// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include "msm_cvp_common.h" #include "cvp_hfi_api.h" #include "msm_cvp_debug.h" #include "msm_cvp_core.h" #include "msm_cvp_dsp.h" #define CLEAR_USE_BITMAP(idx, inst) \ do { \ clear_bit(idx, &inst->dma_cache.usage_bitmap); \ dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \ hash32_ptr(inst->session), smem->bitmap_index, \ inst->dma_cache.usage_bitmap); \ } while (0) #define SET_USE_BITMAP(idx, inst) \ do { \ set_bit(idx, &inst->dma_cache.usage_bitmap); \ dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \ hash32_ptr(inst->session), idx, \ inst->dma_cache.usage_bitmap); \ } while (0) void print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst, struct msm_cvp_smem *smem) { if (!(tag & msm_cvp_debug) || !inst || !smem) return; if (smem->dma_buf) { dprintk(tag, "%s: %x : %s size %d flags %#x iova %#x idx %d ref %d", str, hash32_ptr(inst->session), smem->dma_buf->name, smem->size, smem->flags, smem->device_addr, smem->bitmap_index, smem->refcount); } } static void print_internal_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf) { if (!(tag & msm_cvp_debug) || !inst || !cbuf) return; if (cbuf->smem->dma_buf) { dprintk(tag, "%s: %x : fd %d off %d %s size %d iova %#x", str, hash32_ptr(inst->session), cbuf->fd, cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size, cbuf->smem->device_addr); } else { dprintk(tag, "%s: %x : idx %2d fd %d off %d size %d iova %#x", str, hash32_ptr(inst->session), cbuf->fd, cbuf->offset, cbuf->size, cbuf->smem->device_addr); } } void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf) { dprintk(tag, "%s addr: %x size %u\n", str, cbuf->smem->device_addr, cbuf->size); } void print_client_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf) { if (!(tag & msm_cvp_debug) || !inst || !cbuf) return; dprintk(tag, "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x\n", str, hash32_ptr(inst->session), cbuf->index, cbuf->fd, cbuf->offset, cbuf->size, cbuf->type, cbuf->flags); } static bool __is_buf_valid(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { struct cvp_hal_session *session; struct cvp_internal_buf *cbuf = NULL; bool found = false; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return false; } if (buf->fd < 0) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); return false; } if (buf->offset) { dprintk(CVP_ERR, "%s: offset is deprecated, set to 0.\n", __func__); return false; } session = (struct cvp_hal_session *)inst->session; mutex_lock(&inst->cvpdspbufs.lock); list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) { if (cbuf->fd == buf->fd) { if (cbuf->size != buf->size) { dprintk(CVP_ERR, "%s: buf size mismatch\n", __func__); mutex_unlock(&inst->cvpdspbufs.lock); return false; } found = true; break; } } mutex_unlock(&inst->cvpdspbufs.lock); if (found) { print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf); return false; } return true; } static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task, fmode_t mask, unsigned int refs) { struct files_struct *files = task->files; struct file *file; rcu_read_lock(); loop: file = fcheck_files(files, fd); if (file) { /* File object ref couldn't be taken. * dup2() atomicity guarantee is the reason * we loop to catch the new file (or NULL pointer) */ if (file->f_mode & mask) file = NULL; else if (!get_file_rcu_many(file, refs)) goto loop; } rcu_read_unlock(); return file; } static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd, struct task_struct *task) { if (file->f_op != gfa_cv.dmabuf_f_op) { dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n"); return ERR_PTR(-EINVAL); } return file->private_data; } int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { int rc = 0; struct cvp_internal_buf *cbuf = NULL; struct msm_cvp_smem *smem = NULL; struct dma_buf *dma_buf = NULL; struct file *file; if (!