur_line = 0, mem_latency_us = 100; u32 line_time = 0, schedule_line = 0x1, latency_by_line = 0; struct dsi_mode_info *timing; unsigned long flag; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } dsi_hw_ops = dsi_ctrl->hw.ops; SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_ENTRY, flags); /* Dont trigger the command if this is not the last ocmmand */ if (!(flags & DSI_CTRL_CMD_LAST_COMMAND)) return rc; mutex_lock(&dsi_ctrl->ctrl_lock); timing = &(dsi_ctrl->host_config.video_timing); if (timing && (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE)) { v_total = timing->v_sync_width + timing->v_back_porch + timing->v_front_porch + timing->v_active; fps = timing->refresh_rate; schedule_line = calculate_schedule_line(dsi_ctrl, flags); line_time = (1000000 / fps) / v_total; latency_by_line = CEIL(mem_latency_us, line_time); } if (!(flags & DSI_CTRL_CMD_BROADCAST_MASTER)) { dsi_hw_ops.trigger_command_dma(&dsi_ctrl->hw); if (dsi_ctrl->enable_cmd_dma_stats) { u32 reg = dsi_hw_ops.log_line_count(&dsi_ctrl->hw, dsi_ctrl->cmd_mode); dsi_ctrl->cmd_trigger_line = (reg & 0xFFFF); dsi_ctrl->cmd_trigger_frame = ((reg >> 16) & 0xFFFF); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_CASE1, dsi_ctrl->cmd_trigger_line, dsi_ctrl->cmd_trigger_frame); } } if ((flags & DSI_CTRL_CMD_BROADCAST) && (flags & DSI_CTRL_CMD_BROADCAST_MASTER)) { atomic_set(&dsi_ctrl->dma_irq_trig, 0); dsi_ctrl_enable_status_interrupt(dsi_ctrl, DSI_SINT_CMD_MODE_DMA_DONE, NULL); reinit_completion(&dsi_ctrl->irq_info.cmd_dma_done); /* trigger command */ if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) && dsi_hw_ops.schedule_dma_cmd && (dsi_ctrl->current_state.vid_engine_state == DSI_CTRL_ENGINE_ON)) { /* * This change reads the video line count from * MDP_INTF_LINE_COUNT register and checks whether * DMA trigger happens close to the schedule line. * If it is not close to the schedule line, then DMA * command transfer is triggered. */ while (1) { local_irq_save(flag); cur_line = dsi_hw_ops.log_line_count(&dsi_ctrl->hw, dsi_ctrl->cmd_mode); if (cur_line < (schedule_line - latency_by_line) || cur_line > (schedule_line + 1)) { dsi_hw_ops.trigger_command_dma( &dsi_ctrl->hw); local_irq_restore(flag); break; } local_irq_restore(flag); udelay(1000); } } else dsi_hw_ops.trigger_command_dma(&dsi_ctrl->hw); if (dsi_ctrl->enable_cmd_dma_stats) { u32 reg = dsi_hw_ops.log_line_count(&dsi_ctrl->hw, dsi_ctrl->cmd_mode); dsi_ctrl->cmd_trigger_line = (reg & 0xFFFF); dsi_ctrl->cmd_trigger_frame = ((reg >> 16) & 0xFFFF); SDE_EVT32(dsi_ctrl->cell_index, SDE_EVTLOG_FUNC_CASE1, dsi_ctrl->cmd_trigger_line, dsi_ctrl->cmd_trigger_frame); } if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) { if (dsi_ctrl->version < DSI_CTRL_VERSION_2_4) dsi_hw_ops.soft_reset(&dsi_ctrl->hw); dsi_ctrl->cmd_len = 0; } } mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_cache_misr - Cache frame MISR value * @dsi_ctrl: Pointer to associated dsi_ctrl structure */ void dsi_ctrl_cache_misr(struct dsi_ctrl *dsi_ctrl) { u32 misr; if (!dsi_ctrl || !dsi_ctrl->hw.ops.collect_misr) return; misr = dsi_ctrl->hw.ops.collect_misr(&dsi_ctrl->hw, dsi_ctrl->host_config.panel_mode); if (misr) dsi_ctrl->misr_cache = misr; DSI_CTRL_DEBUG(dsi_ctrl, "misr_cache = %x\n", dsi_ctrl->misr_cache); } /** * dsi_ctrl_get_host_engine_init_state() - Return host init state * @dsi_ctrl: DSI controller handle. * @state: Controller initialization state * * Return: error code. */ int dsi_ctrl_get_host_engine_init_state(struct dsi_ctrl *dsi_ctrl, bool *state) { if (!dsi_ctrl || !state) { DSI_CTRL_ERR(dsi_ctrl, "Invalid Params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); *state = dsi_ctrl->current_state.host_initialized; mutex_unlock(&dsi_ctrl->ctrl_lock); return 0; } /** * dsi_ctrl_set_power_state() - set power state for dsi controller * @dsi_ctrl: DSI controller handle. * @state: Power state. * * Set power state for DSI controller. Power state can be changed only when * Controller, Video and Command engines are