/* * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2014-2021, The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include #include #include #include #include #include #include #include #include #include #include #include "msm_drv.h" #include "msm_mmu.h" #include "msm_gem.h" #include "dsi_display.h" #include "dsi_drm.h" #include "sde_wb.h" #include "dp_display.h" #include "dp_drm.h" #include "dp_mst_drm.h" #include "sde_kms.h" #include "sde_core_irq.h" #include "sde_formats.h" #include "sde_hw_vbif.h" #include "sde_vbif.h" #include "sde_encoder.h" #include "sde_plane.h" #include "sde_crtc.h" #include "sde_color_processing.h" #include "sde_reg_dma.h" #include "sde_connector.h" #include "sde_vm.h" #include "sde_fence.h" #include #include #include "soc/qcom/secure_buffer.h" #include #ifdef CONFIG_DRM_SDE_VM #include #endif #define CREATE_TRACE_POINTS #include "sde_trace.h" /* defines for secure channel call */ #define MEM_PROTECT_SD_CTRL_SWITCH 0x18 #define MDP_DEVICE_ID 0x1A #define DEMURA_REGION_NAME_MAX 32 EXPORT_TRACEPOINT_SYMBOL(tracing_mark_write); static const char * const iommu_ports[] = { "mdp_0", }; /** * Controls size of event log buffer. Specified as a power of 2. */ #define SDE_EVTLOG_SIZE 1024 /* * To enable overall DRM driver logging * # echo 0x2 > /sys/module/drm/parameters/debug * * To enable DRM driver h/w logging * # echo > /sys/kernel/debug/dri/0/debug/hw_log_mask * * See sde_hw_mdss.h for h/w logging mask definitions (search for SDE_DBG_MASK_) */ #define SDE_DEBUGFS_DIR "msm_sde" #define SDE_DEBUGFS_HWMASKNAME "hw_log_mask" #define SDE_KMS_MODESET_LOCK_TIMEOUT_US 500 #define SDE_KMS_MODESET_LOCK_MAX_TRIALS 20 /** * sdecustom - enable certain driver customizations for sde clients * Enabling this modifies the standard DRM behavior slightly and assumes * that the clients have specific knowledge about the modifications that * are involved, so don't enable this unless you know what you're doing. * * Parts of the driver that are affected by this setting may be located by * searching for invocations of the 'sde_is_custom_client()' function. * * This is disabled by default. */ static bool sdecustom = true; module_param(sdecustom, bool, 0400); MODULE_PARM_DESC(sdecustom, "Enable customizations for sde clients"); static int sde_kms_hw_init(struct msm_kms *kms); static int _sde_kms_mmu_destroy(struct sde_kms *sde_kms); static int _sde_kms_mmu_init(struct sde_kms *sde_kms); static int _sde_kms_register_events(struct msm_kms *kms, struct drm_mode_object *obj, u32 event, bool en); static void sde_kms_handle_power_event(u32 event_type, void *usr); bool sde_is_custom_client(void) { return sdecustom; } #if IS_ENABLED(CONFIG_DEBUG_FS) void *sde_debugfs_get_root(struct sde_kms *sde_kms) { struct msm_drm_private *priv; if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private) return NULL; priv = sde_kms->dev->dev_private; return priv->debug_root; } static int _sde_debugfs_init(struct sde_kms *sde_kms) { void *p; int rc; void *debugfs_root; p = sde_hw_util_get_log_mask_ptr(); if (!sde_kms || !p) return -EINVAL; debugfs_root = sde_debugfs_get_root(sde_kms); if (!debugfs_root) return -EINVAL; /* allow debugfs_root to be NULL */ debugfs_create_x32(SDE_DEBUGFS_HWMASKNAME, 0600, debugfs_root, p); (void) sde_debugfs_vbif_init(sde_kms, debugfs_root); (void) sde_debugfs_core_irq_init(sde_kms, debugfs_root); rc = sde_core_perf_debugfs_init(&sde_kms->perf, debugfs_root); if (rc) { SDE_ERROR("failed to init perf %d\n", rc); return rc; } sde_rm_debugfs_init(&sde_kms->rm, debugfs_root); if (sde_kms->catalog->qdss_count) debugfs_create_u32("qdss", 0600, debugfs_root, (u32 *)&sde_kms->qdss_enabled); debugfs_create_u32("pm_suspend_clk_dump", 0600, debugfs_root, (u32 *)&sde_kms->pm_suspend_clk_dump); debugfs_create_u32("hw_fence_status", 0600, debugfs_root, (u32 *)&sde_kms->debugfs_hw_fence); return 0; } static void sde_kms_debugfs_destroy(struct msm_kms *kms) { struct sde_kms *sde_kms = to_sde_kms(kms); /* don't need to NULL check debugfs_root */ if (sde_kms) { sde_debugfs_vbif_destroy(sde_kms); sde_debugfs_core_irq_destroy(sde_kms); } } static int _sde_kms_dump_clks_state(struct sde_kms *sde_kms) { int i; struct device *dev = sde_kms->dev->dev; SDE_INFO("runtime PM suspended:%d", pm_runtime_suspended(dev)); for (i = 0; i < sde_kms->dsi_display_count; i++) dsi_display_dump_clks_state(sde_kms->dsi_displays[i]); return 0; } #else static int _sde_debugfs_init(struct sde_kms *sde_kms) { return 0; } static void sde_kms_debugfs_destroy(struct msm_kms *kms) { } static int _sde_kms_dump_clks_state(struct sde_kms *sde_kms) { return 0; } #endif /* CONFIG_DEBUG_FS */ static void sde_kms_wait_for_frame_transfer_complete(struct msm_kms *kms, struct drm_crtc *crtc) { struct drm_encoder *encoder; struct drm_device *dev; int ret; if (!kms || !crtc || !crtc->state || !crtc->dev) { SDE_ERROR("invalid params\n"); return; } if (!crtc->state->enable) { SDE_DEBUG("[crtc:%d] not enable\n", crtc->base.id); return; } if (!crtc->state->active) { SDE_DEBUG("[crtc:%d] not active\n", crtc->base.id); return; } dev = crtc->dev; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc != crtc) continue; /* * Video Mode - Wait for VSYNC * Cmd Mode - Wait for PP_DONE. Will be no-op if transfer is * complete */ SDE_EVT32_VERBOSE(DRMID(crtc)); ret = sde_encoder_wait_for_event(encoder, MSM_ENC_TX_COMPLETE); if (ret && ret != -EWOULDBLOCK) { SDE_ERROR( "[crtc: %d][enc: %d] wait for commit done returned %d\n", crtc->base.id, encoder->base.id, ret); break; } } } static int _sde_kms_secure_ctrl_xin_clients(struct sde_kms *sde_kms, struct drm_crtc *crtc, bool enable) { struct drm_device *dev; struct msm_drm_private *priv; struct sde_mdss_cfg *sde_cfg; struct drm_plane *plane; int i, ret; dev = sde_kms->dev; priv = dev->dev_private; sde_cfg = sde_kms->catalog; ret = sde_vbif_halt_xin_mask(sde_kms, sde_cfg->sui_block_xin_mask, enable); if (ret) { SDE_ERROR("failed to halt some xin-clients, ret:%d\n", ret); return ret; } if (enable) { for (i = 0; i < priv->num_planes; i++) { plane = priv->planes[i]; sde_plane_secure_ctrl_xin_client(plane, crtc); } } return 0; } /** * _sde_kms_scm_call - makes secure channel call to switch the VMIDs * @sde_kms: Pointer to sde_kms struct * @vimd: switch the stage 2 translation to this VMID */ static int _sde_kms_scm_call(struct sde_kms *sde_kms, int vmid) { struct device dummy = {}; dma_addr_t dma_handle; uint32_t num_sids; uint32_t *sec_sid; struct sde_mdss_cfg *sde_cfg = sde_kms->catalog; int ret = 0, i; struct qtee_shm shm; bool qtee_en = qtee_shmbridge_is_enabled(); phys_addr_t mem_addr; u64 mem_size; num_sids = sde_cfg->sec_sid_mask_count; if (!num_sids) { SDE_ERROR("secure SID masks not configured, vmid 0x%x\n", vmid); return -EINVAL; } if (qtee_en) { ret = qtee_shmbridge_allocate_shm(num_sids * sizeof(uint32_t), &shm); if (ret) return -ENOMEM; sec_sid = (uint32_t *) shm.vaddr; mem_addr = shm.paddr; /** * SMMUSecureModeSwitch requires the size to be number of SID's * but shm allocates size in pages. Modify the args as per * client requirement. */ mem_size = sizeof(uint32_t) * num_sids; } else { sec_sid = kcalloc(num_sids, sizeof(uint32_t), GFP_KERNEL); if (!sec_sid) return -ENOMEM; mem_addr = virt_to_phys(sec_sid); mem_size = sizeof(uint32_t) * num_sids; } for (i = 0; i < num_sids; i++) { sec_sid[i] = sde_cfg->sec_sid_mask[i]; SDE_DEBUG("sid_mask[%d]: %d\n", i, sec_sid[i]); } ret = dma_coerce_mask_and_coherent(&dummy, DMA_BIT_MASK(64)); if (ret) { SDE_ERROR("Failed to set dma mask for dummy dev %d\n", ret); goto map_error; } set_dma_ops(&dummy, NULL); dma_handle = dma_map_single(&dummy, sec_sid, num_sids * sizeof(uint32_t), DMA_TO_DEVICE); if (dma_mapping_error(&dummy, dma_handle)) { SDE_ERROR("dma_map_single for dummy dev failed vmid 0x%x\n", vmid); goto map_error; } SDE_DEBUG("calling scm_call for vmid 0x%x, num_sids %d, qtee_en %d", vmid, num_sids, qtee_en); ret = qcom_scm_mem_protect_sd_ctrl(MDP_DEVICE_ID, mem_addr, mem_size, vmid); if (ret) SDE_ERROR("Error:scm_call2, vmid %d, ret%d\n", vmid, ret); SDE_EVT32(MEM_PROTECT_SD_CTRL_SWITCH, MDP_DEVICE_ID, mem_size, vmid, qtee_en, num_sids, ret); dma_unmap_single(&dummy, dma_handle, num_sids * sizeof(uint32_t), DMA_TO_DEVICE); map_error: if (qtee_en) qtee_shmbridge_free_shm(&shm); else kfree(sec_sid); return ret; } static int _sde_kms_detach_all_cb(struct sde_kms *sde_kms, u32 vmid) { u32 ret; if (atomic_inc_return(&sde_kms->detach_all_cb) > 1) return 0; /* detach_all_contexts */ ret = sde_kms_mmu_detach(sde_kms, false); if (ret) { SDE_ERROR("failed to detach all cb ret:%d\n", ret); goto mmu_error; } ret = _sde_kms_scm_call(sde_kms, vmid); if (ret) { SDE_ERROR("scm call failed for vmid:%d\n", vmid); goto scm_error; } return 0; scm_error: sde_kms_mmu_attach(sde_kms, false); mmu_error: atomic_dec(&sde_kms->detach_all_cb); return ret; } static int _sde_kms_attach_all_cb(struct sde_kms *sde_kms, u32 vmid, u32 old_vmid) { u32 ret; if (atomic_dec_return(&sde_kms->detach_all_cb) != 0) return 0; ret = _sde_kms_scm_call(sde_kms, vmid); if (ret) { SDE_ERROR("scm call failed for vmid:%d\n", vmid); goto scm_error; } /* attach_all_contexts */ ret = sde_kms_mmu_attach(sde_kms, false); if (ret) { SDE_ERROR("failed to attach all cb ret:%d\n", ret); goto mmu_error; } return 0; mmu_error: _sde_kms_scm_call(sde_kms, old_vmid); scm_error: atomic_inc(&sde_kms->detach_all_cb); return ret; } static int _sde_kms_detach_sec_cb(struct sde_kms *sde_kms, int vmid) { u32 ret; if (atomic_inc_return(&sde_kms->detach_sec_cb) > 1) return 0; /* detach secure_context */ ret = sde_kms_mmu_detach(sde_kms, true); if (ret) { SDE_ERROR("failed to detach sec cb ret:%d\n", ret); goto mmu_error; } ret = _sde_kms_scm_call(sde_kms, vmid); if (ret) { SDE_ERROR("scm call failed for vmid:%d\n", vmid); goto scm_error; } return 0; scm_error: sde_kms_mmu_attach(sde_kms, true); mmu_error: atomic_dec(&sde_kms->detach_sec_cb); return ret; } static int _sde_kms_attach_sec_cb(struct sde_kms *sde_kms, u32 vmid, u32 old_vmid) { u32 ret; if (atomic_dec_return(&sde_kms->detach_sec_cb) != 0) return 0; ret = _sde_kms_scm_call(sde_kms, vmid); if (ret) { goto scm_error; SDE_ERROR("scm call failed for vmid:%d\n", vmid); } ret = sde_kms_mmu_attach(sde_kms, true); if (ret) { SDE_ERROR("failed to attach sec cb ret:%d\n", ret); goto mmu_error; } return 0; mmu_error: _sde_kms_scm_call(sde_kms, old_vmid); scm_error: atomic_inc(&sde_kms->detach_sec_cb); return ret; } static int _sde_kms_sui_misr_ctrl(struct sde_kms *sde_kms, struct drm_crtc *crtc, bool enable) { int ret; if (enable) { ret = pm_runtime_resume_and_get(sde_kms->dev->dev); if (ret < 0) { SDE_ERROR("failed to enable power resource %d\n", ret); SDE_EVT32(ret, SDE_EVTLOG_ERROR); return ret; } sde_crtc_misr_setup(crtc, true, 1); ret = _sde_kms_secure_ctrl_xin_clients(sde_kms, crtc, true); if (ret) { sde_crtc_misr_setup(crtc, false, 0); pm_runtime_put_sync(sde_kms->dev->dev); return ret; } } else { _sde_kms_secure_ctrl_xin_clients(sde_kms, crtc, false); sde_crtc_misr_setup(crtc, false, 0); pm_runtime_put_sync(sde_kms->dev->dev); } return 0; } static int _sde_kms_secure_ctrl(struct sde_kms *sde_kms, struct drm_crtc *crtc, bool post_commit) { struct sde_kms_smmu_state_data *smmu_state = &sde_kms->smmu_state; int old_smmu_state = smmu_state->state; int ret = 0; u32 vmid; if (!sde_kms || !crtc) { SDE_ERROR("invalid argument(s)\n"); return -EINVAL; } SDE_EVT32(DRMID(crtc), smmu_state->state, smmu_state->transition_type, post_commit, smmu_state->sui_misr_state, smmu_state->secure_level, SDE_EVTLOG_FUNC_ENTRY); if ((!smmu_state->transition_type) || ((smmu_state->transition_type == POST_COMMIT) && !post_commit)) /* Bail out */ return 0; /* enable sui misr if requested, before the transition */ if (smmu_state->sui_misr_state == SUI_MISR_ENABLE_REQ) { ret = _sde_kms_sui_misr_ctrl(sde_kms, crtc, true); if (ret) { smmu_state->sui_misr_state = NONE; goto end; } } mutex_lock(&sde_kms->secure_transition_lock); switch (smmu_state->state) { case DETACH_ALL_REQ: ret = _sde_kms_detach_all_cb(sde_kms, VMID_CP_SEC_DISPLAY); if (!ret) smmu_state->state = DETACHED; break; case ATTACH_ALL_REQ: ret = _sde_kms_attach_all_cb(sde_kms, VMID_CP_PIXEL, VMID_CP_SEC_DISPLAY); if (!ret) { smmu_state->state = ATTACHED; smmu_state->secure_level = SDE_DRM_SEC_NON_SEC; } break; case DETACH_SEC_REQ: vmid = (smmu_state->secure_level == SDE_DRM_SEC_ONLY) ? VMID_CP_SEC_DISPLAY : VMID_CP_CAMERA_PREVIEW; ret = _sde_kms_detach_sec_cb(sde_kms, vmid); if (!ret) smmu_state->state = DETACHED_SEC; break; case ATTACH_SEC_REQ: vmid = (smmu_state->secure_level == SDE_DRM_SEC_ONLY) ? VMID_CP_SEC_DISPLAY : VMID_CP_CAMERA_PREVIEW; ret = _sde_kms_attach_sec_cb(sde_kms, VMID_CP_PIXEL, vmid); if (!ret) { smmu_state->state = ATTACHED; smmu_state->secure_level = SDE_DRM_SEC_NON_SEC; } break; default: SDE_ERROR("crtc%d: invalid smmu state %d transition type %d\n", DRMID(crtc), smmu_state->state, smmu_state->transition_type); ret = -EINVAL; break; } mutex_unlock(&sde_kms->secure_transition_lock); /* disable sui misr if requested, after the transition */ if (!ret && (smmu_state->sui_misr_state == SUI_MISR_DISABLE_REQ)) { ret = _sde_kms_sui_misr_ctrl(sde_kms, crtc, false); if (ret) goto end; } end: smmu_state->transition_error = false; if (ret) { smmu_state->transition_error = true; SDE_ERROR( "crtc%d: req_state %d, new_state %d, sec_lvl %d, ret %d\n", DRMID(crtc), old_smmu_state, smmu_state->state, smmu_state->secure_level, ret); smmu_state->state = smmu_state->prev_state; smmu_state->secure_level = smmu_state->prev_secure_level; if (smmu_state->sui_misr_state == SUI_MISR_ENABLE_REQ) _sde_kms_sui_misr_ctrl(sde_kms, crtc, false); } SDE_DEBUG("crtc %d: req_state %d, new_state %d, sec_lvl %d, ret %d\n", DRMID(crtc), old_smmu_state, smmu_state->state, smmu_state->secure_level, ret); SDE_EVT32(DRMID(crtc), smmu_state->state, smmu_state->prev_state, smmu_state->transition_type, smmu_state->transition_error, smmu_state->secure_level, smmu_state->prev_secure_level, smmu_state->sui_misr_state, ret, SDE_EVTLOG_FUNC_EXIT); smmu_state->sui_misr_state = NONE; smmu_state->transition_type = NONE; return ret; } static int sde_kms_prepare_secure_transition(struct msm_kms *kms, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state; struct drm_plane_state *old_plane_state, *new_plane_state; struct drm_plane *plane; struct drm_plane_state *plane_state; struct sde_kms *sde_kms = to_sde_kms(kms); struct drm_device *dev = sde_kms->dev; int i, ops = 0, ret = 0; bool old_valid_fb = false; struct sde_kms_smmu_state_data *smmu_state = &sde_kms->smmu_state; for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) { if (!crtc->state || !crtc->state->active) continue; /* * It is safe to assume only one active crtc, * and compatible translation modes on the * planes staged on this crtc. * otherwise validation would have failed. * For this CRTC, */ /* * 1. Check if old state on the CRTC has planes * staged with valid fbs */ for_each_old_plane_in_state(state, plane, plane_state, i) { if (!plane_state->crtc) continue; if (plane_state->fb) { old_valid_fb = true; break; } } /* * 2.Get the operations needed to be performed before * secure transition can be initiated. */ ops = sde_crtc_get_secure_transition_ops(crtc, old_crtc_state, old_valid_fb); if (ops < 0) { SDE_ERROR("invalid secure operations %x\n", ops); return ops; } if (!ops) { smmu_state->transition_error = false; goto no_ops; } SDE_DEBUG("%d:secure operations(%x) started on state:%pK\n", crtc->base.id, ops, crtc->state); SDE_EVT32(DRMID(crtc), ops, crtc->state, old_valid_fb); /* 3. Perform operations needed for secure transition */ if (ops & SDE_KMS_OPS_WAIT_FOR_TX_DONE) { SDE_DEBUG("wait_for_transfer_done\n"); sde_kms_wait_for_frame_transfer_complete(kms, crtc); } if (ops & SDE_KMS_OPS_CLEANUP_PLANE_FB) { SDE_DEBUG("cleanup planes\n"); drm_atomic_helper_cleanup_planes(dev, state); for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) sde_plane_destroy_fb(old_plane_state); } if (ops & SDE_KMS_OPS_SECURE_STATE_CHANGE) { SDE_DEBUG("secure ctrl\n"); _sde_kms_secure_ctrl(sde_kms, crtc, false); } if (ops & SDE_KMS_OPS_PREPARE_PLANE_FB) { SDE_DEBUG("prepare planes %d", crtc->state->plane_mask); drm_atomic_crtc_for_each_plane(plane, crtc) { const struct drm_plane_helper_funcs *funcs; plane_state = plane->state; funcs = plane->helper_private; SDE_DEBUG("psde:%d FB[%u]\n", plane->base.id, plane->fb->base.id); if (!funcs) continue; if (funcs->prepare_fb(plane, plane_state)) { ret = funcs->prepare_fb(plane, plane_state); if (ret) return ret; } } } SDE_EVT32(DRMID(crtc), SDE_EVTLOG_FUNC_EXIT); SDE_DEBUG("secure operations completed\n"); } no_ops: return 0; } static int _sde_kms_release_shared_buffer(unsigned long mem_addr, unsigned int splash_buffer_size, unsigned int ramdump_base, unsigned int ramdump_buffer_size) { unsigned long pfn_start, pfn_end, pfn_idx; int ret = 0; if (!mem_addr || !splash_buffer_size) { SDE_ERROR("invalid params\n"); return -EINVAL; } /* leave ramdump memory only if base address matches */ if (ramdump_base == mem_addr && ramdump_buffer_size <= splash_buffer_size) { mem_addr += ramdump_buffer_size; splash_buffer_size -= ramdump_buffer_size; } pfn_start = mem_addr >> PAGE_SHIFT; pfn_end = (mem_addr + splash_buffer_size) >> PAGE_SHIFT; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 19, 0)) memblock_free((unsigned int*)mem_addr, splash_buffer_size); #else ret = memblock_free(mem_addr, splash_buffer_size); if (ret) { SDE_ERROR("continuous splash memory free failed:%d\n", ret); return ret; } #endif for (pfn_idx = pfn_start; pfn_idx < pfn_end; pfn_idx++) free_reserved_page(pfn_to_page(pfn_idx)); return ret; } static int _sde_kms_one2one_mem_map_ipcc_reg(struct sde_kms *sde_kms, u32 buf_size, unsigned long buf_base) { struct msm_mmu *mmu = NULL; int ret = 0; if (!sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE] || !sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]->mmu) { SDE_ERROR("aspace not found for sde kms node\n"); return -EINVAL; } mmu = sde_kms->aspace[MSM_SMMU_DOMAIN_UNSECURE]->mmu; if (!mmu) { SDE_ERROR("mmu not found for aspace\n"); return -EINVAL; } if (!mmu->funcs || !mmu->funcs->one_to_one_map) { SDE_ERROR("invalid input params for map\n"); return -EINVAL; } ret = mmu->funcs->one_to_one_map(mmu, buf_base, buf_base, buf_size, IOMMU_READ | IOMMU_WRITE); if (ret) SDE_ERROR("one2one memory smmu map failed:%d\n", ret); return ret; } static int _sde_kms_splash_mem_get(struct sde_kms *sde_kms, struct sde_splash_mem *splash) { struct msm_mmu *mmu = NULL; int ret = 0; if (!sde_kms->aspace[0]) { SDE_ERROR("aspace not found for sde kms node\n"); return -EINVAL; } mmu = sde_kms->aspace[0]->mmu; if (!mmu) { SDE_ERROR("mmu not found for aspace\n"); return -EINVAL; } if (!splash || !mmu->funcs || !mmu->funcs->one_to_one_map) { SDE_ERROR("invalid input params for map\n"); return -EINVAL; } if (!splash->ref_cnt) { ret = mmu->funcs->one_to_one_map(mmu, splash->splash_buf_base, splash->splash_buf_base, splash->splash_buf_size, IOMMU_READ | IOMMU_NOEXEC); if (ret) SDE_ERROR("splash memory smmu map failed:%d\n", ret); } splash->ref_cnt++; SDE_DEBUG("one2one mapping done for base:%lx size:%x ref_cnt:%d\n", splash->splash_buf_base, splash->splash_buf_size, splash->ref_cnt); return ret; } static int _sde_kms_map_all_splash_regions(struct sde_kms *sde_kms) { int i = 0; int ret = 0; struct sde_splash_mem *region; if (!sde_kms) return -EINVAL; for (i = 0; i < sde_kms->splash_data.num_splash_displays; i++) { region = sde_kms->splash_data.splash_display[i].splash; ret = _sde_kms_splash_mem_get(sde_kms, region); if (ret) return ret; /* Demura is optional and need not exist */ region = sde_kms->splash_data.splash_display[i].demura; if (region) { ret = _sde_kms_splash_mem_get(sde_kms, region); if (ret) return ret; } } return ret; } static int _sde_kms_splash_mem_put(struct sde_kms *sde_kms, struct sde_splash_mem *splash) { struct msm_mmu *mmu = NULL; int rc = 0; if (!sde_kms || !sde_kms->aspace[0] || !sde_kms->aspace[0]->mmu) { SDE_ERROR("invalid params\n"); return -EINVAL; } mmu = sde_kms->aspace[0]->mmu; if (!splash || !splash->ref_cnt || !mmu || !mmu->funcs || !mmu->funcs->one_to_one_unmap) return -EINVAL; splash->ref_cnt--; SDE_DEBUG("splash base:%lx refcnt:%d\n", splash->splash_buf_base, splash->ref_cnt); if (!splash->ref_cnt) { mmu->funcs->one_to_one_unmap(mmu, splash->splash_buf_base, splash->splash_buf_size); rc = _sde_kms_release_shared_buffer(splash->splash_buf_base, splash->splash_buf_size, splash->ramdump_base, splash->ramdump_size); splash->splash_buf_base = 0; splash->splash_buf_size = 0; } return rc; } static int _sde_kms_unmap_all_splash_regions(struct sde_kms *sde_kms) { int i = 0; int ret = 0, failure = 0; struct sde_splash_mem *region; if (!sde_kms || !sde_kms->splash_data.num_splash_regions) return -EINVAL; for (i = 0; i < sde_kms->splash_data.num_splash_displays; i++) { region = sde_kms->splash_data.splash_display[i].splash; ret = _sde_kms_splash_mem_put(sde_kms, region); if (ret) { failure = 1; pr_err("Error unmapping splash mem for display %d\n", i); } /* Demura is optional and need not exist */ region = sde_kms->splash_data.splash_display[i].demura; if (region) { ret = _sde_kms_splash_mem_put(sde_kms, region); if (ret) { failure = 1; pr_err("Error unmapping demura mem for display %d\n", i); } } } if (failure) ret = -EINVAL; return ret; } static int _sde_kms_get_blank(struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { int lp_mode, blank; if (crtc_state->active) lp_mode = sde_connector_get_property(conn_state, CONNECTOR_PROP_LP); else lp_mode = SDE_MODE_DPMS_OFF; switch (lp_mode) { case SDE_MODE_DPMS_ON: blank = DRM_PANEL_EVENT_UNBLANK; break; case SDE_MODE_DPMS_LP1: case SDE_MODE_DPMS_LP2: blank = DRM_PANEL_EVENT_BLANK_LP; break; case SDE_MODE_DPMS_OFF: default: blank = DRM_PANEL_EVENT_BLANK; break; } return blank; } static void _sde_kms_drm_check_dpms(struct drm_atomic_state *old_state, bool is_pre_commit) { struct panel_event_notification notification; struct drm_connector *connector; struct drm_connector_state *old_conn_state; struct drm_crtc_state *old_crtc_state; struct drm_crtc *crtc; struct sde_connector *c_conn; int i, old_mode, new_mode, old_fps, new_fps; enum panel_event_notifier_tag panel_type; for_each_old_connector_in_state(old_state, connector, old_conn_state, i) { crtc = connector->state->crtc ? connector->state->crtc : old_conn_state->crtc; if (!crtc) continue; new_fps = drm_mode_vrefresh(&crtc->state->mode); new_mode = _sde_kms_get_blank(crtc->state, connector->state); if (old_conn_state->crtc) { old_crtc_state = drm_atomic_get_existing_crtc_state( old_state, old_conn_state->crtc); old_fps = drm_mode_vrefresh(&old_crtc_state->mode); old_mode = _sde_kms_get_blank(old_crtc_state, old_conn_state); } else { old_fps = 0; old_mode = DRM_PANEL_EVENT_BLANK; } if ((old_mode != new_mode) || (old_fps != new_fps)) { c_conn = to_sde_connector(connector); SDE_EVT32(old_mode, new_mode, old_fps, new_fps, c_conn->panel, crtc->state->active, old_conn_state->crtc); pr_debug("change detected for connector:%s (power mode %d->%d, fps %d->%d)\n", c_conn->name, old_mode, new_mode, old_fps, new_fps); /* If suspend resume and fps change are happening * at the same time, give preference to power mode * changes rather than fps change. */ if ((old_mode == new_mode) && (old_fps != new_fps)) new_mode = DRM_PANEL_EVENT_FPS_CHANGE; if (!c_conn->panel) continue; panel_type = sde_encoder_is_primary_display( connector->encoder) ? PANEL_EVENT_NOTIFICATION_PRIMARY : PANEL_EVENT_NOTIFICATION_SECONDARY; notification.notif_type = new_mode; notification.panel = c_conn->panel; notification.notif_data.old_fps = old_fps; notification.notif_data.new_fps = new_fps; notification.notif_data.early_trigger = is_pre_commit; panel_event_notification_trigger(panel_type, ¬ification); } } } static struct drm_crtc *sde_kms_vm_get_vm_crtc( struct drm_atomic_state *state) { int i; enum sde_crtc_vm_req vm_req = VM_REQ_NONE; struct drm_crtc *crtc, *vm_crtc = NULL; struct drm_crtc_state *new_cstate, *old_cstate; struct sde_crtc_state *vm_cstate; for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) { if (!new_cstate->active && !old_cstate->active) continue; vm_cstate = to_sde_crtc_state(new_cstate); vm_req = sde_crtc_get_property(vm_cstate, CRTC_PROP_VM_REQ_STATE); if (vm_req != VM_REQ_NONE) { SDE_DEBUG("valid vm request:%d found on crtc-%d\n", vm_req, crtc->base.id); vm_crtc = crtc; break; } } return vm_crtc; } static void _sde_kms_update_pm_qos_irq_request(struct sde_kms *sde_kms, const cpumask_t *mask) { struct device *cpu_dev; int cpu = 0; u32 cpu_irq_latency = sde_kms->catalog->perf.cpu_irq_latency; // save irq cpu mask sde_kms->irq_cpu_mask = *mask; if (cpumask_empty(&sde_kms->irq_cpu_mask)) { SDE_DEBUG("%s: irq_cpu_mask is empty\n", __func__); return; } for_each_cpu(cpu, &sde_kms->irq_cpu_mask) { cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { SDE_DEBUG("%s: failed to get cpu%d device\n", __func__, cpu); continue; } if (dev_pm_qos_request_active(&sde_kms->pm_qos_irq_req[cpu])) dev_pm_qos_update_request(&sde_kms->pm_qos_irq_req[cpu], cpu_irq_latency); else dev_pm_qos_add_request(cpu_dev, &sde_kms->pm_qos_irq_req[cpu], DEV_PM_QOS_RESUME_LATENCY, cpu_irq_latency); } } static void _sde_kms_remove_pm_qos_irq_request(struct sde_kms *sde_kms, const cpumask_t *mask) { struct device *cpu_dev; int cpu = 0; if (cpumask_empty(mask)) { SDE_DEBUG("%s: irq_cpu_mask is empty\n", __func__); return; } for_each_cpu(cpu, mask) { cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { SDE_DEBUG("%s: failed to get cpu%d device\n", __func__, cpu); continue; } if (dev_pm_qos_request_active(&sde_kms->pm_qos_irq_req[cpu])) dev_pm_qos_remove_request( &sde_kms->pm_qos_irq_req[cpu]); } } int sde_kms_vm_primary_prepare_commit(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct drm_device *ddev; struct drm_crtc *crtc; struct drm_crtc_state *new_cstate; struct drm_encoder *encoder; struct drm_connector *connector; struct sde_vm_ops *vm_ops; struct sde_crtc_state *cstate; struct drm_connector_list_iter iter; enum sde_crtc_vm_req vm_req; int rc = 0; ddev = sde_kms->dev; vm_ops = sde_vm_get_ops(sde_kms); if (!vm_ops) return -EINVAL; crtc = sde_kms_vm_get_vm_crtc(state); if (!crtc) return 0; new_cstate = drm_atomic_get_new_crtc_state(state, crtc); cstate = to_sde_crtc_state(new_cstate); vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE); if (vm_req != VM_REQ_ACQUIRE) return 0; /* enable MDSS irq line */ sde_irq_update(&sde_kms->base, true); /* clear the stale IRQ status bits */ if (sde_kms->hw_intr && sde_kms->hw_intr->ops.clear_all_irqs) sde_kms->hw_intr->ops.clear_all_irqs(sde_kms->hw_intr); _sde_kms_remove_pm_qos_irq_request(sde_kms, &CPU_MASK_ALL); /* enable the display path IRQ's */ drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { if (sde_encoder_in_clone_mode(encoder)) continue; sde_encoder_irq_control(encoder, true); } /* Schedule ESD work */ drm_connector_list_iter_begin(ddev, &iter); drm_for_each_connector_iter(connector, &iter) if (drm_connector_mask(connector) & crtc->state->connector_mask) sde_connector_schedule_status_work(connector, true); drm_connector_list_iter_end(&iter); /* enable vblank events */ drm_crtc_vblank_on(crtc); sde_dbg_set_hw_ownership_status(true); /* handle non-SDE pre_acquire */ if (vm_ops->vm_client_post_acquire) rc = vm_ops->vm_client_post_acquire(sde_kms); return rc; } void sde_kms_vm_set_sid(struct sde_kms *sde_kms, u32 vm) { struct drm_plane *plane; struct drm_device *ddev; struct sde_mdss_cfg *sde_cfg; ddev = sde_kms->dev; sde_cfg = sde_kms->catalog; list_for_each_entry(plane, &ddev->mode_config.plane_list, head) sde_plane_set_sid(plane, vm); if (sde_kms->hw_sid && sde_kms->hw_sid->ops.set_vm_sid) sde_kms->hw_sid->ops.set_vm_sid(sde_kms->hw_sid, vm, sde_kms->catalog); } int sde_kms_vm_trusted_prepare_commit(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *new_cstate; struct sde_crtc_state *cstate; enum sde_crtc_vm_req vm_req; crtc = sde_kms_vm_get_vm_crtc(state); if (!crtc) return 0; new_cstate = drm_atomic_get_new_crtc_state(state, crtc); cstate = to_sde_crtc_state(new_cstate); vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE); if (vm_req != VM_REQ_ACQUIRE) return 0; /* Clear the stale IRQ status bits */ if (sde_kms->hw_intr && sde_kms->hw_intr->ops.clear_all_irqs) sde_kms->hw_intr->ops.clear_all_irqs(sde_kms->hw_intr); /* Program the SID's for the trusted VM */ sde_kms_vm_set_sid(sde_kms, 1); sde_dbg_set_hw_ownership_status(true); return 0; } static void sde_kms_prepare_commit(struct msm_kms *kms, struct drm_atomic_state *state) { struct sde_kms *sde_kms; struct msm_drm_private *priv; struct drm_device *dev; struct drm_encoder *encoder; struct drm_crtc *crtc; struct drm_crtc_state *cstate; struct sde_vm_ops *vm_ops; int i, rc; if (!kms) return; sde_kms = to_sde_kms(kms); dev = sde_kms->dev; if (!dev || !dev->dev_private) return; priv = dev->dev_private; SDE_ATRACE_BEGIN("prepare_commit"); rc = pm_runtime_resume_and_get(sde_kms->dev->dev); if (rc < 0) { SDE_ERROR("failed to enable power resources %d\n", rc); SDE_EVT32(rc, SDE_EVTLOG_ERROR); goto end; } if (sde_kms->first_kickoff) { sde_power_scale_reg_bus(&priv->phandle, VOTE_INDEX_HIGH, false); sde_kms->first_kickoff = false; } for_each_new_crtc_in_state(state, crtc, cstate, i) { drm_for_each_encoder_mask(encoder, dev, cstate->encoder_mask) { if (sde_encoder_prepare_commit(encoder) == -ETIMEDOUT) { SDE_ERROR("crtc:%d, initiating hw reset\n", DRMID(crtc)); sde_encoder_needs_hw_reset(encoder); sde_crtc_set_needs_hw_reset(crtc); } } } /* * NOTE: for secure use cases we want to apply the new HW * configuration only after completing preparation for secure * transitions prepare below if any transtions is required. */ sde_kms_prepare_secure_transition(kms, state); vm_ops = sde_vm_get_ops(sde_kms); if (!vm_ops) goto end_vm; if (vm_ops->vm_prepare_commit) vm_ops->vm_prepare_commit(sde_kms, state); end_vm: _sde_kms_drm_check_dpms(state, true); end: SDE_ATRACE_END("prepare_commit"); } static void sde_kms_commit(struct msm_kms *kms, struct drm_atomic_state *old_state) { struct sde_kms *sde_kms; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state; int i; if (!kms || !old_state) return; sde_kms = to_sde_kms(kms); if (!sde_kms_power_resource_is_enabled(sde_kms->dev)) { SDE_ERROR("power resource is not enabled\n"); return; } SDE_ATRACE_BEGIN("sde_kms_commit"); for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { if (crtc->state->active) { SDE_EVT32(DRMID(crtc), old_state); sde_crtc_commit_kickoff(crtc, old_crtc_state); } } SDE_ATRACE_END("sde_kms_commit"); } static void _sde_kms_free_splash_display_data(struct sde_kms *sde_kms, struct sde_splash_display *splash_display) { if (!sde_kms || !splash_display || !sde_kms->splash_data.num_splash_displays) return; if (sde_kms->splash_data.num_splash_regions) { _sde_kms_splash_mem_put(sde_kms, splash_display->splash); if (splash_display->demura) _sde_kms_splash_mem_put(sde_kms, splash_display->demura); } sde_kms->splash_data.num_splash_displays--; SDE_DEBUG("cont_splash handoff done, remaining:%d\n", sde_kms->splash_data.num_splash_displays); memset(splash_display, 0x0, sizeof(struct sde_splash_display)); } static void _sde_kms_release_splash_resource(struct sde_kms *sde_kms, struct drm_crtc *crtc) { struct msm_drm_private *priv; struct sde_splash_display *splash_display; int i; if (!sde_kms || !crtc) return; priv = sde_kms->dev->dev_private; if (!crtc->state->active || !sde_kms->splash_data.num_splash_displays) return; SDE_EVT32(DRMID(crtc), crtc->state->active, sde_kms->splash_data.num_splash_displays); for (i = 0; i < MAX_DSI_DISPLAYS; i++) { splash_display = &sde_kms->splash_data.splash_display[i]; if (splash_display->encoder && crtc == splash_display->encoder->crtc) break; } if (i >= MAX_DSI_DISPLAYS) return; if (splash_display->cont_splash_enabled) { sde_encoder_update_caps_for_cont_splash(splash_display->encoder, splash_display, false); _sde_kms_free_splash_display_data(sde_kms, splash_display); } /* remove the votes if all displays are done with splash */ if (!sde_kms->splash_data.num_splash_displays) { for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++) sde_power_data_bus_set_quota(&priv->phandle, i, SDE_POWER_HANDLE_ENABLE_BUS_AB_QUOTA, priv->phandle.ib_quota[i] ? priv->phandle.ib_quota[i] : SDE_POWER_HANDLE_ENABLE_BUS_IB_QUOTA); pm_runtime_put_sync(sde_kms->dev->dev); } } static void sde_kms_cancel_delayed_work(struct drm_crtc *crtc) { struct drm_connector *connector; struct drm_connector_list_iter iter; struct drm_encoder *encoder; /* Cancel CRTC work */ sde_crtc_cancel_delayed_work(crtc); /* Cancel ESD work */ drm_connector_list_iter_begin(crtc->dev, &iter); drm_for_each_connector_iter(connector, &iter) if (drm_connector_mask(connector) & crtc->state->connector_mask) sde_connector_schedule_status_work(connector, false); drm_connector_list_iter_end(&iter); /* Cancel Idle-PC work */ drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { if (sde_encoder_in_clone_mode(encoder)) continue; sde_encoder_cancel_delayed_work(encoder); } } int sde_kms_vm_pre_release(struct sde_kms *sde_kms, struct drm_atomic_state *state, bool is_primary) { struct drm_crtc *crtc; struct drm_encoder *encoder; struct msm_drm_private *priv; int rc = 0; crtc = sde_kms_vm_get_vm_crtc(state); if (!crtc) return 0; priv = sde_kms->dev->dev_private; /* if vm_req is enabled, once CRTC on the commit is guaranteed */ sde_kms_wait_for_frame_transfer_complete(&sde_kms->base, crtc); sde_dbg_set_hw_ownership_status(false); sde_kms_cancel_delayed_work(crtc); kthread_flush_worker(&priv->event_thread[crtc->index].worker); /* Flush pp_event thread queue for any pending events */ kthread_flush_worker(&priv->pp_event_worker); /* disable SDE encoder irq's */ drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { if (sde_encoder_in_clone_mode(encoder)) continue; sde_encoder_irq_control(encoder, false); } if (is_primary) { _sde_kms_update_pm_qos_irq_request(sde_kms, &CPU_MASK_ALL); /* disable vblank events */ drm_crtc_vblank_off(crtc); /* reset sw state */ sde_crtc_reset_sw_state(crtc); } return rc; } int sde_kms_vm_trusted_post_commit(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct sde_vm_ops *vm_ops; struct drm_crtc *crtc; struct sde_crtc_state *cstate; struct drm_crtc_state *new_cstate; enum sde_crtc_vm_req vm_req; int rc = 0; if (!sde_kms || !sde_vm_is_enabled(sde_kms)) return -EINVAL; vm_ops = sde_vm_get_ops(sde_kms); crtc = sde_kms_vm_get_vm_crtc(state); if (sde_kms->vm->lastclose_in_progress && !crtc) { sde_dbg_set_hw_ownership_status(false); goto relase_vm; } if (!crtc) return 0; new_cstate = drm_atomic_get_new_crtc_state(state, crtc); cstate = to_sde_crtc_state(new_cstate); vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE); if (vm_req != VM_REQ_RELEASE) return 0; relase_vm: sde_kms_vm_pre_release(sde_kms, state, false); sde_kms_vm_set_sid(sde_kms, 0); sde_vm_lock(sde_kms); if (vm_ops->vm_release) rc = vm_ops->vm_release(sde_kms); sde_vm_unlock(sde_kms); return rc; } int sde_kms_vm_primary_post_commit(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct sde_vm_ops *vm_ops; struct sde_crtc_state *cstate; struct drm_crtc *crtc; struct drm_crtc_state *new_cstate; enum sde_crtc_vm_req vm_req; int rc = 0; if (!sde_kms || !sde_vm_is_enabled(sde_kms)) return -EINVAL; vm_ops = sde_vm_get_ops(sde_kms); crtc = sde_kms_vm_get_vm_crtc(state); if (!crtc) return 0; new_cstate = drm_atomic_get_new_crtc_state(state, crtc); cstate = to_sde_crtc_state(new_cstate); vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE); if (vm_req != VM_REQ_RELEASE) return 0; /* handle SDE pre-release */ rc = sde_kms_vm_pre_release(sde_kms, state, true); if (rc) { SDE_ERROR("sde vm pre_release failed, rc=%d\n", rc); goto exit; } /* properly handoff color processing features */ sde_cp_crtc_vm_primary_handoff(crtc); sde_vm_lock(sde_kms); /* handle non-SDE clients pre-release */ if (vm_ops->vm_client_pre_release) { rc = vm_ops->vm_client_pre_release(sde_kms); if (rc) { SDE_ERROR("sde vm client pre_release failed, rc=%d\n", rc); sde_vm_unlock(sde_kms); goto exit; } } /* disable IRQ line */ sde_irq_update(&sde_kms->base, false); /* release HW */ if (vm_ops->vm_release) { rc = vm_ops->vm_release(sde_kms); if (rc) SDE_ERROR("sde vm assign failed, rc=%d\n", rc); } sde_vm_unlock(sde_kms); _sde_crtc_vm_release_notify(crtc); exit: return rc; } static void sde_kms_complete_commit(struct msm_kms *kms, struct drm_atomic_state *old_state) { struct sde_kms *sde_kms; struct msm_drm_private *priv; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state; struct drm_connector *connector; struct drm_connector_state *old_conn_state; struct msm_display_conn_params params; struct sde_vm_ops *vm_ops; int i, rc = 0; if (!kms || !old_state) return; sde_kms = to_sde_kms(kms); if (!sde_kms->dev || !sde_kms->dev->dev_private) return; priv = sde_kms->dev->dev_private; if (!sde_kms_power_resource_is_enabled(sde_kms->dev)) { SDE_ERROR("power resource is not enabled\n"); return; } SDE_ATRACE_BEGIN("sde_kms_complete_commit"); for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { sde_crtc_complete_commit(crtc, old_crtc_state); /* complete secure transitions if any */ if (sde_kms->smmu_state.transition_type == POST_COMMIT) _sde_kms_secure_ctrl(sde_kms, crtc, true); } for_each_old_connector_in_state(old_state, connector, old_conn_state, i) { struct sde_connector *c_conn; c_conn = to_sde_connector(connector); if (!c_conn->ops.post_kickoff) continue; memset(¶ms, 0, sizeof(params)); sde_connector_complete_qsync_commit(connector, ¶ms); rc = c_conn->ops.post_kickoff(connector, ¶ms); if (rc) { pr_err("Connector Post kickoff failed rc=%d\n", rc); } } vm_ops = sde_vm_get_ops(sde_kms); if (vm_ops && vm_ops->vm_post_commit) { rc = vm_ops->vm_post_commit(sde_kms, old_state); if (rc) SDE_ERROR("vm post commit failed, rc = %d\n", rc); } _sde_kms_drm_check_dpms(old_state, false); pm_runtime_put_sync(sde_kms->dev->dev); for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) _sde_kms_release_splash_resource(sde_kms, crtc); SDE_EVT32_VERBOSE(SDE_EVTLOG_FUNC_EXIT); SDE_ATRACE_END("sde_kms_complete_commit"); } static void sde_kms_wait_for_commit_done(struct msm_kms *kms, struct drm_crtc *crtc) { struct sde_kms *sde_kms; struct drm_encoder *encoder, *cwb_enc = NULL; struct drm_device *dev; int ret; bool cwb_disabling; if (!kms || !crtc || !crtc->state) { SDE_ERROR("invalid params\n"); return; } dev = crtc->dev; sde_kms = to_sde_kms(kms); if (!crtc->state->enable) { SDE_DEBUG("[crtc:%d] not enable\n", crtc->base.id); return; } if (!crtc->state->active) { SDE_DEBUG("[crtc:%d] not active\n", crtc->base.id); return; } if (!sde_kms_power_resource_is_enabled(crtc->dev)) { SDE_ERROR("power resource is not enabled\n"); return; } SDE_ATRACE_BEGIN("sde_kms_wait_for_commit_done"); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { cwb_disabling = false; if (encoder->crtc != crtc) { cwb_disabling = sde_encoder_is_cwb_disabling(encoder, crtc); if (cwb_disabling) cwb_enc = encoder; else continue; } /* * Wait for post-flush if necessary to delay before * plane_cleanup. For example, wait for vsync in case of video * mode panels. This may be a no-op for command mode panels. */ SDE_EVT32_VERBOSE(DRMID(crtc)); ret = sde_encoder_wait_for_event(encoder, cwb_disabling ? MSM_ENC_TX_COMPLETE : MSM_ENC_COMMIT_DONE); if (ret && ret != -EWOULDBLOCK) { SDE_ERROR("crtc:%d, enc:%d, cwb_d:%d, wait for commit done failed ret:%d\n", DRMID(crtc), DRMID(encoder), cwb_disabling, ret); SDE_EVT32(DRMID(crtc), DRMID(encoder), cwb_disabling, ret, SDE_EVTLOG_ERROR); sde_crtc_request_frame_reset(crtc, encoder); break; } sde_encoder_hw_fence_error_handle(encoder); sde_crtc_complete_flip(crtc, NULL); } if (cwb_enc) sde_encoder_virt_reset(cwb_enc); if (drm_atomic_crtc_needs_modeset(crtc->state)) { drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) sde_encoder_reset_kickoff_timeout_ms(encoder); } /* avoid system cache update to set rd-noalloc bit when NSE feature is enabled */ if (!test_bit(SDE_FEATURE_SYS_CACHE_NSE, sde_kms->catalog->features)) sde_crtc_static_cache_read_kickoff(crtc); SDE_ATRACE_END("sde_kms_wait_for_commit_done"); } static void sde_kms_prepare_fence(struct msm_kms *kms, struct drm_atomic_state *old_state) { struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state; int i; if (!kms || !old_state || !old_state->dev || !old_state->acquire_ctx) { SDE_ERROR("invalid argument(s)\n"); return; } SDE_ATRACE_BEGIN("sde_kms_prepare_fence"); /* old_state actually contains updated crtc pointers */ for_each_old_crtc_in_state(old_state, crtc, old_crtc_state, i) { if (crtc->state->active || crtc->state->active_changed) sde_crtc_prepare_commit(crtc, old_crtc_state); } SDE_ATRACE_END("sde_kms_prepare_fence"); } /** * _sde_kms_get_displays - query for underlying display handles and cache them * @sde_kms: Pointer to sde kms structure * Returns: Zero on success */ static int _sde_kms_get_displays(struct sde_kms *sde_kms) { int rc = -ENOMEM; if (!sde_kms) { SDE_ERROR("invalid sde kms\n"); return -EINVAL; } /* dsi */ sde_kms->dsi_displays = NULL; sde_kms->dsi_display_count = dsi_display_get_num_of_displays(); if (sde_kms->dsi_display_count) { sde_kms->dsi_displays = kcalloc(sde_kms->dsi_display_count, sizeof(void *), GFP_KERNEL); if (!sde_kms->dsi_displays) { SDE_ERROR("failed to allocate dsi displays\n"); goto exit_deinit_dsi; } sde_kms->dsi_display_count = dsi_display_get_active_displays(sde_kms->dsi_displays, sde_kms->dsi_display_count); } /* wb */ sde_kms->wb_displays = NULL; sde_kms->wb_display_count = sde_wb_get_num_of_displays(); if (sde_kms->wb_display_count) { sde_kms->wb_displays = kcalloc(sde_kms->wb_display_count, sizeof(void *), GFP_KERNEL); if (!sde_kms->wb_displays) { SDE_ERROR("failed to allocate wb displays\n"); goto exit_deinit_wb; } sde_kms->wb_display_count = wb_display_get_displays(sde_kms->wb_displays, sde_kms->wb_display_count); } /* dp */ sde_kms->dp_displays = NULL; sde_kms->dp_display_count = dp_display_get_num_of_displays(); if (sde_kms->dp_display_count) { sde_kms->dp_displays = kcalloc(sde_kms->dp_display_count, sizeof(void *), GFP_KERNEL); if (!sde_kms->dp_displays) { SDE_ERROR("failed to allocate dp displays\n"); goto exit_deinit_dp; } sde_kms->dp_display_count = dp_display_get_displays(sde_kms->dp_displays, sde_kms->dp_display_count); sde_kms->dp_stream_count = dp_display_get_num_of_streams(); } return 0; exit_deinit_dp: kfree(sde_kms->dp_displays); sde_kms->dp_stream_count = 0; sde_kms->dp_display_count = 0; sde_kms->dp_displays = NULL; exit_deinit_wb: kfree(sde_kms->wb_displays); sde_kms->wb_display_count = 0; sde_kms->wb_displays = NULL; exit_deinit_dsi: kfree(sde_kms->dsi_displays); sde_kms->dsi_display_count = 0; sde_kms->dsi_displays = NULL; return rc; } /** * _sde_kms_release_displays - release cache of underlying display handles * @sde_kms: Pointer to sde kms structure */ static void _sde_kms_release_displays(struct sde_kms *sde_kms) { if (!sde_kms) { SDE_ERROR("invalid sde kms\n"); return; } kfree(sde_kms->wb_displays); sde_kms->wb_displays = NULL; sde_kms->wb_display_count = 0; kfree(sde_kms->dsi_displays); sde_kms->dsi_displays = NULL; sde_kms->dsi_display_count = 0; } /** * _sde_kms_setup_displays - create encoders, bridges and connectors * for underlying displays * @dev: Pointer to drm device structure * @priv: Pointer to private drm device data * @sde_kms: Pointer to sde kms structure * Returns: Zero on success */ static int _sde_kms_setup_displays(struct drm_device *dev, struct msm_drm_private *priv, struct sde_kms *sde_kms) { static const struct sde_connector_ops dsi_ops = { .set_info_blob = dsi_conn_set_info_blob, .detect = dsi_conn_detect, .get_modes = dsi_connector_get_modes, .pre_destroy = dsi_connector_put_modes, .mode_valid = dsi_conn_mode_valid, .get_info = dsi_display_get_info, .set_backlight = dsi_display_set_backlight, .soft_reset = dsi_display_soft_reset, .pre_kickoff = dsi_conn_pre_kickoff, .clk_ctrl = dsi_display_clk_ctrl, .set_power = dsi_display_set_power, .get_mode_info = dsi_conn_get_mode_info, .get_dst_format = dsi_display_get_dst_format, .post_kickoff = dsi_conn_post_kickoff, .check_status = dsi_display_check_status, .enable_event = dsi_conn_enable_event, .cmd_transfer = dsi_display_cmd_transfer, .cont_splash_config = dsi_display_cont_splash_config, .cont_splash_res_disable = dsi_display_cont_splash_res_disable, .get_panel_vfp = dsi_display_get_panel_vfp, .get_default_lms = dsi_display_get_default_lms, .cmd_receive = dsi_display_cmd_receive, .install_properties = NULL, .set_allowed_mode_switch = dsi_conn_set_allowed_mode_switch, .set_dyn_bit_clk = dsi_conn_set_dyn_bit_clk, .get_qsync_min_fps = dsi_conn_get_qsync_min_fps, .get_avr_step_fps = dsi_conn_get_avr_step_fps, .prepare_commit = dsi_conn_prepare_commit, .set_submode_info = dsi_conn_set_submode_blob_info, .get_num_lm_from_mode = dsi_conn_get_lm_from_mode, .update_transfer_time = dsi_display_update_transfer_time, .get_panel_scan_line = dsi_display_get_panel_scan_line, }; static const struct sde_connector_ops wb_ops = { .post_init = sde_wb_connector_post_init, .set_info_blob = sde_wb_connector_set_info_blob, .detect = sde_wb_connector_detect, .get_modes = sde_wb_connector_get_modes, .set_property = sde_wb_connector_set_property, .get_info = sde_wb_get_info, .soft_reset = NULL, .get_mode_info = sde_wb_get_mode_info, .get_dst_format = NULL, .check_status = NULL, .cmd_transfer = NULL, .cont_splash_config = NULL, .cont_splash_res_disable = NULL, .get_panel_vfp = NULL, .cmd_receive = NULL, .install_properties = NULL, .set_dyn_bit_clk = NULL, .set_allowed_mode_switch = NULL, .update_transfer_time = NULL, }; static const struct sde_connector_ops dp_ops = { .post_init = dp_connector_post_init, .detect = dp_connector_detect, .get_modes = dp_connector_get_modes, .atomic_check = dp_connector_atomic_check, .mode_valid = dp_connector_mode_valid, .get_info = dp_connector_get_info, .get_mode_info = dp_connector_get_mode_info, .post_open = dp_connector_post_open, .check_status = NULL, .set_colorspace = dp_connector_set_colorspace, .config_hdr = dp_connector_config_hdr, .cmd_transfer = NULL, .cont_splash_config = NULL, .cont_splash_res_disable = NULL, .get_panel_vfp = NULL, .update_pps = dp_connector_update_pps, .cmd_receive = NULL, .install_properties = dp_connector_install_properties, .set_allowed_mode_switch = NULL, .set_dyn_bit_clk = NULL, .update_transfer_time = NULL, }; struct msm_display_info info; struct drm_encoder *encoder; void *display, *connector; int i, max_encoders; int rc = 0; u32 dsc_count = 0, mixer_count = 0; u32 max_dp_dsc_count, max_dp_mixer_count; if (!dev || !priv || !sde_kms) { SDE_ERROR("invalid argument(s)\n"); return -EINVAL; } max_encoders = sde_kms->dsi_display_count + sde_kms->wb_display_count + sde_kms->dp_display_count + sde_kms->dp_stream_count; if (max_encoders > ARRAY_SIZE(priv->encoders)) { max_encoders = ARRAY_SIZE(priv->encoders); SDE_ERROR("capping number of displays to %d", max_encoders); } /* wb */ for (i = 0; i < sde_kms->wb_display_count && priv->num_encoders < max_encoders; ++i) { display = sde_kms->wb_displays[i]; encoder = NULL; memset(&info, 0x0, sizeof(info)); rc = sde_wb_get_info(NULL, &info, display); if (rc) { SDE_ERROR("wb get_info %d failed\n", i); continue; } encoder = sde_encoder_init(dev, &info); if (IS_ERR_OR_NULL(encoder)) { SDE_ERROR("encoder init failed for wb %d\n", i); continue; } rc = sde_wb_drm_init(display, encoder); if (rc) { SDE_ERROR("wb bridge %d init failed, %d\n", i, rc); sde_encoder_destroy(encoder); continue; } connector = sde_connector_init(dev, encoder, 0, display, &wb_ops, DRM_CONNECTOR_POLL_HPD, DRM_MODE_CONNECTOR_VIRTUAL); if (connector) { priv->encoders[priv->num_encoders++] = encoder; priv->connectors[priv->num_connectors++] = connector; } else { SDE_ERROR("wb %d connector init failed\n", i); sde_wb_drm_deinit(display); sde_encoder_destroy(encoder); } } /* dsi */ for (i = 0; i < sde_kms->dsi_display_count && priv->num_encoders < max_encoders; ++i) { display = sde_kms->dsi_displays[i]; encoder = NULL; memset(&info, 0x0, sizeof(info)); rc = dsi_display_get_info(NULL, &info, display); if (rc) { SDE_ERROR("dsi get_info %d failed\n", i); continue; } encoder = sde_encoder_init(dev, &info); if (IS_ERR_OR_NULL(encoder)) { SDE_ERROR("encoder init failed for dsi %d\n", i); continue; } rc = dsi_display_drm_bridge_init(display, encoder); if (rc) { SDE_ERROR("dsi bridge %d init failed, %d\n", i, rc); sde_encoder_destroy(encoder); continue; } connector = sde_connector_init(dev, encoder, dsi_display_get_drm_panel(display), display, &dsi_ops, DRM_CONNECTOR_POLL_HPD, DRM_MODE_CONNECTOR_DSI); if (connector) { priv->encoders[priv->num_encoders++] = encoder; priv->connectors[priv->num_connectors++] = connector; } else { SDE_ERROR("dsi %d connector init failed\n", i); dsi_display_drm_bridge_deinit(display); sde_encoder_destroy(encoder); continue; } rc = dsi_display_drm_ext_bridge_init(display, encoder, connector); if (rc) { SDE_ERROR("dsi %d ext bridge init failed\n", rc); dsi_display_drm_bridge_deinit(display); sde_connector_destroy(connector); sde_encoder_destroy(encoder); } dsc_count += info.dsc_count; mixer_count += info.lm_count; if (dsi_display_has_dsc_switch_support(display)) sde_kms->dsc_switch_support = true; } if (sde_kms->catalog->allowed_dsc_reservation_switch && !sde_kms->dsc_switch_support) { SDE_DEBUG("dsc switch not supported\n"); sde_kms->catalog->allowed_dsc_reservation_switch = 0; } max_dp_mixer_count = sde_kms->catalog->mixer_count > mixer_count ? sde_kms->catalog->mixer_count - mixer_count : 0; max_dp_dsc_count = sde_kms->catalog->dsc_count > dsc_count ? sde_kms->catalog->dsc_count - dsc_count : 0; if (sde_kms->catalog->allowed_dsc_reservation_switch & SDE_DP_DSC_RESERVATION_SWITCH) max_dp_dsc_count = sde_kms->catalog->dsc_count; /* dp */ for (i = 0; i < sde_kms->dp_display_count && priv->num_encoders < max_encoders; ++i) { int idx; display = sde_kms->dp_displays[i]; encoder = NULL; memset(&info, 0x0, sizeof(info)); rc = dp_connector_get_info(NULL, &info, display); if (rc) { SDE_ERROR("dp get_info %d failed\n", i); continue; } encoder = sde_encoder_init(dev, &info); if (IS_ERR_OR_NULL(encoder)) { SDE_ERROR("dp encoder init failed %d\n", i); continue; } rc = dp_drm_bridge_init(display, encoder, max_dp_mixer_count, max_dp_dsc_count); if (rc) { SDE_ERROR("dp bridge %d init failed, %d\n", i, rc); sde_encoder_destroy(encoder); continue; } connector = sde_connector_init(dev, encoder, NULL, display, &dp_ops, DRM_CONNECTOR_POLL_HPD, DRM_MODE_CONNECTOR_DisplayPort); if (connector) { priv->encoders[priv->num_encoders++] = encoder; priv->connectors[priv->num_connectors++] = connector; } else { SDE_ERROR("dp %d connector init failed\n", i); dp_drm_bridge_deinit(display); sde_encoder_destroy(encoder); } /* update display cap to MST_MODE for DP MST encoders */ info.capabilities |= MSM_DISPLAY_CAP_MST_MODE; for (idx = 0; idx < sde_kms->dp_stream_count && priv->num_encoders < max_encoders; idx++) { info.h_tile_instance[0] = idx; encoder = sde_encoder_init(dev, &info); if (IS_ERR_OR_NULL(encoder)) { SDE_ERROR("dp mst encoder init failed %d\n", i); continue; } rc = dp_mst_drm_bridge_init(display, encoder); if (rc) { SDE_ERROR("dp mst bridge %d init failed, %d\n", i, rc); sde_encoder_destroy(encoder); continue; } priv->encoders[priv->num_encoders++] = encoder; } } return 0; } static void _sde_kms_drm_obj_destroy(struct sde_kms *sde_kms) { struct msm_drm_private *priv; int i; if (!sde_kms) { SDE_ERROR("invalid sde_kms\n"); return; } else if (!sde_kms->dev) { SDE_ERROR("invalid dev\n"); return; } else if (!sde_kms->dev->dev_private) { SDE_ERROR("invalid dev_private\n"); return; } priv = sde_kms->dev->dev_private; for (i = 0; i < priv->num_crtcs; i++) priv->crtcs[i]->funcs->destroy(priv->crtcs[i]); priv->num_crtcs = 0; for (i = 0; i < priv->num_planes; i++) priv->planes[i]->funcs->destroy(priv->planes[i]); priv->num_planes = 0; for (i = 0; i < priv->num_connectors; i++) priv->connectors[i]->funcs->destroy(priv->connectors[i]); priv->num_connectors = 0; for (i = 0; i < priv->num_encoders; i++) priv->encoders[i]->funcs->destroy(priv->encoders[i]); priv->num_encoders = 0; _sde_kms_release_displays(sde_kms); } static int _sde_kms_drm_obj_init(struct sde_kms *sde_kms) { struct drm_device *dev; struct drm_plane *primary_planes[MAX_PLANES], *plane; struct drm_crtc *crtc; struct msm_drm_private *priv; struct sde_mdss_cfg *catalog; int primary_planes_idx = 0, i, ret; int max_crtc_count; u32 sspp_id[MAX_PLANES]; u32 master_plane_id[MAX_PLANES]; u32 num_virt_planes = 0, dummy_mixer_count = 0; if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) { SDE_ERROR("invalid sde_kms\n"); return -EINVAL; } dev = sde_kms->dev; priv = dev->dev_private; catalog = sde_kms->catalog; ret = sde_core_irq_domain_add(sde_kms); if (ret) goto fail_irq; /* * Query for underlying display drivers, and create connectors, * bridges and encoders for them. */ if (!_sde_kms_get_displays(sde_kms)) (void)_sde_kms_setup_displays(dev, priv, sde_kms); for (i = 0; i < catalog->mixer_count; i++) if (catalog->mixer[i].dummy_mixer) dummy_mixer_count++; max_crtc_count = catalog->mixer_count - dummy_mixer_count; /* Create the planes */ for (i = 0; i < catalog->sspp_count; i++) { bool primary = true; if (primary_planes_idx >= max_crtc_count) primary = false; plane = sde_plane_init(dev, catalog->sspp[i].id, primary, (1UL << max_crtc_count) - 1, 0); if (IS_ERR(plane)) { SDE_ERROR("sde_plane_init failed\n"); ret = PTR_ERR(plane); goto fail; } priv->planes[priv->num_planes++] = plane; if (primary) primary_planes[primary_planes_idx++] = plane; if (sde_hw_sspp_multirect_enabled(&catalog->sspp[i]) && sde_is_custom_client()) { int priority = catalog->sspp[i].sblk->smart_dma_priority; sspp_id[priority - 1] = catalog->sspp[i].id; master_plane_id[priority - 1] = plane->base.id; num_virt_planes++; } } /* Initialize smart DMA virtual planes */ for (i = 0; i < num_virt_planes; i++) { plane = sde_plane_init(dev, sspp_id[i], false, (1UL << max_crtc_count) - 1, master_plane_id[i]); if (IS_ERR(plane)) { SDE_ERROR("sde_plane for virtual SSPP init failed\n"); ret = PTR_ERR(plane); goto fail; } priv->planes[priv->num_planes++] = plane; } max_crtc_count = min(max_crtc_count, primary_planes_idx); /* Create one CRTC per encoder */ for (i = 0; i < max_crtc_count; i++) { crtc = sde_crtc_init(dev, primary_planes[i]); if (IS_ERR(crtc)) { ret = PTR_ERR(crtc); goto fail; } priv->crtcs[priv->num_crtcs++] = crtc; } if (sde_is_custom_client()) { /* All CRTCs are compatible with all planes */ for (i = 0; i < priv->num_planes; i++) priv->planes[i]->possible_crtcs = (1 << priv->num_crtcs) - 1; } /* All CRTCs are compatible with all encoders */ for (i = 0; i < priv->num_encoders; i++) priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1; return 0; fail: _sde_kms_drm_obj_destroy(sde_kms); fail_irq: sde_core_irq_domain_fini(sde_kms); return ret; } /** * sde_kms_timeline_status - provides current timeline status * This API should be called without mode config lock. * @dev: Pointer to drm device */ void sde_kms_timeline_status(struct drm_device *dev) { struct drm_crtc *crtc; struct drm_connector *conn; struct drm_connector_list_iter conn_iter; if (!dev) { SDE_ERROR("invalid drm device node\n"); return; } drm_for_each_crtc(crtc, dev) sde_crtc_timeline_status(crtc); if (mutex_is_locked(&dev->mode_config.mutex)) { /* *Probably locked from last close dumping status anyway */ SDE_ERROR("dumping conn_timeline without mode_config lock\n"); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) sde_conn_timeline_status(conn); drm_connector_list_iter_end(&conn_iter); return; } mutex_lock(&dev->mode_config.mutex); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) sde_conn_timeline_status(conn); drm_connector_list_iter_end(&conn_iter); mutex_unlock(&dev->mode_config.mutex); } static int sde_kms_postinit(struct msm_kms *kms) { struct sde_kms *sde_kms = to_sde_kms(kms); struct drm_device *dev; struct drm_crtc *crtc; struct msm_drm_private *priv; int i, rc; if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev || !sde_kms->dev->dev_private) { SDE_ERROR("invalid sde_kms\n"); return -EINVAL; } dev = sde_kms->dev; priv = sde_kms->dev->dev_private; /* * Handle (re)initializations during power enable, the sde power * event call has to be after drm_irq_install to handle irq update. */ sde_kms_handle_power_event(SDE_POWER_EVENT_POST_ENABLE, sde_kms); sde_kms->power_event = sde_power_handle_register_event(&priv->phandle, SDE_POWER_EVENT_POST_ENABLE | SDE_POWER_EVENT_PRE_DISABLE, sde_kms_handle_power_event, sde_kms, "kms"); if (sde_kms->splash_data.num_splash_displays) { SDE_DEBUG("Skipping MDP Resources disable\n"); } else { for (i = 0; i < SDE_POWER_HANDLE_DBUS_ID_MAX; i++) sde_power_data_bus_set_quota(&priv->phandle, i, SDE_POWER_HANDLE_ENABLE_BUS_AB_QUOTA, SDE_POWER_HANDLE_ENABLE_BUS_IB_QUOTA); pm_runtime_put_sync(sde_kms->dev->dev); } rc = _sde_debugfs_init(sde_kms); if (rc) SDE_ERROR("sde_debugfs init failed: %d\n", rc); drm_for_each_crtc(crtc, dev) sde_crtc_post_init(dev, crtc); return rc; } static long sde_kms_round_pixclk(struct msm_kms *kms, unsigned long rate, struct drm_encoder *encoder) { return rate; } static void _sde_kms_hw_destroy(struct sde_kms *sde_kms, struct platform_device *pdev) { struct drm_device *dev; struct msm_drm_private *priv; struct sde_vm_ops *vm_ops; int i; if (!sde_kms || !pdev) return; dev = sde_kms->dev; if (!dev) return; priv = dev->dev_private; if (!priv) return; if (sde_kms->genpd_init) { sde_kms->genpd_init = false; pm_genpd_remove(&sde_kms->genpd); of_genpd_del_provider(pdev->dev.of_node); } vm_ops = sde_vm_get_ops(sde_kms); if (vm_ops && vm_ops->vm_deinit) vm_ops->vm_deinit(sde_kms, vm_ops); if (sde_kms->hw_intr) sde_hw_intr_destroy(sde_kms->hw_intr); sde_kms->hw_intr = NULL; if (sde_kms->power_event) sde_power_handle_unregister_event( &priv->phandle, sde_kms->power_event); _sde_kms_release_displays(sde_kms); _sde_kms_unmap_all_splash_regions(sde_kms); if (sde_kms->catalog) { for (i = 0; i < sde_kms->catalog->vbif_count; i++) { u32 vbif_idx = sde_kms->catalog->vbif[i].id; if ((vbif_idx < VBIF_MAX) && sde_kms->hw_vbif[vbif_idx]) sde_hw_vbif_destroy(sde_kms->hw_vbif[vbif_idx]); } } if (sde_kms->rm_init) sde_rm_destroy(&sde_kms->rm); sde_kms->rm_init = false; if (sde_kms->catalog) sde_hw_catalog_deinit(sde_kms->catalog); sde_kms->catalog = NULL; if (sde_kms->sid) msm_iounmap(pdev, sde_kms->sid); sde_kms->sid = NULL; if (sde_kms->reg_dma) msm_iounmap(pdev, sde_kms->reg_dma); sde_kms->reg_dma = NULL; if (sde_kms->vbif[VBIF_NRT]) msm_iounmap(pdev, sde_kms->vbif[VBIF_NRT]); sde_kms->vbif[VBIF_NRT] = NULL; if (sde_kms->vbif[VBIF_RT]) msm_iounmap(pdev, sde_kms->vbif[VBIF_RT]); sde_kms->vbif[VBIF_RT] = NULL; if (sde_kms->mmio) msm_iounmap(pdev, sde_kms->mmio); sde_kms->mmio = NULL; sde_reg_dma_deinit(); _sde_kms_mmu_destroy(sde_kms); } int sde_kms_mmu_detach(struct sde_kms *sde_kms, bool secure_only) { int i; if (!sde_kms) return -EINVAL; for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) { struct msm_mmu *mmu; struct msm_gem_address_space *aspace = sde_kms->aspace[i]; if (!aspace) continue; mmu = sde_kms->aspace[i]->mmu; if (secure_only && !aspace->mmu->funcs->is_domain_secure(mmu)) continue; /* cleanup aspace before detaching */ msm_gem_aspace_domain_attach_detach_update(aspace, true); SDE_DEBUG("Detaching domain:%d\n", i); aspace->mmu->funcs->detach(mmu, (const char **)iommu_ports, ARRAY_SIZE(iommu_ports)); aspace->domain_attached = false; } return 0; } int sde_kms_mmu_attach(struct sde_kms *sde_kms, bool secure_only) { int i; if (!sde_kms) return -EINVAL; for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) { struct msm_mmu *mmu; struct msm_gem_address_space *aspace = sde_kms->aspace[i]; if (!aspace) continue; mmu = sde_kms->aspace[i]->mmu; if (secure_only && !aspace->mmu->funcs->is_domain_secure(mmu)) continue; SDE_DEBUG("Attaching domain:%d\n", i); aspace->mmu->funcs->attach(mmu, (const char **)iommu_ports, ARRAY_SIZE(iommu_ports)); aspace->domain_attached = true; msm_gem_aspace_domain_attach_detach_update(aspace, false); } return 0; } static void sde_kms_destroy(struct msm_kms *kms) { struct sde_kms *sde_kms; struct drm_device *dev; if (!kms) { SDE_ERROR("invalid kms\n"); return; } sde_kms = to_sde_kms(kms); dev = sde_kms->dev; if (!dev || !dev->dev) { SDE_ERROR("invalid device\n"); return; } _sde_kms_hw_destroy(sde_kms, to_platform_device(dev->dev)); kfree(sde_kms); } static void sde_kms_helper_clear_dim_layers(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_crtc_state *crtc_state = NULL; struct sde_crtc_state *c_state; if (!state || !crtc) { SDE_ERROR("invalid params\n"); return; } crtc_state = drm_atomic_get_new_crtc_state(state, crtc); c_state = to_sde_crtc_state(crtc_state); _sde_crtc_clear_dim_layers_v1(crtc_state); set_bit(SDE_CRTC_DIRTY_DIM_LAYERS, c_state->dirty); } static int sde_kms_set_crtc_for_conn(struct drm_device *dev, struct drm_encoder *enc, struct drm_atomic_state *state) { struct drm_connector *conn = NULL; struct drm_connector *tmp_conn = NULL; struct drm_connector_list_iter conn_iter; struct drm_crtc_state *crtc_state = NULL; struct drm_connector_state *conn_state = NULL; int ret = 0; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(tmp_conn, &conn_iter) { if (enc == tmp_conn->state->best_encoder) { conn = tmp_conn; break; } } drm_connector_list_iter_end(&conn_iter); if (!conn || !enc->crtc) { SDE_ERROR("invalid params for enc:%d\n", DRMID(enc)); return -EINVAL; } crtc_state = drm_atomic_get_crtc_state(state, enc->crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); SDE_ERROR("error %d getting crtc %d state\n", ret, DRMID(enc->crtc)); return ret; } conn_state = drm_atomic_get_connector_state(state, conn); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); SDE_ERROR("error %d getting connector %d state\n", ret, DRMID(conn)); return ret; } crtc_state->active = true; crtc_state->enable = true; ret = drm_atomic_set_crtc_for_connector(conn_state, enc->crtc); if (ret) SDE_ERROR("error %d setting the crtc\n", ret); return ret; } static void _sde_kms_plane_force_remove(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *plane_state; int ret = 0; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); SDE_ERROR("error %d getting plane %d state\n", ret, plane->base.id); return; } plane->old_fb = plane->fb; SDE_DEBUG("disabling plane %d\n", plane->base.id); ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); if (ret != 0) SDE_ERROR("error %d disabling plane %d\n", ret, plane->base.id); drm_atomic_set_fb_for_plane(plane_state, NULL); } static int _sde_kms_connector_add_refcount(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct drm_device *dev = sde_kms->dev; struct drm_connector *conn; struct drm_connector_state *conn_state; struct drm_connector_list_iter conn_iter; struct sde_connector_state *c_state; int ret = 0; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { /* * Acquire a connector reference to avoid removing * connector in drm_release for splash and recovery cases. */ conn_state = drm_atomic_get_connector_state(state, conn); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); SDE_ERROR("error %d getting connector %d state\n", ret, DRMID(conn)); return ret; } c_state = to_sde_connector_state(conn_state); if (c_state->out_fb) drm_framebuffer_put(c_state->out_fb); } drm_connector_list_iter_end(&conn_iter); return ret; } static int _sde_kms_remove_fbs(struct sde_kms *sde_kms, struct drm_file *file, struct drm_atomic_state *state) { struct drm_device *dev = sde_kms->dev; struct drm_framebuffer *fb, *tfb; struct list_head fbs; struct drm_plane *plane; struct drm_crtc *crtc = NULL; unsigned int crtc_mask = 0; int ret = 0; INIT_LIST_HEAD(&fbs); list_for_each_entry_safe(fb, tfb, &file->fbs, filp_head) { if (drm_framebuffer_read_refcount(fb) > 1) { list_move_tail(&fb->filp_head, &fbs); drm_for_each_plane(plane, dev) { if (plane->state && plane->state->fb == fb) { if (plane->state->crtc) crtc_mask |= drm_crtc_mask(plane->state->crtc); _sde_kms_plane_force_remove(plane, state); } } } else { list_del_init(&fb->filp_head); drm_framebuffer_put(fb); } } if (list_empty(&fbs)) { SDE_DEBUG("skip commit as no fb(s)\n"); if (sde_kms->dsi_display_count == sde_kms->splash_data.num_splash_displays) _sde_kms_connector_add_refcount(sde_kms, state); return 0; } drm_for_each_crtc(crtc, dev) { if ((crtc_mask & drm_crtc_mask(crtc)) && crtc->state->active) { struct drm_encoder *drm_enc; drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) { ret = sde_kms_set_crtc_for_conn(dev, drm_enc, state); if (ret) goto error; } sde_kms_helper_clear_dim_layers(state, crtc); } } SDE_EVT32(state, crtc_mask); SDE_DEBUG("null commit after removing all the pipes\n"); ret = drm_atomic_commit(state); error: if (ret) { /* * move the fbs back to original list, so it would be * handled during drm_release */ list_for_each_entry_safe(fb, tfb, &fbs, filp_head) list_move_tail(&fb->filp_head, &file->fbs); if (ret == -EDEADLK || ret == -ERESTARTSYS) SDE_DEBUG("atomic commit failed in preclose, ret:%d\n", ret); else SDE_ERROR("atomic commit failed in preclose, ret:%d\n", ret); goto end; } while (!list_empty(&fbs)) { fb = list_first_entry(&fbs, typeof(*fb), filp_head); list_del_init(&fb->filp_head); drm_framebuffer_put(fb); } drm_for_each_crtc(crtc, dev) { if (!ret && crtc_mask & drm_crtc_mask(crtc)) sde_kms_cancel_delayed_work(crtc); } end: return ret; } static void sde_kms_preclose(struct msm_kms *kms, struct drm_file *file) { struct