/*
 * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
 * Copyright (c) 2014-2021, The Linux Foundation. All rights reserved.
 * Copyright (C) 2013 Red Hat
 * Author: Rob Clark <robdclark@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__

#include <drm/drm_crtc.h>
#include <drm/drm_fixed.h>
#include <drm/drm_panel.h>
#include <linux/debugfs.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/dma-buf.h>
#include <linux/memblock.h>
#include <linux/soc/qcom/panel_event_notifier.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_probe_helper.h>

#include "msm_drv.h"
#include "msm_mmu.h"
#include "msm_gem.h"

#include "dsi_display.h"
#include "dsi_drm.h"
#include "sde_wb.h"
#include "dp_display.h"
#include "dp_drm.h"
#include "dp_mst_drm.h"

#include "sde_kms.h"
#include "sde_core_irq.h"
#include "sde_formats.h"
#include "sde_hw_vbif.h"
#include "sde_vbif.h"
#include "sde_encoder.h"
#include "sde_plane.h"
#include "sde_crtc.h"
#include "sde_color_processing.h"
#include "sde_reg_dma.h"
#include "sde_connector.h"
#include "sde_vm.h"
#include "sde_fence.h"

#include <linux/qcom_scm.h>
#include <linux/qcom-iommu-util.h>
#include "soc/qcom/secure_buffer.h"
#include <linux/qtee_shmbridge.h>
#ifdef CONFIG_DRM_SDE_VM
#include <linux/gunyah/gh_irq_lend.h>
#endif

#define CREATE_TRACE_POINTS
#include "sde_trace.h"

/* defines for secure channel call */
#define MEM_PROTECT_SD_CTRL_SWITCH 0x18
#define MDP_DEVICE_ID            0x1A

#define DEMURA_REGION_NAME_MAX      32

EXPORT_TRACEPOINT_SYMBOL(tracing_mark_write);

static const char * const iommu_ports[] = {
		"mdp_0",
};

/**
 * Controls size of event log buffer. Specified as a power of 2.
 */
#define SDE_EVTLOG_SIZE	1024

/*
 * To enable overall DRM driver logging
 * # echo 0x2 > /sys/module/drm/parameters/debug
 *
 * To enable DRM driver h/w logging
 * # echo <mask> > /sys/kernel/debug/dri/0/debug/hw_log_mask
 *
 * See sde_hw_mdss.h for h/w logging mask definitions (search for SDE_DBG_MASK_)
 */
#define SDE_DEBUGFS_DIR "msm_sde"
#define SDE_DEBUGFS_HWMASKNAME "hw_log_mask"

#define SDE_KMS_MODESET_LOCK_TIMEOUT_US 500
#define SDE_KMS_MODESET_LOCK_MAX_TRIALS 20

/**
 * sdecustom - enable certain driver customizations for sde clients
 *	Enabling this modifies the standard DRM behavior slightly and assumes
 *	that the clients have specific knowledge about the modifications that
 *	are involved, so don't enable this unless you know what you're doing.
 *
 *	Parts of the driver that are affected by this setting may be located by
 *	searching for invocations of the 'sde_is_custom_client()' function.
 *
 *	This is disabled by default.
 */
static bool sdecustom = true;
module_param(sdecustom, bool, 0400);
MODULE_PARM_DESC(sdecustom, "Enable customizations for sde clients");

static int sde_kms_hw_init(struct msm_kms *kms);
static int _sde_kms_mmu_destroy(struct sde_kms *sde_kms);
static int _sde_kms_mmu_init(struct sde_kms *sde_kms);
static int _sde_kms_register_events(struct msm_kms *kms,
		struct drm_mode_object *obj, u32 event, bool en);
static void sde_kms_handle_power_event(u32 event_type, void *usr);

bool sde_is_custom_client(void)
{
	return sdecustom;
}

#if IS_ENABLED(CONFIG_DEBUG_FS)
void *sde_debugfs_get_root(struct sde_kms *sde_kms)
{
	struct msm_drm_private *priv;

	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private)
		return NULL;

	priv = sde_kms->dev->dev_private;
	return priv->debug_root;
}

static int _sde_debugfs_init(struct sde_kms *sde_kms)
{
	void *p;
	int rc;
	void *debugfs_root;

	p = sde_hw_util_get_log_mask_ptr();

	if (!sde_kms || !p)
		return -EINVAL;

	debugfs_root = sde_debugfs_get_root(sde_kms);
	if (!debugfs_root)
		return -EINVAL;

	/* allow debugfs_root to be NULL */
	debugfs_create_x32(SDE_DEBUGFS_HWMASKNAME, 0600, debugfs_root, p);

	(void) sde_debugfs_vbif_init(sde_kms, debugfs_root);
	(void) sde_debugfs_core_irq_init(sde_kms, debugfs_root);

	rc = sde_core_perf_debugfs_init(&sde_kms->perf, debugfs_root);
	if (rc) {
		SDE_ERROR("failed to init perf %d\n", rc);
		return rc;
	}
	sde_rm_debugfs_init(&sde_kms->rm, debugfs_root);

	if (sde_kms->catalog->qdss_count)
		debugfs_create_u32("qdss", 0600, debugfs_root,
				(u32 *)&sde_kms->qdss_enabled);

	debugfs_create_u32("pm_suspend_clk_dump", 0600, debugfs_root,
			(u32 *)&sde_kms->pm_suspend_clk_dump);
	debugfs_create_u32("hw_fence_status", 0600, debugfs_root,
			(u32 *)&sde_kms->debugfs_hw_fence);

	return 0;
}

static void sde_kms_debugfs_destroy(struct msm_kms *kms)
{
	struct sde_kms *sde_kms = to_sde_kms(kms);

	/* don't need to NULL check debugfs_root */
	if (sde_kms) {
		sde_debugfs_vbif_destroy(sde_kms);
		sde_debugfs_core_irq_destroy(sde_kms);
	}
}

static int _sde_kms_dump_clks_state(struct sde_kms *sde_kms)
{
	int i;
	struct device *dev = sde_kms->dev->dev;

	SDE_INFO("runtime PM suspended:%d", pm_runtime_suspended(dev));

	for (i = 0; i < sde_kms->dsi_display_count; i++)
		dsi_display_dump_clks_state(sde_kms->dsi_displays[i]);

	return 0;
}

#else
static int _sde_debugfs_init(struct sde_kms *sde_kms)
{
	return 0;
}

static void sde_kms_debugfs_destroy(struct msm_kms *kms)
{
}

static int _sde_kms_dump_clks_state(struct sde_kms *sde_kms)
{
	return 0;
}
#endif /* CONFIG_DEBUG_FS */

static void sde_kms_wait_for_frame_transfer_complete(struct msm_kms *kms,
		struct drm_crtc *crtc)
{
	struct drm_encoder *encoder;
	struct drm_device *dev;
	int ret;

	if (!kms || !crtc || !crtc->state || !crtc->dev) {
		SDE_ERROR("invalid params\n");
		return;
	}

	if (!crtc->state->enable) {
		SDE_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
		return;
	}

	if (!crtc->state->active) {
		SDE_DEBUG("[crtc:%d] not active\n", crtc->base.id);
		return;
	}

	dev = crtc->dev;

	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
		if (encoder->crtc != crtc)
			continue;
		/*
		 * Video Mode - Wait for VSYNC
		 * Cmd Mode   - Wait for PP_DONE. Will be no-op if transfer is
		 *              complete
		 */
		SDE_EVT32_VERBOSE(DRMID(crtc));
		ret = sde_encoder_wait_for_event(encoder, MSM_ENC_TX_COMPLETE);
		if (ret && ret != -EWOULDBLOCK) {
			SDE_ERROR(
			"[crtc: %d][enc: %d] wait for commit done returned %d\n",
			crtc->base.id, encoder->base.id, ret);
			break;
		}
	}
}

static int _sde_kms_secure_ctrl_xin_clients(struct sde_kms *sde_kms,
			struct drm_crtc *crtc, bool enable)
{
	struct drm_device *dev;
	struct msm_drm_private *priv;
	struct sde_mdss_cfg *sde_cfg;
	struct drm_plane *plane;
	int i, ret;

	dev = sde_kms->dev;
	priv = dev->dev_private;
	sde_cfg = sde_kms->catalog;

	ret = sde_vbif_halt_xin_mask(sde_kms,
			sde_cfg->sui_block_xin_mask, enable);
	if (ret) {
		SDE_ERROR("failed to halt some xin-clients, ret:%d\n", ret);
		return ret;
	}

	if (enable) {
		for (i = 0; i < priv->num_planes; i++) {
			plane = priv->planes[i];
			sde_plane_secure_ctrl_xin_client(plane, crtc);
		}
	}

	return 0;
}

/**
 * _sde_kms_scm_call - makes secure channel call to switch the VMIDs
 * @sde_kms: Pointer to sde_kms struct
 * @vimd: switch the stage 2 translation to this VMID
 */
static int _sde_kms_scm_call(struct sde_kms *sde_kms, int vmid)
{
	struct device dummy = {};
	dma_addr_t dma_handle;
	uint32_t num_sids;
	uint32_t *sec_sid;
	struct sde_mdss_cfg *sde_cfg = sde_kms->catalog;
	int ret = 0, i;
	struct qtee_shm shm;
	bool qtee_en = qtee_shmbridge_is_enabled();
	phys_addr_t mem_addr;
	u64 mem_size;

	num_sids = sde_cfg->sec_sid_mask_count;
	if (!num_sids) {
		SDE_ERROR("secure SID masks not configured, vmid 0x%x\n", vmid);
		return -EINVAL;
	}

	if (qtee_en) {
		ret = qtee_shmbridge_allocate_shm(num_sids * sizeof(uint32_t),
			&shm);
		if (ret)
			return -ENOMEM;

		sec_sid = (uint32_t *) shm.vaddr;
		mem_addr = shm.paddr;
		/**
		 * SMMUSecureModeSwitch requires the size to be number of SID's
		 * but shm allocates size in pages. Modify the args as per
		 * client requirement.
		 */
		mem_size = sizeof(uint32_t) * num_sids;
	} else {
		sec_sid = kcalloc(num_sids, sizeof(uint32_t), GFP_KERNEL);
		if (!sec_sid)
			return -ENOMEM;

		mem_addr = virt_to_phys(sec_sid);
		mem_size = sizeof(uint32_t) * num_sids;
	}

	for (i = 0; i < num_sids; i++) {
		sec_sid[i] = sde_cfg->sec_sid_mask[i];
		SDE_DEBUG("sid_mask[%d]: %d\n", i, sec_sid[i]);
	}

	ret = dma_coerce_mask_and_coherent(&dummy, DMA_BIT_MASK(64));
	if (ret) {
		SDE_ERROR("Failed to set dma mask for dummy dev %d\n", ret);
		goto map_error;
	}
	set_dma_ops(&dummy, NULL);

	dma_handle = dma_map_single(&dummy, sec_sid,
				num_sids * sizeof(uint32_t), DMA_TO_DEVICE);
	if (dma_mapping_error(&dummy, dma_handle)) {
		SDE_ERROR("dma_map_single for dummy dev failed vmid 0x%x\n",
									vmid);
		goto map_error;
	}
	SDE_DEBUG("calling scm_call for vmid 0x%x, num_sids %d, qtee_en %d",
				vmid, num_sids, qtee_en);

	ret = qcom_scm_mem_protect_sd_ctrl(MDP_DEVICE_ID, mem_addr,
				mem_size, vmid);
	if (ret)
		SDE_ERROR("Error:scm_call2, vmid %d, ret%d\n",
				vmid, ret);
	SDE_EVT32(MEM_PROTECT_SD_CTRL_SWITCH, MDP_DEVICE_ID, mem_size,
			vmid, qtee_en, num_sids, ret);

	dma_unmap_single(&dummy, dma_handle,
				num_sids * sizeof(uint32_t), DMA_TO_DEVICE);

map_error:
	if (qtee_en)
		qtee_shmbridge_free_shm(&shm);
	else
		kfree(sec_sid);

	return ret;
}

static int _sde_kms_detach_all_cb(struct sde_kms *sde_kms, u32 vmid)
{
	u32 ret;

	if (atomic_inc_return(&sde_kms->detach_all_cb) > 1)
		return 0;

	/* detach_all_contexts */
	ret = sde_kms_mmu_detach(sde_kms, false);
	if (ret) {
		SDE_ERROR("failed to detach all cb ret:%d\n", ret);
		goto mmu_error;
	}

	ret = _sde_kms_scm_call(sde_kms, vmid);
	if (ret) {
		SDE_ERROR("scm call failed for vmid:%d\n", vmid);
		goto scm_error;
	}

	return 0;

scm_error:
	sde_kms_mmu_attach(sde_kms, false);
mmu_error:
	atomic_dec(&sde_kms->detach_all_cb);
	return ret;
}

static int _sde_kms_attach_all_cb(struct sde_kms *sde_kms, u32 vmid,
		u32 old_vmid)
{
	u32 ret;

	if (atomic_dec_return(&sde_kms->detach_all_cb) != 0)
		return 0;

	ret = _sde_kms_scm_call(sde_kms, vmid);
	if (ret) {
		SDE_ERROR("scm call failed for vmid:%d\n", vmid);
		goto scm_error;
	}

	/* attach_all_contexts */
	ret = sde_kms_mmu_attach(sde_kms, false);
	if (ret) {
		SDE_ERROR("failed to attach all cb ret:%d\n", ret);
		goto mmu_error;
	}

	return 0;

mmu_error:
	_sde_kms_scm_call(sde_kms, old_vmid);
scm_error:
	atomic_inc(&sde_kms->detach_all_cb);
	return ret;
}

static int _sde_kms_detach_sec_cb(struct sde_kms *sde_kms, int vmid)
{
	u32 ret;

	if (atomic_inc_return(&sde_kms->detach_sec_cb) > 1)
		return 0;

	/* detach secure_context */
	ret = sde_kms_mmu_detach(sde_kms, true);
	if (ret) {
		SDE_ERROR("failed to detach sec cb ret:%d\n", ret);
		goto mmu_error;
	}

	ret = _sde_kms_scm_call(sde_kms, vmid);
	if (ret) {
		SDE_ERROR("scm call failed for vmid:%d\n", vmid);
		goto scm_error;
	}

	return 0;

scm_error:
	sde_kms_mmu_attach(sde_kms, true);
mmu_error:
	atomic_dec(&sde_kms->detach_sec_cb);
	return ret;
}

static int _sde_kms_attach_sec_cb(struct sde_kms *sde_kms, u32 vmid,
		u32 old_vmid)
{
	u32 ret;

	if (atomic_dec_return(&sde_kms->detach_sec_cb) != 0)
		return 0;

	ret = _sde_kms_scm_call(sde_kms, vmid);
	if (ret) {
		goto scm_error;
		SDE_ERROR("scm call failed for vmid:%d\n", vmid);
	}

	ret = sde_kms_mmu_attach(sde_kms, true);
	if (ret) {
		SDE_ERROR("failed to attach sec cb ret:%d\n", ret);
		goto mmu_error;
	}

	return 0;

mmu_error:
	_sde_kms_scm_call(sde_kms, old_vmid);
scm_error:
	atomic_inc(&sde_kms->detach_sec_cb);
	return ret;
}

static int _sde_kms_sui_misr_ctrl(struct sde_kms *sde_kms,
		struct drm_crtc *crtc, bool enable)
{
	int ret;

	if (enable) {
		ret = pm_runtime_resume_and_get(sde_kms->dev->dev);
		if (ret < 0) {
			SDE_ERROR("failed to enable power resource %d\n", ret);
			SDE_EVT32(ret, SDE_EVTLOG_ERROR);
			return ret;
		}

		sde_crtc_misr_setup(crtc, true, 1);

		ret = _sde_kms_secure_ctrl_xin_clients(sde_kms, crtc, true);
		if (ret) {
			sde_crtc_misr_setup(crtc, false, 0);
			pm_runtime_put_sync(sde_kms->dev->dev);
			return ret;
		}

	} else {
		_sde_kms_secure_ctrl_xin_clients(sde_kms, crtc, false);
		sde_crtc_misr_setup(crtc, false, 0);
		pm_runtime_put_sync(sde_kms->dev->dev);
	}

	return 0;
}

static int _sde_kms_secure_ctrl(struct sde_kms *sde_kms, struct drm_crtc *crtc,
		bool post_commit)
{
	struct sde_kms_smmu_state_data *smmu_state = &sde_kms->smmu_state;
	int old_smmu_state = smmu_state->state;
	int ret = 0;
	u32 vmid;

	if (!sde_kms || !crtc) {
		SDE_ERROR("invalid argument(s)\n");
		return -EINVAL;
	}

	SDE_EVT32(DRMID(crtc), smmu_state->state, smmu_state->transition_type,
			post_commit, smmu_state->sui_misr_state,
			smmu_state->secure_level, SDE_EVTLOG_FUNC_ENTRY);

	if ((!smmu_state->transition_type) ||
	    ((smmu_state->transition_type == POST_COMMIT) && !post_commit))
		/* Bail out */
		return 0;

	/* enable sui misr if requested, before the transition */
	if (smmu_state->sui_misr_state == SUI_MISR_ENABLE_REQ) {
		ret = _sde_kms_sui_misr_ctrl(sde_kms, crtc, true);
		if (ret) {
			smmu_state->sui_misr_state = NONE;
			goto end;
		}
	}

	mutex_lock(&sde_kms->secure_transition_lock);
	switch (smmu_state->state) {
	case DETACH_ALL_REQ:
		ret = _sde_kms_detach_all_cb(sde_kms, VMID_CP_SEC_DISPLAY);
		if (!ret)
			smmu_state->state = DETACHED;
		break;

	case ATTACH_ALL_REQ:
		ret = _sde_kms_attach_all_cb(sde_kms, VMID_CP_PIXEL,
				VMID_CP_SEC_DISPLAY);
		if (!ret) {
			smmu_state->state = ATTACHED;
			smmu_state->secure_level = SDE_DRM_SEC_NON_SEC;
		}
		break;

	case DETACH_SEC_REQ:
		vmid = (smmu_state->secure_level == SDE_DRM_SEC_ONLY) ?
				VMID_CP_SEC_DISPLAY : VMID_CP_CAMERA_PREVIEW;

		ret = _sde_kms_detach_sec_cb(sde_kms, vmid);
		if (!ret)
			smmu_state->state = DETACHED_SEC;
		break;

	case ATTACH_SEC_REQ:
		vmid = (smmu_state->secure_level == SDE_DRM_SEC_ONLY) ?
				VMID_CP_SEC_DISPLAY : VMID_CP_CAMERA_PREVIEW;
		ret = _sde_kms_attach_sec_cb(sde_kms, VMID_CP_PIXEL, vmid);
		if (!ret) {
			smmu_state->state = ATTACHED;
			smmu_state->secure_level = SDE_DRM_SEC_NON_SEC;
		}
		break;

	default:
		SDE_ERROR("crtc%d: invalid smmu state %d transition type %d\n",
			DRMID(crtc), smmu_state->state,
			smmu_state->transition_type);
		ret = -EINVAL;
		break;
	}
	mutex_unlock(&sde_kms->secure_transition_lock);

	/* disable sui misr if requested, after the transition */
	if (!ret && (smmu_state->sui_misr_state == SUI_MISR_DISABLE_REQ)) {
		ret = _sde_kms_sui_misr_ctrl(sde_kms, crtc, false);
		if (ret)
			goto end;
	}

end:
	smmu_state->transition_error = false;

	if (ret) {
		smmu_state->transition_error = true;
		SDE_ERROR(
		  "crtc%d: req_state %d, new_state %d, sec_lvl %d, ret %d\n",
			DRMID(crtc), old_smmu_state, smmu_state->state,
			smmu_state->secure_level, ret);

		smmu_state->state = smmu_state->prev_state;
		smmu_state->secure_level = smmu_state->prev_secure_level;

		if (smmu_state->sui_misr_state == SUI_MISR_ENABLE_REQ)
			_sde_kms_sui_misr_ctrl(sde_kms, crtc, false);
	}

	SDE_DEBUG("crtc %d: req_state %d, new_state %d, sec_lvl %d, ret %d\n",
			DRMID(crtc), old_smmu_state, smmu_state->state,
			smmu_state->secure_level, ret);
	SDE_EVT32(DRMID(crtc), smmu_state->state, smmu_state->prev_state,
			smmu_state->transition_type,
			smmu_state->transition_error,
			smmu_state->secure_level, smmu_state->prev_secure_level,
			smmu_state->sui_misr_state, ret, SDE_EVTLOG_FUNC_EXIT);

	smmu_state->sui_misr_state = NONE;
	smmu_state->transition_type = NONE;

	return ret;
}

static int sde_kms_prepare_secure_transition(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *old_crtc_state;
	struct drm_plane_state *old_plane_state, *new_plane_state;

	struct drm_plane *plane;
	struct drm_plane_state *plane_state;
	struct sde_kms *sde_kms = to_sde_kms(kms);
	struct drm_device *dev = sde_kms->dev;
	int i, ops = 0, ret = 0;
	bool old_valid_fb = false;
	struct sde_kms_smmu_state_data *smmu_state = &sde_kms->smmu_state;

	for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) {
		if (!crtc->state || !crtc->state->active)
			continue;
		/*
		 * It is safe to assume only one active crtc,
		 * and compatible translation modes on the
		 * planes staged on this crtc.
		 * otherwise validation would have failed.
		 * For this CRTC,
		 */

		/*
		 * 1. Check if old state on the CRTC has planes
		 * staged with valid fbs
		 */
		for_each_old_plane_in_state(state, plane, plane_state, i) {
			if (!plane_state->crtc)
				continue;
			if (plane_state->fb) {
				old_valid_fb = true;
				break;
			}
		}

		/*
		 * 2.Get the operations needed to be performed before
		 * secure transition can be initiated.
		 */
		ops = sde_crtc_get_secure_transition_ops(crtc,
				old_crtc_state, old_valid_fb);
		if (ops < 0) {
			SDE_ERROR("invalid secure operations %x\n", ops);
			return ops;
		}

		if (!ops) {
			smmu_state->transition_error = false;
			goto no_ops;
		}

		SDE_DEBUG("%d:secure operations(%x) started on state:%pK\n",
				crtc->base.id, ops, crtc->state);
		SDE_EVT32(DRMID(crtc), ops, crtc->state, old_valid_fb);