turned off. * * Return: error code. */ int dsi_ctrl_set_power_state(struct dsi_ctrl *dsi_ctrl, enum dsi_power_state state) { int rc = 0; if (!dsi_ctrl || (state >= DSI_CTRL_POWER_MAX)) { DSI_CTRL_ERR(dsi_ctrl, "Invalid Params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_POWER_STATE_CHANGE, state); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } if (state == DSI_CTRL_POWER_VREG_ON) { rc = dsi_ctrl_enable_supplies(dsi_ctrl, true); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to enable voltage supplies, rc=%d\n", rc); goto error; } } else if (state == DSI_CTRL_POWER_VREG_OFF) { rc = dsi_ctrl_enable_supplies(dsi_ctrl, false); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "failed to disable vreg supplies, rc=%d\n", rc); goto error; } } DSI_CTRL_DEBUG(dsi_ctrl, "Power state updated to %d\n", state); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_POWER_STATE_CHANGE, state); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_set_tpg_state() - enable/disable test pattern on the controller * @dsi_ctrl: DSI controller handle. * @on: enable/disable test pattern. * * Test pattern can be enabled only after Video engine (for video mode panels) * or command engine (for cmd mode panels) is enabled. * * Return: error code. */ int dsi_ctrl_set_tpg_state(struct dsi_ctrl *dsi_ctrl, bool on, enum dsi_test_pattern type, u32 init_val, enum dsi_ctrl_tpg_pattern pattern) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_TPG, on); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } if (on) { if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) dsi_ctrl->hw.ops.video_test_pattern_setup(&dsi_ctrl->hw, type, init_val); else dsi_ctrl->hw.ops.cmd_test_pattern_setup(&dsi_ctrl->hw, type, init_val, 0x0); } dsi_ctrl->hw.ops.test_pattern_enable(&dsi_ctrl->hw, on, pattern, dsi_ctrl->host_config.panel_mode); DSI_CTRL_DEBUG(dsi_ctrl, "Set test pattern state=%d\n", on); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_TPG, on); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_trigger_test_pattern() - trigger a command mode frame update with test pattern * @dsi_ctrl: DSI controller handle. * * Trigger a command mode frame update with chosen test pattern. * * Return: error code. */ int dsi_ctrl_trigger_test_pattern(struct dsi_ctrl *dsi_ctrl) { int ret = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->hw.ops.trigger_cmd_test_pattern(&dsi_ctrl->hw, 0); mutex_unlock(&dsi_ctrl->ctrl_lock); return ret; } /** * dsi_ctrl_set_host_engine_state() - set host engine state * @dsi_ctrl: DSI Controller handle. * @state: Engine state. * @skip_op: Boolean to indicate few operations can be skipped. * Set during the cont-splash or trusted-vm enable case. * * Host engine state can be modified only when DSI controller power state is * set to DSI_CTRL_POWER_LINK_CLK_ON and cmd, video engines are disabled. * * Return: error code. */ int dsi_ctrl_set_host_engine_state(struct dsi_ctrl *dsi_ctrl, enum dsi_engine_state state, bool skip_op) { int rc = 0; if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } if (!skip_op) { if (state == DSI_CTRL_ENGINE_ON) dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, true); else dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, false); } SDE_EVT32(dsi_ctrl->cell_index, state, skip_op); DSI_CTRL_DEBUG(dsi_ctrl, "Set host engine state = %d\n", state); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_set_cmd_engine_state() - set command engine state * @dsi_ctrl: DSI Controller handle. * @state: Engine state. * @skip_op: Boolean to indicate few operations can be skipped. * Set during the cont-splash or trusted-vm enable case. * * Command engine state can be modified only when DSI controller power state is * set to DSI_CTRL_POWER_LINK_CLK_ON. * * Return: error code. */ int dsi_ctrl_set_cmd_engine_state(struct dsi_ctrl *dsi_ctrl, enum dsi_engine_state state, bool skip_op) { int rc = 0; if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } if (state == DSI_CTRL_ENGINE_ON) { if (dsi_ctrl->cmd_engine_refcount > 0) { dsi_ctrl->cmd_engine_refcount++; goto error; } } else { if (dsi_ctrl->cmd_engine_refcount > 1) { dsi_ctrl->cmd_engine_refcount--; goto error; } } rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_CMD_ENGINE, state); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } if (!skip_op) { if (state == DSI_CTRL_ENGINE_ON) dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, true); else dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, false); } if (state == DSI_CTRL_ENGINE_ON) dsi_ctrl->cmd_engine_refcount++; else dsi_ctrl->cmd_engine_refcount = 0; SDE_EVT32(dsi_ctrl->cell_index, state, skip_op); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_CMD_ENGINE, state); error: DSI_CTRL_DEBUG(dsi_ctrl, "Set cmd engine state:%d, skip_op:%d, enable count: %d\n", state, skip_op, dsi_ctrl->cmd_engine_refcount); return rc; } /** * dsi_ctrl_set_vid_engine_state() - set video engine state * @dsi_ctrl: DSI Controller handle. * @state: Engine state. * @skip_op: Boolean to indicate few operations can be skipped. * Set during the cont-splash or trusted-vm enable case. * * Video engine state can be modified only when DSI controller power state is * set to DSI_CTRL_POWER_LINK_CLK_ON. * * Return: error code. */ int dsi_ctrl_set_vid_engine_state(struct dsi_ctrl *dsi_ctrl, enum dsi_engine_state state, bool skip_op) { int rc = 0; bool on; bool vid_eng_busy; if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_VID_ENGINE, state); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Controller state check failed, rc=%d\n", rc); goto error; } if (!skip_op) { on = (state == DSI_CTRL_ENGINE_ON) ? true : false; dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, on); vid_eng_busy = dsi_ctrl->hw.ops.vid_engine_busy(&dsi_ctrl->hw); /* * During ESD check failure, DSI video engine can get stuck * sending data from display engine. In use cases where GDSC * toggle does not happen like DP MST connected or secure video * playback, display does not recover back after ESD failure. * Perform a reset if video engine is stuck. */ if (!on && vid_eng_busy) dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw); } SDE_EVT32(dsi_ctrl->cell_index, state, skip_op); DSI_CTRL_DEBUG(dsi_ctrl, "Set video engine state:%d, skip_op:%d\n", state, skip_op); dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_VID_ENGINE, state); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_set_ulps() - set ULPS state for DSI lanes. * @dsi_ctrl: DSI controller handle. * @enable: enable/disable ULPS. * * ULPS can be enabled/disabled after DSI host engine is turned on. * * Return: error code. */ int dsi_ctrl_set_ulps(struct dsi_ctrl *dsi_ctrl, bool enable) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); if (enable) rc = dsi_enable_ulps(dsi_ctrl); else rc = dsi_disable_ulps(dsi_ctrl); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Ulps state change(%d) failed, rc=%d\n", enable, rc); goto error; } DSI_CTRL_DEBUG(dsi_ctrl, "ULPS state = %d\n", enable); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_set_clamp_state() - set clamp state for DSI phy * @dsi_ctrl: DSI controller handle. * @enable: enable/disable clamping. * * Clamps can be enabled/disabled while DSI controller is still turned on. * * Return: error code. */ int dsi_ctrl_set_clamp_state(struct dsi_ctrl *dsi_ctrl, bool enable, bool ulps_enabled) { int rc = 0; if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } if (!dsi_ctrl->hw.ops.clamp_enable || !dsi_ctrl->hw.ops.clamp_disable) { DSI_CTRL_DEBUG(dsi_ctrl, "No clamp control for DSI controller\n"); return 0; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_enable_io_clamp(dsi_ctrl, enable, ulps_enabled); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to enable IO clamp\n"); goto error; } DSI_CTRL_DEBUG(dsi_ctrl, "Clamp state = %d\n", enable); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_set_clock_source() - set clock source fpr dsi link clocks * @dsi_ctrl: DSI controller handle. * @source_clks: Source clocks