sde_kms *sde_kms = to_sde_kms(kms); struct drm_device *dev = sde_kms->dev; struct msm_drm_private *priv = dev->dev_private; unsigned int i; struct drm_atomic_state *state = NULL; struct drm_modeset_acquire_ctx ctx; int ret = 0; /* cancel pending flip event */ for (i = 0; i < priv->num_crtcs; i++) sde_crtc_complete_flip(priv->crtcs[i], file); drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } else if (WARN_ON(ret)) { goto end; } state = drm_atomic_state_alloc(dev); if (!state) { ret = -ENOMEM; goto end; } state->acquire_ctx = &ctx; for (i = 0; i < TEARDOWN_DEADLOCK_RETRY_MAX; i++) { ret = _sde_kms_remove_fbs(sde_kms, file, state); if (ret != -EDEADLK && ret != -ERESTARTSYS) break; drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); } end: if (state) drm_atomic_state_put(state); SDE_DEBUG("sde preclose done, ret:%d\n", ret); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } static int _sde_kms_helper_reset_custom_properties(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct drm_device *dev = sde_kms->dev; struct drm_plane *plane; struct drm_plane_state *plane_state; struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; struct drm_connector *conn; struct drm_connector_state *conn_state; struct drm_connector_list_iter conn_iter; int ret = 0; drm_for_each_plane(plane, dev) { plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); SDE_ERROR("error %d getting plane %d state\n", ret, DRMID(plane)); return ret; } ret = sde_plane_helper_reset_custom_properties(plane, plane_state); if (ret) { SDE_ERROR("error %d resetting plane props %d\n", ret, DRMID(plane)); return ret; } } drm_for_each_crtc(crtc, dev) { crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); SDE_ERROR("error %d getting crtc %d state\n", ret, DRMID(crtc)); return ret; } ret = sde_crtc_helper_reset_custom_properties(crtc, crtc_state); if (ret) { SDE_ERROR("error %d resetting crtc props %d\n", ret, DRMID(crtc)); return ret; } } drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { conn_state = drm_atomic_get_connector_state(state, conn); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); SDE_ERROR("error %d getting connector %d state\n", ret, DRMID(conn)); return ret; } ret = sde_connector_helper_reset_custom_properties(conn, conn_state); if (ret) { SDE_ERROR("error %d resetting connector props %d\n", ret, DRMID(conn)); return ret; } } drm_connector_list_iter_end(&conn_iter); return ret; } static void sde_kms_lastclose(struct msm_kms *kms) { struct sde_kms *sde_kms; struct drm_device *dev; struct drm_atomic_state *state; struct drm_modeset_acquire_ctx ctx; int ret; if (!kms) { SDE_ERROR("invalid argument\n"); return; } sde_kms = to_sde_kms(kms); dev = sde_kms->dev; if (sde_kms && sde_kms->vm) sde_kms->vm->lastclose_in_progress = true; drm_modeset_acquire_init(&ctx, 0); state = drm_atomic_state_alloc(dev); if (!state) { ret = -ENOMEM; goto out_ctx; } state->acquire_ctx = &ctx; SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); retry: ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret) goto out_state; ret = _sde_kms_helper_reset_custom_properties(sde_kms, state); if (ret) goto out_state; ret = drm_atomic_commit(state); out_state: if (ret == -EDEADLK) goto backoff; drm_atomic_state_put(state); out_ctx: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); if (ret) SDE_ERROR("kms lastclose failed: %d\n", ret); SDE_EVT32(ret, SDE_EVTLOG_FUNC_EXIT); if (sde_kms && sde_kms->vm) sde_kms->vm->lastclose_in_progress = false; return; backoff: drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); SDE_EVT32(ret, SDE_EVTLOG_FUNC_CASE1); goto retry; } static int _sde_kms_validate_vm_request(struct drm_atomic_state *state, struct sde_kms *sde_kms, enum sde_crtc_vm_req vm_req, bool vm_owns_hw) { struct drm_crtc *crtc, *active_crtc = NULL, *global_active_crtc = NULL; struct drm_crtc_state *new_cstate, *old_cstate, *active_cstate; struct drm_encoder *encoder; struct drm_connector *connector; struct drm_connector_state *new_connstate; struct sde_vm_ops *vm_ops = sde_vm_get_ops(sde_kms); struct sde_mdss_cfg *catalog = sde_kms->catalog; struct sde_connector *sde_conn; struct dsi_display *dsi_display; uint32_t i, commit_crtc_cnt = 0, global_crtc_cnt = 0; uint32_t crtc_encoder_cnt = 0; enum sde_crtc_idle_pc_state idle_pc_state; int rc = 0; for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) { struct sde_crtc_state *new_state = NULL; if (!new_cstate->active && !old_cstate->active) continue; new_state = to_sde_crtc_state(new_cstate); idle_pc_state = sde_crtc_get_property(new_state, CRTC_PROP_IDLE_PC_STATE); active_crtc = crtc; active_cstate = new_cstate; commit_crtc_cnt++; } list_for_each_entry(crtc, &sde_kms->dev->mode_config.crtc_list, head) { if (!crtc->state->active) continue; global_crtc_cnt++; global_active_crtc = crtc; } if (active_crtc) { drm_for_each_encoder_mask(encoder, active_crtc->dev, active_cstate->encoder_mask) crtc_encoder_cnt++; } for_each_new_connector_in_state(state, connector, new_connstate, i) { int conn_mask = active_cstate->connector_mask; if (drm_connector_mask(connector) & conn_mask) { sde_conn = to_sde_connector(connector); dsi_display = (struct dsi_display *) sde_conn->display; SDE_EVT32(DRMID(connector), DRMID(active_crtc), i, dsi_display->type, dsi_display->trusted_vm_env); SDE_DEBUG("VM display:%s, conn:%d, crtc:%d, type:%d, tvm:%d\n", dsi_display->name, DRMID(connector), DRMID(active_crtc), dsi_display->type, dsi_display->trusted_vm_env); break; } } /* Check for single crtc commits only on valid VM requests */ if (active_crtc && global_active_crtc && (commit_crtc_cnt > catalog->max_trusted_vm_displays || global_crtc_cnt > catalog->max_trusted_vm_displays || active_crtc != global_active_crtc)) { SDE_ERROR("VM switch failed; MAX:%d a_cnt:%d g_cnt:%d a_crtc:%d g_crtc:%d\n", catalog->max_trusted_vm_displays, commit_crtc_cnt, global_crtc_cnt, DRMID(active_crtc), DRMID(global_active_crtc)); return -E2BIG; } else if ((vm_req == VM_REQ_RELEASE) && ((idle_pc_state == IDLE_PC_ENABLE) || (crtc_encoder_cnt > TRUSTED_VM_MAX_ENCODER_PER_CRTC))) { /* * disable idle-pc before releasing the HW * allow only specified number of encoders on a given crtc */ SDE_ERROR("VM switch failed; idle-pc:%d max:%d encoder_cnt:%d\n", idle_pc_state, TRUSTED_VM_MAX_ENCODER_PER_CRTC, crtc_encoder_cnt); return -EINVAL; } if ((vm_req == VM_REQ_ACQUIRE) && !vm_owns_hw) { rc = vm_ops->vm_acquire(sde_kms); if (rc) { SDE_ERROR("VM acquire failed; hw_owner:%d, rc:%d\n", vm_owns_hw, rc); return rc; } if (vm_ops->vm_resource_init) { rc = vm_ops->vm_resource_init(sde_kms, state); if (rc && vm_ops->vm_release) rc = vm_ops->vm_release(sde_kms); } } return rc; } static int sde_kms_check_vm_request(struct msm_kms *kms, struct drm_atomic_state *state) { struct sde_kms *sde_kms; struct drm_crtc *crtc; struct drm_crtc_state *new_cstate, *old_cstate; struct sde_vm_ops *vm_ops; enum sde_crtc_vm_req old_vm_req = VM_REQ_NONE, new_vm_req = VM_REQ_NONE; int i, rc = 0; bool vm_req_active = false, prev_vm_req = false; bool vm_owns_hw; if (!kms || !state) return -EINVAL; sde_kms = to_sde_kms(kms); vm_ops = sde_vm_get_ops(sde_kms); if (!vm_ops) return 0; if (!vm_ops->vm_request_valid || !vm_ops->vm_owns_hw || !vm_ops->vm_acquire) return -EINVAL; drm_for_each_crtc(crtc, state->dev) { if (crtc->state && (sde_crtc_get_property(to_sde_crtc_state(crtc->state), CRTC_PROP_VM_REQ_STATE) == VM_REQ_RELEASE)) { prev_vm_req = true; break; } } /* check for an active vm request */ for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) { struct sde_crtc_state *old_state = NULL, *new_state = NULL; if (!new_cstate->active && !old_cstate->active) continue; new_state = to_sde_crtc_state(new_cstate); new_vm_req = sde_crtc_get_property(new_state, CRTC_PROP_VM_REQ_STATE); old_state = to_sde_crtc_state(old_cstate); old_vm_req = sde_crtc_get_property(old_state, CRTC_PROP_VM_REQ_STATE); /* * VM request should be validated in the following usecases * - There is a vm request(other than VM_REQ_NONE) on current/prev crtc state. * - Previously, vm transition has taken place on one of the crtc's. */ if (old_vm_req || new_vm_req || prev_vm_req) { if (!vm_req_active) { sde_vm_lock(sde_kms); vm_owns_hw = sde_vm_owns_hw(sde_kms); } rc = vm_ops->vm_request_valid(sde_kms, old_vm_req, new_vm_req); if (rc) { SDE_ERROR( "VM transition check failed; o_state:%d, n_state:%d, hw_owner:%d, rc:%d\n", old_vm_req, new_vm_req, vm_owns_hw, rc); sde_vm_unlock(sde_kms); vm_req_active = false; break; } else if (old_vm_req == VM_REQ_ACQUIRE && new_vm_req == VM_REQ_NONE) { SDE_DEBUG("VM transition valid; ignore further checks\n"); if (!vm_req_active) sde_vm_unlock(sde_kms); } else { vm_req_active = true; } } } /* validate active requests and perform acquire if necessary */ if (vm_req_active) { rc = _sde_kms_validate_vm_request(state, sde_kms, new_vm_req, vm_owns_hw); sde_vm_unlock(sde_kms); SDE_EVT32(old_vm_req, new_vm_req, vm_req_active, vm_owns_hw, rc); SDE_DEBUG("VM o_state:%d, n_state:%d, hw_owner:%d, rc:%d\n", old_vm_req, new_vm_req, vm_req_active ? vm_owns_hw : -1, rc); } return rc; } static int sde_kms_check_secure_transition(struct msm_kms *kms, struct drm_atomic_state *state) { struct sde_kms *sde_kms; struct drm_device *dev; struct drm_crtc *crtc; struct drm_crtc *cur_crtc = NULL, *global_crtc = NULL; struct drm_crtc_state *crtc_state; int active_crtc_cnt = 0, global_active_crtc_cnt = 0; bool sec_session = false, global_sec_session = false; uint32_t fb_ns = 0, fb_sec = 0, fb_sec_dir = 0; int i; if (!kms || !state) { return -EINVAL; SDE_ERROR("invalid arguments\n"); } sde_kms = to_sde_kms(kms); dev = sde_kms->dev; /* iterate state object for active secure/non-secure crtc */ for_each_new_crtc_in_state(state, crtc, crtc_state, i) { if (!crtc_state->active) continue; active_crtc_cnt++; sde_crtc_state_find_plane_fb_modes(crtc_state, &fb_ns, &fb_sec, &fb_sec_dir); if (fb_sec_dir) sec_session = true; cur_crtc = crtc; } /* iterate global list for active and secure/non-secure crtc */ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (!crtc->state->active) continue; global_active_crtc_cnt++; /* update only when crtc is not the same as current crtc */ if (crtc != cur_crtc) { fb_ns = fb_sec = fb_sec_dir = 0; sde_crtc_find_plane_fb_modes(crtc, &fb_ns, &fb_sec, &fb_sec_dir); if (fb_sec_dir) global_sec_session = true; global_crtc = crtc; } } if (!global_sec_session && !sec_session) return 0; /* * - fail crtc commit, if secure-camera/secure-ui session is * in-progress in any other display * - fail secure-camera/secure-ui crtc commit, if any other display * session is in-progress */ if ((global_active_crtc_cnt > MAX_ALLOWED_CRTC_CNT_DURING_SECURE) || (active_crtc_cnt > MAX_ALLOWED_CRTC_CNT_DURING_SECURE)) { SDE_ERROR( "crtc%d secure check failed global_active:%d active:%d\n", cur_crtc ? cur_crtc->base.id : -1, global_active_crtc_cnt, active_crtc_cnt); return -EPERM; /* * As only one crtc is allowed during secure session, the crtc * in this commit should match with the global crtc */ } else if (global_crtc && cur_crtc && (global_crtc != cur_crtc)) { SDE_ERROR("crtc%d-sec%d not allowed during crtc%d-sec%d\n", cur_crtc->base.id, sec_session, global_crtc->base.id, global_sec_session); return -EPERM; } return 0; } static void sde_kms_vm_res_release(struct msm_kms *kms, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *new_cstate; struct sde_crtc_state *cstate; struct sde_vm_ops *vm_ops; enum sde_crtc_vm_req vm_req; struct sde_kms *sde_kms = to_sde_kms(kms); vm_ops = sde_vm_get_ops(sde_kms); if (!vm_ops) return; crtc = sde_kms_vm_get_vm_crtc(state); if (!crtc) return; new_cstate = drm_atomic_get_new_crtc_state(state, crtc); cstate = to_sde_crtc_state(new_cstate); vm_req = sde_crtc_get_property(cstate, CRTC_PROP_VM_REQ_STATE); if (vm_req != VM_REQ_ACQUIRE) return; sde_vm_lock(sde_kms); if (vm_ops->vm_acquire_fail_handler) vm_ops->vm_acquire_fail_handler(sde_kms); sde_vm_unlock(sde_kms); } static int sde_kms_check_cwb_concurreny(struct msm_kms *kms, struct drm_atomic_state *state) { struct sde_kms *sde_kms; struct drm_crtc *crtc; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_encoder *encoder; struct sde_crtc_state *cstate; int i = 0, cnt = 0, max_cwb = 0; if (!kms || !state) { SDE_ERROR("invalid arguments\n"); return -EINVAL; } sde_kms = to_sde_kms(kms); max_cwb = sde_kms->catalog->max_cwb; if (!max_cwb) return 0; for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { cstate = to_sde_crtc_state(new_crtc_state); drm_for_each_encoder_mask(encoder, crtc->dev, cstate->cwb_enc_mask) { cnt++; SDE_DEBUG("crtc%d has cwb%d attached to it\n", crtc->base.id, encoder->base.id); } if (cnt > max_cwb) { SDE_ERROR("found %d cwb in the atomic state, max supported %d\n", cnt, max_cwb); return -EOPNOTSUPP; } } return 0; } static int sde_kms_atomic_check(struct msm_kms *kms, struct drm_atomic_state *state) { struct sde_kms *sde_kms; struct drm_device *dev; int ret; if (!kms || !state) return -EINVAL; sde_kms = to_sde_kms(kms); dev = sde_kms->dev; SDE_ATRACE_BEGIN("atomic_check"); if (sde_kms_is_suspend_blocked(dev)) { SDE_DEBUG("suspended, skip atomic_check\n"); ret = -EBUSY; goto end; } ret = sde_kms_check_vm_request(kms, state); if (ret) { SDE_ERROR("vm switch request checks failed\n"); goto end; } ret = drm_atomic_helper_check(dev, state); if (ret) goto vm_clean_up; /* * Check if any secure transition(moving CRTC between secure and * non-secure state and vice-versa) is allowed or not. when moving * to secure state, planes with fb_mode set to dir_translated only can * be staged on the CRTC, and only one CRTC can be active during * Secure state */ ret = sde_kms_check_secure_transition(kms, state); if (ret) goto vm_clean_up; ret = sde_kms_check_cwb_concurreny(kms, state); if (ret) goto vm_clean_up; goto end; vm_clean_up: sde_kms_vm_res_release(kms, state); end: SDE_ATRACE_END("atomic_check"); return ret; } static struct msm_gem_address_space* _sde_kms_get_address_space(struct msm_kms *kms, unsigned int domain) { struct sde_kms *sde_kms; if (!kms) { SDE_ERROR("invalid kms\n"); return NULL; } sde_kms = to_sde_kms(kms); if (!sde_kms) { SDE_ERROR("invalid sde_kms\n"); return NULL; } if (domain >= MSM_SMMU_DOMAIN_MAX) return NULL; return (sde_kms->aspace[domain] && sde_kms->aspace[domain]->domain_attached) ? sde_kms->aspace[domain] : NULL; } static struct device *_sde_kms_get_address_space_device(struct msm_kms *kms, unsigned int domain) { struct sde_kms *sde_kms; struct msm_gem_address_space *aspace; if (!kms) { SDE_ERROR("invalid kms\n"); return NULL; } sde_kms = to_sde_kms(kms); if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) { SDE_ERROR("invalid params\n"); return NULL; } aspace = _sde_kms_get_address_space(kms, domain); return (aspace && aspace->domain_attached) ? msm_gem_get_aspace_device(aspace) : NULL; } static void _sde_kms_post_open(struct msm_kms *kms, struct drm_file *file) { struct drm_device *dev = NULL; struct sde_kms *sde_kms = NULL; struct drm_connector *connector = NULL; struct drm_connector_list_iter conn_iter; struct sde_connector *sde_conn = NULL; if (!kms) { SDE_ERROR("invalid kms\n"); return; } sde_kms = to_sde_kms(kms); dev = sde_kms->dev; if (!dev) { SDE_ERROR("invalid device\n"); return; } if (!dev->mode_config.poll_enabled) return; mutex_lock(&dev->mode_config.mutex); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { /* Only handle HPD capable connectors. */ if (!