		/* 3. Perform operations needed for secure transition */
		if  (ops & SDE_KMS_OPS_WAIT_FOR_TX_DONE) {
			SDE_DEBUG("wait_for_transfer_done\n");
			sde_kms_wait_for_frame_transfer_complete(kms, crtc);
		}
		if (ops & SDE_KMS_OPS_CLEANUP_PLANE_FB) {
			SDE_DEBUG("cleanup planes\n");
			drm_atomic_helper_cleanup_planes(dev, state);
			for_each_oldnew_plane_in_state(state, plane,
					old_plane_state, new_plane_state, i)
				sde_plane_destroy_fb(old_plane_state);
		}
		if (ops & SDE_KMS_OPS_SECURE_STATE_CHANGE) {
			SDE_DEBUG("secure ctrl\n");
			_sde_kms_secure_ctrl(sde_kms, crtc, false);
		}
		if (ops & SDE_KMS_OPS_PREPARE_PLANE_FB) {
			SDE_DEBUG("prepare planes %d",
					crtc->state->plane_mask);
			drm_atomic_crtc_for_each_plane(plane,
					crtc) {
				const struct drm_plane_helper_funcs *funcs;

				plane_state = plane->state;
				funcs = plane->helper_private;

				SDE_DEBUG("psde:%d FB[%u]\n",
						plane->base.id,
						plane->fb->base.id);
				if (!funcs)
					continue;

				if (funcs->prepare_fb(plane, plane_state)) {
					ret = funcs->prepare_fb(plane,
							plane_state);
					if (ret)
						return ret;
				}
			}
		}
		SDE_EVT32(DRMID(crtc), SDE_EVTLOG_FUNC_EXIT);
		SDE_DEBUG("secure operations completed\n");
	}

no_ops:
	return 0;
}

static int _sde_kms_release_shared_buffer(unsigned long mem_addr,
					unsigned int splash_buffer_size,
					unsigned int ramdump_base,
					unsigned int ramdump_buffer_size)
{
	unsigned long pfn_start, pfn_end, pfn_idx;
	int ret = 0;

	if (!mem_addr || !splash_buffer_size) {
		SDE_ERROR("invalid params\n");
		return -EINVAL;
	}

	/* leave ramdump memory only if base address matches */
	if (ramdump_base == mem_addr &&
			ramdump_buffer_size <= splash_buffer_size) {
		mem_addr +=  ramdump_buffer_size;
		splash_buffer_size -= ramdump_buffer_size;
	}

	pfn_start = mem_addr >> PAGE_SHIFT;
	pfn_end = (mem_addr + splash_buffer_size) >> PAGE_SHIFT;

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 19, 0))
	memblock_free((unsigned int*)mem_addr, splash_buffer_size);
#else
	ret = memblock_free(mem_addr, splash_buffer_size);
	if (ret) {
		SDE_ERROR("continuous splash memory free failed:%d\n", ret);
		return ret;
	}
#endif

	for (pfn_idx = pfn_start; pfn_idx < pfn_end; pfn_idx++)
		free_reserved_page(pfn_to_page(pfn_idx));

	return ret;

}

static int _sde_kms_one2one_mem_map_ipcc_reg(struct sde_kms *sde_kms, u32 buf_size,
		unsigned long buf_base)
{
	struct msm_mmu *mmu = NULL;
	int ret = 0;

	if (!sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]
		|| !sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]->mmu) {
		SDE_ERROR("aspace not found for sde kms node\n");
		return -EINVAL;
	}

	mmu = sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]->mmu;
	if (!mmu) {
		SDE_ERROR("mmu not found for aspace\n");
		return -EINVAL;
	}

	if (!mmu->funcs || !mmu->funcs->one_to_one_map) {
		SDE_ERROR("invalid input params for map\n");
		return -EINVAL;
	}

	ret = mmu->funcs->one_to_one_map(mmu, buf_base, buf_base, buf_size,
		IOMMU_READ | IOMMU_WRITE);
	if (ret)
		SDE_ERROR("one2one memory smmu map failed:%d\n", ret);

	return ret;
}

static int _sde_kms_splash_mem_get(struct sde_kms *sde_kms,
		struct sde_splash_mem *splash)
{
	struct msm_mmu *mmu = NULL;
	int ret = 0;

	if (!sde_kms->aspace[0]) {
		SDE_ERROR("aspace not found for sde kms node\n");
		return -EINVAL;
	}

	mmu = sde_kms->aspace[0]->mmu;
	if (!mmu) {
		SDE_ERROR("mmu not found for aspace\n");
		return -EINVAL;
	}

	if (!splash || !mmu->funcs || !mmu->funcs->one_to_one_map) {
		SDE_ERROR("invalid input params for map\n");
		return -EINVAL;
	}

	if (!splash->ref_cnt) {
		ret = mmu->funcs->one_to_one_map(mmu, splash->splash_buf_base,
				splash->splash_buf_base,
				splash->splash_buf_size,
				IOMMU_READ | IOMMU_NOEXEC);
		if (ret)
			SDE_ERROR("splash memory smmu map failed:%d\n", ret);
	}

	splash->ref_cnt++;
	SDE_DEBUG("one2one mapping done for base:%lx size:%x ref_cnt:%d\n",
				splash->splash_buf_base,
				splash->splash_buf_size,
				splash->ref_cnt);

	return ret;
}

static int _sde_kms_map_all_splash_regions(struct sde_kms *sde_kms)
{
	int i = 0;
	int ret = 0;
	struct sde_splash_mem *region;

	if (!sde_kms)
		return -EINVAL;

	for (i = 0; i < sde_kms->splash_data.num_splash_displays; i++) {
		region = sde_kms->splash_data.splash_display[i].splash;
		ret = _sde_kms_splash_mem_get(sde_kms, region);
		if (ret)
			return ret;

		/* Demura is optional and need not exist */
		region = sde_kms->splash_data.splash_display[i].demura;
		if (region) {
			ret = _sde_kms_splash_mem_get(sde_kms, region);
			if (ret)
				return ret;
		}
	}

	return ret;
}

static int _sde_kms_splash_mem_put(struct sde_kms *sde_kms,
		struct sde_splash_mem *splash)
{
	struct msm_mmu *mmu = NULL;
	int rc = 0;

	if (!sde_kms || !sde_kms->aspace[0] || !sde_kms->aspace[0]->mmu) {
		SDE_ERROR("invalid params\n");
		return -EINVAL;
	}

	mmu = sde_kms->aspace[0]->mmu;

	if (!splash || !splash->ref_cnt ||
			!mmu || !mmu->funcs || !mmu->funcs->one_to_one_unmap)
		return -EINVAL;

	splash->ref_cnt--;

	SDE_DEBUG("splash base:%lx refcnt:%d\n",
			splash->splash_buf_base, splash->ref_cnt);

	if (!splash->ref_cnt) {
		mmu->funcs->one_to_one_unmap(mmu, splash->splash_buf_base,
				splash->splash_buf_size);
		rc = _sde_kms_release_shared_buffer(splash->splash_buf_base,
				splash->splash_buf_size, splash->ramdump_base,
				splash->ramdump_size);
		splash->splash_buf_base = 0;
		splash->splash_buf_size = 0;
	}

	return rc;
}

static int _sde_kms_unmap_all_splash_regions(struct sde_kms *sde_kms)
{
	int i = 0;
	int ret = 0, failure = 0;
	struct sde_splash_mem *region;

	if (!sde_kms || !sde_kms->splash_data.num_splash_regions)
		return -EINVAL;

	for (i = 0; i < sde_kms->splash_data.num_splash_displays; i++) {
		region = sde_kms->splash_data.splash_display[i].splash;
		ret = _sde_kms_splash_mem_put(sde_kms, region);
		if (ret) {
			failure = 1;
			pr_err("Error unmapping splash mem for display %d\n",
					i);
		}

		/* Demura is optional and need not exist */
		region = sde_kms->splash_data.splash_display[i].demura;
		if (region) {
			ret = _sde_kms_splash_mem_put(sde_kms, region);
			if (ret) {
				failure = 1;
				pr_err("Error unmapping demura mem for display %d\n",
						i);
			}
		}
	}

	if (failure)
		ret = -EINVAL;

	return ret;
}

static int _sde_kms_get_blank(struct drm_crtc_state *crtc_state,
		struct drm_connector_state *conn_state)
{
	int lp_mode, blank;

	if (crtc_state->active)
		lp_mode = sde_connector_get_property(conn_state,
							CONNECTOR_PROP_LP);
	else
		lp_mode = SDE_MODE_DPMS_OFF;

	switch (lp_mode) {
	case SDE_MODE_DPMS_ON:
		blank = DRM_PANEL_EVENT_UNBLANK;
		break;
	case SDE_MODE_DPMS_LP1:
	case SDE_MODE_DPMS_LP2:
		blank = DRM_PANEL_EVENT_BLANK_LP;
		break;
	case SDE_MODE_DPMS_OFF:
	default:
		blank = DRM_PANEL_EVENT_BLANK;
		break;
	}

	return blank;
}

static void _sde_kms_drm_check_dpms(struct drm_atomic_state *old_state,
			bool is_pre_commit)
{
	struct panel_event_notification notification;
	struct drm_connector *connector;
	struct drm_connector_state *old_conn_state;
	struct drm_crtc_state *old_crtc_state;
	struct drm_crtc *crtc;
	struct sde_connector *c_conn;
	int i, old_mode, new_mode, old_fps, new_fps;
	enum panel_event_notifier_tag panel_type;

	for_each_old_connector_in_state(old_state, connector,
			old_conn_state, i) {
		crtc = connector->state->crtc ? connector->state->crtc :
			old_conn_state->crtc;
		if (!crtc)
			continue;

		new_fps = drm_mode_vrefresh(&crtc->state->mode);
		new_mode = _sde_kms_get_blank(crtc->state, connector->state);

		if (old_conn_state->crtc) {
			old_crtc_state = drm_atomic_get_existing_crtc_state(
					old_state, old_conn_state->crtc);

			old_fps = drm_mode_vrefresh(&old_crtc_state->mode);
			old_mode = _sde_kms_get_blank(old_crtc_state,
							old_conn_state);
		} else {
			old_fps = 0;
			old_mode = DRM_PANEL_EVENT_BLANK;
		}

		if ((old_mode != new_mode) || (old_fps != new_fps)) {
			c_conn = to_sde_connector(connector);
			SDE_EVT32(old_mode, new_mode, old_fps, new_fps,
				c_conn->panel, crtc->state->active,
				old_conn_state->crtc);
			pr_debug("change detected for connector:%s (power mode %d->%d, fps %d->%d)\n",
				c_conn->name, old_mode, new_mode, old_fps, new_fps);

			/* If suspend resume and fps change are happening
			 * at the same time, give preference to power mode
			 * changes rather than fps change.
			 */

			if ((old_mode == new_mode) && (old_fps != new_fps))
				new_mode = DRM_PANEL_EVENT_FPS_CHANGE;

			if (!c_conn->panel)
				continue;

			panel_type = sde_encoder_is_primary_display(
				connector->encoder) ?
				PANEL_EVENT_NOTIFICATION_PRIMARY :
				PANEL_EVENT_NOTIFICATION_SECONDARY;

			notification.notif_type = new_mode;
			notification.panel = c_conn->panel;
			notification.notif_data.old_fps = old_fps;
			notification.notif_data.new_fps = new_fps;
			notification.notif_data.early_trigger = is_pre_commit;
			panel_event_notification_trigger(panel_type,
					&notification);
		}
	}

}

static struct drm_crtc *sde_kms_vm_get_vm_crtc(
		struct drm_atomic_state *state)
{
	int i;
	enum sde_crtc_vm_req vm_req = VM_REQ_NONE;
	struct drm_crtc *crtc, *vm_crtc = NULL;
	struct drm_crtc_state *new_cstate, *old_cstate;
	struct sde_crtc_state *vm_cstate;

	for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) {
		if (!new_cstate->active && !old_cstate->active)
			continue;

		vm_cstate = to_sde_crtc_state(new_cstate);
		vm_req = sde_crtc_get_property(vm_cstate,
				CRTC_PROP_VM_REQ_STATE);
		if (vm_req != VM_REQ_NONE) {
			SDE_DEBUG("valid vm request:%d found on crtc-%d\n",
					vm_req, crtc->base.id);
			vm_crtc = crtc;
			break;
		}
	}

	return vm_crtc;
}

static void _sde_kms_update_pm_qos_irq_request(struct sde_kms *sde_kms, const cpumask_t *mask)
{
	struct device *cpu_dev;
	int cpu = 0;
	u32 cpu_irq_latency = sde_kms->catalog->perf.cpu_irq_latency;

	// save irq cpu mask
	sde_kms->irq_cpu_mask = *mask;
	if (cpumask_empty(&sde_kms->irq_cpu_mask)) {
		SDE_DEBUG("%s: irq_cpu_mask is empty\n", __func__);
		return;
	}

	for_each_cpu(cpu, &sde_kms->irq_cpu_mask) {
		cpu_dev = get_cpu_device(cpu);
		if (!cpu_dev) {
			SDE_DEBUG("%s: failed to get cpu%d device\n", __func__,
				cpu);
			continue;
		}

		if (dev_pm_qos_request_active(&sde_kms->pm_qos_irq_req[cpu]))
			dev_pm_qos_update_request(&sde_kms->pm_qos_irq_req[cpu],
					cpu_irq_latency);
		else
			dev_pm_qos_add_request(cpu_dev,
				&sde_kms->pm_qos_irq_req[cpu],
				DEV_PM_QOS_RESUME_LATENCY,
				cpu_irq_latency);
	}
}

static void _sde_kms_remove_pm_qos_irq_request(struct sde_kms *sde_kms, const cpumask_t *mask)
{
	struct device *cpu_dev;
	int cpu = 0;

	if (cpumask_empty(mask)) {
		SDE_DEBUG("%s: irq_cpu_mask is empty\n", __func__);
		return;
	}

	for_each_cpu(cpu, mask) {
		cpu_dev = get_cpu_device(cpu);
		if (!cpu_dev) {
			SDE_DEBUG("%s: failed to get cpu%d device\n", __func__,
				cpu);
			continue;
		}

		if (dev_pm_qos_request_active(&sde_kms->pm_qos_irq_req[cpu]))
			dev_pm_qos_remove_request(
					&sde_kms->pm_qos_irq_req[cpu]);
	}
}

int sde_kms_vm_primary_prepare_commit(struct sde_kms *sde_kms,
				      struct drm_atomic_state *state)
{
	struct drm_device *ddev;
	struct drm_crtc *crtc;
	struct drm_crtc_state *new_cstate;
	struct drm_encoder *encoder;
	struct drm_connector *connector;
	struct sde_vm_ops *vm_ops;
	struct sde_crtc_state *cstate;
	struct drm_connector_list_iter iter;
	enum sde_crtc_vm_req vm_req;
	int rc = 0;

	ddev = sde_kms->dev;

	vm_ops = sde_vm_get_ops(sde_kms);
	if (!vm_ops)
		return -EINVAL;

	crtc = sde_kms_vm_get_vm_crtc(state);
	if (!crtc)
		return 0;

	new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
	cstate = to_sde_crtc_state(new_cstate);
	vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE);
	if (vm_req != VM_REQ_ACQUIRE)
		return 0;

	/* enable MDSS irq line */
	sde_irq_update(&sde_kms->base, true);

	/* clear the stale IRQ status bits */
	if (sde_kms->hw_intr && sde_kms->hw_intr->ops.clear_all_irqs)
		sde_kms->hw_intr->ops.clear_all_irqs(sde_kms->hw_intr);

	_sde_kms_remove_pm_qos_irq_request(sde_kms, &CPU_MASK_ALL);

	/* enable the display path IRQ's */
	drm_for_each_encoder_mask(encoder, crtc->dev,
					crtc->state->encoder_mask) {
		if (sde_encoder_in_clone_mode(encoder))
			continue;

		sde_encoder_irq_control(encoder, true);
	}

	/* Schedule ESD work */
	drm_connector_list_iter_begin(ddev, &iter);
	drm_for_each_connector_iter(connector, &iter)
		if (drm_connector_mask(connector) & crtc->state->connector_mask)
			sde_connector_schedule_status_work(connector, true);
	drm_connector_list_iter_end(&iter);

	/* enable vblank events */
	drm_crtc_vblank_on(crtc);

	sde_dbg_set_hw_ownership_status(true);

	/* handle non-SDE pre_acquire */
	if (vm_ops->vm_client_post_acquire)
		rc = vm_ops->vm_client_post_acquire(sde_kms);

	return rc;
}

void sde_kms_vm_set_sid(struct sde_kms *sde_kms, u32 vm)
{
	struct drm_plane *plane;
	struct drm_device *ddev;
	struct sde_mdss_cfg *sde_cfg;

	ddev = sde_kms->dev;
	sde_cfg = sde_kms->catalog;

	list_for_each_entry(plane, &ddev->mode_config.plane_list, head)
		sde_plane_set_sid(plane, vm);

	if (sde_kms->hw_sid && sde_kms->hw_sid->ops.set_vm_sid)
		sde_kms->hw_sid->ops.set_vm_sid(sde_kms->hw_sid, vm, sde_kms->catalog);
}

int sde_kms_vm_trusted_prepare_commit(struct sde_kms *sde_kms,
					   struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *new_cstate;
	struct sde_crtc_state *cstate;
	enum sde_crtc_vm_req vm_req;

	crtc = sde_kms_vm_get_vm_crtc(state);
	if (!crtc)
		return 0;

	new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
	cstate = to_sde_crtc_state(new_cstate);
	vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE);
	if (vm_req != VM_REQ_ACQUIRE)
		return 0;

	/* Clear the stale IRQ status bits */
	if (sde_kms->hw_intr && sde_kms->hw_intr->ops.clear_all_irqs)
		sde_kms->hw_intr->ops.clear_all_irqs(sde_kms->hw_intr);

	/* Program the SID's for the trusted VM */
	sde_kms_vm_set_sid(sde_kms, 1);

	sde_dbg_set_hw_ownership_status(true);

	return 0;
}

static void sde_kms_prepare_commit(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	struct sde_kms *sde_kms;
	struct msm_drm_private *priv;
	struct drm_device *dev;
	struct drm_encoder *encoder;
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	struct sde_vm_ops *vm_ops;
	int i, rc;

	if (!kms)
		return;
	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;

	if (!dev || !dev->dev_private)
		return;
	priv = dev->dev_private;

	SDE_ATRACE_BEGIN("prepare_commit");
	rc = pm_runtime_resume_and_get(sde_kms->dev->dev);
	if (rc < 0) {
		SDE_ERROR("failed to enable power resources %d\n", rc);
		SDE_EVT32(rc, SDE_EVTLOG_ERROR);
		goto end;
	}

	if (sde_kms->first_kickoff) {
		sde_power_scale_reg_bus(&priv->phandle, VOTE_INDEX_HIGH, false);
		sde_kms->first_kickoff = false;
	}

	for_each_new_crtc_in_state(state, crtc, cstate, i) {
		drm_for_each_encoder_mask(encoder, dev, cstate->encoder_mask) {
			if (sde_encoder_prepare_commit(encoder) == -ETIMEDOUT) {
				SDE_ERROR("crtc:%d, initiating hw reset\n",
						DRMID(crtc));
				sde_encoder_needs_hw_reset(encoder);
				sde_crtc_set_needs_hw_reset(crtc);
			}
		}
	}

	/*
	 * NOTE: for secure use cases we want to apply the new HW
	 * configuration only after completing preparation for secure
	 * transitions prepare below if any transtions is required.
	 */
	sde_kms_prepare_secure_transition(kms, state);

	vm_ops = sde_vm_get_ops(sde_kms);
	if (!vm_ops)
		goto end_vm;

	if (vm_ops->vm_prepare_commit)
		vm_ops->vm_prepare_commit(sde_kms, state);

end_vm:
	_sde_kms_drm_check_dpms(state, true);
end:
	SDE_ATRACE_END("prepare_commit");
}

static void sde_kms_commit(struct msm_kms *kms,
		struct drm_atomic_state *old_state)
{
	struct sde_kms *sde_kms;
	struct drm_crtc *crtc;
	struct drm_crtc_state *old_crtc_state;
	int i;

	if (!kms || !old_state)
		return;
	sde_kms = to_sde_kms(kms);

	if (!sde_kms_power_resource_is_enabled(sde_kms->dev)) {
		SDE_ERROR("power resource is not enabled\n");
		return;
	}

	SDE_ATRACE_BEGIN("sde_kms_commit");
	for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) {
		if (crtc->state->active) {
			SDE_EVT32(DRMID(crtc), old_state);
			sde_crtc_commit_kickoff(crtc, old_crtc_state);
		}
	}

	SDE_ATRACE_END("sde_kms_commit");
}

static void _sde_kms_free_splash_display_data(struct sde_kms *sde_kms,
		struct sde_splash_display *splash_display)
{
	if (!sde_kms || !splash_display ||
			!sde_kms->splash_data.num_splash_displays)
		return;

	if (sde_kms->splash_data.num_splash_regions) {
		_sde_kms_splash_mem_put(sde_kms, splash_display->splash);
		if (splash_display->demura)
			_sde_kms_splash_mem_put(sde_kms,
					splash_display->demura);
	}
	sde_kms->splash_data.num_splash_displays--;
	SDE_DEBUG("cont_splash handoff done, remaining:%d\n",
				sde_kms->splash_data.num_splash_displays);
	memset(splash_display, 0x0, sizeof(struct sde_splash_display));
}

static void _sde_kms_release_splash_resource(struct sde_kms *sde_kms,
		struct drm_crtc *crtc)
{
	struct msm_drm_private *priv;
	struct sde_splash_display *splash_display;
	int i;

	if (!sde_kms || !crtc)
		return;

	priv = sde_kms->dev->dev_private;

	if (!crtc->state->active || !sde_kms->splash_data.num_splash_displays)
		return;

	SDE_EVT32(DRMID(crtc), crtc->state->active,
			sde_kms->splash_data.num_splash_displays);

	for (i = 0; i < MAX_DSI_DISPLAYS; i++) {
		splash_display = &sde_kms->splash_data.splash_display[i];
		if (splash_display->encoder &&
				crtc == splash_display->encoder->crtc)
			break;
	}

	if (i >= MAX_DSI_DISPLAYS)
		return;

	if (splash_display->cont_splash_enabled) {
		sde_encoder_update_caps_for_cont_splash(splash_display->encoder,
				splash_display, false);
		_sde_kms_free_splash_display_data(sde_kms, splash_display);
	}