__is_buf_valid(inst, buf)) return -EINVAL; if (!inst->task) return -EINVAL; file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1); if (file == NULL) { dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__); return -EINVAL; } dma_buf = cvp_dma_buf_get( file, buf->fd, inst->task); if (dma_buf == ERR_PTR(-EINVAL)) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); rc = -EINVAL; goto exit; } dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf); cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL); if (!cbuf) { rc = -ENOMEM; goto exit; } smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL); if (!smem) { rc = -ENOMEM; goto exit; } smem->dma_buf = dma_buf; smem->file = file; smem->bitmap_index = MAX_DMABUF_NUMS; dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf); rc = msm_cvp_map_smem(inst, smem, "map dsp"); if (rc) { print_client_buffer(CVP_ERR, "map failed", inst, buf); goto exit; } cbuf->smem = smem; cbuf->fd = buf->fd; cbuf->size = buf->size; cbuf->offset = buf->offset; cbuf->ownership = CLIENT; cbuf->index = buf->index; buf->reserved[0] = (uint32_t)smem->device_addr; mutex_lock(&inst->cvpdspbufs.lock); list_add_tail(&cbuf->list, &inst->cvpdspbufs.list); mutex_unlock(&inst->cvpdspbufs.lock); return rc; exit: fput(file); if (smem) { if (smem->device_addr) { msm_cvp_unmap_smem(inst, smem, "unmap dsp"); msm_cvp_smem_put_dma_buf(smem->dma_buf); } kmem_cache_free(cvp_driver->smem_cache, smem); } if (cbuf) kmem_cache_free(cvp_driver->buf_cache, cbuf); return rc; } int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { int rc = 0; bool found; struct cvp_internal_buf *cbuf; struct cvp_hal_session *session; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } session = (struct cvp_hal_session *)inst->session; if (!session) { dprintk(CVP_ERR, "%s: invalid session\n", __func__); return -EINVAL; } mutex_lock(&inst->cvpdspbufs.lock); found = false; list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) { if (cbuf->fd == buf->fd) { found = true; break; } } mutex_unlock(&inst->cvpdspbufs.lock); if (!found) { print_client_buffer(CVP_ERR, "invalid", inst, buf); return -EINVAL; } if (cbuf->smem->device_addr) { msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp"); msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf); fput(cbuf->smem->file); } mutex_lock(&inst->cvpdspbufs.lock); list_del(&cbuf->list); mutex_unlock(&inst->cvpdspbufs.lock); kmem_cache_free(cvp_driver->smem_cache, cbuf->smem); kmem_cache_free(cvp_driver->buf_cache, cbuf); return rc; } void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type, u32 offset, u32 size) { enum smem_cache_ops cache_op; if (msm_cvp_cacheop_disabled) return; if (!smem) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return; } switch (type) { case EVA_KMD_BUFTYPE_INPUT: cache_op = SMEM_CACHE_CLEAN; break; case EVA_KMD_BUFTYPE_OUTPUT: cache_op = SMEM_CACHE_INVALIDATE; break; default: cache_op = SMEM_CACHE_CLEAN_INVALIDATE; } dprintk(CVP_MEM, "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n", __func__, smem->dma_buf, cache_op, offset, size); msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size); } static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst, struct dma_buf *dma_buf) { struct msm_cvp_smem *smem; int i; if (inst->dma_cache.nr > MAX_DMABUF_NUMS) return NULL; mutex_lock(&inst->dma_cache.lock); for (i = 0; i < inst->dma_cache.nr; i++) if (inst->dma_cache.entries[i]->dma_buf == dma_buf) { SET_USE_BITMAP(i, inst); smem = inst->dma_cache.entries[i]; smem->bitmap_index = i; atomic_inc(&smem->refcount); /* * If we find it, it means we already increased * refcount before, so we put it to avoid double * incremental. */ msm_cvp_smem_put_dma_buf(smem->dma_buf); mutex_unlock(&inst->dma_cache.lock); print_smem(CVP_MEM, "found", inst, smem); return smem; } mutex_unlock(&inst->dma_cache.lock); return NULL; } static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst, struct msm_cvp_smem *smem) { unsigned int i; struct msm_cvp_smem *smem2; mutex_lock(&inst->dma_cache.lock); if (inst->dma_cache.nr < MAX_DMABUF_NUMS) { inst->dma_cache.entries[inst->dma_cache.nr] = smem; SET_USE_BITMAP(inst->dma_cache.nr, inst); smem->bitmap_index = inst->dma_cache.nr; inst->dma_cache.nr++; i = smem->bitmap_index; } else { i = find_first_zero_bit(&inst->dma_cache.usage_bitmap, MAX_DMABUF_NUMS); if (i < MAX_DMABUF_NUMS) { smem2 = inst->dma_cache.entries[i]; msm_cvp_unmap_smem(inst, smem2, "unmap cpu"); msm_cvp_smem_put_dma_buf(smem2->dma_buf); kmem_cache_free(cvp_driver->smem_cache, smem2); inst->dma_cache.entries[i] = smem; smem->bitmap_index = i; SET_USE_BITMAP(i, inst); } else { dprintk(CVP_WARN, "%s: not enough memory\n", __func__); mutex_unlock(&inst->dma_cache.lock); return -ENOMEM; } } atomic_inc(&smem->refcount); mutex_unlock(&inst->dma_cache.lock); dprintk(CVP_MEM, "Add entry %d into cache\n", i); return 0; } static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst, struct cvp_buf_type *buf) { int rc = 0, found = 1; struct msm_cvp_smem *smem = NULL; struct dma_buf *dma_buf = NULL; if (buf->fd < 0) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); return NULL; } dma_buf = msm_cvp_smem_get_dma_buf(buf->fd); if (!dma_buf) { dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd); return NULL; } smem = msm_cvp_session_find_smem(inst, dma_buf); if (!smem) { found = 0; smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL); if (!smem) return NULL; smem->dma_buf = dma_buf; smem->bitmap_index = MAX_DMABUF_NUMS; rc = msm_cvp_map_smem(inst, smem, "map cpu"); if (rc) goto exit; if (buf->size > smem->size || buf->size > smem->size - buf->offset) { dprintk(CVP_ERR, "%s: invalid offset %d or size %d for a new entry\n", __func__, buf->offset, buf->size); goto exit2; } rc = msm_cvp_session_add_smem(inst, smem); if (rc && rc != -ENOMEM) goto exit2; } if (buf->size > smem->size || buf->size > smem->size - buf->offset) { dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n", __func__, buf->offset, buf->size); if (found) { mutex_lock(&inst->dma_cache.lock); atomic_dec(&smem->refcount); mutex_unlock(&inst->dma_cache.lock); return NULL; } goto exit2; } return smem; exit2: msm_cvp_unmap_smem(inst, smem, "unmap cpu"); exit: msm_cvp_smem_put_dma_buf(dma_buf); kmem_cache_free(cvp_driver->smem_cache, smem); smem = NULL; return smem; } static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst, struct cvp_buf_type *buf) { u32 iova = 0; struct msm_cvp_smem *smem = NULL; struct cvp_internal_buf *pbuf; if (!inst) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL); if (!pbuf) return 0; smem = msm_cvp_session_get_smem(inst, buf); if (!smem) goto exit; smem->flags |= SMEM_PERSIST; pbuf->smem = smem; pbuf->fd = buf->fd; pbuf->size = buf->size; pbuf->offset = buf->offset; pbuf->ownership = CLIENT; mutex_lock(&inst->persistbufs.lock); list_add_tail(&pbuf->list, &inst->persistbufs.list); mutex_unlock(&inst->persistbufs.lock); print_internal_buffer(CVP_MEM, "map persist", inst, pbuf); iova = smem->device_addr + buf->offset; return iova; exit: kmem_cache_free(cvp_driver->buf_cache, pbuf); return 0; } u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst, struct cvp_buf_type *buf, struct msm_cvp_frame *frame) { u32 iova = 0; struct msm_cvp_smem *smem = NULL; u32 nr; u32 type; if (!inst || !frame) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return 0; } nr = frame->nr; if (nr == MAX_FRAME_BUFFER_NUMS) { dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__); return 0; } smem = msm_cvp_session_get_smem(inst, buf); if (!smem) return 0; frame->bufs[nr].fd = buf->fd; frame->bufs[nr].smem = smem; frame->bufs[nr].size = buf->size; frame->bufs[nr].offset = buf->offset; print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]); frame->nr++; type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT; msm_cvp_cache_operations(smem, type, buf->offset, buf->size); iova = smem->device_addr + buf->offset; return iova; } static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst, struct msm_cvp_frame *frame) { u32 i; u32 type; struct msm_cvp_smem *smem = NULL; struct cvp_internal_buf *buf; type = EVA_KMD_BUFTYPE_OUTPUT; for (i = 0; i < frame->nr; ++i) { buf = &frame->bufs[i]; smem = buf->smem; msm_cvp_cache_operations(smem, type, buf->offset, buf->size); if (smem->bitmap_index >= MAX_DMABUF_NUMS) { /* smem not in dmamap cache */ msm_cvp_unmap_smem(inst, smem, "unmap cpu"); dma_heap_buffer_free(smem->dma_buf); kmem_cache_free(cvp_driver->smem_cache, smem); buf->smem = NULL; } else { mutex_lock(&inst->dma_cache.lock); if (atomic_dec_and_test(&smem->refcount)) { CLEAR_USE_BITMAP(smem->bitmap_index, inst); print_smem(CVP_MEM, "Map dereference", inst, smem); } mutex_unlock(&inst->dma_cache.lock); } } kmem_cache_free(cvp_driver->frame_cache, frame); } void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid) { struct msm_cvp_frame *frame, *dummy1; bool found; if (!inst) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return; } ktid &= (FENCE_BIT - 1); dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n", __func__, hash32_ptr(inst->session), ktid); found = false; mutex_lock(&inst->frames.lock); list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) { if (frame->ktid == ktid) { found = true; list_del(&frame->list); break; } } mutex_unlock(&inst->frames.lock); if (found) msm_cvp_unmap_frame_buf(inst, frame); else dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid); } int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_hfi_cmd_session_hdr *cmd_hdr; struct cvp_internal_buf *pbuf, *dummy; u64 ktid; int rc = 0; struct msm_cvp_smem *smem = NULL; if (!offset || !buf_num) return rc; cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt; ktid = cmd_hdr->client_data.kdata & (FENCE_BIT - 1); mutex_lock(&inst->persistbufs.lock); list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) { if (pbuf->ktid == ktid && pbuf->ownership == CLIENT) { list_del(&pbuf->list); smem = pbuf->smem; dprintk(CVP_MEM, "unmap persist: %x %d %d %#x", hash32_ptr(inst->session), pbuf->fd, pbuf->size, smem->device_addr); if (smem->bitmap_index >= MAX_DMABUF_NUMS) { /* smem not in dmamap cache */ msm_cvp_unmap_smem(inst, smem, "unmap cpu"); dma_heap_buffer_free(smem->dma_buf); kmem_cache_free( cvp_driver->smem_cache, smem); pbuf->smem = NULL; } else { mutex_lock(&inst->dma_cache.lock); if (atomic_dec_and_test(&smem->refcount)) CLEAR_USE_BITMAP( smem->bitmap_index, inst); mutex_unlock(&inst->dma_cache.lock); } kmem_cache_free(cvp_driver->buf_cache, pbuf); } } mutex_unlock(&inst->persistbufs.lock); return rc; } int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_hfi_cmd_session_hdr *cmd_hdr; struct cvp_internal_buf *pbuf, *dummy; u64 ktid; struct cvp_buf_type *buf; int i, rc = 0; if (!offset || !buf_num) return 0; cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt; ktid = atomic64_inc_return(&inst->core->kernel_trans_id); ktid &= (FENCE_BIT - 1); cmd_hdr->client_data.kdata = ktid; for (i = 0; i < buf_num; i++) { buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset]; offset += sizeof(*buf) >> 2; if (buf->fd < 0 || !buf->size) continue; mutex_lock(&inst->persistbufs.lock); list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) { if (pbuf->ownership == CLIENT) { if (pbuf->fd == buf->fd && pbuf->size == buf->size) buf->fd = pbuf->smem->device_addr; rc = 1; break; } } mutex_unlock(&inst->persistbufs.lock); if (!rc) { dprintk(CVP_ERR, "%s No persist buf %d found\n", __func__, buf->fd); rc = -EFAULT; break; } pbuf->ktid = ktid; rc = 0; } return rc; } int msm_cvp_map_user_persist(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_buf_type *buf; int i; u32 iova; if (!offset || !buf_num) return 0; for (i = 0; i < buf_num; i++) { buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset]; offset += sizeof(*buf) >> 2; if (buf->fd < 0 || !buf->size) continue; iova = msm_cvp_map_user_persist_buf(inst, buf); if (!iova) { dprintk(CVP_ERR, "%s: buf %d register failed.\n", __func__, i); return -EINVAL; } buf->fd = iova; } return 0; } int msm_cvp_map_frame(struct msm_cvp_inst *inst, struct eva_kmd_hfi_packet *in_pkt, unsigned int offset, unsigned int buf_num) { struct cvp_buf_type *buf; int i; u32 iova; u64 ktid; struct msm_cvp_frame *frame; struct cvp_hfi_cmd_session_hdr *cmd_hdr; if (!offset || !buf_num) return 0; cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt; ktid = atomic64_inc_return(&inst->core->kernel_trans_id); ktid &= (FENCE_BIT - 1); cmd_hdr->client_data.kdata = ktid; frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL); if (!frame) return -ENOMEM; frame->ktid = ktid; frame->nr = 0; frame->pkt_type = cmd_hdr->packet_type; for (i = 0; i < buf_num; i++) { buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset]; offset += sizeof(*buf) >> 2; if (buf->fd < 0 || !buf->size) continue; iova = msm_cvp_map_frame_buf(inst, buf, frame); if (!iova) { dprintk(CVP_ERR, "%s: buf %d register failed.\n", __func__, i); msm_cvp_unmap_frame_buf(inst, frame); return -EINVAL; } buf->fd = iova; } mutex_lock(&inst->frames.lock); list_add_tail(&frame->list, &inst->frames.list); mutex_unlock(&inst->frames.lock); dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid); return 0; } int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst) { int rc = 0, i; struct cvp_internal_buf *cbuf, *dummy; struct msm_cvp_frame *frame, *dummy1; struct msm_cvp_smem *smem; struct cvp_hal_session *session; session = (struct cvp_hal_session *)inst->session; mutex_lock(&inst->frames.lock); list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) { list_del(&frame->list); msm_cvp_unmap_frame_buf(inst, frame); } mutex_unlock(&inst->frames.lock); mutex_lock(&inst->dma_cache.lock); for (i = 0; i < inst->dma_cache.nr; i++) { smem = inst->dma_cache.entries[i]; if (atomic_read(&smem->refcount) == 0) { print_smem(CVP_MEM, "free", inst, smem); } else if (!(smem->flags & SMEM_PERSIST)) { print_smem(CVP_WARN, "in use", inst, smem); } msm_cvp_unmap_smem(inst, smem, "unmap cpu"); msm_cvp_smem_put_dma_buf(smem->dma_buf); kmem_cache_free(cvp_driver->smem_cache, smem); inst->dma_cache.entries[i] = NULL; } mutex_unlock(&inst->dma_cache.lock); mutex_lock(&inst->cvpdspbufs.lock); list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) { print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf); if (cbuf->ownership == CLIENT) { rc = cvp_dsp_deregister_buffer(hash32_ptr(session), cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size, cbuf->offset, cbuf->index, (uint32_t)cbuf->smem->device_addr); if (rc) dprintk(CVP_ERR, "%s: failed dsp deregistration fd=%d rc=%d", __func__, cbuf->fd, rc); msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp"); msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf); } else if (cbuf->ownership == DSP) { rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf); if (rc) dprintk(CVP_ERR, "%s: failed to unmap buf from DSP\n", __func__); rc = cvp_release_dsp_buffers(inst, cbuf); if (rc) dprintk(CVP_ERR, "%s