(connector->polled & DRM_CONNECTOR_POLL_HPD)) continue; sde_conn = to_sde_connector(connector); if (sde_conn->ops.post_open) sde_conn->ops.post_open(&sde_conn->base, sde_conn->display); } drm_connector_list_iter_end(&conn_iter); mutex_unlock(&dev->mode_config.mutex); } static int _sde_kms_update_planes_for_cont_splash(struct sde_kms *sde_kms, struct sde_splash_display *splash_display, struct drm_crtc *crtc) { struct msm_drm_private *priv; struct drm_plane *plane; struct sde_splash_mem *splash; struct sde_splash_mem *demura; struct sde_plane_state *pstate; struct sde_sspp_index_info *pipe_info; enum sde_sspp pipe_id; bool is_virtual; int i; if (!sde_kms || !splash_display || !crtc) { SDE_ERROR("invalid input args\n"); return -EINVAL; } priv = sde_kms->dev->dev_private; pipe_info = &splash_display->pipe_info; splash = splash_display->splash; demura = splash_display->demura; for (i = 0; i < priv->num_planes; i++) { plane = priv->planes[i]; pipe_id = sde_plane_pipe(plane); is_virtual = is_sde_plane_virtual(plane); if ((is_virtual && test_bit(pipe_id, pipe_info->virt_pipes)) || (!is_virtual && test_bit(pipe_id, pipe_info->pipes))) { if (splash && sde_plane_validate_src_addr(plane, splash->splash_buf_base, splash->splash_buf_size)) { if (!demura || sde_plane_validate_src_addr( plane, demura->splash_buf_base, demura->splash_buf_size)) { SDE_ERROR("invalid adr on pipe:%d crtc:%d\n", pipe_id, DRMID(crtc)); continue; } } plane->state->crtc = crtc; crtc->state->plane_mask |= drm_plane_mask(plane); pstate = to_sde_plane_state(plane->state); pstate->cont_splash_populated = true; SDE_DEBUG("set crtc:%d for plane:%d rect:%d\n", DRMID(crtc), DRMID(plane), is_virtual); } } return 0; } static int sde_kms_inform_cont_splash_res_disable(struct msm_kms *kms, struct dsi_display *dsi_display) { void *display; struct drm_encoder *encoder = NULL; struct msm_display_info info; struct drm_device *dev; struct sde_kms *sde_kms; struct drm_connector_list_iter conn_iter; struct drm_connector *connector = NULL; struct sde_connector *sde_conn = NULL; int rc = 0; sde_kms = to_sde_kms(kms); dev = sde_kms->dev; display = dsi_display; if (dsi_display) { if (dsi_display->bridge->base.encoder) { encoder = dsi_display->bridge->base.encoder; SDE_DEBUG("encoder name = %s\n", encoder->name); } memset(&info, 0x0, sizeof(info)); rc = dsi_display_get_info(NULL, &info, display); if (rc) { SDE_ERROR("%s: dsi get_info failed: %d\n", __func__, rc); encoder = NULL; } } drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_encoder *c_encoder; drm_connector_for_each_possible_encoder(connector, c_encoder) break; if (!c_encoder) { SDE_ERROR("c_encoder not found\n"); return -EINVAL; } /** * Inform cont_splash is disabled to each interface/connector. * This is currently supported for DSI interface. */ sde_conn = to_sde_connector(connector); if (sde_conn && sde_conn->ops.cont_splash_res_disable) { if (!dsi_display || !encoder) { sde_conn->ops.cont_splash_res_disable (sde_conn->display); } else if (c_encoder->base.id == encoder->base.id) { /** * This handles dual DSI * configuration where one DSI * interface has cont_splash * enabled and the other doesn't. */ sde_conn->ops.cont_splash_res_disable (sde_conn->display); break; } } } drm_connector_list_iter_end(&conn_iter); return 0; } static int sde_kms_vm_trusted_cont_splash_res_init(struct sde_kms *sde_kms) { int i; void *display; struct dsi_display *dsi_display; struct drm_encoder *encoder; if (!sde_kms) return -EINVAL; if (!sde_in_trusted_vm(sde_kms)) return 0; for (i = 0; i < sde_kms->dsi_display_count; i++) { display = sde_kms->dsi_displays[i]; dsi_display = (struct dsi_display *)display; if (!dsi_display->bridge->base.encoder) { SDE_ERROR("no encoder on dsi display:%d", i); return -EINVAL; } encoder = dsi_display->bridge->base.encoder; encoder->possible_crtcs = 1 << i; SDE_DEBUG( "dsi-display:%d encoder id[%d]=%d name=%s crtcs=%x\n", i, encoder->index, encoder->base.id, encoder->name, encoder->possible_crtcs); } return 0; } static struct drm_display_mode *_sde_kms_get_splash_mode( struct sde_kms *sde_kms, struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_display_mode *mode, *cur_mode = NULL; struct drm_crtc *crtc; struct drm_crtc_state *new_cstate, *old_cstate; u32 i = 0; if (sde_kms->splash_data.type == SDE_SPLASH_HANDOFF) { list_for_each_entry(mode, &connector->modes, head) { if (mode->type & DRM_MODE_TYPE_PREFERRED) { cur_mode = mode; break; } } } else if (state) { /* get the mode from first atomic_check phase for trusted_vm*/ for_each_oldnew_crtc_in_state(state, crtc, old_cstate, new_cstate, i) { if (!new_cstate->active && !old_cstate->active) continue; list_for_each_entry(mode, &connector->modes, head) { if (drm_mode_equal(&new_cstate->mode, mode)) { cur_mode = mode; break; } } } } return cur_mode; } static int sde_kms_cont_splash_config(struct msm_kms *kms, struct drm_atomic_state *state) { void *display; struct dsi_display *dsi_display; struct msm_display_info info; struct drm_encoder *encoder = NULL; struct drm_crtc *crtc = NULL; int i, rc = 0; struct drm_display_mode *drm_mode = NULL; struct drm_device *dev; struct msm_drm_private *priv; struct sde_kms *sde_kms; struct drm_connector_list_iter conn_iter; struct drm_connector *connector = NULL; struct sde_connector *sde_conn = NULL; struct sde_splash_display *splash_display; if (!kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } sde_kms = to_sde_kms(kms); dev = sde_kms->dev; if (!dev) { SDE_ERROR("invalid device\n"); return -EINVAL; } rc = sde_kms_vm_trusted_cont_splash_res_init(sde_kms); if (rc) { SDE_ERROR("failed vm cont splash resource init, rc=%d", rc); return -EINVAL; } if (((sde_kms->splash_data.type == SDE_SPLASH_HANDOFF) && (!sde_kms->splash_data.num_splash_regions)) || !sde_kms->splash_data.num_splash_displays) { DRM_INFO("cont_splash feature not enabled\n"); sde_kms_inform_cont_splash_res_disable(kms, NULL); return rc; } DRM_INFO("cont_splash enabled in %d of %d display(s)\n", sde_kms->splash_data.num_splash_displays, sde_kms->dsi_display_count); /* dsi */ for (i = 0; i < sde_kms->dsi_display_count; ++i) { struct sde_crtc_state *cstate; struct sde_connector_state *conn_state; display = sde_kms->dsi_displays[i]; dsi_display = (struct dsi_display *)display; splash_display = &sde_kms->splash_data.splash_display[i]; if (!splash_display->cont_splash_enabled) { SDE_DEBUG("display->name = %s splash not enabled\n", dsi_display->name); sde_kms_inform_cont_splash_res_disable(kms, dsi_display); continue; } SDE_DEBUG("display->name = %s\n", dsi_display->name); if (dsi_display->bridge->base.encoder) { encoder = dsi_display->bridge->base.encoder; SDE_DEBUG("encoder name = %s\n", encoder->name); } memset(&info, 0x0, sizeof(info)); rc = dsi_display_get_info(NULL, &info, display); if (rc) { SDE_ERROR("dsi get_info %d failed\n", i); encoder = NULL; continue; } SDE_DEBUG("info.is_connected = %s, info.display_type = %d\n", ((info.is_connected) ? "true" : "false"), info.display_type); if (!encoder) { SDE_ERROR("encoder not initialized\n"); return -EINVAL; } priv = sde_kms->dev->dev_private; encoder->crtc = priv->crtcs[i]; crtc = encoder->crtc; splash_display->encoder = encoder; SDE_DEBUG("for dsi-display:%d crtc id[%d]:%d enc id[%d]:%d\n", i, crtc->index, crtc->base.id, encoder->index, encoder->base.id); mutex_lock(&dev->mode_config.mutex); drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_encoder *c_encoder; drm_connector_for_each_possible_encoder(connector, c_encoder) break; if (!c_encoder) { SDE_ERROR("c_encoder not found\n"); mutex_unlock(&dev->mode_config.mutex); return -EINVAL; } /** * SDE_KMS doesn't attach more than one encoder to * a DSI connector. So it is safe to check only with * the first encoder entry. Revisit this logic if we * ever have to support continuous splash for * external displays in MST configuration. */ if (c_encoder->base.id == encoder->base.id) break; } drm_connector_list_iter_end(&conn_iter); if (!connector) { SDE_ERROR("connector not initialized\n"); mutex_unlock(&dev->mode_config.mutex); return -EINVAL; } mutex_unlock(&dev->mode_config.mutex); crtc->state->encoder_mask = drm_encoder_mask(encoder); crtc->state->connector_mask = drm_connector_mask(connector); connector->state->crtc = crtc; drm_mode = _sde_kms_get_splash_mode(sde_kms, connector, state); if (!drm_mode) { SDE_ERROR("drm_mode not found; handoff_type:%d\n", sde_kms->splash_data.type); return -EINVAL; } SDE_DEBUG( "drm_mode->name:%s, type:0x%x, flags:0x%x, handoff_type:%d\n", drm_mode->name, drm_mode->type, drm_mode->flags, sde_kms->splash_data.type); /* Update CRTC drm structure */ crtc->state->active = true; rc = drm_atomic_set_mode_for_crtc(crtc->state, drm_mode); if (rc) { SDE_ERROR("Failed: set mode for crtc. rc = %d\n", rc); return rc; } drm_mode_copy(&crtc->state->adjusted_mode, drm_mode); drm_mode_copy(&crtc->mode, drm_mode); cstate = to_sde_crtc_state(crtc->state); cstate->cont_splash_populated = true; /* Update encoder structure */ sde_encoder_update_caps_for_cont_splash(encoder, splash_display, true); sde_crtc_update_cont_splash_settings(crtc); sde_conn = to_sde_connector(connector); if (sde_conn && sde_conn->ops.cont_splash_config) sde_conn->ops.cont_splash_config(sde_conn->display); conn_state = to_sde_connector_state(connector->state); conn_state->cont_splash_populated = true; rc = _sde_kms_update_planes_for_cont_splash(sde_kms, splash_display, crtc); if (rc) { SDE_ERROR("Failed: updating plane status rc=%d\n", rc); return rc; } } return rc; } static bool sde_kms_check_for_splash(struct msm_kms *kms) { struct sde_kms *sde_kms; if (!kms) { SDE_ERROR("invalid kms\n"); return false; } sde_kms = to_sde_kms(kms); return sde_kms->splash_data.num_splash_displays; } static int sde_kms_get_mixer_count(const struct msm_kms *kms, const struct drm_display_mode *mode, const struct msm_resource_caps_info *res, u32 *num_lm) { struct sde_kms *sde_kms; s64 mode_clock_hz = 0; s64 max_mdp_clock_hz = 0; s64 max_lm_width = 0; s64 hdisplay_fp = 0; s64 htotal_fp = 0; s64 vtotal_fp = 0; s64 vrefresh_fp = 0; s64 mdp_fudge_factor = 0; s64 num_lm_fp = 0; s64 lm_clk_fp = 0; s64 lm_width_fp = 0; int rc = 0; if (!num_lm) { SDE_ERROR("invalid num_lm pointer\n"); return -EINVAL; } /* default to 1 layer mixer */ *num_lm = 1; if (!kms || !mode || !res) { SDE_ERROR("invalid input args\n"); return -EINVAL; } sde_kms = to_sde_kms(kms); max_mdp_clock_hz = drm_int2fixp(sde_kms->perf.max_core_clk_rate); max_lm_width = drm_int2fixp(res->max_mixer_width); hdisplay_fp = drm_int2fixp(mode->hdisplay); htotal_fp = drm_int2fixp(mode->htotal); vtotal_fp = drm_int2fixp(mode->vtotal); vrefresh_fp = drm_int2fixp(drm_mode_vrefresh(mode)); mdp_fudge_factor = drm_fixp_from_fraction(105, 100); /* mode clock = [(h * v * fps * 1.05) / (num_lm)] */ mode_clock_hz = drm_fixp_mul(htotal_fp, vtotal_fp); mode_clock_hz = drm_fixp_mul(mode_clock_hz, vrefresh_fp); mode_clock_hz = drm_fixp_mul(mode_clock_hz, mdp_fudge_factor); if (mode_clock_hz > max_mdp_clock_hz || hdisplay_fp > max_lm_width) { *num_lm = 0; do { *num_lm += 2; num_lm_fp = drm_int2fixp(*num_lm); lm_clk_fp = drm_fixp_div(mode_clock_hz, num_lm_fp); lm_width_fp = drm_fixp_div(hdisplay_fp, num_lm_fp); if (*num_lm > 4) { rc = -EINVAL; goto error; } } while (lm_clk_fp > max_mdp_clock_hz || lm_width_fp > max_lm_width); mode_clock_hz = lm_clk_fp; } SDE_DEBUG("[%s] h=%d v=%d fps=%d lm=%d mode_clk=%u max_clk=%llu\n", mode->name, mode->htotal, mode->vtotal, drm_mode_vrefresh(mode), *num_lm, drm_fixp2int(mode_clock_hz), sde_kms->perf.max_core_clk_rate); return 0; error: SDE_ERROR("required mode clk exceeds max mdp clk\n"); SDE_ERROR("[%s] h=%d v=%d fps=%d lm=%d mode_clk=%u max_clk=%llu\n", mode->name, mode->htotal, mode->vtotal, drm_mode_vrefresh(mode), *num_lm, drm_fixp2int(mode_clock_hz), sde_kms->perf.max_core_clk_rate); return rc; } static int sde_kms_get_dsc_count(const struct msm_kms *kms, u32 hdisplay, u32 *num_dsc) { struct sde_kms *sde_kms; uint32_t max_dsc_width; if (!num_dsc) { SDE_ERROR("invalid num_dsc pointer\n"); return -EINVAL; } *num_dsc = 0; if (!kms || !hdisplay) { SDE_ERROR("invalid input args\n"); return -EINVAL; } sde_kms = to_sde_kms(kms); max_dsc_width = sde_kms->catalog->max_dsc_width; *num_dsc = DIV_ROUND_UP(hdisplay, max_dsc_width); SDE_DEBUG("h=%d, max_dsc_width=%d, num_dsc=%d\n", hdisplay, max_dsc_width, *num_dsc); return 0; } static bool sde_kms_in_trusted_vm(const struct msm_kms *kms) { struct sde_kms *sde_kms; if (!kms) { SDE_ERROR("invalid kms\n"); return false; } sde_kms = to_sde_kms(kms); return sde_in_trusted_vm(sde_kms); } static int _sde_kms_null_commit(struct drm_device *dev, struct drm_encoder *enc) { struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state = NULL; int retry_cnt = 0; int ret = 0; drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret == -EDEADLK && retry_cnt < SDE_KMS_MODESET_LOCK_MAX_TRIALS) { drm_modeset_backoff(&ctx); retry_cnt++; udelay(SDE_KMS_MODESET_LOCK_TIMEOUT_US); goto retry; } else if (WARN_ON(ret)) { goto end; } state = drm_atomic_state_alloc(dev); if (!state) { DRM_ERROR("failed to allocate atomic state, %d\n", ret); goto end; } state->acquire_ctx = &ctx; ret = sde_kms_set_crtc_for_conn(dev, enc, state); if (ret) goto end; ret = drm_atomic_commit(state); if (ret) SDE_ERROR("Error %d doing the atomic commit\n", ret); end: if (state) drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } void sde_kms_display_early_wakeup(struct drm_device *dev, const int32_t connector_id) { struct drm_connector_list_iter conn_iter; struct drm_connector *conn; struct drm_encoder *drm_enc; drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { if (connector_id != DRM_MSM_WAKE_UP_ALL_DISPLAYS && connector_id != conn->base.id) continue; if (conn->state && conn->state->best_encoder) drm_enc = conn->state->best_encoder; else drm_enc = conn->encoder; if (drm_enc) sde_encoder_early_wakeup(drm_enc); } drm_connector_list_iter_end(&conn_iter); } static int sde_kms_trigger_null_flush(struct msm_kms *kms) { struct sde_kms *sde_kms; struct sde_splash_display *splash_display; struct drm_crtc *crtc; int i, rc = 0; if (!kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } sde_kms = to_sde_kms(kms); /* If splash handoff is done, early return*/ if (!sde_kms->splash_data.num_splash_displays) return 0; /* If all builtin-displays are having cont splash enabled, ignore lastclose*/ if (sde_kms->dsi_display_count == sde_kms->splash_data.num_splash_displays) return -EINVAL; /* * Trigger NULL flush if built-in secondary/primary is stuck in splash * while the primary/secondary is running respectively before lastclose. */ for (i = 0; i < MAX_DSI_DISPLAYS; i++) { splash_display = &sde_kms->splash_data.splash_display[i]; if (splash_display->cont_splash_enabled && splash_display->encoder) { crtc = splash_display->encoder->crtc; SDE_DEBUG("triggering null commit on enc:%d\n", DRMID(splash_display->encoder)); SDE_EVT32(DRMID(splash_display->encoder), SDE_EVTLOG_FUNC_ENTRY); rc = _sde_kms_null_commit(sde_kms->dev, splash_display->encoder); if (!rc && crtc) sde_kms_cancel_delayed_work(crtc); if (rc) DRM_ERROR("null flush commit failure during lastclose\n"); } } return 0; } static void _sde_kms_pm_suspend_idle_helper(struct sde_kms *sde_kms, struct device *dev) { int ret, crtc_id = 0; struct drm_device *ddev = dev_get_drvdata(dev); struct drm_connector *conn; struct drm_connector_list_iter conn_iter; struct msm_drm_private *priv = sde_kms->dev->dev_private; drm_connector_list_iter_begin(ddev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { uint64_t lp; lp = sde_connector_get_lp(conn); if (lp != SDE_MODE_DPMS_LP2) continue; if (sde_encoder_in_clone_mode(conn->encoder)) continue; crtc_id = drm_crtc_index(conn->state->crtc); if (priv->disp_thread[crtc_id].thread) kthread_flush_worker( &priv->disp_thread[crtc_id].worker); ret = sde_encoder_wait_for_event(conn->encoder, MSM_ENC_TX_COMPLETE); if (ret && ret != -EWOULDBLOCK) { SDE_ERROR( "[conn: %d] wait for commit done returned %d\n", conn->base.id, ret); } else if (!ret) { if (priv->event_thread[crtc_id].thread) kthread_flush_worker( &priv->event_thread[crtc_id].worker); sde_encoder_idle_request(conn->encoder); } } drm_connector_list_iter_end(&conn_iter); msm_atomic_flush_display_threads(priv); } struct msm_display_mode *sde_kms_get_msm_mode(struct drm_connector_state *conn_state) { struct sde_connector_state *sde_conn_state; if (!conn_state) return NULL; sde_conn_state = to_sde_connector_state(conn_state); return &sde_conn_state->msm_mode; } static int sde_kms_pm_suspend(struct device *dev) { struct drm_device *ddev; struct drm_modeset_acquire_ctx ctx; struct drm_connector *conn; struct drm_encoder *enc; struct drm_connector_list_iter conn_iter; struct drm_atomic_state *state = NULL; struct sde_kms *sde_kms; int ret = 0, num_crtcs = 0; if (!dev) return -EINVAL; ddev = dev_get_drvdata(dev); if (!ddev || !ddev_to_msm_kms(ddev)) return -EINVAL; sde_kms = to_sde_kms(ddev_to_msm_kms(ddev)); SDE_EVT32(0); /* disable hot-plug polling */ drm_kms_helper_poll_disable(ddev); /* if any built-in display is stuck in CS, skip PM suspend entry to * avoid driver SW state changes. With speculative fence enabled, HAL depends * on power_on notification for the first commit to exit the Wait completion * instead of retire fence signal. */ drm_for_each_encoder(enc, ddev) { if (sde_encoder_in_cont_splash(enc) && enc->crtc) { SDE_DEBUG("skip PM suspend, splash is enabled on