	/* remove the votes if all displays are done with splash */
	if (!sde_kms->splash_data.num_splash_displays) {
		for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++)
			sde_power_data_bus_set_quota(&priv->phandle, i,
				SDE_POWER_HANDLE_ENABLE_BUS_AB_QUOTA,
				priv->phandle.ib_quota[i] ? priv->phandle.ib_quota[i] :
				SDE_POWER_HANDLE_ENABLE_BUS_IB_QUOTA);

		pm_runtime_put_sync(sde_kms->dev->dev);
	}
}

static void sde_kms_cancel_delayed_work(struct drm_crtc *crtc)
{
	struct drm_connector *connector;
	struct drm_connector_list_iter iter;
	struct drm_encoder *encoder;

	/* Cancel CRTC work */
	sde_crtc_cancel_delayed_work(crtc);

	/* Cancel ESD work */
	drm_connector_list_iter_begin(crtc->dev, &iter);
	drm_for_each_connector_iter(connector, &iter)
		if (drm_connector_mask(connector) & crtc->state->connector_mask)
			sde_connector_schedule_status_work(connector, false);
	drm_connector_list_iter_end(&iter);

	/* Cancel Idle-PC work */
	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
		if (sde_encoder_in_clone_mode(encoder))
			continue;

		sde_encoder_cancel_delayed_work(encoder);
	}
}

int sde_kms_vm_pre_release(struct sde_kms *sde_kms,
	struct drm_atomic_state *state, bool is_primary)
{
	struct drm_crtc *crtc;
	struct drm_encoder *encoder;
	struct msm_drm_private *priv;
	int rc = 0;

	crtc = sde_kms_vm_get_vm_crtc(state);
	if (!crtc)
		return 0;
	priv = sde_kms->dev->dev_private;

	/* if vm_req is enabled, once CRTC on the commit is guaranteed */
	sde_kms_wait_for_frame_transfer_complete(&sde_kms->base, crtc);

	sde_dbg_set_hw_ownership_status(false);

	sde_kms_cancel_delayed_work(crtc);

	kthread_flush_worker(&priv->event_thread[crtc->index].worker);
	/* Flush pp_event thread queue for any pending events */
	kthread_flush_worker(&priv->pp_event_worker);

	/* disable SDE encoder irq's */
	drm_for_each_encoder_mask(encoder, crtc->dev,
					crtc->state->encoder_mask) {
		if (sde_encoder_in_clone_mode(encoder))
			continue;

		sde_encoder_irq_control(encoder, false);
	}

	if (is_primary) {

		_sde_kms_update_pm_qos_irq_request(sde_kms, &CPU_MASK_ALL);
		/* disable vblank events */
		drm_crtc_vblank_off(crtc);

		/* reset sw state */
		sde_crtc_reset_sw_state(crtc);
	}

	return rc;
}

int sde_kms_vm_trusted_post_commit(struct sde_kms *sde_kms,
	struct drm_atomic_state *state)
{
	struct sde_vm_ops *vm_ops;
	struct drm_crtc *crtc;
	struct sde_crtc_state *cstate;
	struct drm_crtc_state *new_cstate;
	enum sde_crtc_vm_req vm_req;
	int rc = 0;

	if (!sde_kms || !sde_vm_is_enabled(sde_kms))
		return -EINVAL;

	vm_ops = sde_vm_get_ops(sde_kms);

	crtc = sde_kms_vm_get_vm_crtc(state);

	if (sde_kms->vm->lastclose_in_progress && !crtc) {
		sde_dbg_set_hw_ownership_status(false);
		goto relase_vm;
	}
	if (!crtc)
		return 0;

	new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
	cstate = to_sde_crtc_state(new_cstate);
	vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE);
	if (vm_req != VM_REQ_RELEASE)
		return 0;

relase_vm:
	sde_kms_vm_pre_release(sde_kms, state, false);
	sde_kms_vm_set_sid(sde_kms, 0);

	sde_vm_lock(sde_kms);

	if (vm_ops->vm_release)
		rc = vm_ops->vm_release(sde_kms);

	sde_vm_unlock(sde_kms);

	return rc;
}

int sde_kms_vm_primary_post_commit(struct sde_kms *sde_kms,
	struct drm_atomic_state *state)
{
	struct sde_vm_ops *vm_ops;
	struct sde_crtc_state *cstate;
	struct drm_crtc *crtc;
	struct drm_crtc_state *new_cstate;
	enum sde_crtc_vm_req vm_req;
	int rc = 0;

	if (!sde_kms || !sde_vm_is_enabled(sde_kms))
		return -EINVAL;

	vm_ops = sde_vm_get_ops(sde_kms);

	crtc = sde_kms_vm_get_vm_crtc(state);
	if (!crtc)
		return 0;

	new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
	cstate = to_sde_crtc_state(new_cstate);
	vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE);
	if (vm_req != VM_REQ_RELEASE)
		return 0;

	/* handle SDE pre-release */
	rc = sde_kms_vm_pre_release(sde_kms, state, true);
	if (rc) {
		SDE_ERROR("sde vm pre_release failed, rc=%d\n", rc);
		goto exit;
	}

	/* properly handoff color processing features */
	sde_cp_crtc_vm_primary_handoff(crtc);

	sde_vm_lock(sde_kms);

	/* handle non-SDE clients pre-release */
	if (vm_ops->vm_client_pre_release) {
		rc = vm_ops->vm_client_pre_release(sde_kms);
		if (rc) {
			SDE_ERROR("sde vm client pre_release failed, rc=%d\n",
					rc);
			sde_vm_unlock(sde_kms);
			goto exit;
		}
	}

	/* disable IRQ line */
	sde_irq_update(&sde_kms->base, false);

	/* release HW */
	if (vm_ops->vm_release) {
		rc = vm_ops->vm_release(sde_kms);
		if (rc)
			SDE_ERROR("sde vm assign failed, rc=%d\n", rc);
	}
	sde_vm_unlock(sde_kms);

	_sde_crtc_vm_release_notify(crtc);

exit:
	return rc;
}

static void sde_kms_complete_commit(struct msm_kms *kms,
		struct drm_atomic_state *old_state)
{
	struct sde_kms *sde_kms;
	struct msm_drm_private *priv;
	struct drm_crtc *crtc;
	struct drm_crtc_state *old_crtc_state;
	struct drm_connector *connector;
	struct drm_connector_state *old_conn_state;
	struct msm_display_conn_params params;
	struct sde_vm_ops *vm_ops;
	int i, rc = 0;

	if (!kms || !old_state)
		return;
	sde_kms = to_sde_kms(kms);

	if (!sde_kms->dev || !sde_kms->dev->dev_private)
		return;
	priv = sde_kms->dev->dev_private;

	if (!sde_kms_power_resource_is_enabled(sde_kms->dev)) {
		SDE_ERROR("power resource is not enabled\n");
		return;
	}

	SDE_ATRACE_BEGIN("sde_kms_complete_commit");

	for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) {
		sde_crtc_complete_commit(crtc, old_crtc_state);

		/* complete secure transitions if any */
		if (sde_kms->smmu_state.transition_type == POST_COMMIT)
			_sde_kms_secure_ctrl(sde_kms, crtc, true);
	}

	for_each_old_connector_in_state(old_state, connector,
			old_conn_state, i) {
		struct sde_connector *c_conn;

		c_conn = to_sde_connector(connector);
		if (!c_conn->ops.post_kickoff)
			continue;

		memset(&params, 0, sizeof(params));

		sde_connector_complete_qsync_commit(connector, &params);

		rc = c_conn->ops.post_kickoff(connector, &params);
		if (rc) {
			pr_err("Connector Post kickoff failed rc=%d\n",
					 rc);
		}
	}

	vm_ops = sde_vm_get_ops(sde_kms);
	if (vm_ops && vm_ops->vm_post_commit) {
		rc = vm_ops->vm_post_commit(sde_kms, old_state);
		if (rc)
			SDE_ERROR("vm post commit failed, rc = %d\n",
				  rc);
	}
	_sde_kms_drm_check_dpms(old_state, false);

	pm_runtime_put_sync(sde_kms->dev->dev);

	for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i)
		_sde_kms_release_splash_resource(sde_kms, crtc);

	SDE_EVT32_VERBOSE(SDE_EVTLOG_FUNC_EXIT);
	SDE_ATRACE_END("sde_kms_complete_commit");
}

static void sde_kms_wait_for_commit_done(struct msm_kms *kms,
		struct drm_crtc *crtc)
{
	struct sde_kms *sde_kms;
	struct drm_encoder *encoder, *cwb_enc = NULL;
	struct drm_device *dev;
	int ret;
	bool cwb_disabling;

	if (!kms || !crtc || !crtc->state) {
		SDE_ERROR("invalid params\n");
		return;
	}

	dev = crtc->dev;
	sde_kms = to_sde_kms(kms);

	if (!crtc->state->enable) {
		SDE_DEBUG("[crtc:%d] not enable\n", crtc->base.id);
		return;
	}

	if (!crtc->state->active) {
		SDE_DEBUG("[crtc:%d] not active\n", crtc->base.id);
		return;
	}

	if (!sde_kms_power_resource_is_enabled(crtc->dev)) {
		SDE_ERROR("power resource is not enabled\n");
		return;
	}

	SDE_ATRACE_BEGIN("sde_kms_wait_for_commit_done");
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
		cwb_disabling = false;
		if (encoder->crtc != crtc) {
			cwb_disabling = sde_encoder_is_cwb_disabling(encoder, crtc);
			if (cwb_disabling)
				cwb_enc = encoder;
			else
				continue;
		}

		/*
		 * Wait for post-flush if necessary to delay before
		 * plane_cleanup. For example, wait for vsync in case of video
		 * mode panels. This may be a no-op for command mode panels.
		 */
		SDE_EVT32_VERBOSE(DRMID(crtc));
		ret = sde_encoder_wait_for_event(encoder, cwb_disabling ?
						MSM_ENC_TX_COMPLETE : MSM_ENC_COMMIT_DONE);
		if (ret && ret != -EWOULDBLOCK) {
			SDE_ERROR("crtc:%d, enc:%d, cwb_d:%d, wait for commit done failed ret:%d\n",
					DRMID(crtc), DRMID(encoder), cwb_disabling, ret);
			SDE_EVT32(DRMID(crtc), DRMID(encoder), cwb_disabling,
					ret, SDE_EVTLOG_ERROR);
			sde_crtc_request_frame_reset(crtc, encoder);
			break;
		}

		sde_encoder_hw_fence_error_handle(encoder);

		sde_crtc_complete_flip(crtc, NULL);
	}

	if (cwb_enc)
		sde_encoder_virt_reset(cwb_enc);

	if (drm_atomic_crtc_needs_modeset(crtc->state)) {
		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
			sde_encoder_reset_kickoff_timeout_ms(encoder);
	}

	/* avoid system cache update to set rd-noalloc bit when NSE feature is enabled */
	if (!test_bit(SDE_FEATURE_SYS_CACHE_NSE, sde_kms->catalog->features))
		sde_crtc_static_cache_read_kickoff(crtc);

	SDE_ATRACE_END("sde_kms_wait_for_commit_done");
}

static void sde_kms_prepare_fence(struct msm_kms *kms,
		struct drm_atomic_state *old_state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *old_crtc_state;
	int i;

	if (!kms || !old_state || !old_state->dev || !old_state->acquire_ctx) {
		SDE_ERROR("invalid argument(s)\n");
		return;
	}

	SDE_ATRACE_BEGIN("sde_kms_prepare_fence");

	/* old_state actually contains updated crtc pointers */
	for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) {
		if (crtc->state->active || crtc->state->active_changed)
			sde_crtc_prepare_commit(crtc, old_crtc_state);
	}

	SDE_ATRACE_END("sde_kms_prepare_fence");
}

/**
 * _sde_kms_get_displays - query for underlying display handles and cache them
 * @sde_kms:    Pointer to sde kms structure
 * Returns:     Zero on success
 */
static int _sde_kms_get_displays(struct sde_kms *sde_kms)
{
	int rc = -ENOMEM;

	if (!sde_kms) {
		SDE_ERROR("invalid sde kms\n");
		return -EINVAL;
	}

	/* dsi */
	sde_kms->dsi_displays = NULL;
	sde_kms->dsi_display_count = dsi_display_get_num_of_displays();
	if (sde_kms->dsi_display_count) {
		sde_kms->dsi_displays = kcalloc(sde_kms->dsi_display_count,
				sizeof(void *),
				GFP_KERNEL);
		if (!sde_kms->dsi_displays) {
			SDE_ERROR("failed to allocate dsi displays\n");
			goto exit_deinit_dsi;
		}
		sde_kms->dsi_display_count =
			dsi_display_get_active_displays(sde_kms->dsi_displays,
					sde_kms->dsi_display_count);
	}

	/* wb */
	sde_kms->wb_displays = NULL;
	sde_kms->wb_display_count = sde_wb_get_num_of_displays();
	if (sde_kms->wb_display_count) {
		sde_kms->wb_displays = kcalloc(sde_kms->wb_display_count,
				sizeof(void *),
				GFP_KERNEL);
		if (!sde_kms->wb_displays) {
			SDE_ERROR("failed to allocate wb displays\n");
			goto exit_deinit_wb;
		}
		sde_kms->wb_display_count =
			wb_display_get_displays(sde_kms->wb_displays,
					sde_kms->wb_display_count);
	}

	/* dp */
	sde_kms->dp_displays = NULL;
	sde_kms->dp_display_count = dp_display_get_num_of_displays();
	if (sde_kms->dp_display_count) {
		sde_kms->dp_displays = kcalloc(sde_kms->dp_display_count,
				sizeof(void *), GFP_KERNEL);
		if (!sde_kms->dp_displays) {
			SDE_ERROR("failed to allocate dp displays\n");
			goto exit_deinit_dp;
		}
		sde_kms->dp_display_count =
			dp_display_get_displays(sde_kms->dp_displays,
					sde_kms->dp_display_count);

		sde_kms->dp_stream_count = dp_display_get_num_of_streams();
	}
	return 0;

exit_deinit_dp:
	kfree(sde_kms->dp_displays);
	sde_kms->dp_stream_count = 0;
	sde_kms->dp_display_count = 0;
	sde_kms->dp_displays = NULL;

exit_deinit_wb:
	kfree(sde_kms->wb_displays);
	sde_kms->wb_display_count = 0;
	sde_kms->wb_displays = NULL;

exit_deinit_dsi:
	kfree(sde_kms->dsi_displays);
	sde_kms->dsi_display_count = 0;
	sde_kms->dsi_displays = NULL;
	return rc;
}

/**
 * _sde_kms_release_displays - release cache of underlying display handles
 * @sde_kms:    Pointer to sde kms structure
 */
static void _sde_kms_release_displays(struct sde_kms *sde_kms)
{
	if (!sde_kms) {
		SDE_ERROR("invalid sde kms\n");
		return;
	}

	kfree(sde_kms->wb_displays);
	sde_kms->wb_displays = NULL;
	sde_kms->wb_display_count = 0;

	kfree(sde_kms->dsi_displays);
	sde_kms->dsi_displays = NULL;
	sde_kms->dsi_display_count = 0;
}

/**
 * _sde_kms_setup_displays - create encoders, bridges and connectors
 *                           for underlying displays
 * @dev:        Pointer to drm device structure
 * @priv:       Pointer to private drm device data
 * @sde_kms:    Pointer to sde kms structure
 * Returns:     Zero on success
 */
static int _sde_kms_setup_displays(struct drm_device *dev,
		struct msm_drm_private *priv,
		struct sde_kms *sde_kms)
{
	static const struct sde_connector_ops dsi_ops = {
		.set_info_blob = dsi_conn_set_info_blob,
		.detect =     dsi_conn_detect,
		.get_modes =  dsi_connector_get_modes,
		.pre_destroy =  dsi_connector_put_modes,
		.mode_valid = dsi_conn_mode_valid,
		.get_info =   dsi_display_get_info,
		.set_backlight = dsi_display_set_backlight,
		.soft_reset   = dsi_display_soft_reset,
		.pre_kickoff  = dsi_conn_pre_kickoff,
		.clk_ctrl = dsi_display_clk_ctrl,
		.set_power = dsi_display_set_power,
		.get_mode_info = dsi_conn_get_mode_info,
		.get_dst_format = dsi_display_get_dst_format,
		.post_kickoff = dsi_conn_post_kickoff,
		.check_status = dsi_display_check_status,
		.enable_event = dsi_conn_enable_event,
		.cmd_transfer = dsi_display_cmd_transfer,
		.cont_splash_config = dsi_display_cont_splash_config,
		.cont_splash_res_disable = dsi_display_cont_splash_res_disable,
		.get_panel_vfp = dsi_display_get_panel_vfp,
		.get_default_lms = dsi_display_get_default_lms,
		.cmd_receive = dsi_display_cmd_receive,
		.install_properties = NULL,
		.set_allowed_mode_switch = dsi_conn_set_allowed_mode_switch,
		.set_dyn_bit_clk = dsi_conn_set_dyn_bit_clk,
		.get_qsync_min_fps = dsi_conn_get_qsync_min_fps,
		.get_avr_step_fps = dsi_conn_get_avr_step_fps,
		.prepare_commit = dsi_conn_prepare_commit,
		.set_submode_info = dsi_conn_set_submode_blob_info,
		.get_num_lm_from_mode = dsi_conn_get_lm_from_mode,
		.update_transfer_time = dsi_display_update_transfer_time,
		.get_panel_scan_line = dsi_display_get_panel_scan_line,
	};
	static const struct sde_connector_ops wb_ops = {
		.post_init =    sde_wb_connector_post_init,
		.set_info_blob = sde_wb_connector_set_info_blob,
		.detect =       sde_wb_connector_detect,
		.get_modes =    sde_wb_connector_get_modes,
		.set_property = sde_wb_connector_set_property,
		.get_info =     sde_wb_get_info,
		.soft_reset =   NULL,
		.get_mode_info = sde_wb_get_mode_info,
		.get_dst_format = NULL,
		.check_status = NULL,
		.cmd_transfer = NULL,
		.cont_splash_config = NULL,
		.cont_splash_res_disable = NULL,
		.get_panel_vfp = NULL,
		.cmd_receive = NULL,
		.install_properties = NULL,
		.set_dyn_bit_clk = NULL,
		.set_allowed_mode_switch = NULL,
		.update_transfer_time = NULL,
	};
	static const struct sde_connector_ops dp_ops = {
		.post_init  = dp_connector_post_init,
		.detect     = dp_connector_detect,
		.get_modes  = dp_connector_get_modes,
		.atomic_check = dp_connector_atomic_check,
		.mode_valid = dp_connector_mode_valid,
		.get_info   = dp_connector_get_info,
		.get_mode_info  = dp_connector_get_mode_info,
		.post_open  = dp_connector_post_open,
		.check_status = NULL,
		.set_colorspace = dp_connector_set_colorspace,
		.config_hdr = dp_connector_config_hdr,
		.cmd_transfer = NULL,
		.cont_splash_config = NULL,
		.cont_splash_res_disable = NULL,
		.get_panel_vfp = NULL,
		.update_pps = dp_connector_update_pps,
		.cmd_receive = NULL,
		.install_properties = dp_connector_install_properties,
		.set_allowed_mode_switch = NULL,
		.set_dyn_bit_clk = NULL,
		.update_transfer_time = NULL,
	};
	struct msm_display_info info;
	struct drm_encoder *encoder;
	void *display, *connector;
	int i, max_encoders;
	int rc = 0;
	u32 dsc_count = 0, mixer_count = 0;
	u32 max_dp_dsc_count, max_dp_mixer_count;

	if (!dev || !priv || !sde_kms) {
		SDE_ERROR("invalid argument(s)\n");
		return -EINVAL;
	}

	max_encoders = sde_kms->dsi_display_count + sde_kms->wb_display_count +
				sde_kms->dp_display_count +
				sde_kms->dp_stream_count;
	if (max_encoders > ARRAY_SIZE(priv->encoders)) {
		max_encoders = ARRAY_SIZE(priv->encoders);
		SDE_ERROR("capping number of displays to %d", max_encoders);
	}

	/* wb */
	for (i = 0; i < sde_kms->wb_display_count &&
		priv->num_encoders < max_encoders; ++i) {
		display = sde_kms->wb_displays[i];
		encoder = NULL;

		memset(&info, 0x0, sizeof(info));
		rc = sde_wb_get_info(NULL, &info, display);
		if (rc) {
			SDE_ERROR("wb get_info %d failed\n", i);
			continue;
		}

		encoder = sde_encoder_init(dev, &info);
		if (IS_ERR_OR_NULL(encoder)) {
			SDE_ERROR("encoder init failed for wb %d\n", i);
			continue;
		}

		rc = sde_wb_drm_init(display, encoder);
		if (rc) {
			SDE_ERROR("wb bridge %d init failed, %d\n", i, rc);
			sde_encoder_destroy(encoder);
			continue;
		}

		connector = sde_connector_init(dev,
				encoder,
				0,
				display,
				&wb_ops,
				DRM_CONNECTOR_POLL_HPD,
				DRM_MODE_CONNECTOR_VIRTUAL);
		if (connector) {
			priv->encoders[priv->num_encoders++] = encoder;
			priv->connectors[priv->num_connectors++] = connector;
		} else {
			SDE_ERROR("wb %d connector init failed\n", i);
			sde_wb_drm_deinit(display);
			sde_encoder_destroy(encoder);
		}
	}

