// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include "msm_drv.h" #include "sde_connector.h" #include "msm_mmu.h" #include "dsi_display.h" #include "dsi_panel.h" #include "dsi_ctrl.h" #include "dsi_ctrl_hw.h" #include "dsi_drm.h" #include "dsi_clk.h" #include "dsi_pwr.h" #include "sde_dbg.h" #include "dsi_parser.h" #define to_dsi_display(x) container_of(x, struct dsi_display, host) #define INT_BASE_10 10 #define MISR_BUFF_SIZE 256 #define ESD_MODE_STRING_MAX_LEN 256 #define ESD_TRIGGER_STRING_MAX_LEN 10 #define MAX_NAME_SIZE 64 #define MAX_TE_RECHECKS 5 #define DSI_CLOCK_BITRATE_RADIX 10 #define MAX_TE_SOURCE_ID 2 #define SEC_PANEL_NAME_MAX_LEN 256 u8 dbgfs_tx_cmd_buf[SZ_4K]; static char dsi_display_primary[MAX_CMDLINE_PARAM_LEN]; static char dsi_display_secondary[MAX_CMDLINE_PARAM_LEN]; static struct dsi_display_boot_param boot_displays[MAX_DSI_ACTIVE_DISPLAY] = { {.boot_param = dsi_display_primary}, {.boot_param = dsi_display_secondary}, }; static void dsi_display_panel_id_notification(struct dsi_display *display); static const struct of_device_id dsi_display_dt_match[] = { {.compatible = "qcom,dsi-display"}, {} }; bool is_skip_op_required(struct dsi_display *display) { if (!display) return false; return (display->is_cont_splash_enabled || display->trusted_vm_env); } static bool is_sim_panel(struct dsi_display *display) { if (!display || !display->panel) return false; return (display->panel->te_using_watchdog_timer || display->panel->panel_ack_disabled); } static bool phy_pll_bypass(struct dsi_display *display) { return display->ctrl[display->cmd_master_idx].phy->hw.phy_pll_bypass; } static void dsi_display_mask_ctrl_error_interrupts(struct dsi_display *display, u32 mask, bool enable) { int i; struct dsi_display_ctrl *ctrl; if (!display) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if ((!ctrl) || (!ctrl->ctrl)) continue; mutex_lock(&ctrl->ctrl->ctrl_lock); dsi_ctrl_mask_error_status_interrupts(ctrl->ctrl, mask, enable); mutex_unlock(&ctrl->ctrl->ctrl_lock); } } static int dsi_display_config_clk_gating(struct dsi_display *display, bool enable) { int rc = 0, i = 0; struct dsi_display_ctrl *mctrl, *ctrl; enum dsi_clk_gate_type clk_selection; enum dsi_clk_gate_type const default_clk_select = PIXEL_CLK | DSI_PHY; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (display->panel->host_config.force_hs_clk_lane) { DSI_DEBUG("no dsi clock gating for continuous clock mode\n"); return 0; } mctrl = &display->ctrl[display->clk_master_idx]; if (!mctrl) { DSI_ERR("Invalid controller\n"); return -EINVAL; } clk_selection = display->clk_gating_config; if (!enable) { /* for disable path, make sure to disable all clk gating */ clk_selection = DSI_CLK_ALL; } else if (!clk_selection || clk_selection > DSI_CLK_NONE) { /* Default selection, no overrides */ clk_selection = default_clk_select; } else if (clk_selection == DSI_CLK_NONE) { clk_selection = 0; } DSI_DEBUG("%s clock gating Byte:%s Pixel:%s PHY:%s\n", enable ? "Enabling" : "Disabling", clk_selection & BYTE_CLK ? "yes" : "no", clk_selection & PIXEL_CLK ? "yes" : "no", clk_selection & DSI_PHY ? "yes" : "no"); rc = dsi_ctrl_config_clk_gating(mctrl->ctrl, enable, clk_selection); if (rc) { DSI_ERR("[%s] failed to %s clk gating for clocks %d, rc=%d\n", display->name, enable ? "enable" : "disable", clk_selection, rc); return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == mctrl)) continue; /** * In Split DSI usecase we should not enable clock gating on * DSI PHY1 to ensure no display atrifacts are seen. */ clk_selection &= ~DSI_PHY; rc = dsi_ctrl_config_clk_gating(ctrl->ctrl, enable, clk_selection); if (rc) { DSI_ERR("[%s] failed to %s clk gating for clocks %d, rc=%d\n", display->name, enable ? "enable" : "disable", clk_selection, rc); return rc; } } return 0; } static void dsi_display_set_ctrl_esd_check_flag(struct dsi_display *display, bool enable) { int i; struct dsi_display_ctrl *ctrl; if (!display) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl) continue; ctrl->ctrl->esd_check_underway = enable; } } static void dsi_display_ctrl_irq_update(struct dsi_display *display, bool en) { int i; struct dsi_display_ctrl *ctrl; if (!display) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl) continue; dsi_ctrl_irq_update(ctrl->ctrl, en); } } void dsi_rect_intersect(const struct dsi_rect *r1, const struct dsi_rect *r2, struct dsi_rect *result) { int l, t, r, b; if (!r1 || !r2 || !result) return; l = max(r1->x, r2->x); t = max(r1->y, r2->y); r = min((r1->x + r1->w), (r2->x + r2->w)); b = min((r1->y + r1->h), (r2->y + r2->h)); if (r <= l || b <= t) { memset(result, 0, sizeof(*result)); } else { result->x = l; result->y = t; result->w = r - l; result->h = b - t; } } int dsi_display_set_backlight(struct drm_connector *connector, void *display, u32 bl_lvl) { struct dsi_display *dsi_display = display; struct dsi_panel *panel; u32 bl_scale, bl_scale_sv; u64 bl_temp; int rc = 0; if (dsi_display == NULL || dsi_display->panel == NULL) return -EINVAL; panel = dsi_display->panel; mutex_lock(&panel->panel_lock); if (!dsi_panel_initialized(panel)) { rc = -EINVAL; goto error; } panel->bl_config.bl_level = bl_lvl; /* scale backlight */ bl_scale = panel->bl_config.bl_scale; bl_temp = bl_lvl * bl_scale / MAX_BL_SCALE_LEVEL; bl_scale_sv = panel->bl_config.bl_scale_sv; bl_temp = (u32)bl_temp * bl_scale_sv / MAX_SV_BL_SCALE_LEVEL; /* use bl_temp as index of dimming bl lut to find the dimming panel backlight */ if (bl_temp != 0 && panel->bl_config.dimming_bl_lut && bl_temp < panel->bl_config.dimming_bl_lut->length) { DSI_DEBUG("before dimming bl_temp = %u, after dimming bl_temp = %lu\n", bl_temp, panel->bl_config.dimming_bl_lut->mapped_bl[bl_temp]); bl_temp = panel->bl_config.dimming_bl_lut->mapped_bl[bl_temp]; } if (bl_temp > panel->bl_config.bl_max_level) bl_temp = panel->bl_config.bl_max_level; if (bl_temp && (bl_temp < panel->bl_config.bl_min_level)) bl_temp = panel->bl_config.bl_min_level; DSI_DEBUG("bl_scale = %u, bl_scale_sv = %u, bl_lvl = %u\n", bl_scale, bl_scale_sv, (u32)bl_temp); rc = dsi_panel_set_backlight(panel, (u32)bl_temp); if (rc) DSI_ERR("unable to set backlight\n"); error: mutex_unlock(&panel->panel_lock); return rc; } static int dsi_display_cmd_engine_enable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = display->trusted_vm_env; m_ctrl = &display->ctrl[display->cmd_master_idx]; mutex_lock(&m_ctrl->ctrl->ctrl_lock); rc = dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON, skip_op); if (rc) { DSI_ERR("[%s] enable mcmd engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto done; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_cmd_engine_state(ctrl->ctrl, DSI_CTRL_ENGINE_ON, skip_op); if (rc) { DSI_ERR( "[%s] enable cmd engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto error_disable_master; } } goto done; error_disable_master: (void)dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); done: mutex_unlock(&m_ctrl->ctrl->ctrl_lock); return rc; } static int dsi_display_cmd_engine_disable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = display->trusted_vm_env; m_ctrl = &display->ctrl[display->cmd_master_idx]; mutex_lock(&m_ctrl->ctrl->ctrl_lock); display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_cmd_engine_state(ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); if (rc) DSI_ERR( "[%s] disable cmd engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); } rc = dsi_ctrl_set_cmd_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); if (rc) DSI_ERR("[%s] disable mcmd engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); mutex_unlock(&m_ctrl->ctrl->ctrl_lock); return rc; } static void dsi_display_aspace_cb_locked(void *cb_data, bool is_detach) { struct dsi_display *display; struct dsi_display_ctrl *display_ctrl; int rc, cnt; if (!cb_data) { DSI_ERR("aspace cb called with invalid cb_data\n"); return; } display = (struct dsi_display *)cb_data; /* * acquire panel_lock to make sure no commands are in-progress * while detaching the non-secure context banks */ dsi_panel_acquire_panel_lock(display->panel); if (is_detach) { /* invalidate the stored iova */ display->cmd_buffer_iova = 0; /* return the virtual address mapping */ msm_gem_put_vaddr(display->tx_cmd_buf); msm_gem_vunmap(display->tx_cmd_buf, OBJ_LOCK_NORMAL); } else { rc = msm_gem_get_iova(display->tx_cmd_buf, display->aspace, &(display->cmd_buffer_iova)); if (rc) { DSI_ERR("failed to get the iova rc %d\n", rc); goto end; } display->vaddr = (void *) msm_gem_get_vaddr(display->tx_cmd_buf); if (IS_ERR_OR_NULL(display->vaddr)) { DSI_ERR("failed to get va rc %d\n", rc); goto end; } } display_for_each_ctrl(cnt, display) { display_ctrl = &display->ctrl[cnt]; display_ctrl->ctrl->cmd_buffer_size = display->cmd_buffer_size; display_ctrl->ctrl->cmd_buffer_iova = display->cmd_buffer_iova; display_ctrl->ctrl->vaddr = display->vaddr; display_ctrl->ctrl->secure_mode = is_detach; } end: /* release panel_lock */ dsi_panel_release_panel_lock(display->panel); } static irqreturn_t dsi_display_panel_te_irq_handler(int irq, void *data) { struct dsi_display *display = (struct dsi_display *)data; /* * This irq handler is used for sole purpose of identifying * ESD attacks on panel and we can safely assume IRQ_HANDLED * in case of display not being initialized yet */ if (!display) return IRQ_HANDLED; SDE_EVT32(SDE_EVTLOG_FUNC_CASE1); complete_all(&display->esd_te_gate); return IRQ_HANDLED; } static void dsi_display_change_te_irq_status(struct dsi_display *display, bool enable) { if (!display) { DSI_ERR("Invalid params\n"); return; } /* Handle unbalanced irq enable/disable calls */ if (enable && !display->is_te_irq_enabled) { enable_irq(gpio_to_irq(display->disp_te_gpio)); display->is_te_irq_enabled = true; } else if (!enable && display->is_te_irq_enabled) { disable_irq(gpio_to_irq(display->disp_te_gpio)); display->is_te_irq_enabled = false; } } static void dsi_display_register_te_irq(struct dsi_display *display) { int rc = 0; struct platform_device *pdev; struct device *dev; unsigned int te_irq; pdev = display->pdev; if (!pdev) { DSI_ERR("invalid platform device\n"); return; } dev = &pdev->dev; if (!dev) { DSI_ERR("invalid device\n"); return; } if (display->trusted_vm_env) { DSI_INFO("GPIO's are not enabled in trusted VM\n"); return; } if (!gpio_is_valid(display->disp_te_gpio)) { rc = -EINVAL; goto error; } init_completion(&display->esd_te_gate); te_irq = gpio_to_irq(display->disp_te_gpio); /* Avoid deferred spurious irqs with disable_irq() */ irq_set_status_flags(te_irq, IRQ_DISABLE_UNLAZY); rc = devm_request_irq(dev, te_irq, dsi_display_panel_te_irq_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "TE_GPIO", display); if (rc) { DSI_ERR("TE request_irq failed for ESD rc:%d\n", rc); irq_clear_status_flags(te_irq, IRQ_DISABLE_UNLAZY); goto error; } disable_irq(te_irq); display->is_te_irq_enabled = false; return; error: /* disable the TE based ESD check */ DSI_WARN("Unable to register for TE IRQ\n"); if (display->panel->esd_config.status_mode == ESD_MODE_PANEL_TE) display->panel->esd_config.esd_enabled = false; } /* Allocate memory for cmd dma tx buffer */ static int dsi_host_alloc_cmd_tx_buffer(struct dsi_display *display) { int rc = 0, cnt = 0; struct dsi_display_ctrl *display_ctrl; display->tx_cmd_buf = msm_gem_new(display->drm_dev, SZ_4K, MSM_BO_UNCACHED); if ((display->tx_cmd_buf) == NULL) { DSI_ERR("Failed to allocate cmd tx buf memory\n"); rc = -ENOMEM; goto error; } display->cmd_buffer_size = SZ_4K; display->aspace = msm_gem_smmu_address_space_get( display->drm_dev, MSM_SMMU_DOMAIN_UNSECURE); if (PTR_ERR(display->aspace) == -ENODEV) { display->aspace = NULL; DSI_DEBUG("IOMMU not present, relying on VRAM\n"); } else if (IS_ERR_OR_NULL(display->aspace)) { rc = PTR_ERR(display->aspace); display->aspace = NULL; DSI_ERR("failed to get aspace %d\n", rc); goto free_gem; } else if (display->aspace) { /* register to aspace */ rc = msm_gem_address_space_register_cb(display->aspace, dsi_display_aspace_cb_locked, (void *)display); if (rc) { DSI_ERR("failed to register callback %d\n", rc); goto free_gem; } } rc = msm_gem_get_iova(display->tx_cmd_buf, display->aspace, &(display->cmd_buffer_iova)); if (rc) { DSI_ERR("failed to get the iova rc %d\n", rc); goto free_aspace_cb; } display->vaddr = (void *) msm_gem_get_vaddr(display->tx_cmd_buf); if (IS_ERR_OR_NULL(display->vaddr)) { DSI_ERR("failed to get va rc %d\n", rc); rc = -EINVAL; goto put_iova; } display_for_each_ctrl(cnt, display) { display_ctrl = &display->ctrl[cnt]; display_ctrl->ctrl->cmd_buffer_size = SZ_4K; display_ctrl->ctrl->cmd_buffer_iova = display->cmd_buffer_iova; display_ctrl->ctrl->vaddr = display->vaddr; display_ctrl->ctrl->tx_cmd_buf = display->tx_cmd_buf; } return rc; put_iova: msm_gem_put_iova(display->tx_cmd_buf, display->aspace); free_aspace_cb: msm_gem_address_space_unregister_cb(display->aspace, dsi_display_aspace_cb_locked, display); free_gem: mutex_lock(&display->drm_dev->struct_mutex); msm_gem_free_object(display->tx_cmd_buf); mutex_unlock(&display->drm_dev->struct_mutex); error: return rc; } static bool dsi_display_validate_reg_read(struct dsi_panel *panel) { int i, j = 0; int len = 0, *lenp; int group = 0, count = 0; struct drm_panel_esd_config *config; if (!panel) return false; config = &(panel->esd_config); lenp = config->status_valid_params ?: config->status_cmds_rlen; count = config->status_cmd.count; for (i = 0; i < count; i++) len += lenp[i]; for (j = 0; j < config->groups; ++j) { for (i = 0; i < len; ++i) { if (config->return_buf[i] != config->status_value[group + i]) { DRM_ERROR("mismatch: 0x%x\n", config->return_buf[i]); break; } } if (i == len) return true; group += len; } return false; } static void dsi_display_parse_demura_data(struct dsi_display *display) { int rc = 0; display->panel_id = ~0x0; if (display->fw) { DSI_DEBUG("FW definition unsupported for Demura panel data\n"); return; } rc = of_property_read_u64(display->pdev->dev.of_node, "qcom,demura-panel-id", &display->panel_id); if (rc) { DSI_DEBUG("No panel ID is present for this display\n"); } else if (!display->panel_id) { DSI_DEBUG("Dummy panel ID node present for this display\n"); display->panel_id = ~0x0; } else { DSI_DEBUG("panel id found: %lx\n", display->panel_id); } } static void dsi_display_parse_te_data(struct dsi_display *display) { struct platform_device *pdev; struct device *dev; int rc = 0; u32 val = 0; pdev = display->pdev; if (!pdev) { DSI_ERR("Invalid platform device\n"); return; } dev = &pdev->dev; if (!dev) { DSI_ERR("Invalid platform device\n"); return; } display->disp_te_gpio = of_get_named_gpio(dev->of_node, "qcom,platform-te-gpio", 0); if (display->fw) rc = dsi_parser_read_u32(display->parser_node, "qcom,panel-te-source", &val); else rc = of_property_read_u32(dev->of_node, "qcom,panel-te-source", &val); if (rc || (val > MAX_TE_SOURCE_ID)) { DSI_ERR("invalid vsync source selection\n"); val = 0; } display->te_source = val; } static void dsi_display_set_cmd_tx_ctrl_flags(struct dsi_display *display, struct dsi_cmd_desc *cmd) { struct dsi_display_ctrl *ctrl, *m_ctrl; struct mipi_dsi_msg *msg = &cmd->msg; u32 flags = 0; int i = 0; m_ctrl = &display->ctrl[display->clk_master_idx]; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; /* * Set cmd transfer mode flags. * 1) Default selection is CMD fetch from memory. * 2) In secure session override and use FIFO rather than * memory. * 3) If cmd_len is greater than FIFO size non embedded mode of * tx is used. */ flags = DSI_CTRL_CMD_FETCH_MEMORY; if (ctrl->ctrl->secure_mode) { flags &= ~DSI_CTRL_CMD_FETCH_MEMORY; flags |= DSI_CTRL_CMD_FIFO_STORE; } else if (msg->tx_len > DSI_EMBEDDED_MODE_DMA_MAX_SIZE_BYTES) { flags |= DSI_CTRL_CMD_NON_EMBEDDED_MODE; } /* Set flags needed for broadcast. Read commands are always unicast */ if (!