enc:%d\n", DRMID(enc)); SDE_EVT32(DRMID(enc), SDE_EVTLOG_FUNC_EXIT); return -EINVAL; } } /* acquire modeset lock(s) */ drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(ddev, &ctx); if (ret) goto unlock; /* save current state for resume */ if (sde_kms->suspend_state) drm_atomic_state_put(sde_kms->suspend_state); sde_kms->suspend_state = drm_atomic_helper_duplicate_state(ddev, &ctx); if (IS_ERR_OR_NULL(sde_kms->suspend_state)) { ret = PTR_ERR(sde_kms->suspend_state); DRM_ERROR("failed to back up suspend state, %d\n", ret); sde_kms->suspend_state = NULL; goto unlock; } /* create atomic state to disable all CRTCs */ state = drm_atomic_state_alloc(ddev); if (!state) { ret = -ENOMEM; DRM_ERROR("failed to allocate crtc disable state, %d\n", ret); goto unlock; } state->acquire_ctx = &ctx; drm_connector_list_iter_begin(ddev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { struct drm_crtc_state *crtc_state; uint64_t lp; if (!conn->state || !conn->state->crtc || conn->dpms != DRM_MODE_DPMS_ON || sde_encoder_in_clone_mode(conn->encoder)) continue; lp = sde_connector_get_lp(conn); if (lp == SDE_MODE_DPMS_LP1 && !sde_encoder_check_curr_mode(conn->encoder, MSM_DISPLAY_VIDEO_MODE)) { /* transition LP1->LP2 on pm suspend */ ret = sde_connector_set_property_for_commit(conn, state, CONNECTOR_PROP_LP, SDE_MODE_DPMS_LP2); if (ret) { DRM_ERROR("failed to set lp2 for conn %d\n", conn->base.id); drm_connector_list_iter_end(&conn_iter); goto unlock; } } if (lp != SDE_MODE_DPMS_LP2 || sde_encoder_check_curr_mode(conn->encoder, MSM_DISPLAY_VIDEO_MODE)) { /* force CRTC to be inactive */ crtc_state = drm_atomic_get_crtc_state(state, conn->state->crtc); if (IS_ERR_OR_NULL(crtc_state)) { DRM_ERROR("failed to get crtc %d state\n", conn->state->crtc->base.id); drm_connector_list_iter_end(&conn_iter); ret = -EINVAL; goto unlock; } if (lp != SDE_MODE_DPMS_LP1 || sde_encoder_check_curr_mode(conn->encoder, MSM_DISPLAY_VIDEO_MODE)) crtc_state->active = false; ++num_crtcs; } } drm_connector_list_iter_end(&conn_iter); /* check for nothing to do */ if (num_crtcs == 0) { DRM_DEBUG("all crtcs are already in the off state\n"); sde_kms->suspend_block = true; _sde_kms_pm_suspend_idle_helper(sde_kms, dev); goto unlock; } /* commit the "disable all" state */ ret = drm_atomic_commit(state); if (ret < 0) { DRM_ERROR("failed to disable crtcs, %d\n", ret); goto unlock; } sde_kms->suspend_block = true; _sde_kms_pm_suspend_idle_helper(sde_kms, dev); unlock: if (state) { drm_atomic_state_put(state); state = NULL; } if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } if ((ret || !num_crtcs) && sde_kms->suspend_state) { drm_atomic_state_put(sde_kms->suspend_state); sde_kms->suspend_state = NULL; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); /* * pm runtime driver avoids multiple runtime_suspend API call by * checking runtime_status. However, this call helps when there is a * race condition between pm_suspend call and doze_suspend/power_off * commit. It removes the extra vote from suspend and adds it back * later to allow power collapse during pm_suspend call */ pm_runtime_put_sync(dev); pm_runtime_get_noresume(dev); /* dump clock state before entering suspend */ if (sde_kms->pm_suspend_clk_dump) _sde_kms_dump_clks_state(sde_kms); return ret; } static int sde_kms_pm_resume(struct device *dev) { struct drm_device *ddev; struct sde_kms *sde_kms; struct drm_encoder *enc; struct drm_modeset_acquire_ctx ctx; int ret, i; if (!dev) return -EINVAL; ddev = dev_get_drvdata(dev); if (!ddev || !ddev_to_msm_kms(ddev)) return -EINVAL; sde_kms = to_sde_kms(ddev_to_msm_kms(ddev)); SDE_EVT32(sde_kms->suspend_state != NULL); /* if a display is in cont splash early exit */ drm_for_each_encoder(enc, ddev) { if (sde_encoder_in_cont_splash(enc) && enc->crtc) { SDE_DEBUG("skip PM resume entry splash is enabled on enc:%d\n", DRMID(enc)); SDE_EVT32(DRMID(enc), SDE_EVTLOG_FUNC_EXIT); return -EINVAL; } } if (sde_kms->suspend_state) drm_mode_config_reset(ddev); drm_modeset_acquire_init(&ctx, 0); retry: ret = drm_modeset_lock_all_ctx(ddev, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); goto retry; } else if (WARN_ON(ret)) { goto end; } sde_kms->suspend_block = false; if (sde_kms->suspend_state) { sde_kms->suspend_state->acquire_ctx = &ctx; for (i = 0; i < TEARDOWN_DEADLOCK_RETRY_MAX; i++) { ret = drm_atomic_helper_commit_duplicated_state( sde_kms->suspend_state, &ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(&ctx); } if (ret < 0) DRM_ERROR("failed to restore state, %d\n", ret); drm_atomic_state_put(sde_kms->suspend_state); sde_kms->suspend_state = NULL; } end: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); /* enable hot-plug polling */ drm_kms_helper_poll_enable(ddev); return 0; } static const struct msm_kms_funcs kms_funcs = { .hw_init = sde_kms_hw_init, .postinit = sde_kms_postinit, .irq_preinstall = sde_irq_preinstall, .irq_postinstall = sde_irq_postinstall, .irq_uninstall = sde_irq_uninstall, .irq = sde_irq, .preclose = sde_kms_preclose, .lastclose = sde_kms_lastclose, .prepare_fence = sde_kms_prepare_fence, .prepare_commit = sde_kms_prepare_commit, .commit = sde_kms_commit, .complete_commit = sde_kms_complete_commit, .get_msm_mode = sde_kms_get_msm_mode, .wait_for_crtc_commit_done = sde_kms_wait_for_commit_done, .wait_for_tx_complete = sde_kms_wait_for_frame_transfer_complete, .check_modified_format = sde_format_check_modified_format, .atomic_check = sde_kms_atomic_check, .get_format = sde_get_msm_format, .round_pixclk = sde_kms_round_pixclk, .display_early_wakeup = sde_kms_display_early_wakeup, .pm_suspend = sde_kms_pm_suspend, .pm_resume = sde_kms_pm_resume, .destroy = sde_kms_destroy, .debugfs_destroy = sde_kms_debugfs_destroy, .cont_splash_config = sde_kms_cont_splash_config, .register_events = _sde_kms_register_events, .get_address_space = _sde_kms_get_address_space, .get_address_space_device = _sde_kms_get_address_space_device, .postopen = _sde_kms_post_open, .check_for_splash = sde_kms_check_for_splash, .trigger_null_flush = sde_kms_trigger_null_flush, .get_mixer_count = sde_kms_get_mixer_count, .get_dsc_count = sde_kms_get_dsc_count, .in_trusted_vm = sde_kms_in_trusted_vm, }; static int _sde_kms_mmu_destroy(struct sde_kms *sde_kms) { int i; for (i = ARRAY_SIZE(sde_kms->aspace) - 1; i >= 0; i--) { if (!sde_kms->aspace[i]) continue; msm_gem_address_space_put(sde_kms->aspace[i]); sde_kms->aspace[i] = NULL; } return 0; } static int _sde_kms_mmu_init(struct sde_kms *sde_kms) { struct msm_mmu *mmu; struct resource *res; struct platform_device *pdev; int i, ret; #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 15, 0)) int early_map = 0; #endif if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev) return -EINVAL; for (i = 0; i < MSM_SMMU_DOMAIN_MAX; i++) { struct msm_gem_address_space *aspace; mmu = msm_smmu_new(sde_kms->dev->dev, i); if (IS_ERR(mmu)) { ret = PTR_ERR(mmu); SDE_DEBUG("failed to init iommu id %d: rc:%d\n", i, ret); continue; } aspace = msm_gem_smmu_address_space_create(sde_kms->dev, mmu, "sde"); if (IS_ERR(aspace)) { ret = PTR_ERR(aspace); mmu->funcs->destroy(mmu); goto fail; } sde_kms->aspace[i] = aspace; aspace->domain_attached = true; /* Mapping splash memory block */ if ((i == MSM_SMMU_DOMAIN_UNSECURE) && sde_kms->splash_data.num_splash_regions) { ret = _sde_kms_map_all_splash_regions(sde_kms); if (ret) { SDE_ERROR("failed to map ret:%d\n", ret); goto enable_trans_fail; } } if (i == MSM_SMMU_DOMAIN_UNSECURE && sde_kms->catalog->hw_fence_rev) { pdev = to_platform_device(sde_kms->dev->dev); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ipcc_reg"); if (!res) { SDE_DEBUG("failed to get resource ipcc_reg, cannot map ipcc\n"); sde_kms->catalog->hw_fence_rev = 0; } else { sde_kms->ipcc_base_addr = res->start; ret = _sde_kms_one2one_mem_map_ipcc_reg(sde_kms, resource_size(res), HW_FENCE_IPCC_PROTOCOLp_CLIENTc(res->start, sde_kms->catalog->ipcc_protocol_id, sde_kms->catalog->ipcc_client_phys_id)); /* if mapping fails disable hw-fences */ if (ret) sde_kms->catalog->hw_fence_rev = 0; } } /* * disable early-map which would have been enabled during * bootup by smmu through the device-tree hint for cont-spash */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 15, 0)) ret = mmu->funcs->enable_smmu_translations(mmu); if (ret) { SDE_ERROR("failed to enable_s1_translations ret:%d\n", ret); goto enable_trans_fail; } #else ret = mmu->funcs->set_attribute(mmu, DOMAIN_ATTR_EARLY_MAP, &early_map); if (ret) { SDE_ERROR("failed to set_att ret:%d, early_map:%d\n", ret, early_map); goto enable_trans_fail; } #endif } sde_kms->base.aspace = sde_kms->aspace[0]; return 0; enable_trans_fail: _sde_kms_unmap_all_splash_regions(sde_kms); fail: _sde_kms_mmu_destroy(sde_kms); return ret; } static void sde_kms_init_rot_sid_hw(struct sde_kms *sde_kms) { if (!sde_kms || !sde_kms->hw_sid || sde_in_trusted_vm(sde_kms)) return; sde_hw_set_rotator_sid(sde_kms->hw_sid); } static void sde_kms_init_hw_fences(struct sde_kms *sde_kms) { if (!sde_kms || !sde_kms->hw_mdp) return; if (sde_kms->hw_mdp->ops.setup_hw_fences) sde_kms->hw_mdp->ops.setup_hw_fences(sde_kms->hw_mdp, sde_kms->catalog->ipcc_protocol_id, sde_kms->catalog->ipcc_client_phys_id, sde_kms->ipcc_base_addr); } static void sde_kms_init_shared_hw(struct sde_kms *sde_kms) { if (!sde_kms || !sde_kms->hw_mdp || !sde_kms->catalog) return; if (sde_kms->hw_mdp->ops.reset_ubwc) sde_kms->hw_mdp->ops.reset_ubwc(sde_kms->hw_mdp, sde_kms->catalog); } static void _sde_kms_set_lutdma_vbif_remap(struct sde_kms *sde_kms) { struct sde_vbif_set_qos_params qos_params; struct sde_mdss_cfg *catalog; if (!sde_kms->catalog) return; catalog = sde_kms->catalog; memset(&qos_params, 0, sizeof(qos_params)); qos_params.vbif_idx = catalog->dma_cfg.vbif_idx; qos_params.xin_id = catalog->dma_cfg.xin_id; qos_params.clk_ctrl = catalog->dma_cfg.clk_ctrl; qos_params.client_type = VBIF_LUTDMA_CLIENT; sde_vbif_set_qos_remap(sde_kms, &qos_params); } static int _sde_kms_active_override(struct sde_kms *sde_kms, bool enable) { struct sde_hw_uidle *uidle; if (!sde_kms) { SDE_ERROR("invalid kms\n"); return -EINVAL; } uidle = sde_kms->hw_uidle; if (uidle && uidle->ops.active_override_enable) uidle->ops.active_override_enable(uidle, enable); return 0; } void sde_kms_cpu_vote_for_irq(struct sde_kms *sde_kms, bool enable) { struct msm_drm_private *priv = sde_kms->dev->dev_private; mutex_lock(&priv->phandle.phandle_lock); if (enable && atomic_inc_return(&sde_kms->irq_vote_count) == 1) _sde_kms_update_pm_qos_irq_request(sde_kms, &sde_kms->irq_cpu_mask); else if (!enable && atomic_dec_return(&sde_kms->irq_vote_count) == 0) _sde_kms_remove_pm_qos_irq_request(sde_kms, &sde_kms->irq_cpu_mask); mutex_unlock(&priv->phandle.phandle_lock); } static void sde_kms_irq_affinity_notify( struct irq_affinity_notify *affinity_notify, const cpumask_t *mask) { struct msm_drm_private *priv; struct sde_kms *sde_kms = container_of(affinity_notify, struct sde_kms, affinity_notify); if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private) return; priv = sde_kms->dev->dev_private; mutex_lock(&priv->phandle.phandle_lock); _sde_kms_remove_pm_qos_irq_request(sde_kms, &sde_kms->irq_cpu_mask); // request vote with updated irq cpu mask if (atomic_read(&sde_kms->irq_vote_count)) _sde_kms_update_pm_qos_irq_request(sde_kms, mask); mutex_unlock(&priv->phandle.phandle_lock); } static void sde_kms_irq_affinity_release(struct kref *ref) {} static void sde_kms_handle_power_event(u32 event_type, void *usr) { struct sde_kms *sde_kms = usr; struct msm_kms *msm_kms; msm_kms = &sde_kms->base; if (!sde_kms) return; SDE_DEBUG("event_type:%d\n", event_type); SDE_EVT32_VERBOSE(event_type); if (event_type == SDE_POWER_EVENT_POST_ENABLE) { sde_irq_update(msm_kms, true); sde_kms->first_kickoff = true; /** * Rotator sid and hw fences need to be programmed since uefi doesn't * configure them during continuous splash */ sde_kms_init_rot_sid_hw(sde_kms); sde_kms_init_hw_fences(sde_kms); if (sde_kms->splash_data.num_splash_displays || sde_in_trusted_vm(sde_kms)) return; sde_vbif_init_memtypes(sde_kms); sde_kms_init_shared_hw(sde_kms); _sde_kms_set_lutdma_vbif_remap(sde_kms); } else if (event_type == SDE_POWER_EVENT_PRE_DISABLE) { sde_irq_update(msm_kms, false); sde_kms->first_kickoff = false; if (sde_in_trusted_vm(sde_kms)) return; _sde_kms_active_override(sde_kms, true); sde_vbif_axi_halt_request(sde_kms); } } #define genpd_to_sde_kms(domain) container_of(domain, struct sde_kms, genpd) static int sde_kms_pd_enable(struct generic_pm_domain *genpd) { struct sde_kms *sde_kms = genpd_to_sde_kms(genpd); int rc = -EINVAL; SDE_DEBUG("\n"); rc = pm_runtime_resume_and_get(sde_kms->dev->dev); rc = (rc > 0) ? 0 : rc; SDE_EVT32(rc, genpd->device_count); return rc; } static int sde_kms_pd_disable(struct generic_pm_domain *genpd) { struct sde_kms *sde_kms = genpd_to_sde_kms(genpd); SDE_DEBUG("\n"); pm_runtime_put_sync(sde_kms->dev->dev); SDE_EVT32(genpd->device_count); return 0; } static int _sde_kms_get_demura_plane_data(struct sde_splash_data *data) { int i = 0; int ret = 0; int count = 0; struct device_node *parent, *node; struct resource r; char node_name[DEMURA_REGION_NAME_MAX]; struct sde_splash_mem *mem; struct sde_splash_display *splash_display; if (!data->num_splash_displays) { SDE_DEBUG("no splash displays. skipping\n"); return 0; } /** * It is expected that each active demura block will have * its own memory region defined. */ parent = of_find_node_by_path("/reserved-memory"); for (i = 0; i < data->num_splash_displays; i++) { splash_display = &data->splash_display[i]; snprintf(&node_name[0], DEMURA_REGION_NAME_MAX, "demura_region_%d", i); splash_display->demura = NULL; node = of_find_node_by_name(parent, node_name); if (!node) { SDE_DEBUG("no Demura node %s! disp count: %d\n", node_name, data->num_splash_displays); continue; } else if (of_address_to_resource(node, 0, &r)) { SDE_ERROR("invalid data for:%s\n", node_name); ret = -EINVAL; break; } mem = &data->demura_mem[i]; mem->splash_buf_base = (unsigned long)r.start; mem->splash_buf_size = (r.end - r.start) + 1; if (!mem->splash_buf_base && !mem->splash_buf_size) { SDE_DEBUG("dummy splash mem for disp %d. Skipping\n", (i+1)); continue; } else if (!mem->splash_buf_base || !mem->splash_buf_size) { SDE_ERROR("mem for disp %d invalid: add:%lx size:%lx\n", (i+1), mem->splash_buf_base, mem->splash_buf_size); continue; } mem->ref_cnt = 0; splash_display->demura = mem; count++; SDE_DEBUG("demura mem for disp:%d add:%lx size:%x\n", (i + 1), mem->splash_buf_base, mem->splash_buf_size); } if (!ret && !count) SDE_DEBUG("no demura regions for cont. splash found!