	/* dsi */
	for (i = 0; i < sde_kms->dsi_display_count &&
		priv->num_encoders < max_encoders; ++i) {
		display = sde_kms->dsi_displays[i];
		encoder = NULL;

		memset(&info, 0x0, sizeof(info));
		rc = dsi_display_get_info(NULL, &info, display);
		if (rc) {
			SDE_ERROR("dsi get_info %d failed\n", i);
			continue;
		}

		encoder = sde_encoder_init(dev, &info);
		if (IS_ERR_OR_NULL(encoder)) {
			SDE_ERROR("encoder init failed for dsi %d\n", i);
			continue;
		}

		rc = dsi_display_drm_bridge_init(display, encoder);
		if (rc) {
			SDE_ERROR("dsi bridge %d init failed, %d\n", i, rc);
			sde_encoder_destroy(encoder);
			continue;
		}

		connector = sde_connector_init(dev,
					encoder,
					dsi_display_get_drm_panel(display),
					display,
					&dsi_ops,
					DRM_CONNECTOR_POLL_HPD,
					DRM_MODE_CONNECTOR_DSI);
		if (connector) {
			priv->encoders[priv->num_encoders++] = encoder;
			priv->connectors[priv->num_connectors++] = connector;
		} else {
			SDE_ERROR("dsi %d connector init failed\n", i);
			dsi_display_drm_bridge_deinit(display);
			sde_encoder_destroy(encoder);
			continue;
		}

		rc = dsi_display_drm_ext_bridge_init(display,
					encoder, connector);
		if (rc) {
			SDE_ERROR("dsi %d ext bridge init failed\n", rc);
			dsi_display_drm_bridge_deinit(display);
			sde_connector_destroy(connector);
			sde_encoder_destroy(encoder);
		}

		dsc_count += info.dsc_count;
		mixer_count += info.lm_count;

		if (dsi_display_has_dsc_switch_support(display))
			sde_kms->dsc_switch_support = true;
	}

	if (sde_kms->catalog->allowed_dsc_reservation_switch &&
			!sde_kms->dsc_switch_support) {
		SDE_DEBUG("dsc switch not supported\n");
		sde_kms->catalog->allowed_dsc_reservation_switch = 0;
	}

	max_dp_mixer_count = sde_kms->catalog->mixer_count > mixer_count ?
				sde_kms->catalog->mixer_count - mixer_count : 0;
	max_dp_dsc_count = sde_kms->catalog->dsc_count > dsc_count ?
				sde_kms->catalog->dsc_count - dsc_count : 0;

	if (sde_kms->catalog->allowed_dsc_reservation_switch &
			SDE_DP_DSC_RESERVATION_SWITCH)
		max_dp_dsc_count = sde_kms->catalog->dsc_count;
	/* dp */
	for (i = 0; i < sde_kms->dp_display_count &&
			priv->num_encoders < max_encoders; ++i) {
		int idx;

		display = sde_kms->dp_displays[i];
		encoder = NULL;

		memset(&info, 0x0, sizeof(info));
		rc = dp_connector_get_info(NULL, &info, display);
		if (rc) {
			SDE_ERROR("dp get_info %d failed\n", i);
			continue;
		}

		encoder = sde_encoder_init(dev, &info);
		if (IS_ERR_OR_NULL(encoder)) {
			SDE_ERROR("dp encoder init failed %d\n", i);
			continue;
		}

		rc = dp_drm_bridge_init(display, encoder,
				max_dp_mixer_count, max_dp_dsc_count);
		if (rc) {
			SDE_ERROR("dp bridge %d init failed, %d\n", i, rc);
			sde_encoder_destroy(encoder);
			continue;
		}

		connector = sde_connector_init(dev,
					encoder,
					NULL,
					display,
					&dp_ops,
					DRM_CONNECTOR_POLL_HPD,
					DRM_MODE_CONNECTOR_DisplayPort);
		if (connector) {
			priv->encoders[priv->num_encoders++] = encoder;
			priv->connectors[priv->num_connectors++] = connector;
		} else {
			SDE_ERROR("dp %d connector init failed\n", i);
			dp_drm_bridge_deinit(display);
			sde_encoder_destroy(encoder);
		}

		/* update display cap to MST_MODE for DP MST encoders */
		info.capabilities |= MSM_DISPLAY_CAP_MST_MODE;

		for (idx = 0; idx < sde_kms->dp_stream_count &&
				priv->num_encoders < max_encoders; idx++) {
			info.h_tile_instance[0] = idx;
			encoder = sde_encoder_init(dev, &info);
			if (IS_ERR_OR_NULL(encoder)) {
				SDE_ERROR("dp mst encoder init failed %d\n", i);
				continue;
			}

			rc = dp_mst_drm_bridge_init(display, encoder);
			if (rc) {
				SDE_ERROR("dp mst bridge %d init failed, %d\n",
						i, rc);
				sde_encoder_destroy(encoder);
				continue;
			}
			priv->encoders[priv->num_encoders++] = encoder;
		}
	}

	return 0;
}

static void _sde_kms_drm_obj_destroy(struct sde_kms *sde_kms)
{
	struct msm_drm_private *priv;
	int i;

	if (!sde_kms) {
		SDE_ERROR("invalid sde_kms\n");
		return;
	} else if (!sde_kms->dev) {
		SDE_ERROR("invalid dev\n");
		return;
	} else if (!sde_kms->dev->dev_private) {
		SDE_ERROR("invalid dev_private\n");
		return;
	}
	priv = sde_kms->dev->dev_private;

	for (i = 0; i < priv->num_crtcs; i++)
		priv->crtcs[i]->funcs->destroy(priv->crtcs[i]);
	priv->num_crtcs = 0;

	for (i = 0; i < priv->num_planes; i++)
		priv->planes[i]->funcs->destroy(priv->planes[i]);
	priv->num_planes = 0;

	for (i = 0; i < priv->num_connectors; i++)
		priv->connectors[i]->funcs->destroy(priv->connectors[i]);
	priv->num_connectors = 0;

	for (i = 0; i < priv->num_encoders; i++)
		priv->encoders[i]->funcs->destroy(priv->encoders[i]);
	priv->num_encoders = 0;

	_sde_kms_release_displays(sde_kms);
}

static int _sde_kms_drm_obj_init(struct sde_kms *sde_kms)
{
	struct drm_device *dev;
	struct drm_plane *primary_planes[MAX_PLANES], *plane;
	struct drm_crtc *crtc;

	struct msm_drm_private *priv;
	struct sde_mdss_cfg *catalog;

	int primary_planes_idx = 0, i, ret;
	int max_crtc_count;

	u32 sspp_id[MAX_PLANES];
	u32 master_plane_id[MAX_PLANES];
	u32 num_virt_planes = 0, dummy_mixer_count = 0;

	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) {
		SDE_ERROR("invalid sde_kms\n");
		return -EINVAL;
	}

	dev = sde_kms->dev;
	priv = dev->dev_private;
	catalog = sde_kms->catalog;

	ret = sde_core_irq_domain_add(sde_kms);
	if (ret)
		goto fail_irq;
	/*
	 * Query for underlying display drivers, and create connectors,
	 * bridges and encoders for them.
	 */
	if (!_sde_kms_get_displays(sde_kms))
		(void)_sde_kms_setup_displays(dev, priv, sde_kms);

	for (i = 0; i < catalog->mixer_count; i++)
		if (catalog->mixer[i].dummy_mixer)
			dummy_mixer_count++;

	max_crtc_count = catalog->mixer_count - dummy_mixer_count;

	/* Create the planes */
	for (i = 0; i < catalog->sspp_count; i++) {
		bool primary = true;

		if (primary_planes_idx >= max_crtc_count)
			primary = false;

		plane = sde_plane_init(dev, catalog->sspp[i].id, primary,
				(1UL << max_crtc_count) - 1, 0);
		if (IS_ERR(plane)) {
			SDE_ERROR("sde_plane_init failed\n");
			ret = PTR_ERR(plane);
			goto fail;
		}
		priv->planes[priv->num_planes++] = plane;

		if (primary)
			primary_planes[primary_planes_idx++] = plane;

		if (sde_hw_sspp_multirect_enabled(&catalog->sspp[i]) &&
			sde_is_custom_client()) {
			int priority =
				catalog->sspp[i].sblk->smart_dma_priority;
			sspp_id[priority - 1] = catalog->sspp[i].id;
			master_plane_id[priority - 1] = plane->base.id;
			num_virt_planes++;
		}
	}

	/* Initialize smart DMA virtual planes */
	for (i = 0; i < num_virt_planes; i++) {
		plane = sde_plane_init(dev, sspp_id[i], false,
			(1UL << max_crtc_count) - 1, master_plane_id[i]);
		if (IS_ERR(plane)) {
			SDE_ERROR("sde_plane for virtual SSPP init failed\n");
			ret = PTR_ERR(plane);
			goto fail;
		}
		priv->planes[priv->num_planes++] = plane;
	}

	max_crtc_count = min(max_crtc_count, primary_planes_idx);

	/* Create one CRTC per encoder */
	for (i = 0; i < max_crtc_count; i++) {
		crtc = sde_crtc_init(dev, primary_planes[i]);
		if (IS_ERR(crtc)) {
			ret = PTR_ERR(crtc);
			goto fail;
		}
		priv->crtcs[priv->num_crtcs++] = crtc;
	}

	if (sde_is_custom_client()) {
		/* All CRTCs are compatible with all planes */
		for (i = 0; i < priv->num_planes; i++)
			priv->planes[i]->possible_crtcs =
				(1 << priv->num_crtcs) - 1;
	}

	/* All CRTCs are compatible with all encoders */
	for (i = 0; i < priv->num_encoders; i++)
		priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1;

	return 0;
fail:
	_sde_kms_drm_obj_destroy(sde_kms);
fail_irq:
	sde_core_irq_domain_fini(sde_kms);
	return ret;
}

/**
 * sde_kms_timeline_status - provides current timeline status
 *    This API should be called without mode config lock.
 * @dev: Pointer to drm device
 */
void sde_kms_timeline_status(struct drm_device *dev)
{
	struct drm_crtc *crtc;
	struct drm_connector *conn;
	struct drm_connector_list_iter conn_iter;

	if (!dev) {
		SDE_ERROR("invalid drm device node\n");
		return;
	}

	drm_for_each_crtc(crtc, dev)
		sde_crtc_timeline_status(crtc);

	if (mutex_is_locked(&dev->mode_config.mutex)) {
		/*
		 *Probably locked from last close dumping status anyway
		 */
		SDE_ERROR("dumping conn_timeline without mode_config lock\n");
		drm_connector_list_iter_begin(dev, &conn_iter);
		drm_for_each_connector_iter(conn, &conn_iter)
			sde_conn_timeline_status(conn);
		drm_connector_list_iter_end(&conn_iter);
		return;
	}

	mutex_lock(&dev->mode_config.mutex);
	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(conn, &conn_iter)
		sde_conn_timeline_status(conn);
	drm_connector_list_iter_end(&conn_iter);
	mutex_unlock(&dev->mode_config.mutex);
}

static int sde_kms_postinit(struct msm_kms *kms)
{
	struct sde_kms *sde_kms = to_sde_kms(kms);
	struct drm_device *dev;
	struct drm_crtc *crtc;
	struct msm_drm_private *priv;
	int i, rc;

	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev ||
			!sde_kms->dev->dev_private) {
		SDE_ERROR("invalid sde_kms\n");
		return -EINVAL;
	}

	dev = sde_kms->dev;
	priv = sde_kms->dev->dev_private;

	/*
	 * Handle (re)initializations during power enable, the sde power
	 * event call has to be after drm_irq_install to handle irq update.
	 */
	sde_kms_handle_power_event(SDE_POWER_EVENT_POST_ENABLE, sde_kms);
	sde_kms->power_event = sde_power_handle_register_event(&priv->phandle,
			SDE_POWER_EVENT_POST_ENABLE |
			SDE_POWER_EVENT_PRE_DISABLE,
			sde_kms_handle_power_event, sde_kms, "kms");

	if (sde_kms->splash_data.num_splash_displays) {
		SDE_DEBUG("Skipping MDP Resources disable\n");
	} else {
		for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++)
			sde_power_data_bus_set_quota(&priv->phandle, i,
				SDE_POWER_HANDLE_ENABLE_BUS_AB_QUOTA,
				SDE_POWER_HANDLE_ENABLE_BUS_IB_QUOTA);

		pm_runtime_put_sync(sde_kms->dev->dev);
	}

	rc = _sde_debugfs_init(sde_kms);
	if (rc)
		SDE_ERROR("sde_debugfs init failed: %d\n", rc);

	drm_for_each_crtc(crtc, dev)
		sde_crtc_post_init(dev, crtc);

	return rc;
}

static long sde_kms_round_pixclk(struct msm_kms *kms, unsigned long rate,
		struct drm_encoder *encoder)
{
	return rate;
}

static void _sde_kms_hw_destroy(struct sde_kms *sde_kms,
		struct platform_device *pdev)
{
	struct drm_device *dev;
	struct msm_drm_private *priv;
	struct sde_vm_ops *vm_ops;
	int i;

	if (!sde_kms || !pdev)
		return;

	dev = sde_kms->dev;
	if (!dev)
		return;

	priv = dev->dev_private;
	if (!priv)
		return;

	if (sde_kms->genpd_init) {
		sde_kms->genpd_init = false;
		pm_genpd_remove(&sde_kms->genpd);
		of_genpd_del_provider(pdev->dev.of_node);
	}

	vm_ops = sde_vm_get_ops(sde_kms);
	if (vm_ops && vm_ops->vm_deinit)
		vm_ops->vm_deinit(sde_kms, vm_ops);

	if (sde_kms->hw_intr)
		sde_hw_intr_destroy(sde_kms->hw_intr);
	sde_kms->hw_intr = NULL;

	if (sde_kms->power_event)
		sde_power_handle_unregister_event(
				&priv->phandle, sde_kms->power_event);

	_sde_kms_release_displays(sde_kms);

	_sde_kms_unmap_all_splash_regions(sde_kms);

	if (sde_kms->catalog) {
		for (i = 0; i < sde_kms->catalog->vbif_count; i++) {
			u32 vbif_idx = sde_kms->catalog->vbif[i].id;

			if ((vbif_idx < VBIF_MAX) && sde_kms->hw_vbif[vbif_idx])
				sde_hw_vbif_destroy(sde_kms->hw_vbif[vbif_idx]);
		}
	}

	if (sde_kms->rm_init)
		sde_rm_destroy(&sde_kms->rm);
	sde_kms->rm_init = false;

	if (sde_kms->catalog)
		sde_hw_catalog_deinit(sde_kms->catalog);
	sde_kms->catalog = NULL;

	if (sde_kms->sid)
		msm_iounmap(pdev, sde_kms->sid);
	sde_kms->sid = NULL;

	if (sde_kms->reg_dma)
		msm_iounmap(pdev, sde_kms->reg_dma);
	sde_kms->reg_dma = NULL;

	if (sde_kms->vbif[VBIF_NRT])
		msm_iounmap(pdev, sde_kms->vbif[VBIF_NRT]);
	sde_kms->vbif[VBIF_NRT] = NULL;

	if (sde_kms->vbif[VBIF_RT])
		msm_iounmap(pdev, sde_kms->vbif[VBIF_RT]);
	sde_kms->vbif[VBIF_RT] = NULL;

	if (sde_kms->mmio)
		msm_iounmap(pdev, sde_kms->mmio);
	sde_kms->mmio = NULL;

	sde_reg_dma_deinit();
	_sde_kms_mmu_destroy(sde_kms);
}

int sde_kms_mmu_detach(struct sde_kms *sde_kms, bool secure_only)
{
	int i;

	if (!sde_kms)
		return -EINVAL;

	for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) {
		struct msm_mmu *mmu;
		struct msm_gem_address_space *aspace = sde_kms->aspace[i];

		if (!aspace)
			continue;

		mmu = sde_kms->aspace[i]->mmu;

		if (secure_only &&
			!aspace->mmu->funcs->is_domain_secure(mmu))
			continue;

		/* cleanup aspace before detaching */
		msm_gem_aspace_domain_attach_detach_update(aspace, true);

		SDE_DEBUG("Detaching domain:%d\n", i);
		aspace->mmu->funcs->detach(mmu, (const char **)iommu_ports,
			ARRAY_SIZE(iommu_ports));

		aspace->domain_attached = false;
	}

	return 0;
}

int sde_kms_mmu_attach(struct sde_kms *sde_kms, bool secure_only)
{
	int i;

	if (!sde_kms)
		return -EINVAL;

	for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) {
		struct msm_mmu *mmu;
		struct msm_gem_address_space *aspace = sde_kms->aspace[i];

		if (!aspace)
			continue;

		mmu = sde_kms->aspace[i]->mmu;

		if (secure_only &&
			!aspace->mmu->funcs->is_domain_secure(mmu))
			continue;

		SDE_DEBUG("Attaching domain:%d\n", i);
		aspace->mmu->funcs->attach(mmu, (const char **)iommu_ports,
			ARRAY_SIZE(iommu_ports));

		aspace->domain_attached = true;
		msm_gem_aspace_domain_attach_detach_update(aspace, false);
	}

	return 0;
}

static void sde_kms_destroy(struct msm_kms *kms)
{
	struct sde_kms *sde_kms;
	struct drm_device *dev;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return;
	}

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;
	if (!dev || !dev->dev) {
		SDE_ERROR("invalid device\n");
		return;
	}

	_sde_kms_hw_destroy(sde_kms, to_platform_device(dev->dev));
	kfree(sde_kms);
}

static void sde_kms_helper_clear_dim_layers(struct drm_atomic_state *state, struct drm_crtc *crtc)
{
	struct drm_crtc_state *crtc_state = NULL;
	struct sde_crtc_state *c_state;

	if (!state || !crtc) {
		SDE_ERROR("invalid params\n");
		return;
	}

	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
	c_state = to_sde_crtc_state(crtc_state);

	_sde_crtc_clear_dim_layers_v1(crtc_state);
	set_bit(SDE_CRTC_DIRTY_DIM_LAYERS, c_state->dirty);
}

static int sde_kms_set_crtc_for_conn(struct drm_device *dev,
		struct drm_encoder *enc, struct drm_atomic_state *state)
{
	struct drm_connector *conn = NULL;
	struct drm_connector *tmp_conn = NULL;
	struct drm_connector_list_iter conn_iter;
	struct drm_crtc_state *crtc_state = NULL;
	struct drm_connector_state *conn_state = NULL;
	int ret = 0;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(tmp_conn, &conn_iter) {
		if (enc == tmp_conn->state->best_encoder) {
			conn = tmp_conn;
			break;
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	if (!conn || !enc->crtc) {
		SDE_ERROR("invalid params for enc:%d\n", DRMID(enc));
		return -EINVAL;
	}

	crtc_state = drm_atomic_get_crtc_state(state, enc->crtc);
	if (IS_ERR(crtc_state)) {
		ret = PTR_ERR(crtc_state);
		SDE_ERROR("error %d getting crtc %d state\n",
				ret, DRMID(enc->crtc));
		return ret;
	}

	conn_state = drm_atomic_get_connector_state(state, conn);
	if (IS_ERR(conn_state)) {
		ret = PTR_ERR(conn_state);
		SDE_ERROR("error %d getting connector %d state\n",
				ret, DRMID(conn));
		return ret;
	}

	crtc_state->active = true;
	crtc_state->enable = true;
	ret = drm_atomic_set_crtc_for_connector(conn_state, enc->crtc);
	if (ret)
		SDE_ERROR("error %d setting the crtc\n", ret);

	return ret;
}

static void _sde_kms_plane_force_remove(struct drm_plane *plane,
			struct drm_atomic_state *state)
{
	struct drm_plane_state *plane_state;
	int ret = 0;

	plane_state = drm_atomic_get_plane_state(state, plane);
	if (IS_ERR(plane_state)) {
		ret = PTR_ERR(plane_state);
		SDE_ERROR("error %d getting plane %d state\n",
				ret, plane->base.id);
		return;
	}

	plane->old_fb = plane->fb;

	SDE_DEBUG("disabling plane %d\n", plane->base.id);

	ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
	if (ret != 0)
		SDE_ERROR("error %d disabling plane %d\n", ret,
				plane->base.id);

	drm_atomic_set_fb_for_plane(plane_state, NULL);
}

static int _sde_kms_connector_add_refcount(struct sde_kms *sde_kms,
		struct drm_atomic_state *state)
{
	struct drm_device *dev = sde_kms->dev;
	struct drm_connector *conn;
	struct drm_connector_state *conn_state;
	struct drm_connector_list_iter conn_iter;
	struct sde_connector_state *c_state;
	int ret = 0;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(conn, &conn_iter) {
		/*
		 * Acquire a connector reference to avoid removing
		 * connector in drm_release for splash and recovery cases.
		 */
		conn_state = drm_atomic_get_connector_state(state, conn);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			SDE_ERROR("error %d getting connector %d state\n",
					ret, DRMID(conn));
			return ret;
		}
		c_state = to_sde_connector_state(conn_state);
		if (c_state->out_fb)
			drm_framebuffer_put(c_state->out_fb);
	}
	drm_connector_list_iter_end(&conn_iter);

	return ret;
}

static int _sde_kms_remove_fbs(struct sde_kms *sde_kms, struct drm_file *file,
		struct drm_atomic_state *state)
{
	struct drm_device *dev = sde_kms->dev;
	struct drm_framebuffer *fb, *tfb;
	struct list_head fbs;
	struct drm_plane *plane;
	struct drm_crtc *crtc = NULL;
	unsigned int crtc_mask = 0;
	int ret = 0;

	INIT_LIST_HEAD(&fbs);

	list_for_each_entry_safe(fb, tfb, &file->fbs, filp_head) {
		if (drm_framebuffer_read_refcount(fb) > 1) {
			list_move_tail(&fb->filp_head, &fbs);

			drm_for_each_plane(plane, dev) {
				if (plane->state && plane->state->fb == fb) {
					if (plane->state->crtc)
						crtc_mask |= drm_crtc_mask(plane->state->crtc);
					_sde_kms_plane_force_remove(plane, state);
				}
			}
		} else {
			list_del_init(&fb->filp_head);
			drm_framebuffer_put(fb);
		}
	}

	if (list_empty(&fbs)) {
		SDE_DEBUG("skip commit as no fb(s)\n");
		if (sde_kms->dsi_display_count == sde_kms->splash_data.num_splash_displays)
			_sde_kms_connector_add_refcount(sde_kms, state);
		return 0;
	}

	drm_for_each_crtc(crtc, dev) {
		if ((crtc_mask & drm_crtc_mask(crtc)) && crtc->state->active) {
			struct drm_encoder *drm_enc;

			drm_for_each_encoder_mask(drm_enc, crtc->dev,
					crtc->state->encoder_mask) {
				ret = sde_kms_set_crtc_for_conn(dev, drm_enc, state);
				if (ret)
					goto error;
			}
			sde_kms_helper_clear_dim_layers(state, crtc);
		}
	}