Fail to free buffer 0x%x\n", __func__, rc); } list_del(&cbuf->list); kmem_cache_free(cvp_driver->buf_cache, cbuf); } mutex_unlock(&inst->cvpdspbufs.lock); return rc; } void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst) { struct cvp_internal_buf *buf; int i; if (!inst) { dprintk(CVP_ERR, "%s - invalid param %pK\n", __func__, inst); return; } dprintk(CVP_ERR, "active session cmd %d\n", inst->cur_cmd_type); dprintk(CVP_ERR, "---Buffer details for inst: %pK of type: %d---\n", inst, inst->session_type); mutex_lock(&inst->dma_cache.lock); dprintk(CVP_ERR, "dma cache:\n"); if (inst->dma_cache.nr <= MAX_DMABUF_NUMS) for (i = 0; i < inst->dma_cache.nr; i++) print_smem(CVP_ERR, "bufdump", inst, inst->dma_cache.entries[i]); mutex_unlock(&inst->dma_cache.lock); mutex_lock(&inst->cvpdspbufs.lock); dprintk(CVP_ERR, "dsp buffer list:\n"); list_for_each_entry(buf, &inst->cvpdspbufs.list, list) print_cvp_buffer(CVP_ERR, "bufdump", inst, buf); mutex_unlock(&inst->cvpdspbufs.lock); mutex_lock(&inst->persistbufs.lock); dprintk(CVP_ERR, "persist buffer list:\n"); list_for_each_entry(buf, &inst->persistbufs.list, list) print_cvp_buffer(CVP_ERR, "bufdump", inst, buf); mutex_unlock(&inst->persistbufs.lock); } struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst, u32 buffer_size) { struct cvp_internal_buf *buf; struct msm_cvp_list *buf_list; u32 smem_flags = SMEM_UNCACHED; int rc = 0; if (!inst) { dprintk(CVP_ERR, "%s Invalid input\n", __func__); return NULL; } buf_list = &inst->persistbufs; if (!buffer_size) return NULL; /* PERSIST buffer requires secure mapping * Disable and wait for hyp_assign available */ smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL; buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL); if (!buf) { dprintk(CVP_ERR, "%s Out of memory\n", __func__); goto fail_kzalloc; } buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL); if (!buf->smem) { dprintk(CVP_ERR, "%s Out of memory\n", __func__); goto fail_kzalloc; } buf->smem->flags = smem_flags; rc = msm_cvp_smem_alloc(buffer_size, 1, 0, &(inst->core->resources), buf->smem); if (rc) { dprintk(CVP_ERR, "Failed to allocate ARP memory\n"); goto err_no_mem; } buf->size = buf->smem->size; buf->type = HFI_BUFFER_INTERNAL_PERSIST_1; buf->ownership = DRIVER; mutex_lock(&buf_list->lock); list_add_tail(&buf->list, &buf_list->list); mutex_unlock(&buf_list->lock); return buf; err_no_mem: kmem_cache_free(cvp_driver->buf_cache, buf); fail_kzalloc: return NULL; } int cvp_release_arp_buffers(struct msm_cvp_inst *inst) { struct msm_cvp_smem *smem; struct list_head *ptr, *next; struct cvp_internal_buf *buf; int rc = 0; struct msm_cvp_core *core; struct cvp_hfi_device *hdev; if (!inst) { dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst); return -EINVAL; } core = inst->core; if (!core) { dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core); return -EINVAL; } hdev = core->device; if (!hdev) { dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev); return -EINVAL; } dprintk(CVP_MEM, "release persist buffer!\n"); mutex_lock(&inst->persistbufs.lock); /* Workaround for FW: release buffer means release all */ if (inst->state <= MSM_CVP_CLOSE_DONE) { rc = call_hfi_op(hdev, session_release_buffers, (void *)inst->session); if (!rc) { mutex_unlock(&inst->persistbufs.lock); rc = wait_for_sess_signal_receipt(inst, HAL_SESSION_RELEASE_BUFFER_DONE); if (rc) dprintk(CVP_WARN, "%s: wait for signal failed, rc %d\n", __func__, rc); mutex_lock(&inst->persistbufs.lock); } else { dprintk(CVP_WARN, "Fail to send Rel prst buf\n"); } } list_for_each_safe(ptr, next, &inst->persistbufs.list) { buf = list_entry(ptr, struct cvp_internal_buf, list); smem = buf->smem; if (!smem) { dprintk(CVP_ERR, "%s invalid smem\n", __func__); mutex_unlock(&inst->persistbufs.lock); return -EINVAL; } list_del(&buf->list); if (buf->ownership == DRIVER) { dprintk(CVP_MEM, "%s: %x : fd %d %s size %d", "free arp", hash32_ptr(inst->session), buf->fd, smem->dma_buf->name, buf->size); msm_cvp_smem_free(smem); kmem_cache_free(cvp_driver->smem_cache, smem); } buf->smem = NULL; kmem_cache_free(cvp_driver->buf_cache, buf); } mutex_unlock(&inst->persistbufs.lock); return rc; } int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst, struct cvp_internal_buf *buf, u32 buffer_size, u32 secure_type) { u32 smem_flags = SMEM_UNCACHED; int rc = 0; if (!inst) { dprintk(CVP_ERR, "%s Invalid input\n", __func__); return -EINVAL; } if (!buf) return -EINVAL; if (!buffer_size) return -EINVAL; switch (secure_type) { case 0: break; case 1: smem_flags |= SMEM_SECURE | SMEM_PIXEL; break; case 2: smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL; break; default: dprintk(CVP_ERR, "%s Invalid secure_type %d\n", __func__, secure_type); return -EINVAL; } dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags); buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL); if (!buf->smem) { dprintk(CVP_ERR, "%s Out of memory\n", __func__); goto fail_kzalloc_smem_cache; } buf->smem->flags = smem_flags; rc = msm_cvp_smem_alloc(buffer_size, 1, 0, &(inst->core->resources), buf->smem); if (rc) { dprintk(CVP_ERR, "Failed to allocate ARP memory\n"); goto err_no_mem; } dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf); buf->size = buf->smem->size; buf->type = HFI_BUFFER_INTERNAL_PERSIST_1; buf->ownership = DSP; return rc; err_no_mem: kmem_cache_free(cvp_driver->smem_cache, buf->smem); fail_kzalloc_smem_cache: return rc; } int cvp_release_dsp_buffers(struct msm_cvp_inst *inst, struct cvp_internal_buf *buf) { struct msm_cvp_smem *smem; int rc = 0; if (!inst) { dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst); return -EINVAL; } if (!buf) { dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst); return -EINVAL; } smem = buf->smem; if (!smem) { dprintk(CVP_ERR, "%s invalid smem\n", __func__); return -EINVAL; } if (buf->ownership == DSP) { dprintk(CVP_MEM, "%s: %x : fd %x %s size %d", __func__, hash32_ptr(inst->session), buf->fd, smem->dma_buf->name, buf->size); msm_cvp_smem_free(smem); kmem_cache_free(cvp_driver->smem_cache, smem); } else { dprintk(CVP_ERR, "%s: wrong owner %d %x : fd %x %s size %d", __func__, buf->ownership, hash32_ptr(inst->session), buf->fd, smem->dma_buf->name, buf->size); } return rc; } int msm_cvp_register_buffer(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { struct cvp_hfi_device *hdev; struct cvp_hal_session *session; struct msm_cvp_inst *s; int rc = 0; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } if (!buf->index) return 0; s = cvp_get_inst_validate(inst->core, inst); if (!s) return -ECONNRESET; inst->cur_cmd_type = EVA_KMD_REGISTER_BUFFER; session = (struct cvp_hal_session *)inst->session; if (!session) { dprintk(CVP_ERR, "%s: invalid session\n", __func__); rc = -EINVAL; goto exit; } hdev = inst->core->device; print_client_buffer(CVP_HFI, "register", inst, buf); rc = msm_cvp_map_buf_dsp(inst, buf); dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__, buf->fd, buf->reserved[0]); exit: inst->cur_cmd_type = 0; cvp_put_inst(s); return rc; } int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf) { struct msm_cvp_inst *s; int rc = 0; if (!inst || !inst->core || !buf) { dprintk(CVP_ERR, "%s: invalid params\n", __func__); return -EINVAL; } if (!buf->index) return 0; s = cvp_get_inst_validate(inst->core, inst); if (!s) return -ECONNRESET; inst->cur_cmd_type = EVA_KMD_UNREGISTER_BUFFER; print_client_buffer(CVP_HFI, "unregister", inst, buf); rc = msm_cvp_unmap_buf_dsp(inst, buf); inst->cur_cmd_type = 0; cvp_put_inst(s); return rc; }