for DSI link clocks. * * Clock source should be changed while link clocks are disabled. * * Return: error code. */ int dsi_ctrl_set_clock_source(struct dsi_ctrl *dsi_ctrl, struct dsi_clk_link_set *source_clks) { int rc = 0; if (!dsi_ctrl || !source_clks) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } mutex_lock(&dsi_ctrl->ctrl_lock); rc = dsi_clk_update_parent(source_clks, &dsi_ctrl->clk_info.rcg_clks); if (rc) { DSI_CTRL_ERR(dsi_ctrl, "Failed to update link clk parent, rc=%d\n", rc); (void)dsi_clk_update_parent(&dsi_ctrl->clk_info.pll_op_clks, &dsi_ctrl->clk_info.rcg_clks); goto error; } dsi_ctrl->clk_info.pll_op_clks.byte_clk = source_clks->byte_clk; dsi_ctrl->clk_info.pll_op_clks.pixel_clk = source_clks->pixel_clk; DSI_CTRL_DEBUG(dsi_ctrl, "Source clocks are updated\n"); error: mutex_unlock(&dsi_ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_setup_misr() - Setup frame MISR * @dsi_ctrl: DSI controller handle. * @enable: enable/disable MISR. * @frame_count: Number of frames to accumulate MISR. * * Return: error code. */ int dsi_ctrl_setup_misr(struct dsi_ctrl *dsi_ctrl, bool enable, u32 frame_count) { if (!dsi_ctrl) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return -EINVAL; } if (!dsi_ctrl->hw.ops.setup_misr) return 0; mutex_lock(&dsi_ctrl->ctrl_lock); dsi_ctrl->misr_enable = enable; dsi_ctrl->hw.ops.setup_misr(&dsi_ctrl->hw, dsi_ctrl->host_config.panel_mode, enable, frame_count); mutex_unlock(&dsi_ctrl->ctrl_lock); return 0; } /** * dsi_ctrl_collect_misr() - Read frame MISR * @dsi_ctrl: DSI controller handle. * * Return: MISR value. */ u32 dsi_ctrl_collect_misr(struct dsi_ctrl *dsi_ctrl) { u32 misr; if (!dsi_ctrl || !dsi_ctrl->hw.ops.collect_misr) return 0; misr = dsi_ctrl->hw.ops.collect_misr(&dsi_ctrl->hw, dsi_ctrl->host_config.panel_mode); if (!misr) misr = dsi_ctrl->misr_cache; DSI_CTRL_DEBUG(dsi_ctrl, "cached misr = %x, final = %x\n", dsi_ctrl->misr_cache, misr); return misr; } void dsi_ctrl_mask_error_status_interrupts(struct dsi_ctrl *dsi_ctrl, u32 idx, bool mask_enable) { if (!dsi_ctrl || !dsi_ctrl->hw.ops.error_intr_ctrl || !dsi_ctrl->hw.ops.clear_error_status) { DSI_CTRL_ERR(dsi_ctrl, "Invalid params\n"); return; } /* * Mask DSI error status interrupts and clear error status * register */ if (idx & BIT(DSI_ERR_INTR_ALL)) { /* * The behavior of mask_enable is different in ctrl register * and mask register and hence mask_enable is manipulated for * selective error interrupt masking vs total error interrupt * masking. */ dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, !mask_enable); dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw, DSI_ERROR_INTERRUPT_COUNT); } else { dsi_ctrl->hw.ops.mask_error_intr(&dsi_ctrl->hw, idx, mask_enable); dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw, DSI_ERROR_INTERRUPT_COUNT); } } /** * dsi_ctrl_irq_update() - Put a irq vote to process DSI error * interrupts at any time. * @dsi_ctrl: DSI controller handle. * @enable: variable to enable/disable irq */ void dsi_ctrl_irq_update(struct dsi_ctrl *dsi_ctrl, bool enable) { if (!dsi_ctrl) return; mutex_lock(&dsi_ctrl->ctrl_lock); if (enable) dsi_ctrl_enable_status_interrupt(dsi_ctrl, DSI_SINT_ERROR, NULL); else dsi_ctrl_disable_status_interrupt(dsi_ctrl, DSI_SINT_ERROR); mutex_unlock(&dsi_ctrl->ctrl_lock); } /** * dsi_ctrl_wait4dynamic_refresh_done() - Poll for dynamci refresh * done interrupt. * @dsi_ctrl: DSI controller handle. */ int dsi_ctrl_wait4dynamic_refresh_done(struct dsi_ctrl *ctrl) { int rc = 0; if (!ctrl) return 0; mutex_lock(&ctrl->ctrl_lock); if (ctrl->hw.ops.wait4dynamic_refresh_done) rc = ctrl->hw.ops.wait4dynamic_refresh_done(&ctrl->hw); mutex_unlock(&ctrl->ctrl_lock); return rc; } /** * dsi_ctrl_drv_register() - register platform driver for dsi controller */ void dsi_ctrl_drv_register(void) { platform_driver_register(&dsi_ctrl_driver); } /** * dsi_ctrl_drv_unregister() - unregister platform driver */ void dsi_ctrl_drv_unregister(void) { platform_driver_unregister(&dsi_ctrl_driver); }