	SDE_EVT32(state, crtc_mask);
	SDE_DEBUG("null commit after removing all the pipes\n");
	ret = drm_atomic_commit(state);

error:
	if (ret) {
		/*
		 * move the fbs back to original list, so it would be
		 * handled during drm_release
		 */
		list_for_each_entry_safe(fb, tfb, &fbs, filp_head)
			list_move_tail(&fb->filp_head, &file->fbs);

		if (ret == -EDEADLK || ret == -ERESTARTSYS)
			SDE_DEBUG("atomic commit failed in preclose, ret:%d\n", ret);
		else
			SDE_ERROR("atomic commit failed in preclose, ret:%d\n", ret);
		goto end;
	}

	while (!list_empty(&fbs)) {
		fb = list_first_entry(&fbs, typeof(*fb), filp_head);

		list_del_init(&fb->filp_head);
		drm_framebuffer_put(fb);
	}

	drm_for_each_crtc(crtc, dev) {
		if (!ret && crtc_mask & drm_crtc_mask(crtc))
			sde_kms_cancel_delayed_work(crtc);
	}

end:
	return ret;
}

static void sde_kms_preclose(struct msm_kms *kms, struct drm_file *file)
{
	struct sde_kms *sde_kms = to_sde_kms(kms);
	struct drm_device *dev = sde_kms->dev;
	struct msm_drm_private *priv = dev->dev_private;
	unsigned int i;
	struct drm_atomic_state *state = NULL;
	struct drm_modeset_acquire_ctx ctx;
	int ret = 0;

	/* cancel pending flip event */
	for (i = 0; i < priv->num_crtcs; i++)
		sde_crtc_complete_flip(priv->crtcs[i], file);

	drm_modeset_acquire_init(&ctx, 0);
retry:
	ret = drm_modeset_lock_all_ctx(dev, &ctx);
	if (ret == -EDEADLK) {
		drm_modeset_backoff(&ctx);
		goto retry;
	} else if (WARN_ON(ret)) {
		goto end;
	}

	state = drm_atomic_state_alloc(dev);
	if (!state) {
		ret = -ENOMEM;
		goto end;
	}

	state->acquire_ctx = &ctx;

	for (i = 0; i < TEARDOWN_DEADLOCK_RETRY_MAX; i++) {
		ret = _sde_kms_remove_fbs(sde_kms, file, state);
		if (ret != -EDEADLK && ret != -ERESTARTSYS)
			break;
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
	}

end:
	if (state)
		drm_atomic_state_put(state);

	SDE_DEBUG("sde preclose done, ret:%d\n", ret);
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
}

static int _sde_kms_helper_reset_custom_properties(struct sde_kms *sde_kms,
		struct drm_atomic_state *state)
{
	struct drm_device *dev = sde_kms->dev;
	struct drm_plane *plane;
	struct drm_plane_state *plane_state;
	struct drm_crtc *crtc;
	struct drm_crtc_state *crtc_state;
	struct drm_connector *conn;
	struct drm_connector_state *conn_state;
	struct drm_connector_list_iter conn_iter;
	int ret = 0;

	drm_for_each_plane(plane, dev) {
		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state)) {
			ret = PTR_ERR(plane_state);
			SDE_ERROR("error %d getting plane %d state\n",
					ret, DRMID(plane));
			return ret;
		}

		ret = sde_plane_helper_reset_custom_properties(plane,
				plane_state);
		if (ret) {
			SDE_ERROR("error %d resetting plane props %d\n",
					ret, DRMID(plane));
			return ret;
		}
	}
	drm_for_each_crtc(crtc, dev) {
		crtc_state = drm_atomic_get_crtc_state(state, crtc);
		if (IS_ERR(crtc_state)) {
			ret = PTR_ERR(crtc_state);
			SDE_ERROR("error %d getting crtc %d state\n",
					ret, DRMID(crtc));
			return ret;
		}

		ret = sde_crtc_helper_reset_custom_properties(crtc, crtc_state);
		if (ret) {
			SDE_ERROR("error %d resetting crtc props %d\n",
					ret, DRMID(crtc));
			return ret;
		}
	}

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(conn, &conn_iter) {
		conn_state = drm_atomic_get_connector_state(state, conn);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			SDE_ERROR("error %d getting connector %d state\n",
					ret, DRMID(conn));
			return ret;
		}

		ret = sde_connector_helper_reset_custom_properties(conn,
				conn_state);
		if (ret) {
			SDE_ERROR("error %d resetting connector props %d\n",
					ret, DRMID(conn));
			return ret;
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	return ret;
}

static void sde_kms_lastclose(struct msm_kms *kms)
{
	struct sde_kms *sde_kms;
	struct drm_device *dev;
	struct drm_atomic_state *state;
	struct drm_modeset_acquire_ctx ctx;
	int ret;

	if (!kms) {
		SDE_ERROR("invalid argument\n");
		return;
	}

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;

	if (sde_kms && sde_kms->vm)
		sde_kms->vm->lastclose_in_progress = true;

	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(dev);
	if (!state) {
		ret = -ENOMEM;
		goto out_ctx;
	}

	state->acquire_ctx = &ctx;
	SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY);

retry:
	ret = drm_modeset_lock_all_ctx(dev, &ctx);
	if (ret)
		goto out_state;

	ret = _sde_kms_helper_reset_custom_properties(sde_kms, state);
	if (ret)
		goto out_state;

	ret = drm_atomic_commit(state);
out_state:
	if (ret == -EDEADLK)
		goto backoff;

	drm_atomic_state_put(state);
out_ctx:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	if (ret)
		SDE_ERROR("kms lastclose failed: %d\n", ret);

	SDE_EVT32(ret, SDE_EVTLOG_FUNC_EXIT);

	if (sde_kms && sde_kms->vm)
		sde_kms->vm->lastclose_in_progress = false;
	return;

backoff:
	drm_atomic_state_clear(state);
	drm_modeset_backoff(&ctx);
	SDE_EVT32(ret, SDE_EVTLOG_FUNC_CASE1);
	goto retry;
}

static int _sde_kms_validate_vm_request(struct drm_atomic_state *state, struct sde_kms *sde_kms,
		enum sde_crtc_vm_req vm_req, bool vm_owns_hw)
{
	struct drm_crtc *crtc, *active_crtc = NULL, *global_active_crtc = NULL;
	struct drm_crtc_state *new_cstate, *old_cstate, *active_cstate;
	struct drm_encoder *encoder;
	struct drm_connector *connector;
	struct drm_connector_state *new_connstate;
	struct sde_vm_ops *vm_ops = sde_vm_get_ops(sde_kms);
	struct sde_mdss_cfg *catalog = sde_kms->catalog;
	struct sde_connector *sde_conn;
	struct dsi_display *dsi_display;
	uint32_t i, commit_crtc_cnt = 0, global_crtc_cnt = 0;
	uint32_t crtc_encoder_cnt = 0;
	enum sde_crtc_idle_pc_state idle_pc_state;
	int rc = 0;

	for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) {
		struct sde_crtc_state *new_state = NULL;

		if (!new_cstate->active && !old_cstate->active)
			continue;

		new_state = to_sde_crtc_state(new_cstate);
		idle_pc_state = sde_crtc_get_property(new_state, CRTC_PROP_IDLE_PC_STATE);
		active_crtc = crtc;
		active_cstate = new_cstate;
		commit_crtc_cnt++;
	}

	list_for_each_entry(crtc, &sde_kms->dev->mode_config.crtc_list, head) {
		if (!crtc->state->active)
			continue;

		global_crtc_cnt++;
		global_active_crtc = crtc;
	}

	if (active_crtc) {
		drm_for_each_encoder_mask(encoder, active_crtc->dev, active_cstate->encoder_mask)
			crtc_encoder_cnt++;
	}

	for_each_new_connector_in_state(state, connector, new_connstate, i) {
		int conn_mask = active_cstate->connector_mask;

		if (drm_connector_mask(connector) & conn_mask) {
			sde_conn = to_sde_connector(connector);
			dsi_display = (struct dsi_display *) sde_conn->display;

			SDE_EVT32(DRMID(connector), DRMID(active_crtc), i, dsi_display->type,
					dsi_display->trusted_vm_env);
			SDE_DEBUG("VM display:%s, conn:%d, crtc:%d, type:%d, tvm:%d\n",
					dsi_display->name, DRMID(connector), DRMID(active_crtc),
					dsi_display->type, dsi_display->trusted_vm_env);
			break;
		}
	}

	/* Check for single crtc commits only on valid VM requests */
	if (active_crtc && global_active_crtc &&
			(commit_crtc_cnt > catalog->max_trusted_vm_displays ||
			 global_crtc_cnt > catalog->max_trusted_vm_displays ||
			 active_crtc != global_active_crtc)) {
		SDE_ERROR("VM switch failed; MAX:%d a_cnt:%d g_cnt:%d a_crtc:%d g_crtc:%d\n",
			  catalog->max_trusted_vm_displays, commit_crtc_cnt, global_crtc_cnt,
			  DRMID(active_crtc), DRMID(global_active_crtc));
		return  -E2BIG;
	} else if ((vm_req == VM_REQ_RELEASE) &&
		   ((idle_pc_state == IDLE_PC_ENABLE) ||
		    (crtc_encoder_cnt > TRUSTED_VM_MAX_ENCODER_PER_CRTC))) {
		/*
		 * disable idle-pc before releasing the HW
		 * allow only specified number of encoders on a given crtc
		 */
		SDE_ERROR("VM switch failed; idle-pc:%d max:%d encoder_cnt:%d\n",
				idle_pc_state, TRUSTED_VM_MAX_ENCODER_PER_CRTC, crtc_encoder_cnt);
		return -EINVAL;
	}

	if ((vm_req == VM_REQ_ACQUIRE) && !vm_owns_hw) {
		rc = vm_ops->vm_acquire(sde_kms);
		if (rc) {
			SDE_ERROR("VM acquire failed; hw_owner:%d, rc:%d\n", vm_owns_hw, rc);
			return rc;
		}

		if (vm_ops->vm_resource_init) {
			rc = vm_ops->vm_resource_init(sde_kms, state);
			if (rc && vm_ops->vm_release)
				rc = vm_ops->vm_release(sde_kms);
		}
	}

	return rc;
}

static int sde_kms_check_vm_request(struct msm_kms *kms,
				    struct drm_atomic_state *state)
{
	struct sde_kms *sde_kms;
	struct drm_crtc *crtc;
	struct drm_crtc_state *new_cstate, *old_cstate;
	struct sde_vm_ops *vm_ops;
	enum sde_crtc_vm_req old_vm_req = VM_REQ_NONE, new_vm_req = VM_REQ_NONE;
	int i, rc = 0;
	bool vm_req_active = false, prev_vm_req = false;
	bool vm_owns_hw;

	if (!kms || !state)
		return -EINVAL;

	sde_kms = to_sde_kms(kms);
	vm_ops = sde_vm_get_ops(sde_kms);
	if (!vm_ops)
		return 0;

	if (!vm_ops->vm_request_valid || !vm_ops->vm_owns_hw || !vm_ops->vm_acquire)
		return -EINVAL;

	drm_for_each_crtc(crtc, state->dev) {
		if (crtc->state && (sde_crtc_get_property(to_sde_crtc_state(crtc->state),
				CRTC_PROP_VM_REQ_STATE) == VM_REQ_RELEASE)) {
			prev_vm_req = true;
			break;
		}
	}

	/* check for an active vm request */
	for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) {
		struct sde_crtc_state *old_state = NULL, *new_state = NULL;

		if (!new_cstate->active && !old_cstate->active)
			continue;

		new_state = to_sde_crtc_state(new_cstate);
		new_vm_req = sde_crtc_get_property(new_state, CRTC_PROP_VM_REQ_STATE);

		old_state = to_sde_crtc_state(old_cstate);
		old_vm_req = sde_crtc_get_property(old_state, CRTC_PROP_VM_REQ_STATE);

		/*
		 * VM request should be validated in the following usecases
		 * - There is a vm request(other than VM_REQ_NONE) on current/prev crtc state.
		 * - Previously, vm transition has taken place on one of the crtc's.
		 */
		if (old_vm_req || new_vm_req || prev_vm_req) {
			if (!vm_req_active) {
				sde_vm_lock(sde_kms);
				vm_owns_hw = sde_vm_owns_hw(sde_kms);
			}

			rc = vm_ops->vm_request_valid(sde_kms, old_vm_req, new_vm_req);
			if (rc) {
				SDE_ERROR(
				"VM transition check failed; o_state:%d, n_state:%d, hw_owner:%d, rc:%d\n",
						old_vm_req, new_vm_req, vm_owns_hw, rc);
				sde_vm_unlock(sde_kms);
				vm_req_active = false;
				break;
			} else if (old_vm_req == VM_REQ_ACQUIRE && new_vm_req == VM_REQ_NONE) {
				SDE_DEBUG("VM transition valid; ignore further checks\n");
				if (!vm_req_active)
					sde_vm_unlock(sde_kms);
			} else {
				vm_req_active = true;
			}
		}
	}

	/* validate active requests and perform acquire if necessary */
	if (vm_req_active) {
		rc = _sde_kms_validate_vm_request(state, sde_kms, new_vm_req, vm_owns_hw);
		sde_vm_unlock(sde_kms);
		SDE_EVT32(old_vm_req, new_vm_req, vm_req_active, vm_owns_hw, rc);
		SDE_DEBUG("VM  o_state:%d, n_state:%d, hw_owner:%d, rc:%d\n", old_vm_req, new_vm_req,
				vm_req_active ? vm_owns_hw : -1, rc);
	}

	return rc;
}

static int sde_kms_check_secure_transition(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	struct sde_kms *sde_kms;
	struct drm_device *dev;
	struct drm_crtc *crtc;
	struct drm_crtc *cur_crtc = NULL, *global_crtc = NULL;
	struct drm_crtc_state *crtc_state;
	int active_crtc_cnt = 0, global_active_crtc_cnt = 0;
	bool sec_session = false, global_sec_session = false;
	uint32_t fb_ns = 0, fb_sec = 0, fb_sec_dir = 0;
	int i;

	if (!kms || !state) {
		return -EINVAL;
		SDE_ERROR("invalid arguments\n");
	}

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;

	/* iterate state object for active secure/non-secure crtc */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		if (!crtc_state->active)
			continue;

		active_crtc_cnt++;
		sde_crtc_state_find_plane_fb_modes(crtc_state, &fb_ns,
				&fb_sec, &fb_sec_dir);
		if (fb_sec_dir)
			sec_session = true;
		cur_crtc = crtc;
	}

	/* iterate global list for active and secure/non-secure crtc */
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (!crtc->state->active)
			continue;

		global_active_crtc_cnt++;
		/* update only when crtc is not the same as current crtc */
		if (crtc != cur_crtc) {
			fb_ns = fb_sec = fb_sec_dir = 0;
			sde_crtc_find_plane_fb_modes(crtc, &fb_ns,
					&fb_sec, &fb_sec_dir);
			if (fb_sec_dir)
				global_sec_session = true;
			global_crtc = crtc;
		}
	}

	if (!global_sec_session && !sec_session)
		return 0;

	/*
	 * - fail crtc commit, if secure-camera/secure-ui session is
	 *   in-progress in any other display
	 * - fail secure-camera/secure-ui crtc commit, if any other display
	 *   session is in-progress
	 */
	if ((global_active_crtc_cnt > MAX_ALLOWED_CRTC_CNT_DURING_SECURE) ||
		    (active_crtc_cnt > MAX_ALLOWED_CRTC_CNT_DURING_SECURE)) {
		SDE_ERROR(
		    "crtc%d secure check failed global_active:%d active:%d\n",
				cur_crtc ? cur_crtc->base.id : -1,
				global_active_crtc_cnt, active_crtc_cnt);
		return -EPERM;

	/*
	 * As only one crtc is allowed during secure session, the crtc
	 * in this commit should match with the global crtc
	 */
	} else if (global_crtc && cur_crtc && (global_crtc != cur_crtc)) {
		SDE_ERROR("crtc%d-sec%d not allowed during crtc%d-sec%d\n",
				cur_crtc->base.id, sec_session,
				global_crtc->base.id, global_sec_session);
		return -EPERM;
	}

	return 0;
}

static void sde_kms_vm_res_release(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *new_cstate;
	struct sde_crtc_state *cstate;
	struct sde_vm_ops *vm_ops;
	enum sde_crtc_vm_req vm_req;
	struct sde_kms *sde_kms = to_sde_kms(kms);

	vm_ops = sde_vm_get_ops(sde_kms);
	if (!vm_ops)
		return;

	crtc = sde_kms_vm_get_vm_crtc(state);
	if (!crtc)
		return;

	new_cstate = drm_atomic_get_new_crtc_state(state, crtc);
	cstate = to_sde_crtc_state(new_cstate);
	vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE);
	if (vm_req != VM_REQ_ACQUIRE)
		return;

	sde_vm_lock(sde_kms);

	if (vm_ops->vm_acquire_fail_handler)
		vm_ops->vm_acquire_fail_handler(sde_kms);

	sde_vm_unlock(sde_kms);
}

static int sde_kms_check_cwb_concurreny(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	struct sde_kms *sde_kms;
	struct drm_crtc *crtc;
	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
	struct drm_encoder *encoder;
	struct sde_crtc_state *cstate;
	int i = 0, cnt = 0, max_cwb = 0;

	if (!kms || !state) {
		SDE_ERROR("invalid arguments\n");
		return -EINVAL;
	}

	sde_kms = to_sde_kms(kms);
	max_cwb = sde_kms->catalog->max_cwb;
	if (!max_cwb)
		return 0;

	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
		cstate = to_sde_crtc_state(new_crtc_state);
		drm_for_each_encoder_mask(encoder, crtc->dev, cstate->cwb_enc_mask) {
			cnt++;
			SDE_DEBUG("crtc%d has cwb%d attached to it\n", crtc->base.id,
					encoder->base.id);
		}

		if (cnt > max_cwb) {
			SDE_ERROR("found %d cwb in the atomic state, max supported %d\n",
					cnt, max_cwb);
			return -EOPNOTSUPP;
		}
	}

	return 0;
}

static int sde_kms_atomic_check(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	struct sde_kms *sde_kms;
	struct drm_device *dev;
	int ret;

	if (!kms || !state)
		return -EINVAL;

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;

	SDE_ATRACE_BEGIN("atomic_check");
	if (sde_kms_is_suspend_blocked(dev)) {
		SDE_DEBUG("suspended, skip atomic_check\n");
		ret = -EBUSY;
		goto end;
	}

	ret = sde_kms_check_vm_request(kms, state);
	if (ret) {
		SDE_ERROR("vm switch request checks failed\n");
		goto end;
	}

	ret = drm_atomic_helper_check(dev, state);
	if (ret)
		goto vm_clean_up;
	/*
	 * Check if any secure transition(moving CRTC between secure and
	 * non-secure state and vice-versa) is allowed or not. when moving
	 * to secure state, planes with fb_mode set to dir_translated only can
	 * be staged on the CRTC, and only one CRTC can be active during
	 * Secure state
	 */
	ret = sde_kms_check_secure_transition(kms, state);
	if (ret)
		goto vm_clean_up;


	ret = sde_kms_check_cwb_concurreny(kms, state);
	if (ret)
		goto vm_clean_up;

	goto end;

vm_clean_up:
	sde_kms_vm_res_release(kms, state);
end:
	SDE_ATRACE_END("atomic_check");
	return ret;
}

static struct msm_gem_address_space*
_sde_kms_get_address_space(struct msm_kms *kms,
		unsigned int domain)
{
	struct sde_kms *sde_kms;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return  NULL;
	}

	sde_kms = to_sde_kms(kms);
	if (!sde_kms) {
		SDE_ERROR("invalid sde_kms\n");
		return NULL;
	}

	if (domain >= MSM_SMMU_DOMAIN_MAX)
		return NULL;

	return (sde_kms->aspace[domain] &&
			sde_kms->aspace[domain]->domain_attached) ?
		sde_kms->aspace[domain] : NULL;
}

static struct device *_sde_kms_get_address_space_device(struct msm_kms *kms,
		unsigned int domain)
{
	struct sde_kms *sde_kms;
	struct msm_gem_address_space *aspace;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return  NULL;
	}

	sde_kms = to_sde_kms(kms);
	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) {
		SDE_ERROR("invalid params\n");
		return NULL;
	}

	aspace = _sde_kms_get_address_space(kms, domain);

	return (aspace && aspace->domain_attached) ?
				msm_gem_get_aspace_device(aspace) : NULL;
}

static void _sde_kms_post_open(struct msm_kms *kms, struct drm_file *file)
{
	struct drm_device *dev = NULL;
	struct sde_kms *sde_kms = NULL;
	struct drm_connector *connector = NULL;
	struct drm_connector_list_iter conn_iter;
	struct sde_connector *sde_conn = NULL;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return;
	}

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;

	if (!dev) {
		SDE_ERROR("invalid device\n");
		return;
	}

	if (!dev->mode_config.poll_enabled)
		return;

	mutex_lock(&dev->mode_config.mutex);
	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		/* Only handle HPD capable connectors. */
		if (!(connector->polled & DRM_CONNECTOR_POLL_HPD))
			continue;

		sde_conn = to_sde_connector(connector);

		if (sde_conn->ops.post_open)
			sde_conn->ops.post_open(&sde_conn->base,
					sde_conn->display);
	}
	drm_connector_list_iter_end(&conn_iter);
	mutex_unlock(&dev->mode_config.mutex);

}

static int _sde_kms_update_planes_for_cont_splash(struct sde_kms *sde_kms,
		struct sde_splash_display *splash_display,
		struct drm_crtc *crtc)
{
	struct msm_drm_private *priv;
	struct drm_plane *plane;
	struct sde_splash_mem *splash;
	struct sde_splash_mem *demura;
	struct sde_plane_state *pstate;
	struct sde_sspp_index_info *pipe_info;
	enum sde_sspp pipe_id;
	bool is_virtual;
	int i;

	if (!sde_kms || !splash_display || !crtc) {
		SDE_ERROR("invalid input args\n");
		return -EINVAL;
	}

	priv = sde_kms->dev->dev_private;
	pipe_info = &splash_display->pipe_info;
	splash = splash_display->splash;
	demura = splash_display->demura;

	for (i = 0; i < priv->num_planes; i++) {
		plane = priv->planes[i];
		pipe_id = sde_plane_pipe(plane);
		is_virtual = is_sde_plane_virtual(plane);

		if ((is_virtual && test_bit(pipe_id, pipe_info->virt_pipes)) ||
				(!is_virtual && test_bit(pipe_id, pipe_info->pipes))) {

			if (splash && sde_plane_validate_src_addr(plane,
						splash->splash_buf_base,
						splash->splash_buf_size)) {
				if (!demura || sde_plane_validate_src_addr(
						plane, demura->splash_buf_base,
						demura->splash_buf_size)) {
					SDE_ERROR("invalid adr on pipe:%d crtc:%d\n",
							pipe_id, DRMID(crtc));
					continue;
				}
			}

			plane->state->crtc = crtc;
			crtc->state->plane_mask |= drm_plane_mask(plane);
			pstate = to_sde_plane_state(plane->state);
			pstate->cont_splash_populated = true;
			SDE_DEBUG("set crtc:%d for plane:%d rect:%d\n",
					DRMID(crtc), DRMID(plane), is_virtual);
		}
	}

	return 0;
}

static int sde_kms_inform_cont_splash_res_disable(struct msm_kms *kms,
		struct dsi_display *dsi_display)
{
	void *display;
	struct drm_encoder *encoder = NULL;
	struct msm_display_info info;
	struct drm_device *dev;
	struct sde_kms *sde_kms;
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector = NULL;
	struct sde_connector *sde_conn = NULL;
	int rc = 0;