(msg->flags & MIPI_DSI_MSG_UNICAST_COMMAND) && (display->ctrl_count > 1)) flags |= DSI_CTRL_CMD_BROADCAST | DSI_CTRL_CMD_DEFER_TRIGGER; /* * Set flags for command scheduling. * 1) In video mode command DMA scheduling is default. * 2) In command mode unicast command DMA scheduling depends on message * flag and TE needs to be running. * 3) In command mode broadcast command DMA scheduling is default and * TE needs to be running. */ if (display->panel->panel_mode == DSI_OP_VIDEO_MODE) { flags |= DSI_CTRL_CMD_CUSTOM_DMA_SCHED; } else { if (msg->flags & MIPI_DSI_MSG_CMD_DMA_SCHED) flags |= DSI_CTRL_CMD_CUSTOM_DMA_SCHED; if (flags & DSI_CTRL_CMD_BROADCAST) flags |= DSI_CTRL_CMD_CUSTOM_DMA_SCHED; if (!display->enabled) flags &= ~DSI_CTRL_CMD_CUSTOM_DMA_SCHED; } /* Set flags for last command */ if (!(msg->flags & MIPI_DSI_MSG_BATCH_COMMAND) || (flags & DSI_CTRL_CMD_FIFO_STORE) || (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE)) flags |= DSI_CTRL_CMD_LAST_COMMAND; /* * Set flags for asynchronous wait. * Asynchronous wait is supported in the following scenarios * 1) queue_cmd_waits is set by connector and * - commands are not sent using DSI FIFO memory * - commands are not sent in non-embedded mode * - no explicit msg post_wait_ms is specified * - not a read command * 2) if async override msg flag is present */ if (display->queue_cmd_waits) if (!(flags & DSI_CTRL_CMD_FIFO_STORE) && !(flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) && (cmd->post_wait_ms == 0) && !(cmd->ctrl_flags & DSI_CTRL_CMD_READ)) flags |= DSI_CTRL_CMD_ASYNC_WAIT; if (msg->flags & MIPI_DSI_MSG_ASYNC_OVERRIDE) flags |= DSI_CTRL_CMD_ASYNC_WAIT; } cmd->ctrl_flags |= flags; } static int dsi_display_read_status(struct dsi_display_ctrl *ctrl, struct dsi_display *display) { int i, rc = 0, count = 0, start = 0, *lenp; struct drm_panel_esd_config *config; struct dsi_cmd_desc *cmds; struct dsi_panel *panel; u32 flags = 0; if (!display->panel || !ctrl || !ctrl->ctrl) return -EINVAL; panel = display->panel; /* * When DSI controller is not in initialized state, we do not want to * report a false ESD failure and hence we defer until next read * happen. */ if (!dsi_ctrl_validate_host_state(ctrl->ctrl)) return 1; if (phy_pll_bypass(display)) return 0; config = &(panel->esd_config); lenp = config->status_valid_params ?: config->status_cmds_rlen; count = config->status_cmd.count; cmds = config->status_cmd.cmds; flags = DSI_CTRL_CMD_READ; for (i = 0; i < count; ++i) { memset(config->status_buf, 0x0, SZ_4K); if (config->status_cmd.state == DSI_CMD_SET_STATE_LP) cmds[i].msg.flags |= MIPI_DSI_MSG_USE_LPM; cmds[i].msg.flags |= MIPI_DSI_MSG_UNICAST_COMMAND; cmds[i].msg.rx_buf = config->status_buf; cmds[i].msg.rx_len = config->status_cmds_rlen[i]; cmds[i].ctrl_flags = flags; dsi_display_set_cmd_tx_ctrl_flags(display,&cmds[i]); rc = dsi_ctrl_transfer_prepare(ctrl->ctrl, cmds[i].ctrl_flags); if (rc) { DSI_ERR("prepare for rx cmd transfer failed rc=%d\n", rc); return rc; } rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, &cmds[i]); if (rc <= 0) { DSI_ERR("rx cmd transfer failed rc=%d\n", rc); } else { memcpy(config->return_buf + start, config->status_buf, lenp[i]); start += lenp[i]; } dsi_ctrl_transfer_unprepare(ctrl->ctrl, cmds[i].ctrl_flags); } return rc; } static int dsi_display_validate_status(struct dsi_display_ctrl *ctrl, struct dsi_display *display) { int rc = 0; rc = dsi_display_read_status(ctrl, display); if (rc <= 0) { goto exit; } else { /* * panel status read successfully. * check for validity of the data read back. */ rc = dsi_display_validate_reg_read(display->panel); if (!rc) { rc = -EINVAL; goto exit; } } exit: return rc; } static int dsi_display_status_reg_read(struct dsi_display *display) { int rc = 0, i; struct dsi_display_ctrl *m_ctrl, *ctrl; DSI_DEBUG(" ++\n"); m_ctrl = &display->ctrl[display->cmd_master_idx]; if (display->tx_cmd_buf == NULL) { rc = dsi_host_alloc_cmd_tx_buffer(display); if (rc) { DSI_ERR("failed to allocate cmd tx buffer memory\n"); goto done; } } rc = dsi_display_validate_status(m_ctrl, display); if (rc <= 0) { DSI_ERR("[%s] read status failed on master,rc=%d\n", display->name, rc); goto done; } if (!display->panel->sync_broadcast_en) goto done; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (ctrl == m_ctrl) continue; rc = dsi_display_validate_status(ctrl, display); if (rc <= 0) { DSI_ERR("[%s] read status failed on slave,rc=%d\n", display->name, rc); goto done; } } done: return rc; } static int dsi_display_status_bta_request(struct dsi_display *display) { int rc = 0; DSI_DEBUG(" ++\n"); /* TODO: trigger SW BTA and wait for acknowledgment */ return rc; } static void dsi_display_release_te_irq(struct dsi_display *display) { int te_irq = 0; te_irq = gpio_to_irq(display->disp_te_gpio); if (te_irq) free_irq(te_irq, display); } static int dsi_display_status_check_te(struct dsi_display *display, int rechecks) { int rc = 1, i = 0; int const esd_te_timeout = msecs_to_jiffies(3*20); if (!rechecks) return rc; /* register te irq handler */ dsi_display_register_te_irq(display); dsi_display_change_te_irq_status(display, true); for (i = 0; i < rechecks; i++) { reinit_completion(&display->esd_te_gate); if (!wait_for_completion_timeout(&display->esd_te_gate, esd_te_timeout)) { DSI_ERR("TE check failed\n"); dsi_display_change_te_irq_status(display, false); return -EINVAL; } } dsi_display_change_te_irq_status(display, false); dsi_display_release_te_irq(display); return rc; } void dsi_display_toggle_error_interrupt_status(struct dsi_display * display, bool enable) { int i = 0; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; dsi_ctrl_toggle_error_interrupt_status(ctrl->ctrl, enable); } } int dsi_display_check_status(struct drm_connector *connector, void *display, bool te_check_override) { struct dsi_display *dsi_display = display; struct dsi_panel *panel; u32 status_mode; int rc = 0x1; int te_rechecks = 1; if (!dsi_display || !dsi_display->panel) return -EINVAL; panel = dsi_display->panel; dsi_panel_acquire_panel_lock(panel); if (!panel->panel_initialized) { DSI_DEBUG("Panel not initialized\n"); goto release_panel_lock; } /* Prevent another ESD check,when ESD recovery is underway */ if (atomic_read(&panel->esd_recovery_pending)) goto release_panel_lock; status_mode = panel->esd_config.status_mode; if ((status_mode == ESD_MODE_SW_SIM_SUCCESS) || is_sim_panel(display)) goto release_panel_lock; if (status_mode == ESD_MODE_SW_SIM_FAILURE) { rc = -EINVAL; goto release_panel_lock; } SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, status_mode, te_check_override); if (te_check_override) te_rechecks = MAX_TE_RECHECKS; if ((dsi_display->trusted_vm_env) || (panel->panel_mode == DSI_OP_VIDEO_MODE)) te_rechecks = 0; dsi_display_set_ctrl_esd_check_flag(dsi_display, true); dsi_display_clk_ctrl(dsi_display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); /* Disable error interrupts while doing an ESD check */ dsi_display_toggle_error_interrupt_status(dsi_display, false); if (status_mode == ESD_MODE_REG_READ) { rc = dsi_display_status_reg_read(dsi_display); } else if (status_mode == ESD_MODE_SW_BTA) { rc = dsi_display_status_bta_request(dsi_display); } else if (status_mode == ESD_MODE_PANEL_TE) { rc = dsi_display_status_check_te(dsi_display, te_rechecks); te_check_override = false; } else { DSI_WARN("Unsupported check status mode: %d\n", status_mode); panel->esd_config.esd_enabled = false; } if (rc <= 0 && te_check_override) rc = dsi_display_status_check_te(dsi_display, te_rechecks); if (rc > 0) { dsi_display_set_ctrl_esd_check_flag(dsi_display, false); if (te_check_override && panel->esd_config.esd_enabled == false) rc = dsi_display_status_check_te(dsi_display, te_rechecks); } /* Handle Panel failures during display disable sequence */ if (rc <=0) atomic_set(&panel->esd_recovery_pending, 1); else /* Enable error interrupts post an ESD success */ dsi_display_toggle_error_interrupt_status(dsi_display, true); dsi_display_clk_ctrl(dsi_display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); release_panel_lock: dsi_panel_release_panel_lock(panel); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, rc); return rc; } static int dsi_display_ctrl_get_host_init_state(struct dsi_display *dsi_display, bool *state) { struct dsi_display_ctrl *ctrl; int i, rc = -EINVAL; bool final_state = true; display_for_each_ctrl(i, dsi_display) { bool ctrl_state = false; ctrl = &dsi_display->ctrl[i]; rc = dsi_ctrl_get_host_engine_init_state(ctrl->ctrl, &ctrl_state); final_state &= ctrl_state; if ((rc) || !(final_state)) break; } *state = final_state; return rc; } static int dsi_display_cmd_rx(struct dsi_display *display, struct dsi_cmd_desc *cmd) { struct dsi_display_ctrl *m_ctrl = NULL; u32 flags = 0; int rc = 0; if (!display || !display->panel) return -EINVAL; m_ctrl = &display->ctrl[display->cmd_master_idx]; if (!m_ctrl || !m_ctrl->ctrl) return -EINVAL; /* acquire panel_lock to make sure no commands are in progress */ dsi_panel_acquire_panel_lock(display->panel); if (!display->panel->panel_initialized) { DSI_DEBUG("panel not initialized\n"); goto release_panel_lock; } if (phy_pll_bypass(display)) goto release_panel_lock; flags = DSI_CTRL_CMD_READ; dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); dsi_display_toggle_error_interrupt_status(display, false); cmd->ctrl_flags = flags; dsi_display_set_cmd_tx_ctrl_flags(display, cmd); rc = dsi_ctrl_transfer_prepare(m_ctrl->ctrl, cmd->ctrl_flags); if (rc) { DSI_ERR("prepare for rx cmd transfer failed rc = %d\n", rc); goto enable_error_interrupts; } rc = dsi_ctrl_cmd_transfer(m_ctrl->ctrl, cmd); if (rc <= 0) DSI_ERR("rx cmd transfer failed rc = %d\n", rc); dsi_ctrl_transfer_unprepare(m_ctrl->ctrl, cmd->ctrl_flags); enable_error_interrupts: dsi_display_toggle_error_interrupt_status(display, true); dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); release_panel_lock: dsi_panel_release_panel_lock(display->panel); return rc; } int dsi_display_cmd_transfer(struct drm_connector *connector, void *display, const char *cmd_buf, u32 cmd_buf_len) { struct dsi_display *dsi_display = display; int rc = 0, cnt = 0, i = 0; bool state = false, transfer = false; struct dsi_panel_cmd_set *set; if (!dsi_display || !cmd_buf) { DSI_ERR("[DSI] invalid params\n"); return -EINVAL; } DSI_DEBUG("[DSI] Display command transfer\n"); if (!(cmd_buf[3] & MIPI_DSI_MSG_BATCH_COMMAND)) transfer = true; mutex_lock(&dsi_display->display_lock); rc = dsi_display_ctrl_get_host_init_state(dsi_display, &state); /** * Handle scenario where a command transfer is initiated through * sysfs interface when device is in suepnd state. */ if (!rc && !state) { pr_warn_ratelimited("Command xfer attempted while device is in suspend state\n" ); rc = -EPERM; goto end; } if (rc || !state) { DSI_ERR("[DSI] Invalid host state %d rc %d\n", state, rc); rc = -EPERM; goto end; } SDE_EVT32(dsi_display->tx_cmd_buf_ndx, cmd_buf_len); /* * Reset the dbgfs buffer if the commands sent exceed the available * buffer size. For video mode, limiting the buffer size to 2K to * ensure no performance issues. */ if (dsi_display->panel->panel_mode == DSI_OP_CMD_MODE) { if ((dsi_display->tx_cmd_buf_ndx + cmd_buf_len) > SZ_4K) { memset(dbgfs_tx_cmd_buf, 0, SZ_4K); dsi_display->tx_cmd_buf_ndx = 0; } } else { if ((dsi_display->tx_cmd_buf_ndx + cmd_buf_len) > SZ_2K) { memset(dbgfs_tx_cmd_buf, 0, SZ_4K); dsi_display->tx_cmd_buf_ndx = 0; } } memcpy(&dbgfs_tx_cmd_buf[dsi_display->tx_cmd_buf_ndx], cmd_buf, cmd_buf_len); dsi_display->tx_cmd_buf_ndx += cmd_buf_len; if (transfer) { struct dsi_cmd_desc *cmds; set = &dsi_display->cmd_set; set->count = 0; dsi_panel_get_cmd_pkt_count(dbgfs_tx_cmd_buf, dsi_display->tx_cmd_buf_ndx, &cnt); dsi_panel_alloc_cmd_packets(set, cnt); dsi_panel_create_cmd_packets(dbgfs_tx_cmd_buf, dsi_display->tx_cmd_buf_ndx, cnt, set->cmds); cmds = set->cmds; dsi_display->tx_cmd_buf_ndx = 0; dsi_panel_acquire_panel_lock(dsi_display->panel); for (i = 0; i < cnt; i++) { rc = dsi_host_transfer_sub(&dsi_display->host, cmds); if (rc < 0) { DSI_ERR("failed to send command, rc=%d\n", rc); break; } if (cmds->post_wait_ms) usleep_range(cmds->post_wait_ms*1000, ((cmds->post_wait_ms*1000)+10)); cmds++; } dsi_panel_release_panel_lock(dsi_display->panel); memset(dbgfs_tx_cmd_buf, 0, SZ_4K); dsi_panel_destroy_cmd_packets(set); dsi_panel_dealloc_cmd_packets(set); } end: mutex_unlock(&dsi_display->display_lock); return rc; } static void _dsi_display_continuous_clk_ctrl(struct dsi_display *display, bool enable) { int i; struct dsi_display_ctrl *ctrl; if (!display || !display->panel->host_config.force_hs_clk_lane) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; /* * For phy ver 4.0 chipsets, configure DSI controller and * DSI PHY to force clk lane to HS mode always whereas * for other phy ver chipsets, configure DSI controller only. */ if (ctrl->phy->hw.ops.set_continuous_clk) { dsi_ctrl_hs_req_sel(ctrl->ctrl, true); dsi_ctrl_set_continuous_clk(ctrl->ctrl, enable); dsi_phy_set_continuous_clk(ctrl->phy, enable); } else { dsi_ctrl_set_continuous_clk(ctrl->ctrl, enable); } } } int dsi_display_cmd_receive(void *display, const char *cmd_buf, u32 cmd_buf_len, u8 *recv_buf, u32 recv_buf_len, ktime_t *ts) { struct dsi_display *dsi_display = display; struct dsi_cmd_desc cmd = {}; bool state = false; int rc = -1; if (!dsi_display || !cmd_buf || !recv_buf) { DSI_ERR("[DSI] invalid params\n"); return -EINVAL; } rc = dsi_panel_create_cmd_packets(cmd_buf, cmd_buf_len, 1, &cmd); if (rc) { DSI_ERR("[DSI] command packet create failed, rc = %d\n", rc); return rc; } cmd.msg.rx_buf = recv_buf; cmd.msg.rx_len = recv_buf_len; cmd.msg.flags |= MIPI_DSI_MSG_UNICAST_COMMAND; mutex_lock(&dsi_display->display_lock); if (is_sim_panel(display)) { DSI_DEBUG("Simulation panel doesn't support read commands\n"); goto end; } rc = dsi_display_ctrl_get_host_init_state(dsi_display, &state); /** * Handle scenario where a command transfer is initiated through * sysfs interface when device is in suspend state. */ if (!rc && !state) { pr_warn_ratelimited("Command xfer attempted while device is in suspend state\n"); rc = -EPERM; goto end; } if (rc || !state) { DSI_ERR("[DSI] Invalid host state = %d rc = %d\n", state, rc); rc = -EPERM; goto end; } SDE_EVT32(cmd_buf_len, recv_buf_len); rc = dsi_display_cmd_rx(dsi_display, &cmd); if (rc <= 0) DSI_ERR("[DSI] Display command receive failed, rc=%d\n", rc); if (ts) *ts = cmd.ts; end: mutex_unlock(&dsi_display->display_lock); return rc; } int dsi_display_soft_reset(void *display) { struct dsi_display *dsi_display; struct dsi_display_ctrl *ctrl; int rc = 0; int i; if (!display) return -EINVAL; dsi_display = display; display_for_each_ctrl(i, dsi_display) { ctrl = &dsi_display->ctrl[i]; rc = dsi_ctrl_soft_reset(ctrl->ctrl); if (rc) { DSI_ERR("[%s] failed to soft reset host_%d, rc=%d\n", dsi_display->name, i, rc); break; } } return rc; } enum dsi_pixel_format dsi_display_get_dst_format( struct drm_connector *connector, void *display) { enum dsi_pixel_format format = DSI_PIXEL_FORMAT_MAX; struct dsi_display *dsi_display = (struct dsi_display *)display; if (!dsi_display || !dsi_display->panel) { DSI_ERR("Invalid params(s) dsi_display %pK, panel %pK\n", dsi_display, ((dsi_display) ? dsi_display->panel : NULL)); return format; } format = dsi_display->panel->host_config.dst_format; return format; } static void _dsi_display_setup_misr(struct dsi_display *display) { int i; display_for_each_ctrl(i, display) { dsi_ctrl_setup_misr(display->ctrl[i].ctrl, display->misr_enable, display->misr_frame_count); } } int dsi_display_set_power(struct drm_connector *connector, int power_mode, void *disp) { struct dsi_display *display = disp; int rc = 0; if (!display || !display->panel) { DSI_ERR("invalid display/panel\n"); return -EINVAL; } switch (power_mode) { case SDE_MODE_DPMS_LP1: rc = dsi_panel_set_lp1(display->panel); break; case SDE_MODE_DPMS_LP2: rc = dsi_panel_set_lp2(display->panel); break; case SDE_MODE_DPMS_ON: if ((display->panel->power_mode == SDE_MODE_DPMS_LP1) || (display->panel->power_mode == SDE_MODE_DPMS_LP2)) rc = dsi_panel_set_nolp(display->panel); break; case SDE_MODE_DPMS_OFF: default: return rc; } SDE_EVT32(display->panel->power_mode, power_mode, rc); DSI_DEBUG("Power mode transition from %d to %d %s", display->panel->power_mode, power_mode, rc ? "failed" : "successful"); if (!rc) display->panel->power_mode = power_mode; return rc; } #if IS_ENABLED(CONFIG_DEBUG_FS) static bool dsi_display_is_te_based_esd(struct dsi_display *display) { u32 status_mode = 0; if (!display->panel) { DSI_ERR("Invalid panel data\n"); return false; } status_mode = display->panel->esd_config.status_mode; if (status_mode == ESD_MODE_PANEL_TE && gpio_is_valid(display->disp_te_gpio)) return true; return false; } static ssize_t debugfs_dump_info_read(struct file *file, char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; struct dsi_mode_info *m; char *buf; u32 len = 0; int i; if (!display) return -ENODEV; if (*ppos) return 0; buf = kzalloc(SZ_4K, GFP_KERNEL); if (!buf) return -ENOMEM; m = &display->config.video_timing; len += snprintf(buf + len, (SZ_4K - len), "name = %s\n", display->name); len += snprintf(buf + len, (SZ_4K - len), "\tResolution = %d(%d|%d|%d|%d)x%d(%d|%d|%d|%d)@%dfps %llu Hz\n", m->h_active, m->h_back_porch, m->h_front_porch, m->h_sync_width, m->h_sync_polarity, m->v_active, m->v_back_porch, m->v_front_porch, m->v_sync_width, m->v_sync_polarity, m->refresh_rate, m->clk_rate_hz); display_for_each_ctrl(i, display) { len += snprintf(buf + len, (SZ_4K - len), "\tCTRL_%d:\n\t\tctrl = %s\n\t\tphy = %s\n", i, display->ctrl[i].ctrl->name, display->ctrl[i].phy->name); } len += snprintf(buf + len, (SZ_4K - len), "\tPanel = %s\n", display->panel->name); len += snprintf(buf + len, (SZ_4K - len), "\tClock master = %s\n", display->ctrl[display->clk_master_idx].ctrl->name); if (len > user_len) len = user_len; if (copy_to_user(user_buf, buf, len)) { kfree(buf); return -EFAULT; } *ppos += len; kfree(buf); return len; } static ssize_t debugfs_misr_setup(struct file *file, const char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; char *buf; int rc = 0; size_t len; u32 enable, frame_count; if (!display) return -ENODEV; if (*ppos) return 0; buf = kzalloc(MISR_BUFF_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; /* leave room for termination char */ len = min_t(size_t, user_len, MISR_BUFF_SIZE - 1); if (copy_from_user(buf, user_buf, len)) { rc = -EINVAL; goto error; } buf[len] = '\0'; /* terminate the string */ if (sscanf(buf, "%u %u", &enable, &frame_count) != 2) { rc = -EINVAL; goto error; } display->misr_enable = enable; display->misr_frame_count = frame_count; mutex_lock(&display->display_lock); if (!display->hw_ownership) { DSI_DEBUG("[%s] op not supported due to HW unavailability\n", display->name); rc = -EOPNOTSUPP; goto unlock; } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n", display->name, rc); goto unlock; } _dsi_display_setup_misr(display); rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_OFF); if (rc) { DSI_ERR("[%s] failed to disable DSI core clocks, rc=%d\n", display->name, rc); goto unlock; } rc = user_len; unlock: mutex_unlock(&display->display_lock); error: kfree(buf); return rc; } static ssize_t debugfs_misr_read(struct file *file, char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; char *buf; u32 len = 0; int rc = 0; struct dsi_ctrl *dsi_ctrl; int i; u32 misr; size_t max_len = min_t(size_t, user_len, MISR_BUFF_SIZE); if (!display) return -ENODEV; if (*ppos) return 0; buf = kzalloc(max_len, GFP_KERNEL); if (ZERO_OR_NULL_PTR(buf)) return -ENOMEM; mutex_lock(&display->display_lock); if (!display->hw_ownership) { DSI_DEBUG("[%s] op not supported due to HW unavailability\n", display->name); rc = -EOPNOTSUPP; goto error; } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n", display->name, rc); goto error; } display_for_each_ctrl(i, display) { dsi_ctrl = display->ctrl[i].ctrl; misr = dsi_ctrl_collect_misr(display->ctrl[i].ctrl); len += snprintf((buf + len), max_len - len, "DSI_%d MISR: 0x%x\n", dsi_ctrl->cell_index, misr); if (len >= max_len) break; } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_OFF); if (rc) { DSI_ERR("[%s] failed to disable DSI core clocks, rc=%d\n", display->name, rc); goto error; } if (copy_to_user(user_buf, buf, max_len)) { rc = -EFAULT; goto error; } *ppos += len; error: mutex_unlock(&display->display_lock); kfree(buf); return len; } static ssize_t debugfs_esd_trigger_check(struct file *file, const char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; char *buf; int rc = 0; struct drm_panel_esd_config *esd_config = &display->panel->esd_config; u32 esd_trigger; size_t len; if (!display) return -ENODEV; if (*ppos) return 0; if (user_len > sizeof(u32)) return -EINVAL; if (!user_len || !user_buf) return -EINVAL; if (!display->panel || atomic_read(&display->panel->esd_recovery_pending)) return user_len; if (!esd_config->esd_enabled) { DSI_ERR("ESD feature is not enabled\n"); return -EINVAL; } buf = kzalloc(ESD_TRIGGER_STRING_MAX_LEN, GFP_KERNEL); if (!buf) return -ENOMEM; len = min_t(size_t, user_len, ESD_TRIGGER_STRING_MAX_LEN - 1); if (copy_from_user(buf, user_buf, len)) { rc = -EINVAL; goto error; } buf[len] = '\0'; /* terminate the string */ if (kstrtouint(buf, 10, &esd_trigger)) { rc = -EINVAL; goto error; } if (esd_trigger != 1) { rc = -EINVAL; goto error; } display->esd_trigger = esd_trigger; mutex_lock(&display->display_lock); if (!display->hw_ownership) { DSI_DEBUG("[%s] op not supported due to HW unavailability\n", display->name); rc = -EOPNOTSUPP; goto unlock; } if (display->esd_trigger) { struct dsi_panel *panel = display->panel; DSI_INFO("ESD attack triggered by user\n"); rc = panel->panel_ops.trigger_esd_attack(panel); if (rc) { DSI_ERR("Failed to trigger ESD attack\n"); goto error; } } rc = len; unlock: mutex_unlock(&display->display_lock); error: kfree(buf); return rc; } static ssize_t debugfs_alter_esd_check_mode(struct file *file, const char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; struct drm_panel_esd_config *esd_config; char *buf; int rc = 0; size_t len; if (!display) return -ENODEV; if (*ppos) return 0; buf = kzalloc(ESD_MODE_STRING_MAX_LEN, GFP_KERNEL); if (ZERO_OR_NULL_PTR(buf)) return -ENOMEM; len = min_t(size_t, user_len, ESD_MODE_STRING_MAX_LEN - 1); if (copy_from_user(buf, user_buf, len)) { rc = -EINVAL; goto error; } buf[len] = '\0'; /* terminate the string */ if (!display->panel) { rc = -EINVAL; goto error; } esd_config = &display->panel->esd_config; if (!esd_config) { DSI_ERR("Invalid panel esd config\n"); rc = -EINVAL; goto error; } if (!esd_config->esd_enabled) { rc = -EINVAL; goto error; } if (!strcmp(buf, "te_signal_check\n")) { DSI_INFO("TE based ESD check for panels is not allowed\n"); rc = -EINVAL; goto error; } if (!strcmp(buf, "reg_read\n")) { DSI_INFO("ESD check is switched to reg read by user\n"); rc = dsi_panel_parse_esd_reg_read_configs(display->panel); if (rc) { DSI_ERR("failed to alter esd check mode,rc=%d\n", rc); rc = user_len; goto error; } esd_config->status_mode = ESD_MODE_REG_READ; if (dsi_display_is_te_based_esd(display)) dsi_display_change_te_irq_status(display, false); } if (!strcmp(buf, "esd_sw_sim_success\n")) esd_config->status_mode = ESD_MODE_SW_SIM_SUCCESS; if (!strcmp(buf, "esd_sw_sim_failure\n")) esd_config->status_mode = ESD_MODE_SW_SIM_FAILURE; rc = len; error: kfree(buf); return rc; } static ssize_t debugfs_read_esd_check_mode(struct file *file, char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; struct drm_panel_esd_config *esd_config; char *buf; int rc = 0; size_t len = 0; if (!display) return -ENODEV; if (*ppos) return 0; if (!display->panel) { DSI_ERR("invalid panel data\n"); return -EINVAL; } buf = kzalloc(ESD_MODE_STRING_MAX_LEN, GFP_KERNEL); if (ZERO_OR_NULL_PTR(buf)) return -ENOMEM; esd_config = &display->panel->esd_config; if (!esd_config) { DSI_ERR("Invalid panel esd config\n"); rc = -EINVAL; goto error; } len = min_t(size_t, user_len, ESD_MODE_STRING_MAX_LEN - 1); if (!esd_config->esd_enabled) { rc = snprintf(buf, len, "ESD feature not enabled"); goto output_mode; } switch (esd_config->status_mode) { case ESD_MODE_REG_READ: rc = snprintf(buf, len, "reg_read"); break; case ESD_MODE_PANEL_TE: rc = snprintf(buf, len, "te_signal_check"); break; case ESD_MODE_SW_SIM_FAILURE: rc = snprintf(buf, len, "esd_sw_sim_failure"); break; case ESD_MODE_SW_SIM_SUCCESS: rc = snprintf(buf, len, "esd_sw_sim_success"); break; default: rc = snprintf(buf, len, "invalid"); break; } output_mode: if (!rc) { rc = -EINVAL; goto error; } if (copy_to_user(user_buf, buf, len)) { rc = -EFAULT; goto error; } *ppos += len; error: kfree(buf); return len; } static ssize_t debugfs_update_cmd_scheduling_params(struct file *file, const char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; struct dsi_display_ctrl *display_ctrl; char *buf; int rc = 0; u32 line = 0, window = 0; size_t len; int i; if (!display) return -ENODEV; if (*ppos) return 0; buf = kzalloc(256, GFP_KERNEL); if (ZERO_OR_NULL_PTR(buf)) return -ENOMEM; len = min_t(size_t, user_len, 255); if (copy_from_user(buf, user_buf, len)) { rc = -EINVAL; goto error; } buf[len] = '\0'; /* terminate the string */ if (sscanf(buf, "%d %d", &line, &window) != 2) return -EFAULT; display_for_each_ctrl(i, display) { struct dsi_ctrl *ctrl; display_ctrl = &display->ctrl[i]; if (!display_ctrl->ctrl) continue; ctrl = display_ctrl->ctrl; ctrl->host_config.common_config.dma_sched_line = line; ctrl->host_config.common_config.dma_sched_window = window; } rc = len; error: kfree(buf); return rc; } static ssize_t debugfs_read_cmd_scheduling_params(struct file *file, char __user *user_buf, size_t user_len, loff_t *ppos) { struct dsi_display *display = file->private_data; struct dsi_display_ctrl *m_ctrl; struct dsi_ctrl *ctrl; char *buf; u32 len = 0; int rc = 0; size_t max_len = min_t(size_t, user_len, SZ_4K); if (!display) return -ENODEV; if (*ppos) return 0; m_ctrl = &display->ctrl[display->cmd_master_idx]; ctrl = m_ctrl->ctrl; buf = kzalloc(max_len, GFP_KERNEL); if (ZERO_OR_NULL_PTR(buf)) return -ENOMEM; len += scnprintf(buf, max_len, "Schedule command window start: %d\n", ctrl->host_config.common_config.dma_sched_line); len += scnprintf((buf + len), max_len - len, "Schedule command window width: %d\n", ctrl->host_config.common_config.dma_sched_window); if (len > max_len) len = max_len; if (copy_to_user(user_buf, buf, len)) { rc = -EFAULT; goto error; } *ppos += len; error: kfree(buf); return len; } static const struct file_operations dump_info_fops = { .open = simple_open, .read = debugfs_dump_info_read, }; static const struct file_operations misr_data_fops = { .open = simple_open, .read = debugfs_misr_read, .write = debugfs_misr_setup, }; static const struct file_operations esd_trigger_fops = { .open = simple_open, .write = debugfs_esd_trigger_check, }; static const struct file_operations esd_check_mode_fops = { .open = simple_open, .write = debugfs_alter_esd_check_mode, .read = debugfs_read_esd_check_mode, }; static const struct file_operations dsi_command_scheduling_fops = { .open = simple_open, .write = debugfs_update_cmd_scheduling_params, .read = debugfs_read_cmd_scheduling_params, }; static int dsi_display_debugfs_init(struct dsi_display *display) { int rc = 0; struct dentry *dir, *dump_file, *misr_data; char name[MAX_NAME_SIZE]; char panel_name[SEC_PANEL_NAME_MAX_LEN]; char secondary_panel_str[] = "_secondary"; int i; strlcpy(panel_name, display->name, SEC_PANEL_NAME_MAX_LEN); if (strcmp(display->display_type, "secondary") == 0) strlcat(panel_name, secondary_panel_str, SEC_PANEL_NAME_MAX_LEN); dir = debugfs_create_dir(panel_name, NULL); if (IS_ERR_OR_NULL(dir)) { rc = PTR_ERR(dir); DSI_ERR("[%s] debugfs create dir failed, rc = %d\n", display->name, rc); goto error; } dump_file = debugfs_create_file("dump_info", 0400, dir, display, &dump_info_fops); if (IS_ERR_OR_NULL(dump_file)) { rc = PTR_ERR(dump_file); DSI_ERR("[%s] debugfs create dump info file failed, rc=%d\n", display->name, rc); goto error_remove_dir; } dump_file = debugfs_create_file("esd_trigger", 0644, dir, display, &esd_trigger_fops); if (IS_ERR_OR_NULL(dump_file)) { rc = PTR_ERR(dump_file); DSI_ERR("[%s] debugfs for esd trigger file failed, rc=%d\n", display->name, rc); goto error_remove_dir; } dump_file = debugfs_create_file("esd_check_mode", 0644, dir, display, &esd_check_mode_fops); if (IS_ERR_OR_NULL(dump_file)) { rc = PTR_ERR(dump_file); DSI_ERR("[%s] debugfs for esd check mode failed, rc=%d\n", display->name, rc); goto error_remove_dir; } dump_file = debugfs_create_file("cmd_sched_params", 0644, dir, display, &dsi_command_scheduling_fops); if (IS_ERR_OR_NULL(dump_file)) { rc = PTR_ERR(dump_file); DSI_ERR("[%s] debugfs for cmd scheduling file failed, rc=%d\n", display->name, rc); goto error_remove_dir; } misr_data = debugfs_create_file("misr_data", 0600, dir, display, &misr_data_fops); if (IS_ERR_OR_NULL(misr_data)) { rc = PTR_ERR(misr_data); DSI_ERR("[%s] debugfs create misr datafile failed, rc=%d\n", display->name, rc); goto error_remove_dir; } display_for_each_ctrl(i, display) { struct msm_dsi_phy *phy = display->ctrl[i].phy; if (!phy || !phy->name) continue; snprintf(name, ARRAY_SIZE(name), "%s_allow_phy_power_off", phy->name); debugfs_create_bool(name, 0600, dir, &phy->allow_phy_power_off); snprintf(name, ARRAY_SIZE(name), "%s_regulator_min_datarate_bps", phy->name); debugfs_create_u32(name, 0600, dir, &phy->regulator_min_datarate_bps); } debugfs_create_bool("ulps_feature_enable", 0600, dir, &display->panel->ulps_feature_enabled); debugfs_create_bool("ulps_suspend_feature_enable", 0600, dir, &display->panel->ulps_suspend_enabled); debugfs_create_bool("ulps_status", 0400, dir, &display->ulps_enabled); debugfs_create_u32("clk_gating_config", 0600, dir, &display->clk_gating_config); display->root = dir; dsi_parser_dbg_init(display->parser, dir); return rc; error_remove_dir: debugfs_remove(dir); error: return rc; } static int dsi_display_debugfs_deinit(struct dsi_display *display) { if (display->root) { debugfs_remove_recursive(display->root); display->root = NULL; } return 0; } #else static int dsi_display_debugfs_init(struct dsi_display *display) { return 0; } static int dsi_display_debugfs_deinit(struct dsi_display *display) { return 0; } #endif /* CONFIG_DEBUG_FS */ static void adjust_timing_by_ctrl_count(const struct dsi_display *display, struct dsi_display_mode *mode) { struct dsi_host_common_cfg *host = &display->panel->host_config; bool is_split_link = host->split_link.enabled; u32 sublinks_count = host->split_link.num_sublinks; if (is_split_link && sublinks_count > 1) { mode->timing.h_active /= sublinks_count; mode->timing.h_front_porch /= sublinks_count; mode->timing.h_sync_width /= sublinks_count; mode->timing.h_back_porch /= sublinks_count; mode->timing.h_skew /= sublinks_count; mode->pixel_clk_khz /= sublinks_count; } else { if (mode->priv_info->dsc_enabled) mode->priv_info->dsc.config.pic_width = mode->timing.h_active; mode->timing.h_active /= display->ctrl_count; mode->timing.h_front_porch /= display->ctrl_count; mode->timing.h_sync_width /= display->ctrl_count; mode->timing.h_back_porch /= display->ctrl_count; mode->timing.h_skew /= display->ctrl_count; mode->pixel_clk_khz /= display->ctrl_count; } } static int dsi_display_is_ulps_req_valid(struct dsi_display *display, bool enable) { /* TODO: make checks based on cont. splash */ DSI_DEBUG("checking ulps req validity\n"); if (atomic_read(&display->panel->esd_recovery_pending)) { DSI_DEBUG("%s: ESD recovery sequence underway\n", __func__); return false; } if (!dsi_panel_ulps_feature_enabled(display->panel) && !display->panel->ulps_suspend_enabled) { DSI_DEBUG("%s: ULPS feature is not enabled\n", __func__); return false; } if (!dsi_panel_initialized(display->panel) && !display->panel->ulps_suspend_enabled) { DSI_DEBUG("%s: panel not yet initialized\n", __func__); return false; } if (enable && display->ulps_enabled) { DSI_DEBUG("ULPS already enabled\n"); return false; } else if (!enable && !display->ulps_enabled) { DSI_DEBUG("ULPS already disabled\n"); return false; } /* * No need to enter ULPS when transitioning from splash screen to * boot animation or trusted vm environments since it is expected * that the clocks would be turned right back on. */ if (enable && is_skip_op_required(display)) return false; return true; } /** * dsi_display_set_ulps() - set ULPS state for DSI lanes. * @dsi_display: DSI display handle. * @enable: enable/disable ULPS. * * ULPS can be enabled/disabled after DSI host engine is turned on. * * Return: error code. */ static int dsi_display_set_ulps(struct dsi_display *display, bool enable) { int rc = 0; int i = 0; struct dsi_display_ctrl *m_ctrl, *ctrl; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (!dsi_display_is_ulps_req_valid(display, enable)) { DSI_DEBUG("%s: skipping ULPS config, enable=%d\n", __func__, enable); return 0; } m_ctrl = &display->ctrl[display->cmd_master_idx]; /* * ULPS entry-exit can be either through the DSI controller or * the DSI PHY depending on hardware variation. For some chipsets, * both controller version and phy version ulps entry-exit ops can * be present. To handle such cases, send ulps request through PHY, * if ulps request is handled in PHY, then no need to send request * through controller. */ rc = dsi_phy_set_ulps(m_ctrl->phy, &display->config, enable, display->clamp_enabled); if (rc == DSI_PHY_ULPS_ERROR) { DSI_ERR("Ulps PHY state change(%d) failed\n", enable); return -EINVAL; } else if (rc == DSI_PHY_ULPS_HANDLED) { display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_phy_set_ulps(ctrl->phy, &display->config, enable, display->clamp_enabled); if (rc == DSI_PHY_ULPS_ERROR) { DSI_ERR("Ulps PHY state change(%d) failed\n", enable); return -EINVAL; } } } else if (rc == DSI_PHY_ULPS_NOT_HANDLED) { rc = dsi_ctrl_set_ulps(m_ctrl->ctrl, enable); if (rc) { DSI_ERR("Ulps controller state change(%d) failed\n", enable); return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_ulps(ctrl->ctrl, enable); if (rc) { DSI_ERR("Ulps controller state change(%d) failed\n", enable); return rc; } } } display->ulps_enabled = enable; return 0; } /** * dsi_display_set_clamp() - set clamp state for DSI IO. * @dsi_display: DSI display handle. * @enable: enable/disable clamping. * * Return: error code. */ static int dsi_display_set_clamp(struct dsi_display *display, bool enable) { int rc = 0; int i = 0; struct dsi_display_ctrl *m_ctrl, *ctrl; bool ulps_enabled = false; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } m_ctrl = &display->ctrl[display->cmd_master_idx]; ulps_enabled = display->ulps_enabled; /* * Clamp control can be either through the DSI controller or * the DSI PHY depending on hardware variation */ rc = dsi_ctrl_set_clamp_state(m_ctrl->ctrl, enable, ulps_enabled); if (rc) { DSI_ERR("DSI ctrl clamp state change(%d) failed\n", enable); return rc; } rc = dsi_phy_set_clamp_state(m_ctrl->phy, enable); if (rc) { DSI_ERR("DSI phy clamp state change(%d) failed\n", enable); return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_clamp_state(ctrl->ctrl, enable, ulps_enabled); if (rc) { DSI_ERR("DSI Clamp state change(%d) failed\n", enable); return rc; } rc = dsi_phy_set_clamp_state(ctrl->phy, enable); if (rc) { DSI_ERR("DSI phy clamp state change(%d) failed\n", enable); return rc; } DSI_DEBUG("Clamps %s for ctrl%d\n", enable ? "enabled" : "disabled", i); } display->clamp_enabled = enable; return 0; } /** * dsi_display_setup_ctrl() - setup DSI controller. * @dsi_display: DSI display handle. * * Return: error code. */ static int dsi_display_ctrl_setup(struct dsi_display *display) { int rc = 0; int i = 0; struct dsi_display_ctrl *ctrl, *m_ctrl; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } m_ctrl = &display->ctrl[display->cmd_master_idx]; rc = dsi_ctrl_setup(m_ctrl->ctrl); if (rc) { DSI_ERR("DSI controller setup failed\n"); return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_setup(ctrl->ctrl); if (rc) { DSI_ERR("DSI controller setup failed\n"); return rc; } } return 0; } static int dsi_display_phy_enable(struct dsi_display *display); /** * dsi_display_phy_idle_on() - enable DSI PHY while coming out of idle screen. * @dsi_display: DSI display handle. * @mmss_clamp: True if clamp is enabled. * * Return: error code. */ static int dsi_display_phy_idle_on(struct dsi_display *display, bool mmss_clamp) { int rc = 0; int i = 0; struct dsi_display_ctrl *m_ctrl, *ctrl; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (mmss_clamp && !display->phy_idle_power_off) { dsi_display_phy_enable(display); return 0; } m_ctrl = &display->ctrl[display->cmd_master_idx]; rc = dsi_phy_idle_ctrl(m_ctrl->phy, true); if (rc) { DSI_ERR("DSI controller setup failed\n"); return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_phy_idle_ctrl(ctrl->phy, true); if (rc) { DSI_ERR("DSI controller setup failed\n"); return rc; } } display->phy_idle_power_off = false; return 0; } /** * dsi_display_phy_idle_off() - disable DSI PHY while going to idle screen. * @dsi_display: DSI display handle. * * Return: error code. */ static int dsi_display_phy_idle_off(struct dsi_display *display) { int rc = 0; int i = 0; struct dsi_display_ctrl *m_ctrl, *ctrl; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } display_for_each_ctrl(i, display) { struct msm_dsi_phy *phy = display->ctrl[i].phy; if (!phy) continue; if (!phy->allow_phy_power_off) { DSI_DEBUG("phy doesn't support this feature\n"); return 0; } } m_ctrl = &display->ctrl[display->cmd_master_idx]; rc = dsi_phy_idle_ctrl(m_ctrl->phy, false); if (rc) { DSI_ERR("[%s] failed to enable cmd engine, rc=%d\n", display->name, rc); return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_phy_idle_ctrl(ctrl->phy, false); if (rc) { DSI_ERR("DSI controller setup failed\n"); return rc; } } display->phy_idle_power_off = true; return 0; } void dsi_display_enable_event(struct drm_connector *connector, struct dsi_display *display, uint32_t event_idx, struct dsi_event_cb_info *event_info, bool enable) { uint32_t irq_status_idx = DSI_STATUS_INTERRUPT_COUNT; int i; if (!display) { DSI_ERR("invalid display\n"); return; } if (event_info) event_info->event_idx = event_idx; switch (event_idx) { case SDE_CONN_EVENT_VID_DONE: irq_status_idx = DSI_SINT_VIDEO_MODE_FRAME_DONE; break; case SDE_CONN_EVENT_CMD_DONE: irq_status_idx = DSI_SINT_CMD_FRAME_DONE; break; case SDE_CONN_EVENT_VID_FIFO_OVERFLOW: case SDE_CONN_EVENT_CMD_FIFO_UNDERFLOW: if (event_info) { display_for_each_ctrl(i, display) display->ctrl[i].ctrl->recovery_cb = *event_info; } break; case SDE_CONN_EVENT_PANEL_ID: if (event_info) display_for_each_ctrl(i, display) display->ctrl[i].ctrl->panel_id_cb = *event_info; dsi_display_panel_id_notification(display); break; default: /* nothing to do */ DSI_DEBUG("[%s] unhandled event %d\n", display->name, event_idx); return; } if (enable) { display_for_each_ctrl(i, display) dsi_ctrl_enable_status_interrupt( display->ctrl[i].ctrl, irq_status_idx, event_info); } else { display_for_each_ctrl(i, display) dsi_ctrl_disable_status_interrupt( display->ctrl[i].ctrl, irq_status_idx); } } static int dsi_display_ctrl_power_on(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; /* Sequence does not matter for split dsi usecases */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; rc = dsi_ctrl_set_power_state(ctrl->ctrl, DSI_CTRL_POWER_VREG_ON); if (rc) { DSI_ERR("[%s] Failed to set power state, rc=%d\n", ctrl->ctrl->name, rc); goto error; } } return rc; error: for (i = i - 1; i >= 0; i--) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; (void)dsi_ctrl_set_power_state(ctrl->ctrl, DSI_CTRL_POWER_VREG_OFF); } return rc; } static int dsi_display_ctrl_power_off(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; /* Sequence does not matter for split dsi usecases */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; rc = dsi_ctrl_set_power_state(ctrl->ctrl, DSI_CTRL_POWER_VREG_OFF); if (rc) { DSI_ERR("[%s] Failed to power off, rc=%d\n", ctrl->ctrl->name, rc); goto error; } } error: return rc; } static void dsi_display_parse_cmdline_topology(struct dsi_display *display, unsigned int display_type) { char *boot_str = NULL; char *str = NULL; char *sw_te = NULL; unsigned long cmdline_topology = NO_OVERRIDE; unsigned long cmdline_timing = NO_OVERRIDE; if (display_type >= MAX_DSI_ACTIVE_DISPLAY) { DSI_ERR("display_type=%d not supported\n", display_type); goto end; } if (display_type == DSI_PRIMARY) boot_str = dsi_display_primary; else boot_str = dsi_display_secondary; sw_te = strnstr(boot_str, ":sim-swte", strlen(boot_str)); if (sw_te) display->sw_te_using_wd = true; str = strnstr(boot_str, ":config", strlen(boot_str)); if (str) { if (sscanf(str, ":config%lu", &cmdline_topology) != 1) { DSI_ERR("invalid config index override: %s\n", boot_str); goto end; } } str = strnstr(boot_str, ":timing", strlen(boot_str)); if (str) { if (sscanf(str, ":timing%lu", &cmdline_timing) != 1) { DSI_ERR("invalid timing index override: %s\n", boot_str); cmdline_topology = NO_OVERRIDE; goto end; } } DSI_DEBUG("successfully parsed command line topology and timing\n"); end: display->cmdline_topology = cmdline_topology; display->cmdline_timing = cmdline_timing; } /** * dsi_display_parse_boot_display_selection()- Parse DSI boot display name * * Return: returns error status */ static int dsi_display_parse_boot_display_selection(void) { char *pos = NULL; char disp_buf[MAX_CMDLINE_PARAM_LEN] = {'\0'}; int i, j; for (i = 0; i < MAX_DSI_ACTIVE_DISPLAY; i++) { strlcpy(disp_buf, boot_displays[i].boot_param, MAX_CMDLINE_PARAM_LEN); pos = strnstr(disp_buf, ":", strlen(disp_buf)); /* Use ':' as a delimiter to retrieve the display name */ if (!pos) { DSI_DEBUG("display name[%s]is not valid\n", disp_buf); continue; } for (j = 0; (disp_buf + j) < pos; j++) boot_displays[i].name[j] = *(disp_buf + j); boot_displays[i].name[j] = '\0'; boot_displays[i].boot_disp_en = true; } return 0; } static int dsi_display_phy_power_on(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; /* Sequence does not matter for split dsi usecases */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; rc = dsi_phy_set_power_state(ctrl->phy, true); if (rc) { DSI_ERR("[%s] Failed to set power state, rc=%d\n", ctrl->phy->name, rc); goto error; } } return rc; error: for (i = i - 1; i >= 0; i--) { ctrl = &display->ctrl[i]; if (!ctrl->phy) continue; (void)dsi_phy_set_power_state(ctrl->phy, false); } return rc; } static int dsi_display_phy_power_off(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; /* Sequence does not matter for split dsi usecases */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->phy) continue; rc = dsi_phy_set_power_state(ctrl->phy, false); if (rc) { DSI_ERR("[%s] Failed to power off, rc=%d\n", ctrl->ctrl->name, rc); goto error; } } error: return rc; } static int dsi_display_set_clk_src(struct dsi_display *display, bool set_xo) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; struct dsi_ctrl_clk_info *info; if (display->trusted_vm_env) return 0; /* * In case of split DSI usecases, the clock for master controller should * be enabled before the other controller. Master controller in the * clock context refers to the controller that sources the clock. While turning off the * clocks, the source is set to xo. */ m_ctrl = &display->ctrl[display->clk_master_idx]; info = &m_ctrl->ctrl->clk_info; if (!set_xo) rc = dsi_ctrl_set_clock_source(m_ctrl->ctrl, &display->clock_info.pll_clks); else if ((info->xo_clk.byte_clk) && (info->xo_clk.pixel_clk)) rc = dsi_ctrl_set_clock_source(m_ctrl->ctrl, &info->xo_clk); if (rc) { DSI_ERR("[%s] failed to set source clocks for master, rc=%d\n", display->name, rc); return rc; } /* Set source for the rest of the controllers */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; info = &ctrl->ctrl->clk_info; if (!set_xo) rc = dsi_ctrl_set_clock_source(ctrl->ctrl, &display->clock_info.pll_clks); else if ((info->xo_clk.byte_clk) && (info->xo_clk.pixel_clk)) rc = dsi_ctrl_set_clock_source(ctrl->ctrl, &info->xo_clk); if (rc) { DSI_ERR("[%s] failed to set source clocks, rc=%d\n", display->name, rc); return rc; } } return 0; } static int dsi_display_phy_pll_enable(struct dsi_display *display) { int rc = 0; struct dsi_display_ctrl *m_ctrl; m_ctrl = &display->ctrl[display->clk_master_idx]; if (!m_ctrl->phy) { DSI_ERR("[%s] PHY not found\n", display->name); return -EINVAL; } /* * It is recommended to turn on the PLL before switching parent * of RCG to PLL because when RCG is on, both the old and new * sources should be on while switching the RCG parent. * * Note: Branch clocks and in turn RCG might not get turned off * during clock disable sequence if there is a vote from dispcc * or any of its other consumers. */ rc = dsi_phy_pll_toggle(m_ctrl->phy, true); if (rc) return rc; return dsi_display_set_clk_src(display, false); } static int dsi_display_phy_pll_disable(struct dsi_display *display) { int rc = 0; struct dsi_display_ctrl *m_ctrl; /* * It is recommended to turn off the PLL after switching parent * of RCG to PLL because when RCG is on, both the old and new * sources should be on while switching the RCG parent. */ rc = dsi_display_set_clk_src(display, true); if (rc) return rc; m_ctrl = &display->ctrl[display->clk_master_idx]; if (!m_ctrl->phy) { DSI_ERR("[%s] PHY not found\n", display->name); return -EINVAL; } return dsi_phy_pll_toggle(m_ctrl->phy, false); } int dsi_display_phy_pll_toggle(void *priv, bool prepare) { struct dsi_display *display = priv; if (!display) { DSI_ERR("invalid arguments\n"); return -EINVAL; } if (is_skip_op_required(display) || phy_pll_bypass(display)) return 0; if (prepare) return dsi_display_phy_pll_enable(display); else return dsi_display_phy_pll_disable(display); } int dsi_display_phy_configure(void *priv, bool commit) { int rc = 0; struct dsi_display *display = priv; struct dsi_display_ctrl *m_ctrl; struct dsi_pll_resource *pll_res; struct link_clk_freq link_freq; if (!display) { DSI_ERR("invalid arguments\n"); return -EINVAL; } if (is_skip_op_required(display)) return 0; m_ctrl = &display->ctrl[display->clk_master_idx]; if ((!m_ctrl->phy) || (!m_ctrl->ctrl)) { DSI_ERR("[%s] PHY not found\n", display->name); return -EINVAL; } pll_res = m_ctrl->phy->pll; if (!pll_res) { DSI_ERR("[%s] PLL res not found\n", display->name); return -EINVAL; } rc = dsi_clk_get_link_frequencies(&link_freq, display->dsi_clk_handle, display->clk_master_idx); if (rc) { DSI_ERR("Failed to get link frequencies\n"); return rc; } pll_res->byteclk_rate = link_freq.byte_clk_rate; pll_res->pclk_rate = link_freq.pix_clk_rate; rc = dsi_phy_configure(m_ctrl->phy, commit); return rc; } static int dsi_display_phy_reset_config(struct dsi_display *display, bool enable) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_phy_reset_config(ctrl->ctrl, enable); if (rc) { DSI_ERR("[%s] failed to %s phy reset, rc=%d\n", display->name, enable ? "mask" : "unmask", rc); return rc; } } return 0; } static void dsi_display_toggle_resync_fifo(struct dsi_display *display) { struct dsi_display_ctrl *ctrl; int i; if (!display) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_phy_toggle_resync_fifo(ctrl->phy); } /* * After retime buffer synchronization we need to turn of clk_en_sel * bit on each phy. Avoid this for Cphy. */ if (dsi_is_type_cphy(&display->panel->host_config)) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_phy_reset_clk_en_sel(ctrl->phy); } } static int dsi_display_ctrl_update(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_host_timing_update(ctrl->ctrl); if (rc) { DSI_ERR("[%s] failed to update host_%d, rc=%d\n", display->name, i, rc); goto error_host_deinit; } } return 0; error_host_deinit: for (i = i - 1; i >= 0; i--) { ctrl = &display->ctrl[i]; (void)dsi_ctrl_host_deinit(ctrl->ctrl); } return rc; } static int dsi_display_ctrl_init(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; bool skip_op = is_skip_op_required(display); /* when ULPS suspend feature is enabled, we will keep the lanes in * ULPS during suspend state and clamp DSI phy. Hence while resuming * we will programe DSI controller as part of core clock enable. * After that we should not re-configure DSI controller again here for * usecases where we are resuming from ulps suspend as it might put * the HW in bad state. */ if (!display->panel->ulps_suspend_enabled || !display->ulps_enabled) { display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_host_init(ctrl->ctrl, skip_op); if (rc) { DSI_ERR( "[%s] failed to init host_%d, skip_op=%d, rc=%d\n", display->name, i, skip_op, rc); goto error_host_deinit; } } } else { display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_update_host_state(ctrl->ctrl, DSI_CTRL_OP_HOST_INIT, true); if (rc) DSI_DEBUG("host init update failed rc=%d\n", rc); } } return rc; error_host_deinit: for (i = i - 1; i >= 0; i--) { ctrl = &display->ctrl[i]; (void)dsi_ctrl_host_deinit(ctrl->ctrl); } return rc; } static int dsi_display_ctrl_deinit(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_host_deinit(ctrl->ctrl); if (rc) { DSI_ERR("[%s] failed to deinit host_%d, rc=%d\n", display->name, i, rc); } } return rc; } static int dsi_display_ctrl_host_enable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = is_skip_op_required(display); m_ctrl = &display->ctrl[display->cmd_master_idx]; rc = dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON, skip_op); if (rc) { DSI_ERR("[%s]enable host engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto error; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_host_engine_state(ctrl->ctrl, DSI_CTRL_ENGINE_ON, skip_op); if (rc) { DSI_ERR( "[%s] enable host engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto error_disable_master; } } return rc; error_disable_master: (void)dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); error: return rc; } static int dsi_display_ctrl_host_disable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = is_skip_op_required(display); /* * This is a defensive check. In reality as this is called after panel OFF commands, which * can never be ASYNC, the controller post_tx_queued flag will never be set when this API * is called. */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || !(ctrl->ctrl->post_tx_queued)) continue; flush_workqueue(display->post_cmd_tx_workq); cancel_work_sync(&ctrl->ctrl->post_cmd_tx_work); ctrl->ctrl->post_tx_queued = false; } m_ctrl = &display->ctrl[display->cmd_master_idx]; /* * For platforms where ULPS is controlled by DSI controller block, * do not disable dsi controller block if lanes are to be * kept in ULPS during suspend. So just update the SW state * and return early. */ if (display->panel->ulps_suspend_enabled && !m_ctrl->phy->hw.ops.ulps_ops.ulps_request) { display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_update_host_state(ctrl->ctrl, DSI_CTRL_OP_HOST_ENGINE, false); if (rc) DSI_DEBUG("host state update failed %d\n", rc); } return rc; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_host_engine_state(ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); if (rc) DSI_ERR( "[%s] disable host engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); } rc = dsi_ctrl_set_host_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); if (rc) { DSI_ERR("[%s] disable mhost engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto error; } error: return rc; } static int dsi_display_vid_engine_enable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = is_skip_op_required(display); m_ctrl = &display->ctrl[display->video_master_idx]; rc = dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_ON, skip_op); if (rc) { DSI_ERR("[%s] enable mvid engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto error; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_vid_engine_state(ctrl->ctrl, DSI_CTRL_ENGINE_ON, skip_op); if (rc) { DSI_ERR( "[%s] enable vid engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); goto error_disable_master; } } return rc; error_disable_master: (void)dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); error: return rc; } static int dsi_display_vid_engine_disable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = is_skip_op_required(display); m_ctrl = &display->ctrl[display->video_master_idx]; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_set_vid_engine_state(ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); if (rc) DSI_ERR( "[%s] disable vid engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); } rc = dsi_ctrl_set_vid_engine_state(m_ctrl->ctrl, DSI_CTRL_ENGINE_OFF, skip_op); if (rc) DSI_ERR("[%s] disable mvid engine failed, skip_op:%d rc:%d\n", display->name, skip_op, rc); return rc; } static int dsi_display_phy_enable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; enum dsi_phy_pll_source m_src = DSI_PLL_SOURCE_STANDALONE; bool skip_op = is_skip_op_required(display); m_ctrl = &display->ctrl[display->clk_master_idx]; if (display->ctrl_count > 1) m_src = DSI_PLL_SOURCE_NATIVE; rc = dsi_phy_enable(m_ctrl->phy, &display->config, m_src, true, skip_op); if (rc) { DSI_ERR("[%s] failed to enable DSI PHY, skip_op=%d rc=%d\n", display->name, skip_op, rc); goto error; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_phy_enable(ctrl->phy, &display->config, DSI_PLL_SOURCE_NON_NATIVE, true, skip_op); if (rc) { DSI_ERR( "[%s] failed to enable DSI PHY, skip_op: %d rc=%d\n", display->name, skip_op, rc); goto error_disable_master; } } return rc; error_disable_master: (void)dsi_phy_disable(m_ctrl->phy, skip_op); error: return rc; } static int dsi_display_phy_disable(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; bool skip_op = is_skip_op_required(display); m_ctrl = &display->ctrl[display->clk_master_idx]; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_phy_disable(ctrl->phy, skip_op); if (rc) DSI_ERR( "[%s] failed to disable DSI PHY, skip_op=%d rc=%d\n", display->name, skip_op, rc); } rc = dsi_phy_disable(m_ctrl->phy, skip_op); if (rc) DSI_ERR("[%s] failed to disable DSI PHY, skip_op=%d rc=%d\n", display->name, skip_op, rc); return rc; } static int dsi_display_wake_up(struct dsi_display *display) { return 0; } static int dsi_display_broadcast_cmd(struct dsi_display *display, struct dsi_cmd_desc *cmd) { int rc = 0; struct dsi_display_ctrl *ctrl, *m_ctrl; int i; u32 flags = 0; if (phy_pll_bypass(display)) return 0; /* * 1. Setup commands in FIFO * 2. Trigger commands */ m_ctrl = &display->ctrl[display->cmd_master_idx]; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; flags = cmd->ctrl_flags; if (ctrl == m_ctrl) flags |= DSI_CTRL_CMD_BROADCAST_MASTER; rc = dsi_ctrl_transfer_prepare(ctrl->ctrl, flags); if (rc) { DSI_ERR("[%s] prepare for cmd transfer failed,rc=%d\n", display->name, rc); if (ctrl != m_ctrl) dsi_ctrl_transfer_unprepare(m_ctrl->ctrl, flags | DSI_CTRL_CMD_BROADCAST_MASTER); return rc; } } cmd->ctrl_flags |= DSI_CTRL_CMD_BROADCAST_MASTER; rc = dsi_ctrl_cmd_transfer(m_ctrl->ctrl, cmd); if (rc) { DSI_ERR("[%s] cmd transfer failed on master,rc=%d\n", display->name, rc); goto error; } cmd->ctrl_flags &= ~DSI_CTRL_CMD_BROADCAST_MASTER; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (ctrl == m_ctrl) continue; rc = dsi_ctrl_cmd_transfer(ctrl->ctrl, cmd); if (rc) { DSI_ERR("[%s] cmd transfer failed, rc=%d\n", display->name, rc); goto error; } rc = dsi_ctrl_cmd_tx_trigger(ctrl->ctrl, cmd->ctrl_flags); if (rc) { DSI_ERR("[%s] cmd trigger failed, rc=%d\n", display->name, rc); goto error; } } rc = dsi_ctrl_cmd_tx_trigger(m_ctrl->ctrl, cmd->ctrl_flags | DSI_CTRL_CMD_BROADCAST_MASTER); if (rc) { DSI_ERR("[%s] cmd trigger failed for master, rc=%d\n", display->name, rc); goto error; } error: display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; flags = cmd->ctrl_flags; if (ctrl == m_ctrl) flags |= DSI_CTRL_CMD_BROADCAST_MASTER; dsi_ctrl_transfer_unprepare(ctrl->ctrl, flags); } return rc; } static int dsi_display_phy_sw_reset(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *m_ctrl, *ctrl; /* * For continuous splash and trusted vm environment, * ctrl states are updated separately and hence we do * an early return */ if (is_skip_op_required(display) || phy_pll_bypass(display)) { DSI_DEBUG( "cont splash/trusted vm use case, phy sw reset not required\n"); return 0; } m_ctrl = &display->ctrl[display->cmd_master_idx]; rc = dsi_ctrl_phy_sw_reset(m_ctrl->ctrl); if (rc) { DSI_ERR("[%s] failed to reset phy, rc=%d\n", display->name, rc); goto error; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_phy_sw_reset(ctrl->ctrl); if (rc) { DSI_ERR("[%s] failed to reset phy, rc=%d\n", display->name, rc); goto error; } } error: return rc; } static int dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static int dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } int dsi_host_transfer_sub(struct mipi_dsi_host *host, struct dsi_cmd_desc *cmd) { struct dsi_display *display; struct dsi_display_ctrl *ctrl; int i, rc = 0; if (!host || !cmd) { DSI_ERR("Invalid params\n"); return 0; } display = to_dsi_display(host); if (phy_pll_bypass(display)) return 0; /* Avoid sending DCS commands when ESD recovery is pending */ if (atomic_read(&display->panel->esd_recovery_pending)) { DSI_DEBUG("ESD recovery pending\n"); display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if ((!ctrl) || (!ctrl->ctrl)) continue; if ((ctrl->ctrl->pending_cmd_flags & DSI_CTRL_CMD_FETCH_MEMORY) && ctrl->ctrl->cmd_len != 0) { dsi_ctrl_transfer_cleanup(ctrl->ctrl); ctrl->ctrl->cmd_len = 0; } } return 0; } rc = dsi_display_wake_up(display); if (rc) { DSI_ERR("[%s] failed to wake up display, rc=%d\n", display->name, rc); goto error; } if (display->tx_cmd_buf == NULL) { rc = dsi_host_alloc_cmd_tx_buffer(display); if (rc) { DSI_ERR("failed to allocate cmd tx buffer memory\n"); goto error; } } dsi_display_set_cmd_tx_ctrl_flags(display, cmd); /* * Wait until any previous broadcast commands with ASYNC waits have been scheduled * and completed on both controllers. */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if ((ctrl->ctrl->pending_cmd_flags & DSI_CTRL_CMD_BROADCAST) && ctrl->ctrl->post_tx_queued) dsi_ctrl_flush_cmd_dma_queue(ctrl->ctrl); } if (cmd->ctrl_flags & DSI_CTRL_CMD_BROADCAST) { rc = dsi_display_broadcast_cmd(display, cmd); if (rc) { DSI_ERR("[%s] cmd broadcast failed, rc=%d\n", display->name, rc); goto error; } } else { int idx = cmd->ctrl; rc = dsi_ctrl_transfer_prepare(display->ctrl[idx].ctrl, cmd->ctrl_flags); if (rc) { DSI_ERR("failed to prepare for command transfer: %d\n", rc); goto error; } rc = dsi_ctrl_cmd_transfer(display->ctrl[idx].ctrl, cmd); if (rc) DSI_ERR("[%s] cmd transfer failed, rc=%d\n", display->name, rc); dsi_ctrl_transfer_unprepare(display->ctrl[idx].ctrl, cmd->ctrl_flags); } error: return rc; } static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { int rc = 0; struct dsi_cmd_desc cmd; if (!msg) { DSI_ERR("Invalid params\n"); return 0; } memcpy(&cmd.msg, msg, sizeof(*msg)); cmd.ctrl = 0; cmd.post_wait_ms = 0; cmd.ctrl_flags = 0; rc = dsi_host_transfer_sub(host, &cmd); return rc; } static struct mipi_dsi_host_ops dsi_host_ops = { .attach = dsi_host_attach, .detach = dsi_host_detach, .transfer = dsi_host_transfer, }; static int dsi_display_mipi_host_init(struct dsi_display *display) { int rc = 0; struct mipi_dsi_host *host = &display->host; host->dev = &display->pdev->dev; host->ops = &dsi_host_ops; rc = mipi_dsi_host_register(host); if (rc) { DSI_ERR("[%s] failed to register mipi dsi host, rc=%d\n", display->name, rc); goto error; } error: return rc; } static int dsi_display_mipi_host_deinit(struct dsi_display *display) { int rc = 0; struct mipi_dsi_host *host = &display->host; mipi_dsi_host_unregister(host); host->dev = NULL; host->ops = NULL; return rc; } static bool dsi_display_check_prefix(const char *clk_prefix, const char *clk_name) { return !!strnstr(clk_name, clk_prefix, strlen(clk_name)); } static int dsi_display_get_clocks_count(struct dsi_display *display, char *dsi_clk_name) { if (display->fw) return dsi_parser_count_strings(display->parser_node, dsi_clk_name); else return of_property_count_strings(display->panel_node, dsi_clk_name); } static void dsi_display_get_clock_name(struct dsi_display *display, char *dsi_clk_name, int index, const char **clk_name) { if (display->fw) dsi_parser_read_string_index(display->parser_node, dsi_clk_name, index, clk_name); else of_property_read_string_index(display->panel_node, dsi_clk_name, index, clk_name); } static int dsi_display_clocks_init(struct dsi_display *display) { int i, rc = 0, num_clk = 0; const char *clk_name; const char *pll_byte = "pll_byte", *pll_dsi = "pll_dsi"; struct clk *dsi_clk; struct dsi_clk_link_set *pll = &display->clock_info.pll_clks; char *dsi_clock_name; if (!strcmp(display->display_type, "primary")) dsi_clock_name = "qcom,dsi-select-clocks"; else dsi_clock_name = "qcom,dsi-select-sec-clocks"; num_clk = dsi_display_get_clocks_count(display, dsi_clock_name); for (i = 0; i < num_clk; i++) { dsi_display_get_clock_name(display, dsi_clock_name, i, &clk_name); DSI_DEBUG("clock name:%s\n", clk_name); dsi_clk = devm_clk_get(&display->pdev->dev, clk_name); if (IS_ERR_OR_NULL(dsi_clk)) { rc = PTR_ERR(dsi_clk); DSI_ERR("failed to get %s, rc=%d\n", clk_name, rc); if (dsi_display_check_prefix(pll_byte, clk_name)) { pll->byte_clk = NULL; goto error; } if (dsi_display_check_prefix(pll_dsi, clk_name)) { pll->pixel_clk = NULL; goto error; } } if (dsi_display_check_prefix(pll_byte, clk_name)) { pll->byte_clk = dsi_clk; continue; } if (dsi_display_check_prefix(pll_dsi, clk_name)) { pll->pixel_clk = dsi_clk; continue; } } return 0; error: return rc; } static int dsi_display_clk_ctrl_cb(void *priv, struct dsi_clk_ctrl_info clk_state_info) { int rc = 0; struct dsi_display *display = NULL; void *clk_handle = NULL; if (!priv) { DSI_ERR("Invalid params\n"); return -EINVAL; } display = priv; if (clk_state_info.client == DSI_CLK_REQ_MDP_CLIENT) { clk_handle = display->mdp_clk_handle; } else if (clk_state_info.client == DSI_CLK_REQ_DSI_CLIENT) { clk_handle = display->dsi_clk_handle; } else { DSI_ERR("invalid clk handle, return error\n"); return -EINVAL; } /* * TODO: Wait for CMD_MDP_DONE interrupt if MDP client tries * to turn off DSI clocks. */ rc = dsi_display_clk_ctrl(clk_handle, clk_state_info.clk_type, clk_state_info.clk_state); if (rc) { DSI_ERR("[%s] failed to %d DSI %d clocks, rc=%d\n", display->name, clk_state_info.clk_state, clk_state_info.clk_type, rc); return rc; } return 0; } static void dsi_display_ctrl_isr_configure(struct dsi_display *display, bool en) { int i; struct dsi_display_ctrl *ctrl; if (!display) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl) continue; dsi_ctrl_isr_configure(ctrl->ctrl, en); } } static void dsi_display_cleanup_post_esd_failure(struct dsi_display *display) { int i = 0; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; dsi_phy_lane_reset(ctrl->phy); dsi_ctrl_soft_reset(ctrl->ctrl); } } int dsi_pre_clkoff_cb(void *priv, enum dsi_clk_type clk, enum dsi_lclk_type l_type, enum dsi_clk_state new_state) { int rc = 0, i; struct dsi_display *display = priv; struct dsi_display_ctrl *ctrl; if ((clk & DSI_LINK_CLK) && (new_state == DSI_CLK_OFF) && (l_type & DSI_LINK_LP_CLK)) { /* * Clean up the DSI controller on a previous ESD failure. This requires a DSI * controller soft reset. Also reset PHY lanes before resetting controller. */ if (atomic_read(&display->panel->esd_recovery_pending)) dsi_display_cleanup_post_esd_failure(display); /* * If continuous clock is enabled then disable it * before entering into ULPS Mode. */ if (display->panel->host_config.force_hs_clk_lane) _dsi_display_continuous_clk_ctrl(display, false); /* * If ULPS feature is enabled, enter ULPS first. * However, when blanking the panel, we should enter ULPS * only if ULPS during suspend feature is enabled. */ if (!dsi_panel_initialized(display->panel)) { if (display->panel->ulps_suspend_enabled) rc = dsi_display_set_ulps(display, true); } else if (dsi_panel_ulps_feature_enabled(display->panel)) { rc = dsi_display_set_ulps(display, true); } if (rc) DSI_ERR("%s: failed enable ulps, rc = %d\n", __func__, rc); } if ((clk & DSI_LINK_CLK) && (new_state == DSI_CLK_OFF) && (l_type & DSI_LINK_HS_CLK)) { /* * PHY clock gating should be disabled before the PLL and the * branch clocks are turned off. Otherwise, it is possible that * the clock RCGs may not be turned off correctly resulting * in clock warnings. */ rc = dsi_display_config_clk_gating(display, false); if (rc) DSI_ERR("[%s] failed to disable clk gating, rc=%d\n", display->name, rc); } if ((clk & DSI_CORE_CLK) && (new_state == DSI_CLK_OFF)) { /* * Enable DSI clamps only if entering idle power collapse or * when ULPS during suspend is enabled.. */ if (dsi_panel_initialized(display->panel) || display->panel->ulps_suspend_enabled) { dsi_display_phy_idle_off(display); rc = dsi_display_set_clamp(display, true); if (rc) DSI_ERR("%s: Failed to enable dsi clamps. rc=%d\n", __func__, rc); rc = dsi_display_phy_reset_config(display, false); if (rc) DSI_ERR("%s: Failed to reset phy, rc=%d\n", __func__, rc); } else { /* Make sure that controller is not in ULPS state when * the DSI link is not active. */ rc = dsi_display_set_ulps(display, false); if (rc) DSI_ERR("%s: failed to disable ulps. rc=%d\n", __func__, rc); } /* dsi will not be able to serve irqs from here on */ dsi_display_ctrl_irq_update(display, false); /* cache the MISR values */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; dsi_ctrl_cache_misr(ctrl->ctrl); } } return rc; } int dsi_post_clkon_cb(void *priv, enum dsi_clk_type clk, enum dsi_lclk_type l_type, enum dsi_clk_state curr_state) { int rc = 0; struct dsi_display *display = priv; bool mmss_clamp = false; if ((clk & DSI_LINK_CLK) && (l_type & DSI_LINK_LP_CLK)) { mmss_clamp = display->clamp_enabled; /* * controller setup is needed if coming out of idle * power collapse with clamps enabled. */ if (mmss_clamp) dsi_display_ctrl_setup(display); /* * Phy setup is needed if coming out of idle * power collapse with clamps enabled. */ if (display->phy_idle_power_off || mmss_clamp) dsi_display_phy_idle_on(display, mmss_clamp); if (display->ulps_enabled && mmss_clamp) { /* * ULPS Entry Request. This is needed if the lanes were * in ULPS prior to power collapse, since after * power collapse and reset, the DSI controller resets * back to idle state and not ULPS. This ulps entry * request will transition the state of the DSI * controller to ULPS which will match the state of the * DSI phy. This needs to be done prior to disabling * the DSI clamps. * * Also, reset the ulps flag so that ulps_config * function would reconfigure the controller state to * ULPS. */ display->ulps_enabled = false; rc = dsi_display_set_ulps(display, true); if (rc) { DSI_ERR("%s: Failed to enter ULPS. rc=%d\n", __func__, rc); goto error; } } rc = dsi_display_phy_reset_config(display, true); if (rc) { DSI_ERR("%s: Failed to reset phy, rc=%d\n", __func__, rc); goto error; } rc = dsi_display_set_clamp(display, false); if (rc) { DSI_ERR("%s: Failed to disable dsi clamps. rc=%d\n", __func__, rc); goto error; } } if ((clk & DSI_LINK_CLK) && (l_type & DSI_LINK_HS_CLK)) { /* * Toggle the resync FIFO everytime clock changes, except * when cont-splash screen transition is going on. * Toggling resync FIFO during cont splash transition * can lead to blinks on the display. */ if (!display->is_cont_splash_enabled) dsi_display_toggle_resync_fifo(display); if (display->ulps_enabled) { rc = dsi_display_set_ulps(display, false); if (rc) { DSI_ERR("%s: failed to disable ulps, rc= %d\n", __func__, rc); goto error; } } if (display->panel->host_config.force_hs_clk_lane) _dsi_display_continuous_clk_ctrl(display, true); rc = dsi_display_config_clk_gating(display, true); if (rc) { DSI_ERR("[%s] failed to enable clk gating %d\n", display->name, rc); goto error; } } /* enable dsi to serve irqs */ if (clk & DSI_CORE_CLK) dsi_display_ctrl_irq_update(display, true); error: return rc; } int dsi_post_clkoff_cb(void *priv, enum dsi_clk_type clk_type, enum dsi_lclk_type l_type, enum dsi_clk_state curr_state) { int rc = 0; struct dsi_display *display = priv; if (!display) { DSI_ERR("%s: Invalid arg\n", __func__); return -EINVAL; } /* Reset PHY to clear the PHY status once the HS clocks are turned off */ if ((clk_type & DSI_LINK_CLK) && (curr_state == DSI_CLK_OFF) && (l_type == DSI_LINK_HS_CLK)) { if (atomic_read(&display->panel->esd_recovery_pending)) dsi_display_phy_sw_reset(display); } if ((clk_type & DSI_CORE_CLK) && (curr_state == DSI_CLK_OFF)) { rc = dsi_display_phy_power_off(display); if (rc) DSI_ERR("[%s] failed to power off PHY, rc=%d\n", display->name, rc); rc = dsi_display_ctrl_power_off(display); if (rc) DSI_ERR("[%s] failed to power DSI vregs, rc=%d\n", display->name, rc); } return rc; } int dsi_pre_clkon_cb(void *priv, enum dsi_clk_type clk_type, enum dsi_lclk_type l_type, enum dsi_clk_state new_state) { int rc = 0; struct dsi_display *display = priv; if (!display) { DSI_ERR("%s: invalid input\n", __func__); return -EINVAL; } if ((clk_type & DSI_CORE_CLK) && (new_state == DSI_CLK_ON)) { /* * Enable DSI core power * 1.> PANEL_PM are controlled as part of * panel_power_ctrl. Needed not be handled here. * 2.> CTRL_PM need to be enabled/disabled * only during unblank/blank. Their state should * not be changed during static screen. */ DSI_DEBUG("updating power states for ctrl and phy\n"); rc = dsi_display_ctrl_power_on(display); if (rc) { DSI_ERR("[%s] failed to power on dsi controllers, rc=%d\n", display->name, rc); return rc; } rc = dsi_display_phy_power_on(display); if (rc) { DSI_ERR("[%s] failed to power on dsi phy, rc = %d\n", display->name, rc); return rc; } DSI_DEBUG("%s: Enable DSI core power\n", __func__); } return rc; } static void __set_lane_map_v2(u8 *lane_map_v2, enum dsi_phy_data_lanes lane0, enum dsi_phy_data_lanes lane1, enum dsi_phy_data_lanes lane2, enum dsi_phy_data_lanes lane3) { lane_map_v2[DSI_LOGICAL_LANE_0] = lane0; lane_map_v2[DSI_LOGICAL_LANE_1] = lane1; lane_map_v2[DSI_LOGICAL_LANE_2] = lane2; lane_map_v2[DSI_LOGICAL_LANE_3] = lane3; } static int dsi_display_parse_lane_map(struct dsi_display *display) { int rc = 0, i = 0; const char *data; u32 temp[DSI_LANE_MAX - 1]; struct dsi_parser_utils *utils; if (!display) { DSI_ERR("invalid params\n"); return -EINVAL; } utils = &display->panel->utils; /* lane-map-v2 supersedes lane-map-v1 setting */ rc = utils->read_u32_array(display->pdev->dev.of_node, "qcom,lane-map-v2", temp, (DSI_LANE_MAX - 1)); if (!rc) { for (i = DSI_LOGICAL_LANE_0; i < (DSI_LANE_MAX - 1); i++) display->lane_map.lane_map_v2[i] = BIT(temp[i]); return 0; } else if (rc != -EINVAL) { DSI_DEBUG("Incorrect mapping, configuring default\n"); goto set_default; } /* lane-map older version, for DSI controller version < 2.0 */ data = of_get_property(display->pdev->dev.of_node, "qcom,lane-map", NULL); if (!data) goto set_default; if (!strcmp(data, "lane_map_3012")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_3012; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_3, DSI_PHYSICAL_LANE_0); } else if (!strcmp(data, "lane_map_2301")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_2301; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_3, DSI_PHYSICAL_LANE_0, DSI_PHYSICAL_LANE_1); } else if (!strcmp(data, "lane_map_1230")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_1230; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_3, DSI_PHYSICAL_LANE_0, DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_2); } else if (!strcmp(data, "lane_map_0321")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_0321; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_0, DSI_PHYSICAL_LANE_3, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_1); } else if (!strcmp(data, "lane_map_1032")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_1032; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_0, DSI_PHYSICAL_LANE_3, DSI_PHYSICAL_LANE_2); } else if (!strcmp(data, "lane_map_2103")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_2103; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_0, DSI_PHYSICAL_LANE_3); } else if (!strcmp(data, "lane_map_3210")) { display->lane_map.lane_map_v1 = DSI_LANE_MAP_3210; __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_3, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_0); } else { DSI_WARN("%s: invalid lane map %s specified. defaulting to lane_map0123\n", __func__, data); goto set_default; } return 0; set_default: /* default lane mapping */ __set_lane_map_v2(display->lane_map.lane_map_v2, DSI_PHYSICAL_LANE_0, DSI_PHYSICAL_LANE_1, DSI_PHYSICAL_LANE_2, DSI_PHYSICAL_LANE_3); display->lane_map.lane_map_v1 = DSI_LANE_MAP_0123; return 0; } static int dsi_display_get_phandle_index( struct dsi_display *display, const char *propname, int count, int index) { struct device_node *disp_node = display->panel_node; u32 *val = NULL; int rc = 0; val = kcalloc(count, sizeof(*val), GFP_KERNEL); if (ZERO_OR_NULL_PTR(val)) { rc = -ENOMEM; goto end; } if (index >= count) goto end; if (display->fw) rc = dsi_parser_read_u32_array(display->parser_node, propname, val, count); else rc = of_property_read_u32_array(disp_node, propname, val, count); if (rc) goto end; rc = val[index]; DSI_DEBUG("%s index=%d\n", propname, rc); end: kfree(val); return rc; } static bool dsi_display_validate_res(struct dsi_display *display) { struct device_node *of_node = display->pdev->dev.of_node; struct of_phandle_iterator it; bool ctrl_avail = false; bool phy_avail = false; /* * At least if one of the controller or PHY is present or has been probed, the * dsi_display_dev_probe can pass this check. Exact ctrl and PHY match will be * done after the DT is parsed. */ of_phandle_iterator_init(&it, of_node, "qcom,dsi-ctrl", NULL, 0); while (of_phandle_iterator_next(&it) == 0) ctrl_avail |= dsi_ctrl_check_resource(it.node); of_phandle_iterator_init(&it, of_node, "qcom,dsi-phy", NULL, 0); while (of_phandle_iterator_next(&it) == 0) phy_avail |= dsi_phy_check_resource(it.node); return (ctrl_avail & phy_avail); } static int dsi_display_get_phandle_count(struct dsi_display *display, const char *propname) { if (display->fw) return dsi_parser_count_u32_elems(display->parser_node, propname); else return of_property_count_u32_elems(display->panel_node, propname); } static int dsi_display_parse_dt(struct dsi_display *display) { int i, rc = 0; u32 phy_count = 0; struct device_node *of_node = display->pdev->dev.of_node; char *dsi_ctrl_name, *dsi_phy_name; if (!strcmp(display->display_type, "primary")) { dsi_ctrl_name = "qcom,dsi-ctrl-num"; dsi_phy_name = "qcom,dsi-phy-num"; } else { dsi_ctrl_name = "qcom,dsi-sec-ctrl-num"; dsi_phy_name = "qcom,dsi-sec-phy-num"; } display->ctrl_count = dsi_display_get_phandle_count(display, dsi_ctrl_name); phy_count = dsi_display_get_phandle_count(display, dsi_phy_name); DSI_DEBUG("ctrl count=%d, phy count=%d\n", display->ctrl_count, phy_count); if (!phy_count || !display->ctrl_count) { DSI_ERR("no ctrl/phys found\n"); rc = -ENODEV; goto error; } if (phy_count != display->ctrl_count) { DSI_ERR("different ctrl and phy counts\n"); rc = -ENODEV; goto error; } display_for_each_ctrl(i, display) { struct dsi_display_ctrl *ctrl = &display->ctrl[i]; int index; index = dsi_display_get_phandle_index(display, dsi_ctrl_name, display->ctrl_count, i); ctrl->ctrl_of_node = of_parse_phandle(of_node, "qcom,dsi-ctrl", index); of_node_put(ctrl->ctrl_of_node); index = dsi_display_get_phandle_index(display, dsi_phy_name, display->ctrl_count, i); ctrl->phy_of_node = of_parse_phandle(of_node, "qcom,dsi-phy", index); of_node_put(ctrl->phy_of_node); } /* Parse TE data */ dsi_display_parse_te_data(display); /* Parse all external bridges from port 0 */ display_for_each_ctrl(i, display) { display->ext_bridge[i].node_of = of_graph_get_remote_node(of_node, 0, i); if (display->ext_bridge[i].node_of) display->ext_bridge_cnt++; else break; } /* Parse Demura data */ dsi_display_parse_demura_data(display); DSI_DEBUG("success\n"); error: return rc; } static bool dsi_display_validate_panel_resources(struct dsi_display *display) { if (!is_sim_panel(display)) { if (!display->panel->host_config.ext_bridge_mode && !gpio_is_valid(display->panel->reset_config.reset_gpio)) { DSI_ERR("invalid reset gpio for the panel\n"); return false; } } return true; } static int dsi_display_res_init(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; ctrl->ctrl = dsi_ctrl_get(ctrl->ctrl_of_node); if (IS_ERR_OR_NULL(ctrl->ctrl)) { rc = PTR_ERR(ctrl->ctrl); DSI_ERR("failed to get dsi controller, rc=%d\n", rc); ctrl->ctrl = NULL; goto error_ctrl_put; } ctrl->phy = dsi_phy_get(ctrl->phy_of_node); if (IS_ERR_OR_NULL(ctrl->phy)) { rc = PTR_ERR(ctrl->phy); DSI_ERR("failed to get phy controller, rc=%d\n", rc); dsi_ctrl_put(ctrl->ctrl); ctrl->phy = NULL; goto error_ctrl_put; } } display->panel = dsi_panel_get(&display->pdev->dev, display->panel_node, display->parser_node, display->display_type, display->cmdline_topology, display->trusted_vm_env); if (IS_ERR_OR_NULL(display->panel)) { rc = PTR_ERR(display->panel); DSI_ERR("failed to get panel, rc=%d\n", rc); display->panel = NULL; goto error_ctrl_put; } display->panel->te_using_watchdog_timer |= display->sw_te_using_wd; if (!dsi_display_validate_panel_resources(display)) { rc = -EINVAL; goto error_panel_put; } display_for_each_ctrl(i, display) { struct msm_dsi_phy *phy = display->ctrl[i].phy; struct dsi_host_common_cfg *host = &display->panel->host_config; phy->cfg.force_clk_lane_hs = display->panel->host_config.force_hs_clk_lane; phy->cfg.phy_type = display->panel->host_config.phy_type; /* * Parse the dynamic clock trim codes for PLL, for video mode panels that have * dynamic clock property set. */ if ((display->panel->dyn_clk_caps.dyn_clk_support) && (display->panel->panel_mode == DSI_OP_VIDEO_MODE)) dsi_phy_pll_parse_dfps_data(phy); phy->cfg.split_link.enabled = host->split_link.enabled; phy->cfg.split_link.num_sublinks = host->split_link.num_sublinks; phy->cfg.split_link.lanes_per_sublink = host->split_link.lanes_per_sublink; } rc = dsi_display_parse_lane_map(display); if (rc) { DSI_ERR("Lane map not found, rc=%d\n", rc); goto error_panel_put; } rc = dsi_display_clocks_init(display); if (rc) { DSI_ERR("Failed to parse clock data, rc=%d\n", rc); goto error_panel_put; } /** * In trusted vm, the connectors will not be enabled * until the HW resources are assigned and accepted. */ if (display->trusted_vm_env) { display->is_active = false; display->hw_ownership = false; } else { display->is_active = true; display->hw_ownership = true; } return 0; error_panel_put: dsi_panel_put(display->panel); error_ctrl_put: for (i = i - 1; i >= 0; i--) { ctrl = &display->ctrl[i]; dsi_ctrl_put(ctrl->ctrl); dsi_phy_put(ctrl->phy); } return rc; } static int dsi_display_res_deinit(struct dsi_display *display) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_phy_put(ctrl->phy); dsi_ctrl_put(ctrl->ctrl); } if (display->panel) dsi_panel_put(display->panel); return rc; } static int dsi_display_validate_mode_set(struct dsi_display *display, struct dsi_display_mode *mode, u32 flags) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; /* * To set a mode: * 1. Controllers should be turned off. * 2. Link clocks should be off. * 3. Phy should be disabled. */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if ((ctrl->power_state > DSI_CTRL_POWER_VREG_ON) || (ctrl->phy_enabled)) { rc = -EINVAL; goto error; } } error: return rc; } static bool dsi_display_is_seamless_dfps_possible( const struct dsi_display *display, const struct dsi_display_mode *tgt, const enum dsi_dfps_type dfps_type) { struct dsi_display_mode *cur; if (!display || !tgt || !display->panel) { DSI_ERR("Invalid params\n"); return false; } cur = display->panel->cur_mode; if (cur->timing.h_active != tgt->timing.h_active) { DSI_DEBUG("timing.h_active differs %d %d\n", cur->timing.h_active, tgt->timing.h_active); return false; } if (cur->timing.h_back_porch != tgt->timing.h_back_porch) { DSI_DEBUG("timing.h_back_porch differs %d %d\n", cur->timing.h_back_porch, tgt->timing.h_back_porch); return false; } if (cur->timing.h_sync_width != tgt->timing.h_sync_width) { DSI_DEBUG("timing.h_sync_width differs %d %d\n", cur->timing.h_sync_width, tgt->timing.h_sync_width); return false; } if (cur->timing.h_front_porch != tgt->timing.h_front_porch) { DSI_DEBUG("timing.h_front_porch differs %d %d\n", cur->timing.h_front_porch, tgt->timing.h_front_porch); if (dfps_type != DSI_DFPS_IMMEDIATE_HFP) return false; } if (cur->timing.h_skew != tgt->timing.h_skew) { DSI_DEBUG("timing.h_skew differs %d %d\n", cur->timing.h_skew, tgt->timing.h_skew); return false; } /* skip polarity comparison */ if (cur->timing.v_active != tgt->timing.v_active) { DSI_DEBUG("timing.v_active differs %d %d\n", cur->timing.v_active, tgt->timing.v_active); return false; } if (cur->timing.v_back_porch != tgt->timing.v_back_porch) { DSI_DEBUG("timing.v_back_porch differs %d %d\n", cur->timing.v_back_porch, tgt->timing.v_back_porch); return false; } if (cur->timing.v_sync_width != tgt->timing.v_sync_width) { DSI_DEBUG("timing.v_sync_width differs %d %d\n", cur->timing.v_sync_width, tgt->timing.v_sync_width); return false; } if (cur->timing.v_front_porch != tgt->timing.v_front_porch) { DSI_DEBUG("timing.v_front_porch differs %d %d\n", cur->timing.v_front_porch, tgt->timing.v_front_porch); if (dfps_type != DSI_DFPS_IMMEDIATE_VFP) return false; } /* skip polarity comparison */ if (cur->timing.refresh_rate == tgt->timing.refresh_rate) DSI_DEBUG("timing.refresh_rate identical %d %d\n", cur->timing.refresh_rate, tgt->timing.refresh_rate); if (cur->pixel_clk_khz != tgt->pixel_clk_khz) DSI_DEBUG("pixel_clk_khz differs %d %d\n", cur->pixel_clk_khz, tgt->pixel_clk_khz); if (cur->dsi_mode_flags != tgt->dsi_mode_flags) DSI_DEBUG("flags differs %d %d\n", cur->dsi_mode_flags, tgt->dsi_mode_flags); return true; } void dsi_display_update_byte_intf_div(struct dsi_display *display) { struct dsi_host_common_cfg *config; struct dsi_display_ctrl *m_ctrl; int phy_ver; m_ctrl = &display->ctrl[display->cmd_master_idx]; config = &display->panel->host_config; phy_ver = dsi_phy_get_version(m_ctrl->phy); config->byte_intf_clk_div = 2; } static int dsi_display_set_link_frequencies(struct dsi_display *display) { int rc = 0, i = 0; dsi_clk_acquire_mngr_lock(display->dsi_clk_handle); display_for_each_ctrl(i, display) { struct dsi_display_ctrl *ctrl = &display->ctrl[i]; rc = dsi_clk_set_link_frequencies(display->dsi_clk_handle, ctrl->ctrl->clk_freq, ctrl->ctrl->cell_index); if (rc) { DSI_ERR("Failed to update link frequencies of ctrl_%d, rc=%d\n", ctrl->ctrl->cell_index, rc); dsi_clk_release_mngr_lock(display->dsi_clk_handle); return rc; } } dsi_clk_release_mngr_lock(display->dsi_clk_handle); return rc; } static int dsi_display_update_dsi_bitrate(struct dsi_display *display, u32 bit_clk_rate) { int rc = 0; int i; DSI_DEBUG("%s:bit rate:%d\n", __func__, bit_clk_rate); if (!display->panel) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (bit_clk_rate == 0) { DSI_ERR("Invalid bit clock rate\n"); return -EINVAL; } display->config.bit_clk_rate_hz = bit_clk_rate; display_for_each_ctrl(i, display) { struct dsi_display_ctrl *dsi_disp_ctrl = &display->ctrl[i]; struct dsi_ctrl *ctrl = dsi_disp_ctrl->ctrl; u32 num_of_lanes = 0, bpp, byte_intf_clk_div; u64 bit_rate, pclk_rate, bit_rate_per_lane, byte_clk_rate, byte_intf_clk_rate; u32 bits_per_symbol = 16, num_of_symbols = 7; /* For Cphy */ struct dsi_host_common_cfg *host_cfg; mutex_lock(&ctrl->ctrl_lock); host_cfg = &display->panel->host_config; if (host_cfg->data_lanes & DSI_DATA_LANE_0) num_of_lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_1) num_of_lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_2) num_of_lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_3) num_of_lanes++; if (num_of_lanes == 0) { DSI_ERR("Invalid lane count\n"); rc = -EINVAL; goto error; } bpp = dsi_pixel_format_to_bpp(host_cfg->dst_format); bit_rate = display->config.bit_clk_rate_hz * num_of_lanes; bit_rate_per_lane = bit_rate; do_div(bit_rate_per_lane, num_of_lanes); pclk_rate = bit_rate; do_div(pclk_rate, bpp); if (host_cfg->phy_type == DSI_PHY_TYPE_DPHY) { bit_rate_per_lane = bit_rate; do_div(bit_rate_per_lane, num_of_lanes); byte_clk_rate = bit_rate_per_lane; do_div(byte_clk_rate, 8); byte_intf_clk_rate = byte_clk_rate; byte_intf_clk_div = host_cfg->byte_intf_clk_div; do_div(byte_intf_clk_rate, byte_intf_clk_div); } else { bit_rate_per_lane = bit_clk_rate; pclk_rate *= bits_per_symbol; do_div(pclk_rate, num_of_symbols); byte_clk_rate = bit_clk_rate; do_div(byte_clk_rate, num_of_symbols); /* For CPHY, byte_intf_clk is same as byte_clk */ byte_intf_clk_rate = byte_clk_rate; } DSI_DEBUG("bit_clk_rate = %llu, bit_clk_rate_per_lane = %llu\n", bit_rate, bit_rate_per_lane); DSI_DEBUG("byte_clk_rate = %llu, byte_intf_clk_rate = %llu\n", byte_clk_rate, byte_intf_clk_rate); DSI_DEBUG("pclk_rate = %llu\n", pclk_rate); SDE_EVT32(i, bit_rate, byte_clk_rate, pclk_rate); ctrl->clk_freq.byte_clk_rate = byte_clk_rate; ctrl->clk_freq.byte_intf_clk_rate = byte_intf_clk_rate; ctrl->clk_freq.pix_clk_rate = pclk_rate; ctrl->host_config.bit_clk_rate_hz = bit_clk_rate; error: mutex_unlock(&ctrl->ctrl_lock); /* TODO: recover ctrl->clk_freq in case of failure */ if (rc) return rc; } rc = dsi_display_set_link_frequencies(display); if (rc) { DSI_ERR("Failed to set display link frequencies\n"); return rc; } return 0; } static void _dsi_display_calc_pipe_delay(struct dsi_display *display, struct dsi_dyn_clk_delay *delay, struct dsi_display_mode *mode) { u32 esc_clk_rate_hz; u32 pclk_to_esc_ratio, byte_to_esc_ratio, hr_bit_to_esc_ratio; u32 hsync_period = 0; struct dsi_display_ctrl *m_ctrl; struct dsi_ctrl *dsi_ctrl; struct dsi_phy_cfg *cfg; int phy_ver; m_ctrl = &display->ctrl[display->clk_master_idx]; dsi_ctrl = m_ctrl->ctrl; cfg = &(m_ctrl->phy->cfg); esc_clk_rate_hz = dsi_ctrl->clk_freq.esc_clk_rate; pclk_to_esc_ratio = (dsi_ctrl->clk_freq.pix_clk_rate / esc_clk_rate_hz); byte_to_esc_ratio = (dsi_ctrl->clk_freq.byte_clk_rate / esc_clk_rate_hz); hr_bit_to_esc_ratio = ((dsi_ctrl->clk_freq.byte_clk_rate * 4) / esc_clk_rate_hz); hsync_period = dsi_h_total_dce(&mode->timing); delay->pipe_delay = (hsync_period + 1) / pclk_to_esc_ratio; if (!display->panel->video_config.eof_bllp_lp11_en) delay->pipe_delay += (17 / pclk_to_esc_ratio) + ((21 + (display->config.common_config.t_clk_pre + 1) + (display->config.common_config.t_clk_post + 1)) / byte_to_esc_ratio) + ((((cfg->timing.lane_v3[8] >> 1) + 1) + ((cfg->timing.lane_v3[6] >> 1) + 1) + ((cfg->timing.lane_v3[3] * 4) + (cfg->timing.lane_v3[5] >> 1) + 1) + ((cfg->timing.lane_v3[7] >> 1) + 1) + ((cfg->timing.lane_v3[1] >> 1) + 1) + ((cfg->timing.lane_v3[4] >> 1) + 1)) / hr_bit_to_esc_ratio); delay->pipe_delay2 = 0; if (display->panel->host_config.force_hs_clk_lane) delay->pipe_delay2 = (6 / byte_to_esc_ratio) + ((((cfg->timing.lane_v3[1] >> 1) + 1) + ((cfg->timing.lane_v3[4] >> 1) + 1)) / hr_bit_to_esc_ratio); /* * 100us pll delay recommended for phy ver 2.0 and 3.0 * 25us pll delay recommended for phy ver 4.0 */ phy_ver = dsi_phy_get_version(m_ctrl->phy); if (phy_ver <= DSI_PHY_VERSION_3_0) delay->pll_delay = 100; else delay->pll_delay = 25; delay->pll_delay = ((delay->pll_delay * esc_clk_rate_hz) / 1000000); } static int _dsi_display_dyn_update_clks(struct dsi_display *display, struct link_clk_freq *bkp_freq) { int rc = 0, i; u8 ctrl_version; struct dsi_display_ctrl *m_ctrl, *ctrl; struct dsi_dyn_clk_caps *dyn_clk_caps; struct dsi_clk_link_set *enable_clk; m_ctrl = &display->ctrl[display->clk_master_idx]; dyn_clk_caps = &(display->panel->dyn_clk_caps); ctrl_version = m_ctrl->ctrl->version; enable_clk = &display->clock_info.pll_clks; dsi_clk_prepare_enable(enable_clk); dsi_display_phy_configure(display, false); display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; rc = dsi_clk_set_byte_clk_rate(display->dsi_clk_handle, ctrl->ctrl->clk_freq.byte_clk_rate, ctrl->ctrl->clk_freq.byte_intf_clk_rate, i); if (rc) { DSI_ERR("failed to set byte rate for index:%d\n", i); goto recover_byte_clk; } rc = dsi_clk_set_pixel_clk_rate(display->dsi_clk_handle, ctrl->ctrl->clk_freq.pix_clk_rate, i); if (rc) { DSI_ERR("failed to set pix rate for index:%d\n", i); goto recover_pix_clk; } } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (ctrl == m_ctrl) continue; dsi_phy_dynamic_refresh_trigger(ctrl->phy, false); } dsi_phy_dynamic_refresh_trigger(m_ctrl->phy, true); /* * Don't wait for dynamic refresh done for dsi ctrl greater than 2.5 * and with constant fps, as dynamic refresh will applied with * next mdp intf ctrl flush. */ if ((ctrl_version >= DSI_CTRL_VERSION_2_5) && (dyn_clk_caps->maintain_const_fps)) return 0; /* wait for dynamic refresh done */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_wait4dynamic_refresh_done(ctrl->ctrl); if (rc) { DSI_ERR("wait4dynamic refresh failed for dsi:%d\n", i); goto recover_pix_clk; } else { DSI_INFO("dynamic refresh done on dsi: %s\n", i ? "slave" : "master"); } } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_phy_dynamic_refresh_clear(ctrl->phy); } if (rc) DSI_ERR("could not switch back to src clks %d\n", rc); dsi_clk_disable_unprepare(enable_clk); return rc; recover_pix_clk: display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; dsi_clk_set_pixel_clk_rate(display->dsi_clk_handle, bkp_freq->pix_clk_rate, i); } recover_byte_clk: display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; dsi_clk_set_byte_clk_rate(display->dsi_clk_handle, bkp_freq->byte_clk_rate, bkp_freq->byte_intf_clk_rate, i); } return rc; } static int dsi_display_dynamic_clk_switch_vid(struct dsi_display *display, struct dsi_display_mode *mode) { int rc = 0, mask, i; struct dsi_display_ctrl *m_ctrl, *ctrl; struct dsi_dyn_clk_delay delay; struct link_clk_freq bkp_freq; dsi_panel_acquire_panel_lock(display->panel); m_ctrl = &display->ctrl[display->clk_master_idx]; dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); /* mask PLL unlock, FIFO overflow and underflow errors */ mask = BIT(DSI_PLL_UNLOCK_ERR) | BIT(DSI_FIFO_UNDERFLOW) | BIT(DSI_FIFO_OVERFLOW); dsi_display_mask_ctrl_error_interrupts(display, mask, true); /* update the phy timings based on new mode */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_phy_update_phy_timings(ctrl->phy, &display->config); } /* back up existing rates to handle failure case */ bkp_freq.byte_clk_rate = m_ctrl->ctrl->clk_freq.byte_clk_rate; bkp_freq.byte_intf_clk_rate = m_ctrl->ctrl->clk_freq.byte_intf_clk_rate; bkp_freq.pix_clk_rate = m_ctrl->ctrl->clk_freq.pix_clk_rate; bkp_freq.esc_clk_rate = m_ctrl->ctrl->clk_freq.esc_clk_rate; rc = dsi_display_update_dsi_bitrate(display, mode->timing.clk_rate_hz); if (rc) { DSI_ERR("failed set link frequencies %d\n", rc); goto exit; } /* calculate pipe delays */ _dsi_display_calc_pipe_delay(display, &delay, mode); /* configure dynamic refresh ctrl registers */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->phy) continue; if (ctrl == m_ctrl) dsi_phy_config_dynamic_refresh(ctrl->phy, &delay, true); else dsi_phy_config_dynamic_refresh(ctrl->phy, &delay, false); } rc = _dsi_display_dyn_update_clks(display, &bkp_freq); exit: dsi_display_mask_ctrl_error_interrupts(display, mask, false); dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); /* store newly calculated phy timings in mode private info */ dsi_phy_dyn_refresh_cache_phy_timings(m_ctrl->phy, mode->priv_info->phy_timing_val, mode->priv_info->phy_timing_len); dsi_panel_release_panel_lock(display->panel); return rc; } static int dsi_display_dynamic_clk_configure_cmd(struct dsi_display *display, int clk_rate) { int rc = 0; if (clk_rate <= 0) { DSI_ERR("%s: bitrate should be greater than 0\n", __func__); return -EINVAL; } if (clk_rate == display->cached_clk_rate) { DSI_INFO("%s: ignore duplicated DSI clk setting\n", __func__); return rc; } display->cached_clk_rate = clk_rate; rc = dsi_display_update_dsi_bitrate(display, clk_rate); if (!rc) { DSI_DEBUG("%s: bit clk is ready to be configured to '%d'\n", __func__, clk_rate); atomic_set(&display->clkrate_change_pending, 1); } else { DSI_ERR("%s: Failed to prepare to configure '%d'. rc = %d\n", __func__, clk_rate, rc); /* Caching clock failed, so don't go on doing so. */ atomic_set(&display->clkrate_change_pending, 0); display->cached_clk_rate = 0; } return rc; } static int dsi_display_dfps_update(struct dsi_display *display, struct dsi_display_mode *dsi_mode) { struct dsi_mode_info *timing; struct dsi_display_ctrl *m_ctrl, *ctrl; struct dsi_display_mode *panel_mode; struct dsi_dfps_capabilities dfps_caps; int rc = 0; int i = 0; struct dsi_dyn_clk_caps *dyn_clk_caps; if (!display || !dsi_mode || !display->panel) { DSI_ERR("Invalid params\n"); return -EINVAL; } timing = &dsi_mode->timing; dsi_panel_get_dfps_caps(display->panel, &dfps_caps); dyn_clk_caps = &(display->panel->dyn_clk_caps); if (!dfps_caps.dfps_support && !dyn_clk_caps->maintain_const_fps) { DSI_ERR("dfps or constant fps not supported\n"); return -ENOTSUPP; } if (dfps_caps.type == DSI_DFPS_IMMEDIATE_CLK) { DSI_ERR("dfps clock method not supported\n"); return -ENOTSUPP; } /* For split DSI, update the clock master first */ DSI_DEBUG("configuring seamless dynamic fps\n\n"); SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); m_ctrl = &display->ctrl[display->clk_master_idx]; rc = dsi_ctrl_async_timing_update(m_ctrl->ctrl, timing); if (rc) { DSI_ERR("[%s] failed to dfps update host_%d, rc=%d\n", display->name, i, rc); goto error; } /* Update the rest of the controllers */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl == m_ctrl)) continue; rc = dsi_ctrl_async_timing_update(ctrl->ctrl, timing); if (rc) { DSI_ERR("[%s] failed to dfps update host_%d, rc=%d\n", display->name, i, rc); goto error; } } panel_mode = display->panel->cur_mode; memcpy(panel_mode, dsi_mode, sizeof(*panel_mode)); /* * dsi_mode_flags flags are used to communicate with other drm driver * components, and are transient. They aren't inherently part of the * display panel's mode and shouldn't be saved into the cached currently * active mode. */ panel_mode->dsi_mode_flags = 0; error: SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); return