\n"); return ret; } static int _sde_kms_get_splash_data(struct sde_splash_data *data) { int i = 0; int ret = 0; struct device_node *parent, *node, *node1; struct resource r, r1; const char *node_name = "splash_region"; struct sde_splash_mem *mem; bool share_splash_mem = false; int num_displays, num_regions; struct sde_splash_display *splash_display; if (of_find_node_with_property(NULL, "qcom,sde-emulated-env")) return 0; if (!data) return -EINVAL; memset(data, 0, sizeof(*data)); parent = of_find_node_by_path("/reserved-memory"); if (!parent) { SDE_ERROR("failed to find reserved-memory node\n"); return -EINVAL; } node = of_find_node_by_name(parent, node_name); if (!node) { SDE_DEBUG("failed to find node %s\n", node_name); return -EINVAL; } node1 = of_find_node_by_name(NULL, "disp_rdump_region"); if (!node1) SDE_DEBUG("failed to find disp ramdump memory reservation\n"); /** * Support sharing a single splash memory for all the built in displays * and also independent splash region per displays. Incase of * independent splash region for each connected display, dtsi node of * cont_splash_region should be collection of all memory regions * Ex: */ num_displays = dsi_display_get_num_of_displays(); num_regions = of_property_count_u64_elems(node, "reg") / 2; data->num_splash_displays = num_displays; SDE_DEBUG("splash mem num_regions:%d\n", num_regions); if (num_displays > num_regions) { share_splash_mem = true; pr_info(":%d displays share same splash buf\n", num_displays); } for (i = 0; i < num_displays; i++) { splash_display = &data->splash_display[i]; if (!i || !share_splash_mem) { if (of_address_to_resource(node, i, &r)) { SDE_ERROR("invalid data for:%s\n", node_name); return -EINVAL; } mem = &data->splash_mem[i]; if (!node1 || of_address_to_resource(node1, i, &r1)) { SDE_DEBUG("failed to find ramdump memory\n"); mem->ramdump_base = 0; mem->ramdump_size = 0; } else { mem->ramdump_base = (unsigned long)r1.start; mem->ramdump_size = (r1.end - r1.start) + 1; } mem->splash_buf_base = (unsigned long)r.start; mem->splash_buf_size = (r.end - r.start) + 1; mem->ref_cnt = 0; splash_display->splash = mem; data->num_splash_regions++; } else { data->splash_display[i].splash = &data->splash_mem[0]; } SDE_DEBUG("splash mem for disp:%d add:%lx size:%x\n", (i + 1), splash_display->splash->splash_buf_base, splash_display->splash->splash_buf_size); } data->type = SDE_SPLASH_HANDOFF; ret = _sde_kms_get_demura_plane_data(data); return ret; } static int _sde_kms_hw_init_ioremap(struct sde_kms *sde_kms, struct platform_device *platformdev) { int rc = -EINVAL; sde_kms->mmio = msm_ioremap(platformdev, "mdp_phys", "mdp_phys"); if (IS_ERR(sde_kms->mmio)) { rc = PTR_ERR(sde_kms->mmio); SDE_ERROR("mdp register memory map failed: %d\n", rc); sde_kms->mmio = NULL; goto error; } DRM_INFO("mapped mdp address space @%pK\n", sde_kms->mmio); sde_kms->mmio_len = msm_iomap_size(platformdev, "mdp_phys"); rc = sde_dbg_reg_register_base(SDE_DBG_NAME, sde_kms->mmio, sde_kms->mmio_len, msm_get_phys_addr(platformdev, "mdp_phys"), SDE_DBG_SDE); if (rc) SDE_ERROR("dbg base register kms failed: %d\n", rc); sde_kms->vbif[VBIF_RT] = msm_ioremap(platformdev, "vbif_phys", "vbif_phys"); if (IS_ERR(sde_kms->vbif[VBIF_RT])) { rc = PTR_ERR(sde_kms->vbif[VBIF_RT]); SDE_ERROR("vbif register memory map failed: %d\n", rc); sde_kms->vbif[VBIF_RT] = NULL; goto error; } sde_kms->vbif_len[VBIF_RT] = msm_iomap_size(platformdev, "vbif_phys"); rc = sde_dbg_reg_register_base("vbif_rt", sde_kms->vbif[VBIF_RT], sde_kms->vbif_len[VBIF_RT], msm_get_phys_addr(platformdev, "vbif_phys"), SDE_DBG_VBIF_RT); if (rc) SDE_ERROR("dbg base register vbif_rt failed: %d\n", rc); sde_kms->vbif[VBIF_NRT] = msm_ioremap(platformdev, "vbif_nrt_phys", "vbif_nrt_phys"); if (IS_ERR(sde_kms->vbif[VBIF_NRT])) { sde_kms->vbif[VBIF_NRT] = NULL; SDE_DEBUG("VBIF NRT is not defined"); } else { sde_kms->vbif_len[VBIF_NRT] = msm_iomap_size(platformdev, "vbif_nrt_phys"); } sde_kms->reg_dma = msm_ioremap(platformdev, "regdma_phys", "regdma_phys"); if (IS_ERR(sde_kms->reg_dma)) { sde_kms->reg_dma = NULL; SDE_DEBUG("REG_DMA is not defined"); } else { unsigned long mdp_addr = msm_get_phys_addr(platformdev, "mdp_phys"); sde_kms->reg_dma_len = msm_iomap_size(platformdev, "regdma_phys"); sde_kms->reg_dma_off = msm_get_phys_addr(platformdev, "regdma_phys") - mdp_addr; rc = sde_dbg_reg_register_base(LUTDMA_DBG_NAME, sde_kms->reg_dma, sde_kms->reg_dma_len, msm_get_phys_addr(platformdev, "regdma_phys"), SDE_DBG_LUTDMA); if (rc) SDE_ERROR("dbg base register reg_dma failed: %d\n", rc); } sde_kms->sid = msm_ioremap(platformdev, "sid_phys", "sid_phys"); if (IS_ERR(sde_kms->sid)) { SDE_DEBUG("sid register is not defined: %d\n", rc); sde_kms->sid = NULL; } else { sde_kms->sid_len = msm_iomap_size(platformdev, "sid_phys"); rc = sde_dbg_reg_register_base("sid", sde_kms->sid, sde_kms->sid_len, msm_get_phys_addr(platformdev, "sid_phys"), SDE_DBG_SID); if (rc) SDE_ERROR("dbg base register sid failed: %d\n", rc); } error: return rc; } static int _sde_kms_hw_init_power_helper(struct drm_device *dev, struct sde_kms *sde_kms) { int rc = 0; if (of_find_property(dev->dev->of_node, "#power-domain-cells", NULL)) { sde_kms->genpd.name = dev->unique; sde_kms->genpd.power_off = sde_kms_pd_disable; sde_kms->genpd.power_on = sde_kms_pd_enable; rc = pm_genpd_init(&sde_kms->genpd, NULL, true); if (rc < 0) { SDE_ERROR("failed to init genpd provider %s: %d\n", sde_kms->genpd.name, rc); return rc; } rc = of_genpd_add_provider_simple(dev->dev->of_node, &sde_kms->genpd); if (rc < 0) { SDE_ERROR("failed to add genpd provider %s: %d\n", sde_kms->genpd.name, rc); pm_genpd_remove(&sde_kms->genpd); return rc; } sde_kms->genpd_init = true; SDE_DEBUG("added genpd provider %s\n", sde_kms->genpd.name); } return rc; } static int _sde_kms_hw_init_blocks(struct sde_kms *sde_kms, struct drm_device *dev, struct msm_drm_private *priv) { int i, rc = -EINVAL; sde_kms->catalog = sde_hw_catalog_init(dev); if (IS_ERR_OR_NULL(sde_kms->catalog)) { rc = PTR_ERR(sde_kms->catalog); if (!sde_kms->catalog) rc = -EINVAL; SDE_ERROR("catalog init failed: %d\n", rc); sde_kms->catalog = NULL; goto power_error; } sde_kms->core_rev = sde_kms->catalog->hw_rev; pr_info("sde hardware revision:0x%x\n", sde_kms->core_rev); /* initialize power domain if defined */ rc = _sde_kms_hw_init_power_helper(dev, sde_kms); if (rc) { SDE_ERROR("_sde_kms_hw_init_power_helper failed: %d\n", rc); goto genpd_err; } rc = _sde_kms_mmu_init(sde_kms); if (rc) { SDE_ERROR("sde_kms_mmu_init failed: %d\n", rc); goto power_error; } /* Initialize reg dma block which is a singleton */ sde_kms->catalog->dma_cfg.base_off = sde_kms->reg_dma_off; rc = sde_reg_dma_init(sde_kms->reg_dma, sde_kms->catalog, sde_kms->dev); if (rc) { SDE_ERROR("failed: reg dma init failed\n"); goto power_error; } sde_dbg_init_dbg_buses(sde_kms->core_rev); rc = sde_rm_init(&sde_kms->rm); if (rc) { SDE_ERROR("rm init failed: %d\n", rc); goto power_error; } sde_kms->rm_init = true; sde_kms->hw_intr = sde_hw_intr_init(sde_kms->mmio, sde_kms->catalog); if (IS_ERR_OR_NULL(sde_kms->hw_intr)) { rc = PTR_ERR(sde_kms->hw_intr); SDE_ERROR("hw_intr init failed: %d\n", rc); sde_kms->hw_intr = NULL; goto hw_intr_init_err; } /* * Attempt continuous splash handoff only if reserved * splash memory is found & release resources on any error * in finding display hw config in splash */ if (sde_kms->splash_data.num_splash_regions) { struct sde_splash_display *display; int ret, display_count = sde_kms->splash_data.num_splash_displays; ret = sde_rm_cont_splash_res_init(priv, &sde_kms->rm, &sde_kms->splash_data, sde_kms->catalog); for (i = 0; i < display_count; i++) { display = &sde_kms->splash_data.splash_display[i]; /* * free splash region on resource init failure and * cont-splash disabled case */ if (!display->cont_splash_enabled || ret) _sde_kms_free_splash_display_data( sde_kms, display); } } sde_kms->hw_mdp = sde_rm_get_mdp(&sde_kms->rm); if (IS_ERR_OR_NULL(sde_kms->hw_mdp)) { rc = PTR_ERR(sde_kms->hw_mdp); if (!sde_kms->hw_mdp) rc = -EINVAL; SDE_ERROR("failed to get hw_mdp: %d\n", rc); sde_kms->hw_mdp = NULL; goto power_error; } for (i = 0; i < sde_kms->catalog->vbif_count; i++) { u32 vbif_idx = sde_kms->catalog->vbif[i].id; sde_kms->hw_vbif[i] = sde_hw_vbif_init(vbif_idx, sde_kms->vbif[vbif_idx], sde_kms->catalog); if (IS_ERR_OR_NULL(sde_kms->hw_vbif[vbif_idx])) { rc = PTR_ERR(sde_kms->hw_vbif[vbif_idx]); if (!sde_kms->hw_vbif[vbif_idx]) rc = -EINVAL; SDE_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc); sde_kms->hw_vbif[vbif_idx] = NULL; goto power_error; } } if (sde_kms->catalog->uidle_cfg.uidle_rev) { sde_kms->hw_uidle = sde_hw_uidle_init(UIDLE, sde_kms->mmio, sde_kms->mmio_len, sde_kms->catalog); if (IS_ERR_OR_NULL(sde_kms->hw_uidle)) { rc = PTR_ERR(sde_kms->hw_uidle); if (!sde_kms->hw_uidle) rc = -EINVAL; /* uidle is optional, so do not make it a fatal error */ SDE_ERROR("failed to init uidle rc:%d\n", rc); sde_kms->hw_uidle = NULL; rc = 0; } } else { sde_kms->hw_uidle = NULL; } if (sde_kms->sid) { sde_kms->hw_sid = sde_hw_sid_init(sde_kms->sid, sde_kms->sid_len, sde_kms->catalog); if (IS_ERR_OR_NULL(sde_kms->hw_sid)) { rc = PTR_ERR(sde_kms->hw_sid); SDE_ERROR("failed to init sid %d\n", rc); sde_kms->hw_sid = NULL; goto power_error; } } rc = sde_core_perf_init(&sde_kms->perf, dev, sde_kms->catalog, &priv->phandle, "core_clk"); if (rc) { SDE_ERROR("failed to init perf %d\n", rc); goto perf_err; } /* * set the disable_immediate flag when driver supports the precise vsync * timestamp as the DRM hooks for vblank timestamp/counters would be set * based on the feature */ if (test_bit(SDE_FEATURE_HW_VSYNC_TS, sde_kms->catalog->features)) dev->vblank_disable_immediate = true; /* * _sde_kms_drm_obj_init should create the DRM related objects * i.e. CRTCs, planes, encoders, connectors and so forth */ rc = _sde_kms_drm_obj_init(sde_kms); if (rc) { SDE_ERROR("modeset init failed: %d\n", rc); goto drm_obj_init_err; } return 0; genpd_err: drm_obj_init_err: sde_core_perf_destroy(&sde_kms->perf); hw_intr_init_err: perf_err: power_error: return rc; } int _sde_kms_get_tvm_inclusion_mem(struct sde_mdss_cfg *catalog, struct list_head *mem_list) { struct list_head temp_head; struct msm_io_mem_entry *io_mem; int rc, i = 0; INIT_LIST_HEAD(&temp_head); for (i = 0; i < catalog->tvm_reg_count; i++) { struct resource *res = &catalog->tvm_reg[i]; io_mem = kzalloc(sizeof(struct msm_io_mem_entry), GFP_KERNEL); if (!io_mem) { rc = -ENOMEM; goto parse_fail; } io_mem->base = res->start; io_mem->size = resource_size(res); list_add(&io_mem->list, &temp_head); } list_splice(&temp_head, mem_list); return 0; parse_fail: msm_dss_clean_io_mem(&temp_head); return rc; } #ifdef CONFIG_DRM_SDE_VM int sde_kms_get_io_resources(struct sde_kms *sde_kms, struct msm_io_res *io_res) { struct platform_device *pdev = to_platform_device(sde_kms->dev->dev); int rc = 0; rc = msm_dss_get_io_mem(pdev, &io_res->mem); if (rc) { SDE_ERROR("failed to get io mem for KMS, rc = %d\n", rc); return rc; } rc = msm_dss_get_pmic_io_mem(pdev, &io_res->mem); if (rc) { SDE_ERROR("failed to get io mem for pmic, rc:%d\n", rc); return rc; } rc = msm_dss_get_io_irq(pdev, &io_res->irq, GH_IRQ_LABEL_SDE); if (rc) { SDE_ERROR("failed to get io irq for KMS"); return rc; } rc = _sde_kms_get_tvm_inclusion_mem(sde_kms->catalog, &io_res->mem); if (rc) { SDE_ERROR("failed to get tvm inclusion mem ranges"); return rc; } return rc; } #endif static int sde_kms_hw_init(struct msm_kms *kms) { struct sde_kms *sde_kms; struct drm_device *dev; struct msm_drm_private *priv; struct platform_device *platformdev; int irq_num, rc = -EINVAL; if (!kms) { SDE_ERROR("invalid kms\n"); goto end; } sde_kms = to_sde_kms(kms); dev = sde_kms->dev; if (!dev || !dev->dev) { SDE_ERROR("invalid device\n"); goto end; } platformdev = to_platform_device(dev->dev); priv = dev->dev_private; if (!priv) { SDE_ERROR("invalid private data\n"); goto end; } rc = _sde_kms_hw_init_ioremap(sde_kms, platformdev); if (rc) goto error; rc = _sde_kms_get_splash_data(&sde_kms->splash_data); if (rc) SDE_DEBUG("sde splash data fetch failed: %d\n", rc); rc = _sde_kms_hw_init_blocks(sde_kms, dev, priv); if (rc) goto error; dev->mode_config.min_width = sde_kms->catalog->min_display_width; dev->mode_config.min_height = sde_kms->catalog->min_display_height; dev->mode_config.max_width = sde_kms->catalog->max_display_width; dev->mode_config.max_height = sde_kms->catalog->max_display_height; mutex_init(&sde_kms->secure_transition_lock); atomic_set(&sde_kms->detach_sec_cb, 0); atomic_set(&sde_kms->detach_all_cb, 0); atomic_set(&sde_kms->irq_vote_count, 0); /* * Support format modifiers for compression etc. */ #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 19, 0)) dev->mode_config.allow_fb_modifiers = true; #endif sde_kms->affinity_notify.notify = sde_kms_irq_affinity_notify; sde_kms->affinity_notify.release = sde_kms_irq_affinity_release; irq_num = platform_get_irq(to_platform_device(sde_kms->dev->dev), 0); SDE_DEBUG("Registering for notification of irq_num: %d\n", irq_num); irq_set_affinity_notifier(irq_num, &sde_kms->affinity_notify); if (sde_in_trusted_vm(sde_kms)) { rc = sde_vm_trusted_init(sde_kms); sde_dbg_set_hw_ownership_status(false); } else { rc = sde_vm_primary_init(sde_kms); sde_dbg_set_hw_ownership_status(true); } if (rc) { SDE_ERROR("failed to initialize VM ops, rc: %d\n", rc); goto error; } return 0; error: _sde_kms_hw_destroy(sde_kms, platformdev); end: return rc; } struct msm_kms *sde_kms_init(struct drm_device *dev) { struct msm_drm_private *priv; struct sde_kms *sde_kms; if (!dev || !dev->dev_private) { SDE_ERROR("drm device node invalid\n"); return ERR_PTR(-EINVAL); } priv = dev->dev_private; sde_kms = kzalloc(sizeof(*sde_kms), GFP_KERNEL); if (!sde_kms) { SDE_ERROR("failed to allocate sde kms\n"); return ERR_PTR(-ENOMEM); } msm_kms_init(&sde_kms->base, &kms_funcs); sde_kms->dev = dev; return &sde_kms->base; } void sde_kms_vm_trusted_resource_deinit(struct sde_kms *sde_kms) { struct dsi_display *display; struct sde_splash_display *handoff_display; int i; for (i = 0; i < sde_kms->dsi_display_count; i++) { handoff_display = &sde_kms->splash_data.splash_display[i]; display = (struct dsi_display *)sde_kms->dsi_displays[i]; if (handoff_display->cont_splash_enabled) _sde_kms_free_splash_display_data(sde_kms, handoff_display); dsi_display_set_active_state(display, false); } memset(&sde_kms->splash_data, 0, sizeof(struct sde_splash_data)); } int sde_kms_vm_trusted_resource_init(struct sde_kms *sde_kms, struct drm_atomic_state *state) { struct drm_device *dev; struct msm_drm_private *priv; struct sde_splash_display *handoff_display; struct dsi_display *display; int ret, i; if (!sde_kms || !sde_kms->dev || !sde_kms->dev->dev_private) { SDE_ERROR("invalid params\n"); return -EINVAL; } dev = sde_kms->dev; priv = dev->dev_private; sde_kms->splash_data.type = SDE_VM_HANDOFF; sde_kms->splash_data.num_splash_displays = sde_kms->dsi_display_count; ret = sde_rm_cont_splash_res_init(priv, &sde_kms->rm, &sde_kms->splash_data, sde_kms->catalog); if (ret) { SDE_ERROR("invalid cont splash init, ret:%d\n", ret); return -EINVAL; } for (i = 0; i < sde_kms->dsi_display_count; i++) { handoff_display = &sde_kms->splash_data.splash_display[i]; display = (struct dsi_display *)sde_kms->dsi_displays[i]; if (!handoff_display->cont_splash_enabled || ret) _sde_kms_free_splash_display_data(sde_kms, handoff_display); else dsi_display_set_active_state(display, true); } if (sde_kms->splash_data.num_splash_displays != 1) { SDE_ERROR("no. of displays not supported:%d\n", sde_kms->splash_data.num_splash_displays); ret = -EINVAL; goto error; } ret = sde_kms_cont_splash_config(&sde_kms->base, state); if (ret) { SDE_ERROR("error in setting handoff configs\n"); goto error; } /** * fill-in vote for the continuous splash hanodff path, which will be * removed on the successful first commit. */ ret = pm_runtime_resume_and_get(sde_kms->dev->dev); if (ret < 0) { SDE_ERROR("failed to enable power resource %d\n", ret); SDE_EVT32(ret, SDE_EVTLOG_ERROR); goto error; } return 0; error: return ret; } static int _sde_kms_register_events(struct msm_kms *kms, struct drm_mode_object *obj, u32 event, bool en) { int ret = 0; struct drm_crtc *crtc; struct drm_connector *conn; struct sde_kms *sde_kms; if (!kms || !obj) { SDE_ERROR("invalid argument kms %pK obj %pK\n", kms, obj); return -EINVAL; } sde_kms = to_sde_kms(kms); sde_vm_lock(sde_kms); if (!sde_vm_owns_hw(sde_kms)) { sde_vm_unlock(sde_kms); SDE_DEBUG("HW is owned by other VM\n"); return -EACCES; } /* check vm ownership, if event registration requires HW access */ switch (obj->type) { case DRM_MODE_OBJECT_CRTC: crtc = obj_to_crtc(obj); ret = sde_crtc_register_custom_event(sde_kms, crtc, event, en); break; case DRM_MODE_OBJECT_CONNECTOR: conn = obj_to_connector(obj); ret = sde_connector_register_custom_event(sde_kms, conn, event, en); break; } sde_vm_unlock(sde_kms); return ret; } int sde_kms_handle_recovery(struct drm_encoder *encoder) { SDE_EVT32(DRMID(encoder), MSM_ENC_ACTIVE_REGION); return sde_encoder_wait_for_event(encoder, MSM_ENC_ACTIVE_REGION); } void sde_kms_add_data_to_minidump_va(struct sde_kms *sde_kms) { struct msm_drm_private *priv; struct sde_crtc *sde_crtc; struct sde_crtc_state *cstate; struct sde_connector *sde_conn; struct sde_connector_state *conn_state; u32 i; priv = sde_kms->dev->dev_private; sde_mini_dump_add_va_region("sde_kms", sizeof(*sde_kms), sde_kms); for (i = 0; i < priv->num_crtcs; i++) { sde_crtc = to_sde_crtc(priv->crtcs[i]); cstate = to_sde_crtc_state(priv->crtcs[i]->state); sde_mini_dump_add_va_region("sde_crtc", sizeof(*sde_crtc), sde_crtc); sde_mini_dump_add_va_region("crtc_state", sizeof(*cstate), cstate); } for (i = 0; i < priv->num_planes; i++) sde_plane_add_data_to_minidump_va(priv->planes[i]); for (i = 0; i < priv->num_encoders; i++) sde_encoder_add_data_to_minidump_va(priv->encoders[i]); for (i = 0; i < priv->num_connectors; i++) { sde_conn = to_sde_connector(priv->connectors[i]); conn_state = to_sde_connector_state(priv->connectors[i]->state); sde_mini_dump_add_va_region("sde_conn", sizeof(*sde_conn), sde_conn); sde_mini_dump_add_va_region("conn_state", sizeof(*conn_state), conn_state); } }