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;
	display = dsi_display;
	if (dsi_display) {
		if (dsi_display->bridge->base.encoder) {
			encoder = dsi_display->bridge->base.encoder;
			SDE_DEBUG("encoder name = %s\n", encoder->name);
		}
		memset(&info, 0x0, sizeof(info));
		rc = dsi_display_get_info(NULL, &info, display);
		if (rc) {
			SDE_ERROR("%s: dsi get_info failed: %d\n",
					__func__, rc);
			encoder = NULL;
		}
	}

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct drm_encoder *c_encoder;

		drm_connector_for_each_possible_encoder(connector,
				c_encoder)
			break;
		if (!c_encoder) {
			SDE_ERROR("c_encoder not found\n");
			return -EINVAL;
		}

		/**
		 * Inform cont_splash is disabled to each interface/connector.
		 * This is currently supported for DSI interface.
		 */
		sde_conn = to_sde_connector(connector);
		if (sde_conn && sde_conn->ops.cont_splash_res_disable) {
			if (!dsi_display || !encoder) {
				sde_conn->ops.cont_splash_res_disable
						(sde_conn->display);
			} else if (c_encoder->base.id == encoder->base.id) {
				/**
				 * This handles dual DSI
				 * configuration where one DSI
				 * interface has cont_splash
				 * enabled and the other doesn't.
				 */
				sde_conn->ops.cont_splash_res_disable
						(sde_conn->display);
				break;
			}
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	return 0;
}

static int sde_kms_vm_trusted_cont_splash_res_init(struct sde_kms *sde_kms)
{
	int i;
	void *display;
	struct dsi_display *dsi_display;
	struct drm_encoder *encoder;

	if (!sde_kms)
		return -EINVAL;

	if (!sde_in_trusted_vm(sde_kms))
		return 0;

	for (i = 0; i < sde_kms->dsi_display_count; i++) {
		display = sde_kms->dsi_displays[i];
		dsi_display = (struct dsi_display *)display;

		if (!dsi_display->bridge->base.encoder) {
			SDE_ERROR("no encoder on dsi display:%d", i);
			return -EINVAL;
		}

		encoder = dsi_display->bridge->base.encoder;
		encoder->possible_crtcs = 1 << i;

		SDE_DEBUG(
		"dsi-display:%d encoder id[%d]=%d name=%s crtcs=%x\n", i,
				encoder->index, encoder->base.id,
				encoder->name, encoder->possible_crtcs);
	}

	return 0;
}

static struct drm_display_mode *_sde_kms_get_splash_mode(
		struct sde_kms *sde_kms, struct drm_connector *connector,
		struct drm_atomic_state *state)
{
	struct drm_display_mode *mode, *cur_mode = NULL;
	struct drm_crtc *crtc;
	struct drm_crtc_state *new_cstate, *old_cstate;
	u32 i = 0;

	if (sde_kms->splash_data.type == SDE_SPLASH_HANDOFF) {
		list_for_each_entry(mode, &connector->modes, head) {
			if (mode->type & DRM_MODE_TYPE_PREFERRED) {
				cur_mode = mode;
				break;
			}
		}
	} else if (state) {
		/* get the mode from first atomic_check phase for trusted_vm*/
		for_each_oldnew_crtc_in_state(state, crtc, old_cstate,
				new_cstate, i) {

			if (!new_cstate->active && !old_cstate->active)
				continue;

			list_for_each_entry(mode, &connector->modes, head) {
				if (drm_mode_equal(&new_cstate->mode, mode)) {
					cur_mode = mode;
					break;
				}
			}
		}
	}

	return cur_mode;
}

static int sde_kms_cont_splash_config(struct msm_kms *kms,
		struct drm_atomic_state *state)
{
	void *display;
	struct dsi_display *dsi_display;
	struct msm_display_info info;
	struct drm_encoder *encoder = NULL;
	struct drm_crtc *crtc = NULL;
	int i, rc = 0;
	struct drm_display_mode *drm_mode = NULL;
	struct drm_device *dev;
	struct msm_drm_private *priv;
	struct sde_kms *sde_kms;
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector = NULL;
	struct sde_connector *sde_conn = NULL;
	struct sde_splash_display *splash_display;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return -EINVAL;
	}

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;
	if (!dev) {
		SDE_ERROR("invalid device\n");
		return -EINVAL;
	}

	rc = sde_kms_vm_trusted_cont_splash_res_init(sde_kms);
	if (rc) {
		SDE_ERROR("failed vm cont splash resource init, rc=%d", rc);
		return -EINVAL;
	}

	if (((sde_kms->splash_data.type == SDE_SPLASH_HANDOFF)
		&& (!sde_kms->splash_data.num_splash_regions)) ||
			!sde_kms->splash_data.num_splash_displays) {
		DRM_INFO("cont_splash feature not enabled\n");
		sde_kms_inform_cont_splash_res_disable(kms, NULL);
		return rc;
	}

	DRM_INFO("cont_splash enabled in %d of %d display(s)\n",
				sde_kms->splash_data.num_splash_displays,
				sde_kms->dsi_display_count);

	/* dsi */
	for (i = 0; i < sde_kms->dsi_display_count; ++i) {
		struct sde_crtc_state *cstate;
		struct sde_connector_state *conn_state;

		display = sde_kms->dsi_displays[i];
		dsi_display = (struct dsi_display *)display;
		splash_display = &sde_kms->splash_data.splash_display[i];

		if (!splash_display->cont_splash_enabled) {
			SDE_DEBUG("display->name = %s splash not enabled\n",
					dsi_display->name);
			sde_kms_inform_cont_splash_res_disable(kms,
					dsi_display);
			continue;
		}

		SDE_DEBUG("display->name = %s\n", dsi_display->name);

		if (dsi_display->bridge->base.encoder) {
			encoder = dsi_display->bridge->base.encoder;
			SDE_DEBUG("encoder name = %s\n", encoder->name);
		}
		memset(&info, 0x0, sizeof(info));
		rc = dsi_display_get_info(NULL, &info, display);
		if (rc) {
			SDE_ERROR("dsi get_info %d failed\n", i);
			encoder = NULL;
			continue;
		}
		SDE_DEBUG("info.is_connected = %s, info.display_type = %d\n",
			((info.is_connected) ? "true" : "false"),
			info.display_type);

		if (!encoder) {
			SDE_ERROR("encoder not initialized\n");
			return -EINVAL;
		}

		priv = sde_kms->dev->dev_private;
		encoder->crtc = priv->crtcs[i];
		crtc = encoder->crtc;
		splash_display->encoder =  encoder;
		SDE_DEBUG("for dsi-display:%d crtc id[%d]:%d enc id[%d]:%d\n",
				i, crtc->index, crtc->base.id, encoder->index,
				encoder->base.id);

		mutex_lock(&dev->mode_config.mutex);
		drm_connector_list_iter_begin(dev, &conn_iter);
		drm_for_each_connector_iter(connector, &conn_iter) {
			struct drm_encoder *c_encoder;

			drm_connector_for_each_possible_encoder(connector,
					c_encoder)
				break;
			if (!c_encoder) {
				SDE_ERROR("c_encoder not found\n");
				mutex_unlock(&dev->mode_config.mutex);
				return -EINVAL;
			}
			/**
			 * SDE_KMS doesn't attach more than one encoder to
			 * a DSI connector. So it is safe to check only with
			 * the first encoder entry. Revisit this logic if we
			 * ever have to support continuous splash for
			 * external displays in MST configuration.
			 */
			if (c_encoder->base.id == encoder->base.id)
				break;
		}
		drm_connector_list_iter_end(&conn_iter);

		if (!connector) {
			SDE_ERROR("connector not initialized\n");
			mutex_unlock(&dev->mode_config.mutex);
			return -EINVAL;
		}
		mutex_unlock(&dev->mode_config.mutex);

		crtc->state->encoder_mask = drm_encoder_mask(encoder);
		crtc->state->connector_mask = drm_connector_mask(connector);
		connector->state->crtc = crtc;

		drm_mode = _sde_kms_get_splash_mode(sde_kms, connector, state);
		if (!drm_mode) {
			SDE_ERROR("drm_mode not found; handoff_type:%d\n",
					sde_kms->splash_data.type);
			return -EINVAL;
		}
		SDE_DEBUG(
		  "drm_mode->name:%s, type:0x%x, flags:0x%x, handoff_type:%d\n",
				drm_mode->name, drm_mode->type,
				drm_mode->flags, sde_kms->splash_data.type);

		/* Update CRTC drm structure */
		crtc->state->active = true;
		rc = drm_atomic_set_mode_for_crtc(crtc->state, drm_mode);
		if (rc) {
			SDE_ERROR("Failed: set mode for crtc. rc = %d\n", rc);
			return rc;
		}
		drm_mode_copy(&crtc->state->adjusted_mode, drm_mode);
		drm_mode_copy(&crtc->mode, drm_mode);
		cstate = to_sde_crtc_state(crtc->state);
		cstate->cont_splash_populated = true;

		/* Update encoder structure */
		sde_encoder_update_caps_for_cont_splash(encoder,
				splash_display, true);

		sde_crtc_update_cont_splash_settings(crtc);

		sde_conn = to_sde_connector(connector);
		if (sde_conn && sde_conn->ops.cont_splash_config)
			sde_conn->ops.cont_splash_config(sde_conn->display);

		conn_state = to_sde_connector_state(connector->state);
		conn_state->cont_splash_populated = true;

		rc = _sde_kms_update_planes_for_cont_splash(sde_kms,
				splash_display, crtc);
		if (rc) {
			SDE_ERROR("Failed: updating plane status rc=%d\n", rc);
			return rc;
		}
	}

	return rc;
}

static bool sde_kms_check_for_splash(struct msm_kms *kms)
{
	struct sde_kms *sde_kms;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return false;
	}

	sde_kms = to_sde_kms(kms);
	return sde_kms->splash_data.num_splash_displays;
}

static int sde_kms_get_mixer_count(const struct msm_kms *kms,
		const struct drm_display_mode *mode,
		const struct msm_resource_caps_info *res, u32 *num_lm)
{
	struct sde_kms *sde_kms;
	s64 mode_clock_hz = 0;
	s64 max_mdp_clock_hz = 0;
	s64 max_lm_width = 0;
	s64 hdisplay_fp = 0;
	s64 htotal_fp = 0;
	s64 vtotal_fp = 0;
	s64 vrefresh_fp = 0;
	s64 mdp_fudge_factor = 0;
	s64 num_lm_fp = 0;
	s64 lm_clk_fp = 0;
	s64 lm_width_fp = 0;
	int rc = 0;

	if (!num_lm) {
		SDE_ERROR("invalid num_lm pointer\n");
		return -EINVAL;
	}

	/* default to 1 layer mixer */
	*num_lm = 1;
	if (!kms || !mode || !res) {
		SDE_ERROR("invalid input args\n");
		return -EINVAL;
	}

	sde_kms = to_sde_kms(kms);

	max_mdp_clock_hz = drm_int2fixp(sde_kms->perf.max_core_clk_rate);
	max_lm_width = drm_int2fixp(res->max_mixer_width);
	hdisplay_fp = drm_int2fixp(mode->hdisplay);
	htotal_fp = drm_int2fixp(mode->htotal);
	vtotal_fp = drm_int2fixp(mode->vtotal);
	vrefresh_fp = drm_int2fixp(drm_mode_vrefresh(mode));
	mdp_fudge_factor = drm_fixp_from_fraction(105, 100);

	/* mode clock = [(h * v * fps * 1.05) / (num_lm)] */
	mode_clock_hz = drm_fixp_mul(htotal_fp, vtotal_fp);
	mode_clock_hz = drm_fixp_mul(mode_clock_hz, vrefresh_fp);
	mode_clock_hz = drm_fixp_mul(mode_clock_hz, mdp_fudge_factor);

	if (mode_clock_hz > max_mdp_clock_hz ||
			hdisplay_fp > max_lm_width) {
		*num_lm = 0;
		do {
			*num_lm += 2;
			num_lm_fp = drm_int2fixp(*num_lm);
			lm_clk_fp = drm_fixp_div(mode_clock_hz, num_lm_fp);
			lm_width_fp = drm_fixp_div(hdisplay_fp, num_lm_fp);

			if (*num_lm > 4) {
				rc = -EINVAL;
				goto error;
			}

		} while (lm_clk_fp > max_mdp_clock_hz ||
				lm_width_fp > max_lm_width);

		mode_clock_hz = lm_clk_fp;
	}
	SDE_DEBUG("[%s] h=%d v=%d fps=%d lm=%d mode_clk=%u max_clk=%llu\n",
			mode->name, mode->htotal, mode->vtotal, drm_mode_vrefresh(mode),
			*num_lm, drm_fixp2int(mode_clock_hz),
			sde_kms->perf.max_core_clk_rate);
	return 0;

error:
	SDE_ERROR("required mode clk exceeds max mdp clk\n");
	SDE_ERROR("[%s] h=%d v=%d fps=%d lm=%d mode_clk=%u max_clk=%llu\n",
			mode->name, mode->htotal, mode->vtotal, drm_mode_vrefresh(mode),
			*num_lm, drm_fixp2int(mode_clock_hz),
			sde_kms->perf.max_core_clk_rate);
	return rc;
}

static int sde_kms_get_dsc_count(const struct msm_kms *kms,
		u32 hdisplay, u32 *num_dsc)
{
	struct sde_kms *sde_kms;
	uint32_t max_dsc_width;

	if (!num_dsc) {
		SDE_ERROR("invalid num_dsc pointer\n");
		return -EINVAL;
	}

	*num_dsc = 0;
	if (!kms || !hdisplay) {
		SDE_ERROR("invalid input args\n");
		return -EINVAL;
	}

	sde_kms = to_sde_kms(kms);
	max_dsc_width = sde_kms->catalog->max_dsc_width;
	*num_dsc = DIV_ROUND_UP(hdisplay, max_dsc_width);

	SDE_DEBUG("h=%d, max_dsc_width=%d, num_dsc=%d\n",
			hdisplay, max_dsc_width,
			*num_dsc);

	return 0;
}

static bool sde_kms_in_trusted_vm(const struct msm_kms *kms)
{
	struct sde_kms *sde_kms;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return false;
	}

	sde_kms = to_sde_kms(kms);

	return sde_in_trusted_vm(sde_kms);
}

static int _sde_kms_null_commit(struct drm_device *dev,
		struct drm_encoder *enc)
{
	struct drm_modeset_acquire_ctx ctx;
	struct drm_atomic_state *state = NULL;
	int retry_cnt = 0;
	int ret = 0;

	drm_modeset_acquire_init(&ctx, 0);

retry:
	ret = drm_modeset_lock_all_ctx(dev, &ctx);
	if (ret == -EDEADLK && retry_cnt < SDE_KMS_MODESET_LOCK_MAX_TRIALS) {
		drm_modeset_backoff(&ctx);
		retry_cnt++;
		udelay(SDE_KMS_MODESET_LOCK_TIMEOUT_US);
		goto retry;
	} else if (WARN_ON(ret)) {
		goto end;
	}

	state = drm_atomic_state_alloc(dev);
	if (!state) {
		DRM_ERROR("failed to allocate atomic state, %d\n", ret);
		goto end;
	}

	state->acquire_ctx = &ctx;

	ret = sde_kms_set_crtc_for_conn(dev, enc, state);
	if (ret)
		goto end;

	ret = drm_atomic_commit(state);
	if (ret)
		SDE_ERROR("Error %d doing the atomic commit\n", ret);

end:
	if (state)
		drm_atomic_state_put(state);

	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	return ret;
}


void sde_kms_display_early_wakeup(struct drm_device *dev,
				const int32_t connector_id)
{
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *conn;
	struct drm_encoder *drm_enc;

	drm_connector_list_iter_begin(dev, &conn_iter);

	drm_for_each_connector_iter(conn, &conn_iter) {
		if (connector_id != DRM_MSM_WAKE_UP_ALL_DISPLAYS &&
			connector_id != conn->base.id)
			continue;

		if (conn->state && conn->state->best_encoder)
			drm_enc = conn->state->best_encoder;
		else
			drm_enc = conn->encoder;

		if (drm_enc)
			sde_encoder_early_wakeup(drm_enc);
	}

	drm_connector_list_iter_end(&conn_iter);
}
static int sde_kms_trigger_null_flush(struct msm_kms *kms)
{
	struct sde_kms *sde_kms;
	struct sde_splash_display *splash_display;
	struct drm_crtc *crtc;
	int i, rc = 0;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		return -EINVAL;
	}

	sde_kms = to_sde_kms(kms);

	/* If splash handoff is done, early return*/
	if (!sde_kms->splash_data.num_splash_displays)
		return 0;

	/* If all builtin-displays are having cont splash enabled, ignore lastclose*/
	if (sde_kms->dsi_display_count == sde_kms->splash_data.num_splash_displays)
		return -EINVAL;

	/*
	 * Trigger NULL flush if built-in secondary/primary is stuck in splash
	 * while the  primary/secondary is running respectively before lastclose.
	 */
	for (i = 0; i < MAX_DSI_DISPLAYS; i++) {
		splash_display = &sde_kms->splash_data.splash_display[i];

		if (splash_display->cont_splash_enabled && splash_display->encoder) {
			crtc = splash_display->encoder->crtc;
			SDE_DEBUG("triggering null commit on enc:%d\n",
					DRMID(splash_display->encoder));
			SDE_EVT32(DRMID(splash_display->encoder), SDE_EVTLOG_FUNC_ENTRY);
			rc = _sde_kms_null_commit(sde_kms->dev, splash_display->encoder);

			if (!rc && crtc)
				sde_kms_cancel_delayed_work(crtc);
			if (rc)
				DRM_ERROR("null flush commit failure during lastclose\n");
		}
	}

	return 0;
}

static void _sde_kms_pm_suspend_idle_helper(struct sde_kms *sde_kms,
	struct device *dev)
{
	int ret, crtc_id = 0;
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct drm_connector *conn;
	struct drm_connector_list_iter conn_iter;
	struct msm_drm_private *priv = sde_kms->dev->dev_private;

	drm_connector_list_iter_begin(ddev, &conn_iter);
	drm_for_each_connector_iter(conn, &conn_iter) {
		uint64_t lp;

		lp = sde_connector_get_lp(conn);
		if (lp != SDE_MODE_DPMS_LP2)
			continue;

		if (sde_encoder_in_clone_mode(conn->encoder))
			continue;

		crtc_id = drm_crtc_index(conn->state->crtc);
		if (priv->disp_thread[crtc_id].thread)
			kthread_flush_worker(
				&priv->disp_thread[crtc_id].worker);

		ret = sde_encoder_wait_for_event(conn->encoder,
						MSM_ENC_TX_COMPLETE);
		if (ret && ret != -EWOULDBLOCK) {
			SDE_ERROR(
				"[conn: %d] wait for commit done returned %d\n",
				conn->base.id, ret);
		} else if (!ret) {
			if (priv->event_thread[crtc_id].thread)
				kthread_flush_worker(
					&priv->event_thread[crtc_id].worker);
			sde_encoder_idle_request(conn->encoder);
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	msm_atomic_flush_display_threads(priv);
}

struct msm_display_mode *sde_kms_get_msm_mode(struct drm_connector_state *conn_state)
{
	struct sde_connector_state *sde_conn_state;

	if (!conn_state)
		return NULL;

	sde_conn_state = to_sde_connector_state(conn_state);
	return &sde_conn_state->msm_mode;
}

static int sde_kms_pm_suspend(struct device *dev)
{
	struct drm_device *ddev;
	struct drm_modeset_acquire_ctx ctx;
	struct drm_connector *conn;
	struct drm_encoder *enc;
	struct drm_connector_list_iter conn_iter;
	struct drm_atomic_state *state = NULL;
	struct sde_kms *sde_kms;
	int ret = 0, num_crtcs = 0;

	if (!dev)
		return -EINVAL;

	ddev = dev_get_drvdata(dev);
	if (!ddev || !ddev_to_msm_kms(ddev))
		return -EINVAL;

	sde_kms = to_sde_kms(ddev_to_msm_kms(ddev));
	SDE_EVT32(0);

	/* disable hot-plug polling */
	drm_kms_helper_poll_disable(ddev);

	/* if any built-in display is stuck in CS, skip PM suspend entry to
	 * avoid driver SW state changes. With speculative fence enabled, HAL depends
	 * on power_on notification for the first commit to exit the Wait completion
	 * instead of retire fence signal.
	 */
	drm_for_each_encoder(enc, ddev) {
		if (sde_encoder_in_cont_splash(enc) && enc->crtc) {
			SDE_DEBUG("skip PM suspend, splash is enabled on enc:%d\n", DRMID(enc));
			SDE_EVT32(DRMID(enc), SDE_EVTLOG_FUNC_EXIT);
			return -EINVAL;
		}
	}

	/* acquire modeset lock(s) */
	drm_modeset_acquire_init(&ctx, 0);

retry:
	ret = drm_modeset_lock_all_ctx(ddev, &ctx);
	if (ret)
		goto unlock;

	/* save current state for resume */
	if (sde_kms->suspend_state)
		drm_atomic_state_put(sde_kms->suspend_state);
	sde_kms->suspend_state = drm_atomic_helper_duplicate_state(ddev, &ctx);
	if (IS_ERR_OR_NULL(sde_kms->suspend_state)) {
		ret = PTR_ERR(sde_kms->suspend_state);
		DRM_ERROR("failed to back up suspend state, %d\n", ret);
		sde_kms->suspend_state = NULL;
		goto unlock;
	}

	/* create atomic state to disable all CRTCs */
	state = drm_atomic_state_alloc(ddev);
	if (!state) {
		ret = -ENOMEM;
		DRM_ERROR("failed to allocate crtc disable state, %d\n", ret);
		goto unlock;
	}

	state->acquire_ctx = &ctx;
	drm_connector_list_iter_begin(ddev, &conn_iter);
	drm_for_each_connector_iter(conn, &conn_iter) {
		struct drm_crtc_state *crtc_state;
		uint64_t lp;

		if (!conn->state || !conn->state->crtc ||
			conn->dpms != DRM_MODE_DPMS_ON ||
			sde_encoder_in_clone_mode(conn->encoder))
			continue;

		lp = sde_connector_get_lp(conn);
		if (lp == SDE_MODE_DPMS_LP1 &&
			!sde_encoder_check_curr_mode(conn->encoder, MSM_DISPLAY_VIDEO_MODE)) {
			/* transition LP1->LP2 on pm suspend */
			ret = sde_connector_set_property_for_commit(conn, state,
					CONNECTOR_PROP_LP, SDE_MODE_DPMS_LP2);
			if (ret) {
				DRM_ERROR("failed to set lp2 for conn %d\n",
						conn->base.id);
				drm_connector_list_iter_end(&conn_iter);
				goto unlock;
			}
		}

		if (lp != SDE_MODE_DPMS_LP2 ||
			sde_encoder_check_curr_mode(conn->encoder, MSM_DISPLAY_VIDEO_MODE)) {
			/* force CRTC to be inactive */
			crtc_state = drm_atomic_get_crtc_state(state,
					conn->state->crtc);
			if (IS_ERR_OR_NULL(crtc_state)) {
				DRM_ERROR("failed to get crtc %d state\n",
						conn->state->crtc->base.id);
				drm_connector_list_iter_end(&conn_iter);
				ret = -EINVAL;
				goto unlock;
			}

			if (lp != SDE_MODE_DPMS_LP1 ||
				sde_encoder_check_curr_mode(conn->encoder, MSM_DISPLAY_VIDEO_MODE))
				crtc_state->active = false;
			++num_crtcs;
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	/* check for nothing to do */
	if (num_crtcs == 0) {
		DRM_DEBUG("all crtcs are already in the off state\n");
		sde_kms->suspend_block = true;
		_sde_kms_pm_suspend_idle_helper(sde_kms, dev);
		goto unlock;
	}

	/* commit the "disable all" state */
	ret = drm_atomic_commit(state);
	if (ret < 0) {
		DRM_ERROR("failed to disable crtcs, %d\n", ret);
		goto unlock;
	}

	sde_kms->suspend_block = true;
	_sde_kms_pm_suspend_idle_helper(sde_kms, dev);

unlock:
	if (state) {
		drm_atomic_state_put(state);
		state = NULL;
	}

	if (ret == -EDEADLK) {
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	if ((ret || !num_crtcs) && sde_kms->suspend_state) {
		drm_atomic_state_put(sde_kms->suspend_state);
		sde_kms->suspend_state = NULL;
	}

	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	/*
	 * pm runtime driver avoids multiple runtime_suspend API call by
	 * checking runtime_status. However, this call helps when there is a
	 * race condition between pm_suspend call and doze_suspend/power_off
	 * commit. It removes the extra vote from suspend and adds it back
	 * later to allow power collapse during pm_suspend call
	 */
	pm_runtime_put_sync(dev);
	pm_runtime_get_noresume(dev);

	/* dump clock state before entering suspend */
	if (sde_kms->pm_suspend_clk_dump)
		_sde_kms_dump_clks_state(sde_kms);

	return ret;
}

static int sde_kms_pm_resume(struct device *dev)
{
	struct drm_device *ddev;
	struct sde_kms *sde_kms;
	struct drm_encoder *enc;
	struct drm_modeset_acquire_ctx ctx;
	int ret, i;

	if (!dev)
		return -EINVAL;

	ddev = dev_get_drvdata(dev);
	if (!ddev || !ddev_to_msm_kms(ddev))
		return -EINVAL;

	sde_kms = to_sde_kms(ddev_to_msm_kms(ddev));

	SDE_EVT32(sde_kms->suspend_state != NULL);
	/* if a display is in cont splash early exit */
	drm_for_each_encoder(enc, ddev) {
		if (sde_encoder_in_cont_splash(enc) && enc->crtc) {
			SDE_DEBUG("skip PM resume entry splash is enabled on enc:%d\n", DRMID(enc));
			SDE_EVT32(DRMID(enc), SDE_EVTLOG_FUNC_EXIT);
			return -EINVAL;
		}
	}

	if (sde_kms->suspend_state)
		drm_mode_config_reset(ddev);

	drm_modeset_acquire_init(&ctx, 0);
retry:
	ret = drm_modeset_lock_all_ctx(ddev, &ctx);
	if (ret == -EDEADLK) {
		drm_modeset_backoff(&ctx);
		goto retry;
	} else if (WARN_ON(ret)) {
		goto end;
	}

	sde_kms->suspend_block = false;

	if (sde_kms->suspend_state) {
		sde_kms->suspend_state->acquire_ctx = &ctx;
		for (i = 0; i < TEARDOWN_DEADLOCK_RETRY_MAX; i++) {
			ret = drm_atomic_helper_commit_duplicated_state(
					sde_kms->suspend_state, &ctx);
			if (ret != -EDEADLK)
				break;

			drm_modeset_backoff(&ctx);
		}

		if (ret < 0)
			DRM_ERROR("failed to restore state, %d\n", ret);

		drm_atomic_state_put(sde_kms->suspend_state);
		sde_kms->suspend_state = NULL;
	}

end:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	/* enable hot-plug polling */
	drm_kms_helper_poll_enable(ddev);

	return 0;
}

static const struct msm_kms_funcs kms_funcs = {
	.hw_init         = sde_kms_hw_init,
	.postinit        = sde_kms_postinit,
	.irq_preinstall  = sde_irq_preinstall,
	.irq_postinstall = sde_irq_postinstall,
	.irq_uninstall   = sde_irq_uninstall,
	.irq             = sde_irq,
	.preclose        = sde_kms_preclose,
	.lastclose       = sde_kms_lastclose,
	.prepare_fence   = sde_kms_prepare_fence,
	.prepare_commit  = sde_kms_prepare_commit,
	.commit          = sde_kms_commit,
	.complete_commit = sde_kms_complete_commit,
	.get_msm_mode = sde_kms_get_msm_mode,
	.wait_for_crtc_commit_done = sde_kms_wait_for_commit_done,
	.wait_for_tx_complete = sde_kms_wait_for_frame_transfer_complete,
	.check_modified_format = sde_format_check_modified_format,
	.atomic_check = sde_kms_atomic_check,
	.get_format      = sde_get_msm_format,
	.round_pixclk    = sde_kms_round_pixclk,
	.display_early_wakeup = sde_kms_display_early_wakeup,
	.pm_suspend      = sde_kms_pm_suspend,
	.pm_resume       = sde_kms_pm_resume,
	.destroy         = sde_kms_destroy,
	.debugfs_destroy = sde_kms_debugfs_destroy,
	.cont_splash_config = sde_kms_cont_splash_config,
	.register_events = _sde_kms_register_events,
	.get_address_space = _sde_kms_get_address_space,
	.get_address_space_device = _sde_kms_get_address_space_device,
	.postopen = _sde_kms_post_open,
	.check_for_splash = sde_kms_check_for_splash,
	.trigger_null_flush = sde_kms_trigger_null_flush,
	.get_mixer_count = sde_kms_get_mixer_count,
	.get_dsc_count = sde_kms_get_dsc_count,
	.in_trusted_vm = sde_kms_in_trusted_vm,
};

static int _sde_kms_mmu_destroy(struct sde_kms *sde_kms)
{
	int i;

	for (i = ARRAY_SIZE(sde_kms->aspace) - 1; i >= 0; i--) {
		if (!sde_kms->aspace[i])
			continue;

		msm_gem_address_space_put(sde_kms->aspace[i]);
		sde_kms->aspace[i] = NULL;
	}

	return 0;
}

static int _sde_kms_mmu_init(struct sde_kms *sde_kms)
{
	struct msm_mmu *mmu;
	struct resource *res;
	struct platform_device *pdev;
	int i, ret;

#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 15, 0))
	int early_map = 0;
#endif

	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev)
		return -EINVAL;

	for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) {
		struct msm_gem_address_space *aspace;

		mmu = msm_smmu_new(sde_kms->dev->dev, i);
		if (IS_ERR(mmu)) {
			ret = PTR_ERR(mmu);
			SDE_DEBUG("failed to init iommu id %d: rc:%d\n",
								i, ret);
			continue;
		}

		aspace = msm_gem_smmu_address_space_create(sde_kms->dev,
			mmu, "sde");
		if (IS_ERR(aspace)) {
			ret = PTR_ERR(aspace);
			mmu->funcs->destroy(mmu);
			goto fail;
		}

		sde_kms->aspace[i] = aspace;
		aspace->domain_attached = true;

		/* Mapping splash memory block */
		if ((i == MSM_SMMU_DOMAIN_UNSECURE) &&
				sde_kms->splash_data.num_splash_regions) {
			ret = _sde_kms_map_all_splash_regions(sde_kms);
			if (ret) {
				SDE_ERROR("failed to map ret:%d\n", ret);
				goto enable_trans_fail;
			}
		}

		if (i == MSM_SMMU_DOMAIN_UNSECURE && sde_kms->catalog->hw_fence_rev) {
			pdev = to_platform_device(sde_kms->dev->dev);
			res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ipcc_reg");
			if (!res) {
				SDE_DEBUG("failed to get resource ipcc_reg, cannot map ipcc\n");
				sde_kms->catalog->hw_fence_rev = 0;
			} else {
				sde_kms->ipcc_base_addr = res->start;

				ret = _sde_kms_one2one_mem_map_ipcc_reg(sde_kms, resource_size(res),
					HW_FENCE_IPCC_PROTOCOLp_CLIENTc(res->start,
					sde_kms->catalog->ipcc_protocol_id,
					sde_kms->catalog->ipcc_client_phys_id));
				/* if mapping fails disable hw-fences */
				if (ret)
					sde_kms->catalog->hw_fence_rev = 0;
			}
		}

		/*
		 * disable early-map which would have been enabled during
		 * bootup by smmu through the device-tree hint for cont-spash
		 */

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 15, 0))
		ret = mmu->funcs->enable_smmu_translations(mmu);
		if (ret) {
			SDE_ERROR("failed to enable_s1_translations ret:%d\n", ret);
			goto enable_trans_fail;
		}
#else
		ret = mmu->funcs->set_attribute(mmu, DOMAIN_ATTR_EARLY_MAP,
				 &early_map);
		if (ret) {
			SDE_ERROR("failed to set_att ret:%d, early_map:%d\n",
					ret, early_map);
			goto enable_trans_fail;
		}
#endif
	}

	sde_kms->base.aspace = sde_kms->aspace[0];

	return 0;

enable_trans_fail:
	_sde_kms_unmap_all_splash_regions(sde_kms);
fail:
	_sde_kms_mmu_destroy(sde_kms);

	return ret;
}

static void sde_kms_init_rot_sid_hw(struct sde_kms *sde_kms)
{
	if (!sde_kms || !sde_kms->hw_sid || sde_in_trusted_vm(sde_kms))
		return;

	sde_hw_set_rotator_sid(sde_kms->hw_sid);
}

static void sde_kms_init_hw_fences(struct sde_kms *sde_kms)
{
	if (!sde_kms || !sde_kms->hw_mdp)
		return;

	if (sde_kms->hw_mdp->ops.setup_hw_fences)
		sde_kms->hw_mdp->ops.setup_hw_fences(sde_kms->hw_mdp,
			sde_kms->catalog->ipcc_protocol_id, sde_kms->catalog->ipcc_client_phys_id,
			sde_kms->ipcc_base_addr);
}

static void sde_kms_init_shared_hw(struct sde_kms *sde_kms)
{
	if (!sde_kms || !sde_kms->hw_mdp || !sde_kms->catalog)
		return;

	if (sde_kms->hw_mdp->ops.reset_ubwc)
		sde_kms->hw_mdp->ops.reset_ubwc(sde_kms->hw_mdp,
						sde_kms->catalog);
}

static void _sde_kms_set_lutdma_vbif_remap(struct sde_kms *sde_kms)
{
	struct sde_vbif_set_qos_params qos_params;
	struct sde_mdss_cfg *catalog;

	if (!sde_kms->catalog)
		return;

	catalog = sde_kms->catalog;

	memset(&qos_params, 0, sizeof(qos_params));
	qos_params.vbif_idx = catalog->dma_cfg.vbif_idx;
	qos_params.xin_id = catalog->dma_cfg.xin_id;
	qos_params.clk_ctrl = catalog->dma_cfg.clk_ctrl;
	qos_params.client_type = VBIF_LUTDMA_CLIENT;

	sde_vbif_set_qos_remap(sde_kms, &qos_params);
}

static int _sde_kms_active_override(struct sde_kms *sde_kms, bool enable)
{
	struct sde_hw_uidle *uidle;

	if (!sde_kms) {
		SDE_ERROR("invalid kms\n");
		return -EINVAL;
	}

	uidle = sde_kms->hw_uidle;

	if (uidle && uidle->ops.active_override_enable)
		uidle->ops.active_override_enable(uidle, enable);

	return 0;
}

void sde_kms_cpu_vote_for_irq(struct sde_kms *sde_kms, bool enable)
{
	struct msm_drm_private *priv = sde_kms->dev->dev_private;

	mutex_lock(&priv->phandle.phandle_lock);

	if (enable && atomic_inc_return(&sde_kms->irq_vote_count) == 1)
		_sde_kms_update_pm_qos_irq_request(sde_kms, &sde_kms->irq_cpu_mask);
	else if (!enable && atomic_dec_return(&sde_kms->irq_vote_count) == 0)
		_sde_kms_remove_pm_qos_irq_request(sde_kms, &sde_kms->irq_cpu_mask);

	mutex_unlock(&priv->phandle.phandle_lock);
}

static void sde_kms_irq_affinity_notify(
		struct irq_affinity_notify *affinity_notify,
		const cpumask_t *mask)
{
	struct msm_drm_private *priv;
	struct sde_kms *sde_kms = container_of(affinity_notify,
					struct sde_kms, affinity_notify);

	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private)
		return;

	priv = sde_kms->dev->dev_private;

	mutex_lock(&priv->phandle.phandle_lock);

	_sde_kms_remove_pm_qos_irq_request(sde_kms, &sde_kms->irq_cpu_mask);

	// request vote with updated irq cpu mask
	if (atomic_read(&sde_kms->irq_vote_count))
		_sde_kms_update_pm_qos_irq_request(sde_kms, mask);

	mutex_unlock(&priv->phandle.phandle_lock);
}

static void sde_kms_irq_affinity_release(struct kref *ref) {}

static void sde_kms_handle_power_event(u32 event_type, void *usr)
{
	struct sde_kms *sde_kms = usr;
	struct msm_kms *msm_kms;

	msm_kms = &sde_kms->base;
	if (!sde_kms)
		return;

	SDE_DEBUG("event_type:%d\n", event_type);
	SDE_EVT32_VERBOSE(event_type);

	if (event_type == SDE_POWER_EVENT_POST_ENABLE) {
		sde_irq_update(msm_kms, true);
		sde_kms->first_kickoff = true;

		/**
		 * Rotator sid and hw fences need to be programmed since uefi doesn't
		 * configure them during continuous splash
		 */
		sde_kms_init_rot_sid_hw(sde_kms);
		sde_kms_init_hw_fences(sde_kms);
		if (sde_kms->splash_data.num_splash_displays ||
				sde_in_trusted_vm(sde_kms))
			return;

		sde_vbif_init_memtypes(sde_kms);
		sde_kms_init_shared_hw(sde_kms);
		_sde_kms_set_lutdma_vbif_remap(sde_kms);
	} else if (event_type == SDE_POWER_EVENT_PRE_DISABLE) {
		sde_irq_update(msm_kms, false);
		sde_kms->first_kickoff = false;
		if (sde_in_trusted_vm(sde_kms))
			return;

		_sde_kms_active_override(sde_kms, true);
		sde_vbif_axi_halt_request(sde_kms);
	}
}

#define genpd_to_sde_kms(domain) container_of(domain, struct sde_kms, genpd)

static int sde_kms_pd_enable(struct generic_pm_domain *genpd)
{
	struct sde_kms *sde_kms = genpd_to_sde_kms(genpd);
	int rc = -EINVAL;

	SDE_DEBUG("\n");

	rc = pm_runtime_resume_and_get(sde_kms->dev->dev);
	rc = (rc > 0) ? 0 : rc;

	SDE_EVT32(rc, genpd->device_count);

	return rc;
}

static int sde_kms_pd_disable(struct generic_pm_domain *genpd)
{
	struct sde_kms *sde_kms = genpd_to_sde_kms(genpd);

	SDE_DEBUG("\n");

	pm_runtime_put_sync(sde_kms->dev->dev);

	SDE_EVT32(genpd->device_count);

	return 0;
}

static int _sde_kms_get_demura_plane_data(struct sde_splash_data *data)
{
	int i = 0;
	int ret = 0;
	int count = 0;
	struct device_node *parent, *node;
	struct resource r;
	char node_name[DEMURA_REGION_NAME_MAX];
	struct sde_splash_mem *mem;
	struct sde_splash_display *splash_display;

	if (!data->num_splash_displays) {
		SDE_DEBUG("no splash displays. skipping\n");
		return 0;
	}

	/**
	 * It is expected that each active demura block will have
	 * its own memory region defined.
	 */
	parent = of_find_node_by_path("/reserved-memory");

	for (i = 0; i < data->num_splash_displays; i++) {
		splash_display = &data->splash_display[i];
		snprintf(&node_name[0], DEMURA_REGION_NAME_MAX,
				"demura_region_%d", i);

		splash_display->demura = NULL;
		node = of_find_node_by_name(parent, node_name);
		if (!node) {
			SDE_DEBUG("no Demura node %s! disp count: %d\n",
					node_name, data->num_splash_displays);
			continue;
		} else if (of_address_to_resource(node, 0, &r)) {
			SDE_ERROR("invalid data for:%s\n", node_name);
			ret = -EINVAL;
			break;
		}

		mem = &data->demura_mem[i];
		mem->splash_buf_base = (unsigned long)r.start;
		mem->splash_buf_size = (r.end - r.start) + 1;

		if (!mem->splash_buf_base && !mem->splash_buf_size) {
			SDE_DEBUG("dummy splash mem for disp %d. Skipping\n",
					(i+1));
			continue;

		} else if (!mem->splash_buf_base || !mem->splash_buf_size) {
			SDE_ERROR("mem for disp %d invalid: add:%lx size:%lx\n",
					(i+1), mem->splash_buf_base,
					mem->splash_buf_size);
			continue;
		}

		mem->ref_cnt = 0;
		splash_display->demura = mem;
		count++;

		SDE_DEBUG("demura mem for disp:%d add:%lx size:%x\n", (i + 1),
				mem->splash_buf_base,
				mem->splash_buf_size);
	}

	if (!ret && !count)
		SDE_DEBUG("no demura regions for cont. splash found!\n");

	return ret;
}

static int _sde_kms_get_splash_data(struct sde_splash_data *data)
{
	int i = 0;
	int ret = 0;
	struct device_node *parent, *node, *node1;
	struct resource r, r1;
	const char *node_name = "splash_region";
	struct sde_splash_mem *mem;
	bool share_splash_mem = false;
	int num_displays, num_regions;
	struct sde_splash_display *splash_display;

	if (of_find_node_with_property(NULL, "qcom,sde-emulated-env"))
		return 0;

	if (!data)
		return -EINVAL;

	memset(data, 0, sizeof(*data));

	parent = of_find_node_by_path("/reserved-memory");
	if (!parent) {
		SDE_ERROR("failed to find reserved-memory node\n");
		return -EINVAL;
	}

	node = of_find_node_by_name(parent, node_name);
	if (!node) {
		SDE_DEBUG("failed to find node %s\n", node_name);
		return -EINVAL;
	}

	node1 = of_find_node_by_name(NULL, "disp_rdump_region");
	if (!node1)
		SDE_DEBUG("failed to find disp ramdump memory reservation\n");

	/**
	 * Support sharing a single splash memory for all the built in displays
	 * and also independent splash region per displays. Incase of
	 * independent splash region for each connected display, dtsi node of
	 * cont_splash_region  should be collection of all memory regions
	 * Ex: <r1.start r1.end r2.start r2.end  ... rn.start, rn.end>
	 */
	num_displays = dsi_display_get_num_of_displays();
	num_regions = of_property_count_u64_elems(node, "reg") / 2;

	data->num_splash_displays = num_displays;

	SDE_DEBUG("splash mem num_regions:%d\n", num_regions);
	if (num_displays > num_regions) {
		share_splash_mem = true;
		pr_info(":%d displays share same splash buf\n", num_displays);
	}

	for (i = 0; i < num_displays; i++) {
		splash_display = &data->splash_display[i];
		if (!i || !share_splash_mem) {
			if (of_address_to_resource(node, i, &r)) {
				SDE_ERROR("invalid data for:%s\n", node_name);
				return -EINVAL;
			}

			mem =  &data->splash_mem[i];
			if (!node1 || of_address_to_resource(node1, i, &r1)) {
				SDE_DEBUG("failed to find ramdump memory\n");
				mem->ramdump_base = 0;
				mem->ramdump_size = 0;
			} else {
				mem->ramdump_base = (unsigned long)r1.start;
				mem->ramdump_size = (r1.end - r1.start) + 1;
			}

			mem->splash_buf_base = (unsigned long)r.start;
			mem->splash_buf_size = (r.end - r.start) + 1;
			mem->ref_cnt = 0;
			splash_display->splash = mem;
			data->num_splash_regions++;
		} else {
			data->splash_display[i].splash = &data->splash_mem[0];
		}

		SDE_DEBUG("splash mem for disp:%d add:%lx size:%x\n", (i + 1),
				splash_display->splash->splash_buf_base,
				splash_display->splash->splash_buf_size);
	}

	data->type = SDE_SPLASH_HANDOFF;
	ret = _sde_kms_get_demura_plane_data(data);
	return ret;
}

static int _sde_kms_hw_init_ioremap(struct sde_kms *sde_kms,
	struct platform_device *platformdev)
{
	int rc = -EINVAL;

	sde_kms->mmio = msm_ioremap(platformdev, "mdp_phys", "mdp_phys");
	if (IS_ERR(sde_kms->mmio)) {
		rc = PTR_ERR(sde_kms->mmio);
		SDE_ERROR("mdp register memory map failed: %d\n", rc);
		sde_kms->mmio = NULL;
		goto error;
	}
	DRM_INFO("mapped mdp address space @%pK\n", sde_kms->mmio);
	sde_kms->mmio_len = msm_iomap_size(platformdev, "mdp_phys");

	rc = sde_dbg_reg_register_base(SDE_DBG_NAME, sde_kms->mmio,
				sde_kms->mmio_len,
				msm_get_phys_addr(platformdev, "mdp_phys"),
				SDE_DBG_SDE);
	if (rc)
		SDE_ERROR("dbg base register kms failed: %d\n", rc);

	sde_kms->vbif[VBIF_RT] = msm_ioremap(platformdev, "vbif_phys", "vbif_phys");
	if (IS_ERR(sde_kms->vbif[VBIF_RT])) {
		rc = PTR_ERR(sde_kms->vbif[VBIF_RT]);
		SDE_ERROR("vbif register memory map failed: %d\n", rc);
		sde_kms->vbif[VBIF_RT] = NULL;
		goto error;
	}
	sde_kms->vbif_len[VBIF_RT] = msm_iomap_size(platformdev, "vbif_phys");
	rc = sde_dbg_reg_register_base("vbif_rt", sde_kms->vbif[VBIF_RT],
				sde_kms->vbif_len[VBIF_RT],
				msm_get_phys_addr(platformdev, "vbif_phys"),
				SDE_DBG_VBIF_RT);
	if (rc)
		SDE_ERROR("dbg base register vbif_rt failed: %d\n", rc);

	sde_kms->vbif[VBIF_NRT] = msm_ioremap(platformdev, "vbif_nrt_phys", "vbif_nrt_phys");
	if (IS_ERR(sde_kms->vbif[VBIF_NRT])) {
		sde_kms->vbif[VBIF_NRT] = NULL;
		SDE_DEBUG("VBIF NRT is not defined");
	} else {
		sde_kms->vbif_len[VBIF_NRT] = msm_iomap_size(platformdev, "vbif_nrt_phys");
	}

	sde_kms->reg_dma = msm_ioremap(platformdev, "regdma_phys", "regdma_phys");
	if (IS_ERR(sde_kms->reg_dma)) {
		sde_kms->reg_dma = NULL;
		SDE_DEBUG("REG_DMA is not defined");
	} else {
		unsigned long mdp_addr = msm_get_phys_addr(platformdev, "mdp_phys");
		sde_kms->reg_dma_len = msm_iomap_size(platformdev, "regdma_phys");
		sde_kms->reg_dma_off = msm_get_phys_addr(platformdev, "regdma_phys") - mdp_addr;
		rc =  sde_dbg_reg_register_base(LUTDMA_DBG_NAME, sde_kms->reg_dma,
				sde_kms->reg_dma_len,
				msm_get_phys_addr(platformdev, "regdma_phys"),
				SDE_DBG_LUTDMA);
		if (rc)
			SDE_ERROR("dbg base register reg_dma failed: %d\n", rc);
	}

	sde_kms->sid = msm_ioremap(platformdev, "sid_phys", "sid_phys");
	if (IS_ERR(sde_kms->sid)) {
		SDE_DEBUG("sid register is not defined: %d\n", rc);
		sde_kms->sid = NULL;
	} else {
		sde_kms->sid_len = msm_iomap_size(platformdev, "sid_phys");
		rc =  sde_dbg_reg_register_base("sid", sde_kms->sid,
				sde_kms->sid_len,
				msm_get_phys_addr(platformdev, "sid_phys"),
				SDE_DBG_SID);
		if (rc)
			SDE_ERROR("dbg base register sid failed: %d\n", rc);
	}

error:
	return rc;
}

static int _sde_kms_hw_init_power_helper(struct drm_device *dev,
			struct sde_kms *sde_kms)
{
	int rc = 0;

	if (of_find_property(dev->dev->of_node, "#power-domain-cells", NULL)) {
		sde_kms->genpd.name = dev->unique;
		sde_kms->genpd.power_off = sde_kms_pd_disable;
		sde_kms->genpd.power_on = sde_kms_pd_enable;

		rc = pm_genpd_init(&sde_kms->genpd, NULL, true);
		if (rc < 0) {
			SDE_ERROR("failed to init genpd provider %s: %d\n",
					sde_kms->genpd.name, rc);
			return rc;
		}

		rc = of_genpd_add_provider_simple(dev->dev->of_node,
				&sde_kms->genpd);
		if (rc < 0) {
			SDE_ERROR("failed to add genpd provider %s: %d\n",
					sde_kms->genpd.name, rc);
			pm_genpd_remove(&sde_kms->genpd);
			return rc;
		}

		sde_kms->genpd_init = true;
		SDE_DEBUG("added genpd provider %s\n", sde_kms->genpd.name);
	}

	return rc;
}

static int _sde_kms_hw_init_blocks(struct sde_kms *sde_kms,
	struct drm_device *dev,
	struct msm_drm_private *priv)
{
	int i, rc = -EINVAL;

	sde_kms->catalog = sde_hw_catalog_init(dev);
	if (IS_ERR_OR_NULL(sde_kms->catalog)) {
		rc = PTR_ERR(sde_kms->catalog);
		if (!sde_kms->catalog)
			rc = -EINVAL;
		SDE_ERROR("catalog init failed: %d\n", rc);
		sde_kms->catalog = NULL;
		goto power_error;
	}
	sde_kms->core_rev = sde_kms->catalog->hw_rev;

	pr_info("sde hardware revision:0x%x\n", sde_kms->core_rev);

	/* initialize power domain if defined */
	rc = _sde_kms_hw_init_power_helper(dev, sde_kms);
	if (rc) {
		SDE_ERROR("_sde_kms_hw_init_power_helper failed: %d\n", rc);
		goto genpd_err;
	}

	rc = _sde_kms_mmu_init(sde_kms);
	if (rc) {
		SDE_ERROR("sde_kms_mmu_init failed: %d\n", rc);
		goto power_error;
	}

	/* Initialize reg dma block which is a singleton */
	sde_kms->catalog->dma_cfg.base_off = sde_kms->reg_dma_off;
	rc = sde_reg_dma_init(sde_kms->reg_dma, sde_kms->catalog,
			sde_kms->dev);
	if (rc) {
		SDE_ERROR("failed: reg dma init failed\n");
		goto power_error;
	}

	sde_dbg_init_dbg_buses(sde_kms->core_rev);

	rc = sde_rm_init(&sde_kms->rm);
	if (rc) {
		SDE_ERROR("rm init failed: %d\n", rc);
		goto power_error;
	}

	sde_kms->rm_init = true;

	sde_kms->hw_intr = sde_hw_intr_init(sde_kms->mmio, sde_kms->catalog);
	if (IS_ERR_OR_NULL(sde_kms->hw_intr)) {
		rc = PTR_ERR(sde_kms->hw_intr);
		SDE_ERROR("hw_intr init failed: %d\n", rc);
		sde_kms->hw_intr = NULL;
		goto hw_intr_init_err;
	}

	/*
	 * Attempt continuous splash handoff only if reserved
	 * splash memory is found & release resources on any error
	 * in finding display hw config in splash
	 */
	if (sde_kms->splash_data.num_splash_regions) {
		struct sde_splash_display *display;
		int ret, display_count =
			sde_kms->splash_data.num_splash_displays;

		ret = sde_rm_cont_splash_res_init(priv, &sde_kms->rm,
				&sde_kms->splash_data, sde_kms->catalog);

		for (i = 0; i < display_count; i++) {
			display = &sde_kms->splash_data.splash_display[i];
			/*
			 * free splash region on resource init failure and
			 * cont-splash disabled case
			 */
			if (!display->cont_splash_enabled || ret)
				_sde_kms_free_splash_display_data(
						sde_kms, display);
		}
	}

	sde_kms->hw_mdp = sde_rm_get_mdp(&sde_kms->rm);
	if (IS_ERR_OR_NULL(sde_kms->hw_mdp)) {
		rc = PTR_ERR(sde_kms->hw_mdp);
		if (!sde_kms->hw_mdp)
			rc = -EINVAL;
		SDE_ERROR("failed to get hw_mdp: %d\n", rc);
		sde_kms->hw_mdp = NULL;
		goto power_error;
	}

	for (i = 0; i < sde_kms->catalog->vbif_count; i++) {
		u32 vbif_idx = sde_kms->catalog->vbif[i].id;

		sde_kms->hw_vbif[i] = sde_hw_vbif_init(vbif_idx,
				sde_kms->vbif[vbif_idx], sde_kms->catalog);
		if (IS_ERR_OR_NULL(sde_kms->hw_vbif[vbif_idx])) {
			rc = PTR_ERR(sde_kms->hw_vbif[vbif_idx]);
			if (!sde_kms->hw_vbif[vbif_idx])
				rc = -EINVAL;
			SDE_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc);
			sde_kms->hw_vbif[vbif_idx] = NULL;
			goto power_error;
		}
	}

	if (sde_kms->catalog->uidle_cfg.uidle_rev) {
		sde_kms->hw_uidle = sde_hw_uidle_init(UIDLE, sde_kms->mmio,
			sde_kms->mmio_len, sde_kms->catalog);
		if (IS_ERR_OR_NULL(sde_kms->hw_uidle)) {
			rc = PTR_ERR(sde_kms->hw_uidle);
			if (!sde_kms->hw_uidle)
				rc = -EINVAL;
			/* uidle is optional, so do not make it a fatal error */
			SDE_ERROR("failed to init uidle rc:%d\n", rc);
			sde_kms->hw_uidle = NULL;
			rc = 0;
		}
	} else {
		sde_kms->hw_uidle = NULL;
	}

	if (sde_kms->sid) {
		sde_kms->hw_sid = sde_hw_sid_init(sde_kms->sid,
				sde_kms->sid_len, sde_kms->catalog);
		if (IS_ERR_OR_NULL(sde_kms->hw_sid)) {
			rc = PTR_ERR(sde_kms->hw_sid);
			SDE_ERROR("failed to init sid %d\n", rc);
			sde_kms->hw_sid = NULL;
			goto power_error;
		}
	}

	rc = sde_core_perf_init(&sde_kms->perf, dev, sde_kms->catalog,
			&priv->phandle, "core_clk");
	if (rc) {
		SDE_ERROR("failed to init perf %d\n", rc);
		goto perf_err;
	}

	/*
	 * set the disable_immediate flag when driver supports the precise vsync
	 * timestamp as the DRM hooks for vblank timestamp/counters would be set
	 * based on the feature
	 */
	if (test_bit(SDE_FEATURE_HW_VSYNC_TS, sde_kms->catalog->features))
		dev->vblank_disable_immediate = true;

	/*
	 * _sde_kms_drm_obj_init should create the DRM related objects
	 * i.e. CRTCs, planes, encoders, connectors and so forth
	 */
	rc = _sde_kms_drm_obj_init(sde_kms);
	if (rc) {
		SDE_ERROR("modeset init failed: %d\n", rc);
		goto drm_obj_init_err;
	}

	return 0;

genpd_err:
drm_obj_init_err:
	sde_core_perf_destroy(&sde_kms->perf);
hw_intr_init_err:
perf_err:
power_error:
	return rc;
}

int _sde_kms_get_tvm_inclusion_mem(struct sde_mdss_cfg *catalog, struct list_head *mem_list)
{
	struct list_head temp_head;
	struct msm_io_mem_entry *io_mem;
	int rc, i = 0;

	INIT_LIST_HEAD(&temp_head);

	for (i = 0; i < catalog->tvm_reg_count; i++) {
		struct resource *res = &catalog->tvm_reg[i];

		io_mem = kzalloc(sizeof(struct msm_io_mem_entry), GFP_KERNEL);
		if (!io_mem) {
			rc = -ENOMEM;
			goto parse_fail;
		}

		io_mem->base = res->start;
		io_mem->size = resource_size(res);

		list_add(&io_mem->list, &temp_head);
	}

	list_splice(&temp_head, mem_list);

	return 0;
parse_fail:
	msm_dss_clean_io_mem(&temp_head);

	return rc;
}

#ifdef CONFIG_DRM_SDE_VM
int sde_kms_get_io_resources(struct sde_kms *sde_kms, struct msm_io_res *io_res)
{
	struct platform_device *pdev = to_platform_device(sde_kms->dev->dev);
	int rc = 0;

	rc = msm_dss_get_io_mem(pdev, &io_res->mem);
	if (rc) {
		SDE_ERROR("failed to get io mem for KMS, rc = %d\n", rc);
		return rc;
	}

	rc = msm_dss_get_pmic_io_mem(pdev, &io_res->mem);
	if (rc) {
		SDE_ERROR("failed to get io mem for pmic, rc:%d\n", rc);
		return rc;
	}

	rc = msm_dss_get_io_irq(pdev, &io_res->irq, GH_IRQ_LABEL_SDE);
	if (rc) {
		SDE_ERROR("failed to get io irq for KMS");
		return rc;
	}

	rc = _sde_kms_get_tvm_inclusion_mem(sde_kms->catalog, &io_res->mem);
	if (rc) {
		SDE_ERROR("failed to get tvm inclusion mem ranges");
		return rc;
	}

	return rc;
}
#endif

static int sde_kms_hw_init(struct msm_kms *kms)
{
	struct sde_kms *sde_kms;
	struct drm_device *dev;
	struct msm_drm_private *priv;
	struct platform_device *platformdev;
	int irq_num, rc = -EINVAL;

	if (!kms) {
		SDE_ERROR("invalid kms\n");
		goto end;
	}

	sde_kms = to_sde_kms(kms);
	dev = sde_kms->dev;
	if (!dev || !dev->dev) {
		SDE_ERROR("invalid device\n");
		goto end;
	}

	platformdev = to_platform_device(dev->dev);
	priv = dev->dev_private;
	if (!priv) {
		SDE_ERROR("invalid private data\n");
		goto end;
	}

	rc = _sde_kms_hw_init_ioremap(sde_kms, platformdev);
	if (rc)
		goto error;

	rc = _sde_kms_get_splash_data(&sde_kms->splash_data);
	if (rc)
		SDE_DEBUG("sde splash data fetch failed: %d\n", rc);

	rc = _sde_kms_hw_init_blocks(sde_kms, dev, priv);
	if (rc)
		goto error;

	dev->mode_config.min_width = sde_kms->catalog->min_display_width;
	dev->mode_config.min_height = sde_kms->catalog->min_display_height;
	dev->mode_config.max_width = sde_kms->catalog->max_display_width;
	dev->mode_config.max_height = sde_kms->catalog->max_display_height;

	mutex_init(&sde_kms->secure_transition_lock);

	atomic_set(&sde_kms->detach_sec_cb, 0);
	atomic_set(&sde_kms->detach_all_cb, 0);
	atomic_set(&sde_kms->irq_vote_count, 0);

	/*
	 * Support format modifiers for compression etc.
	 */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 19, 0))
	dev->mode_config.allow_fb_modifiers = true;
#endif

	sde_kms->affinity_notify.notify = sde_kms_irq_affinity_notify;
	sde_kms->affinity_notify.release = sde_kms_irq_affinity_release;

	irq_num = platform_get_irq(to_platform_device(sde_kms->dev->dev), 0);
	SDE_DEBUG("Registering for notification of irq_num: %d\n", irq_num);
	irq_set_affinity_notifier(irq_num, &sde_kms->affinity_notify);

	if (sde_in_trusted_vm(sde_kms)) {
		rc = sde_vm_trusted_init(sde_kms);
		sde_dbg_set_hw_ownership_status(false);
	} else {
		rc = sde_vm_primary_init(sde_kms);
		sde_dbg_set_hw_ownership_status(true);
	}
	if (rc) {
		SDE_ERROR("failed to initialize VM ops, rc: %d\n", rc);
		goto error;
	}

	return 0;
error:
	_sde_kms_hw_destroy(sde_kms, platformdev);
end:
	return rc;
}

struct msm_kms *sde_kms_init(struct drm_device *dev)
{
	struct msm_drm_private *priv;
	struct sde_kms *sde_kms;

	if (!dev || !dev->dev_private) {
		SDE_ERROR("drm device node invalid\n");
		return ERR_PTR(-EINVAL);
	}

	priv = dev->dev_private;

	sde_kms = kzalloc(sizeof(*sde_kms), GFP_KERNEL);
	if (!sde_kms) {
		SDE_ERROR("failed to allocate sde kms\n");
		return ERR_PTR(-ENOMEM);
	}

	msm_kms_init(&sde_kms->base, &kms_funcs);
	sde_kms->dev = dev;

	return &sde_kms->base;
}

void sde_kms_vm_trusted_resource_deinit(struct sde_kms *sde_kms)
{
	struct dsi_display *display;
	struct sde_splash_display *handoff_display;
	int i;

	for (i = 0; i < sde_kms->dsi_display_count; i++) {
		handoff_display = &sde_kms->splash_data.splash_display[i];
		display = (struct dsi_display *)sde_kms->dsi_displays[i];

		if (handoff_display->cont_splash_enabled)
			_sde_kms_free_splash_display_data(sde_kms,
						handoff_display);
		dsi_display_set_active_state(display, false);
	}

	memset(&sde_kms->splash_data, 0, sizeof(struct sde_splash_data));
}

int sde_kms_vm_trusted_resource_init(struct sde_kms *sde_kms,
		struct drm_atomic_state *state)
{
	struct drm_device *dev;
	struct msm_drm_private *priv;
	struct sde_splash_display *handoff_display;
	struct dsi_display *display;
	int ret, i;

	if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private) {
		SDE_ERROR("invalid params\n");
		return -EINVAL;
	}

	dev = sde_kms->dev;
	priv = dev->dev_private;
	sde_kms->splash_data.type = SDE_VM_HANDOFF;
	sde_kms->splash_data.num_splash_displays = sde_kms->dsi_display_count;

	ret = sde_rm_cont_splash_res_init(priv, &sde_kms->rm,
				&sde_kms->splash_data, sde_kms->catalog);
	if (ret) {
		SDE_ERROR("invalid cont splash init, ret:%d\n", ret);
		return -EINVAL;
	}

	for (i = 0; i < sde_kms->dsi_display_count; i++) {
		handoff_display = &sde_kms->splash_data.splash_display[i];
		display = (struct dsi_display *)sde_kms->dsi_displays[i];
		if (!handoff_display->cont_splash_enabled || ret)
			_sde_kms_free_splash_display_data(sde_kms,
							handoff_display);
		else
			dsi_display_set_active_state(display, true);
	}

	if (sde_kms->splash_data.num_splash_displays != 1) {
		SDE_ERROR("no. of displays not supported:%d\n",
				sde_kms->splash_data.num_splash_displays);
		ret = -EINVAL;
		goto error;
	}

	ret = sde_kms_cont_splash_config(&sde_kms->base, state);
	if (ret) {
		SDE_ERROR("error in setting handoff configs\n");
		goto error;
	}

	/**
	 * fill-in vote for the continuous splash hanodff path, which will be
	 * removed on the successful first commit.
	 */
	ret = pm_runtime_resume_and_get(sde_kms->dev->dev);
	if (ret < 0) {
		SDE_ERROR("failed to enable power resource %d\n", ret);
		SDE_EVT32(ret, SDE_EVTLOG_ERROR);
		goto error;
	}

	return 0;

error:
	return ret;
}

static int _sde_kms_register_events(struct msm_kms *kms,
		struct drm_mode_object *obj, u32 event, bool en)
{
	int ret = 0;
	struct drm_crtc *crtc;
	struct drm_connector *conn;
	struct sde_kms *sde_kms;

	if (!kms || !obj) {
		SDE_ERROR("invalid argument kms %pK obj %pK\n", kms, obj);
		return -EINVAL;
	}

	sde_kms = to_sde_kms(kms);
	sde_vm_lock(sde_kms);
	if (!sde_vm_owns_hw(sde_kms)) {
		sde_vm_unlock(sde_kms);
		SDE_DEBUG("HW is owned by other VM\n");
		return -EACCES;
	}

	/* check vm ownership, if event registration requires HW access */
	switch (obj->type) {
	case DRM_MODE_OBJECT_CRTC:
		crtc = obj_to_crtc(obj);
		ret = sde_crtc_register_custom_event(sde_kms, crtc, event, en);
		break;
	case DRM_MODE_OBJECT_CONNECTOR:
		conn = obj_to_connector(obj);
		ret = sde_connector_register_custom_event(sde_kms, conn, event,
				en);
		break;
	}

	sde_vm_unlock(sde_kms);

	return ret;
}

int sde_kms_handle_recovery(struct drm_encoder *encoder)
{
	SDE_EVT32(DRMID(encoder), MSM_ENC_ACTIVE_REGION);
	return sde_encoder_wait_for_event(encoder, MSM_ENC_ACTIVE_REGION);
}

void sde_kms_add_data_to_minidump_va(struct sde_kms *sde_kms)
{
	struct msm_drm_private *priv;
	struct sde_crtc *sde_crtc;
	struct sde_crtc_state *cstate;
	struct sde_connector *sde_conn;
	struct sde_connector_state *conn_state;
	u32 i;

	priv = sde_kms->dev->dev_private;

	sde_mini_dump_add_va_region("sde_kms", sizeof(*sde_kms), sde_kms);

	for (i = 0; i < priv->num_crtcs; i++) {
		sde_crtc = to_sde_crtc(priv->crtcs[i]);
		cstate = to_sde_crtc_state(priv->crtcs[i]->state);
		sde_mini_dump_add_va_region("sde_crtc", sizeof(*sde_crtc), sde_crtc);
		sde_mini_dump_add_va_region("crtc_state", sizeof(*cstate), cstate);
	}

	for (i = 0; i < priv->num_planes; i++)
		sde_plane_add_data_to_minidump_va(priv->planes[i]);

	for (i = 0; i < priv->num_encoders; i++)
		sde_encoder_add_data_to_minidump_va(priv->encoders[i]);

	for (i = 0; i < priv->num_connectors; i++) {
		sde_conn = to_sde_connector(priv->connectors[i]);
		conn_state = to_sde_connector_state(priv->connectors[i]->state);
		sde_mini_dump_add_va_region("sde_conn", sizeof(*sde_conn), sde_conn);
		sde_mini_dump_add_va_region("conn_state", sizeof(*conn_state), conn_state);
	}
}