rc; } static int dsi_display_dfps_calc_front_porch( u32 old_fps, u32 new_fps, u32 a_total, u32 b_total, u32 b_fp, u32 *b_fp_out) { s32 b_fp_new; int add_porches, diff; if (!b_fp_out) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (!a_total || !new_fps) { DSI_ERR("Invalid pixel total or new fps in mode request\n"); return -EINVAL; } /* * Keep clock, other porches constant, use new fps, calc front porch * new_vtotal = old_vtotal * (old_fps / new_fps ) * new_vfp - old_vfp = new_vtotal - old_vtotal * new_vfp = old_vfp + old_vtotal * ((old_fps - new_fps)/ new_fps) */ diff = abs(old_fps - new_fps); add_porches = mult_frac(b_total, diff, new_fps); if (old_fps > new_fps) b_fp_new = b_fp + add_porches; else b_fp_new = b_fp - add_porches; DSI_DEBUG("fps %u a %u b %u b_fp %u new_fp %d\n", new_fps, a_total, b_total, b_fp, b_fp_new); if (b_fp_new < 0) { DSI_ERR("Invalid new_hfp calcluated%d\n", b_fp_new); return -EINVAL; } /** * TODO: To differentiate from clock method when communicating to the * other components, perhaps we should set clk here to original value */ *b_fp_out = b_fp_new; return 0; } /** * dsi_display_get_dfps_timing() - Get the new dfps values. * @display: DSI display handle. * @adj_mode: Mode value structure to be changed. * It contains old timing values and latest fps value. * New timing values are updated based on new fps. * @curr_refresh_rate: Current fps rate. * If zero , current fps rate is taken from * display->panel->cur_mode. * Return: error code. */ static int dsi_display_get_dfps_timing(struct dsi_display *display, struct dsi_display_mode *adj_mode, u32 curr_refresh_rate) { struct dsi_dfps_capabilities dfps_caps; struct dsi_display_mode per_ctrl_mode; struct dsi_mode_info *timing; struct dsi_ctrl *m_ctrl; int rc = 0; if (!display || !adj_mode) { DSI_ERR("Invalid params\n"); return -EINVAL; } m_ctrl = display->ctrl[display->clk_master_idx].ctrl; dsi_panel_get_dfps_caps(display->panel, &dfps_caps); if (!dfps_caps.dfps_support) { DSI_ERR("dfps not supported by panel\n"); return -EINVAL; } per_ctrl_mode = *adj_mode; adjust_timing_by_ctrl_count(display, &per_ctrl_mode); if (!curr_refresh_rate) { if (!dsi_display_is_seamless_dfps_possible(display, &per_ctrl_mode, dfps_caps.type)) { DSI_ERR("seamless dynamic fps not supported for mode\n"); return -EINVAL; } if (display->panel->cur_mode) { curr_refresh_rate = display->panel->cur_mode->timing.refresh_rate; } else { DSI_ERR("cur_mode is not initialized\n"); return -EINVAL; } } /* TODO: Remove this direct reference to the dsi_ctrl */ timing = &per_ctrl_mode.timing; switch (dfps_caps.type) { case DSI_DFPS_IMMEDIATE_VFP: rc = dsi_display_dfps_calc_front_porch( curr_refresh_rate, timing->refresh_rate, dsi_h_total_dce(timing), DSI_V_TOTAL(timing), timing->v_front_porch, &adj_mode->timing.v_front_porch); SDE_EVT32(SDE_EVTLOG_FUNC_CASE1, DSI_DFPS_IMMEDIATE_VFP, curr_refresh_rate, timing->refresh_rate, timing->v_front_porch, adj_mode->timing.v_front_porch); break; case DSI_DFPS_IMMEDIATE_HFP: rc = dsi_display_dfps_calc_front_porch( curr_refresh_rate, timing->refresh_rate, DSI_V_TOTAL(timing), dsi_h_total_dce(timing), timing->h_front_porch, &adj_mode->timing.h_front_porch); SDE_EVT32(SDE_EVTLOG_FUNC_CASE2, DSI_DFPS_IMMEDIATE_HFP, curr_refresh_rate, timing->refresh_rate, timing->h_front_porch, adj_mode->timing.h_front_porch); if (!rc) adj_mode->timing.h_front_porch *= display->ctrl_count; break; default: DSI_ERR("Unsupported DFPS mode %d\n", dfps_caps.type); rc = -ENOTSUPP; } return rc; } static bool dsi_display_validate_mode_seamless(struct dsi_display *display, struct dsi_display_mode *adj_mode) { int rc = 0; if (!display || !adj_mode) { DSI_ERR("Invalid params\n"); return false; } /* Currently the only seamless transition is dynamic fps */ rc = dsi_display_get_dfps_timing(display, adj_mode, 0); if (rc) { DSI_DEBUG("Dynamic FPS not supported for seamless\n"); } else { DSI_DEBUG("Mode switch is seamless Dynamic FPS\n"); adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_DFPS | DSI_MODE_FLAG_VBLANK_PRE_MODESET; } return rc; } static void dsi_display_validate_dms_fps(struct dsi_display_mode *cur_mode, struct dsi_display_mode *to_mode) { u32 cur_fps, to_fps; u32 cur_h_active, to_h_active; u32 cur_v_active, to_v_active; cur_fps = cur_mode->timing.refresh_rate; to_fps = to_mode->timing.refresh_rate; cur_h_active = cur_mode->timing.h_active; cur_v_active = cur_mode->timing.v_active; to_h_active = to_mode->timing.h_active; to_v_active = to_mode->timing.v_active; if ((cur_h_active == to_h_active) && (cur_v_active == to_v_active) && (cur_fps != to_fps)) { to_mode->dsi_mode_flags |= DSI_MODE_FLAG_DMS_FPS; DSI_DEBUG("DMS Modeset with FPS change\n"); } else { to_mode->dsi_mode_flags &= ~DSI_MODE_FLAG_DMS_FPS; } } static int dsi_display_set_mode_sub(struct dsi_display *display, struct dsi_display_mode *mode, u32 flags) { int rc = 0, clk_rate = 0; int i; struct dsi_display_ctrl *ctrl; struct dsi_display_ctrl *mctrl; struct dsi_display_mode_priv_info *priv_info; bool commit_phy_timing = false; struct dsi_dyn_clk_caps *dyn_clk_caps; priv_info = mode->priv_info; if (!priv_info) { DSI_ERR("[%s] failed to get private info of the display mode\n", display->name); return -EINVAL; } SDE_EVT32(mode->dsi_mode_flags, display->panel->panel_mode); if (mode->dsi_mode_flags & DSI_MODE_FLAG_POMS_TO_VID) display->panel->panel_mode = DSI_OP_VIDEO_MODE; else if (mode->dsi_mode_flags & DSI_MODE_FLAG_POMS_TO_CMD) display->panel->panel_mode = DSI_OP_CMD_MODE; rc = dsi_panel_get_host_cfg_for_mode(display->panel, mode, &display->config); if (rc) { DSI_ERR("[%s] failed to get host config for mode, rc=%d\n", display->name, rc); goto error; } memcpy(&display->config.lane_map, &display->lane_map, sizeof(display->lane_map)); mctrl = &display->ctrl[display->clk_master_idx]; dyn_clk_caps = &(display->panel->dyn_clk_caps); if (mode->dsi_mode_flags & (DSI_MODE_FLAG_DFPS | DSI_MODE_FLAG_VRR)) { display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || (ctrl != mctrl)) continue; ctrl->ctrl->hw.ops.set_timing_db(&ctrl->ctrl->hw, true); dsi_phy_dynamic_refresh_clear(ctrl->phy); if ((ctrl->ctrl->version >= DSI_CTRL_VERSION_2_5) && (dyn_clk_caps->maintain_const_fps)) { dsi_phy_dynamic_refresh_trigger_sel(ctrl->phy, true); } } rc = dsi_display_dfps_update(display, mode); if (rc) { DSI_ERR("[%s]DSI dfps update failed, rc=%d\n", display->name, rc); goto error; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_update_host_config(ctrl->ctrl, &display->config, mode, mode->dsi_mode_flags, display->dsi_clk_handle); if (rc) { DSI_ERR("failed to update ctrl config\n"); goto error; } } if (priv_info->phy_timing_len) { display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_phy_set_timing_params(ctrl->phy, priv_info->phy_timing_val, priv_info->phy_timing_len, commit_phy_timing); if (rc) DSI_ERR("Fail to add timing params\n"); } } if (!(mode->dsi_mode_flags & DSI_MODE_FLAG_DYN_CLK)) return rc; } if (mode->dsi_mode_flags & DSI_MODE_FLAG_DYN_CLK) { if (display->panel->panel_mode == DSI_OP_VIDEO_MODE) { rc = dsi_display_dynamic_clk_switch_vid(display, mode); if (rc) DSI_ERR("dynamic clk change failed %d\n", rc); /* * skip rest of the opearations since * dsi_display_dynamic_clk_switch_vid() already takes * care of them. */ return rc; } else if (display->panel->panel_mode == DSI_OP_CMD_MODE) { clk_rate = mode->timing.clk_rate_hz; rc = dsi_display_dynamic_clk_configure_cmd(display, clk_rate); if (rc) { DSI_ERR("Failed to configure dynamic clk\n"); return rc; } } } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_update_host_config(ctrl->ctrl, &display->config, mode, mode->dsi_mode_flags, display->dsi_clk_handle); if (rc) { DSI_ERR("[%s] failed to update ctrl config, rc=%d\n", display->name, rc); goto error; } } if (!(mode->dsi_mode_flags & (DSI_MODE_FLAG_SEAMLESS | DSI_MODE_FLAG_VRR | DSI_MODE_FLAG_DYN_CLK))) { rc = dsi_display_set_link_frequencies(display); if (rc) { DSI_ERR("Failed to set display link frequencies\n"); goto error; } } if ((mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) && (display->panel->panel_mode == DSI_OP_CMD_MODE)) { u64 cur_bitclk = display->panel->cur_mode->timing.clk_rate_hz; u64 to_bitclk = mode->timing.clk_rate_hz; commit_phy_timing = true; /* No need to set clkrate pending flag if clocks are same */ if ((!cur_bitclk && !to_bitclk) || (cur_bitclk != to_bitclk)) atomic_set(&display->clkrate_change_pending, 1); dsi_display_validate_dms_fps(display->panel->cur_mode, mode); } if (priv_info->phy_timing_len && !atomic_read(&display->clkrate_change_pending)) { /* * In case of clkrate change, the PHY timing update will happen * together with the clock update. */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_phy_set_timing_params(ctrl->phy, priv_info->phy_timing_val, priv_info->phy_timing_len, commit_phy_timing); if (rc) DSI_ERR("failed to add DSI PHY timing params\n"); } } error: return rc; } /** * _dsi_display_dev_init - initializes the display device * Initialization will acquire references to the resources required for the * display hardware to function. * @display: Handle to the display * Returns: Zero on success */ static int _dsi_display_dev_init(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("invalid display\n"); return -EINVAL; } if (!display->panel_node && !display->fw) return 0; mutex_lock(&display->display_lock); display->parser = dsi_parser_get(&display->pdev->dev); if (display->fw && display->parser) display->parser_node = dsi_parser_get_head_node( display->parser, display->fw->data, display->fw->size); rc = dsi_display_parse_dt(display); if (rc) { DSI_ERR("[%s] failed to parse dt, rc=%d\n", display->name, rc); goto error; } rc = dsi_display_res_init(display); if (rc) { DSI_ERR("[%s] failed to initialize resources, rc=%d\n", display->name, rc); goto error; } error: mutex_unlock(&display->display_lock); return rc; } /** * _dsi_display_dev_deinit - deinitializes the display device * All the resources acquired during device init will be released. * @display: Handle to the display * Returns: Zero on success */ static int _dsi_display_dev_deinit(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("invalid display\n"); return -EINVAL; } mutex_lock(&display->display_lock); rc = dsi_display_res_deinit(display); if (rc) DSI_ERR("[%s] failed to deinitialize resource, rc=%d\n", display->name, rc); mutex_unlock(&display->display_lock); return rc; } /** * dsi_display_cont_splash_res_disable() - Disable resource votes added in probe * @dsi_display: Pointer to dsi display * Returns: Zero on success */ int dsi_display_cont_splash_res_disable(void *dsi_display) { struct dsi_display *display = dsi_display; int rc = 0; /* Remove the panel vote that was added during dsi display probe */ rc = dsi_pwr_enable_regulator(&display->panel->power_info, false); if (rc) DSI_ERR("[%s] failed to disable vregs, rc=%d\n", display->panel->name, rc); return rc; } /** * dsi_display_cont_splash_config() - Initialize resources for continuous splash * @dsi_display: Pointer to dsi display * Returns: Zero on success */ int dsi_display_cont_splash_config(void *dsi_display) { struct dsi_display *display = dsi_display; int rc = 0; /* Vote for gdsc required to read register address space */ if (!display) { DSI_ERR("invalid input display param\n"); return -EINVAL; } rc = pm_runtime_resume_and_get(display->drm_dev->dev); if (rc < 0) { DSI_ERR("failed to enable power resource %d\n", rc); SDE_EVT32(rc, SDE_EVTLOG_ERROR); return rc; } mutex_lock(&display->display_lock); display->is_cont_splash_enabled = true; /* Update splash status for clock manager */ dsi_display_clk_mngr_update_splash_status(display->clk_mngr, display->is_cont_splash_enabled); SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, display->is_cont_splash_enabled); /* Set up ctrl isr before enabling core clk */ dsi_display_ctrl_isr_configure(display, true); /* Vote for Core clk and link clk. Votes on ctrl and phy * regulator are inplicit from pre clk on callback */ rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI link clocks, rc=%d\n", display->name, rc); goto clk_manager_update; } mutex_unlock(&display->display_lock); /* Set the current brightness level */ dsi_panel_bl_handoff(display->panel); return rc; clk_manager_update: dsi_display_ctrl_isr_configure(display, false); /* Update splash status for clock manager */ dsi_display_clk_mngr_update_splash_status(display->clk_mngr, false); pm_runtime_put_sync(display->drm_dev->dev); display->is_cont_splash_enabled = false; mutex_unlock(&display->display_lock); return rc; } /** * dsi_display_splash_res_cleanup() - cleanup for continuous splash * @display: Pointer to dsi display * Returns: Zero on success */ int dsi_display_splash_res_cleanup(struct dsi_display *display) { int rc = 0; if (!display->is_cont_splash_enabled) return 0; rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); if (rc) DSI_ERR("[%s] failed to disable DSI link clocks, rc=%d\n", display->name, rc); pm_runtime_put_sync(display->drm_dev->dev); display->is_cont_splash_enabled = false; /* Update splash status for clock manager */ dsi_display_clk_mngr_update_splash_status(display->clk_mngr, display->is_cont_splash_enabled); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, display->is_cont_splash_enabled); return rc; } static int dsi_display_force_update_dsi_clk(struct dsi_display *display) { int rc = 0, i = 0; struct dsi_display_ctrl *ctrl; /* * The force update dsi clock, is the only clock update function that toggles the state of * DSI clocks without any ref count protection. With the addition of ASYNC command wait, * there is a need for adding a check for any queued waits before updating these clocks. */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl || !(ctrl->ctrl->post_tx_queued)) continue; flush_workqueue(display->post_cmd_tx_workq); cancel_work_sync(&ctrl->ctrl->post_cmd_tx_work); ctrl->ctrl->post_tx_queued = false; } rc = dsi_display_link_clk_force_update_ctrl(display->dsi_clk_handle); if (!rc) { DSI_DEBUG("dsi bit clk has been configured to %d\n", display->cached_clk_rate); atomic_set(&display->clkrate_change_pending, 0); } else { DSI_ERR("Failed to configure dsi bit clock '%d'. rc = %d\n", display->cached_clk_rate, rc); } return rc; } static int dsi_display_validate_split_link(struct dsi_display *display) { int i, rc = 0; struct dsi_display_ctrl *ctrl; struct dsi_host_common_cfg *host = &display->panel->host_config; if (!host->split_link.enabled) return 0; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl->split_link_supported) { DSI_ERR("[%s] split link is not supported by hw\n", display->name); rc = -ENOTSUPP; goto error; } set_bit(DSI_PHY_SPLIT_LINK, ctrl->phy->hw.feature_map); host->split_link.panel_mode = display->panel->panel_mode; } DSI_DEBUG("Split link is enabled\n"); return 0; error: host->split_link.enabled = false; return rc; } static int dsi_display_get_io_resources(struct msm_io_res *io_res, void *data) { int rc = 0; struct dsi_display *display; struct platform_device *pdev; int te_gpio, avdd_gpio; if (!data) return -EINVAL; display = (struct dsi_display *)data; pdev = display->pdev; if (!pdev) return -EINVAL; rc = dsi_ctrl_get_io_resources(io_res); if (rc) return rc; rc = dsi_phy_get_io_resources(io_res); if (rc) return rc; rc = dsi_panel_get_io_resources(display->panel, io_res); if (rc) return rc; te_gpio = of_get_named_gpio(pdev->dev.of_node, "qcom,platform-te-gpio", 0); if (gpio_is_valid(te_gpio)) { rc = msm_dss_get_gpio_io_mem(te_gpio, &io_res->mem); if (rc) { DSI_ERR("[%s] failed to retrieve the te gpio address\n", display->panel->name); return rc; } } avdd_gpio = of_get_named_gpio(pdev->dev.of_node, "qcom,avdd-regulator-gpio", 0); if (gpio_is_valid(avdd_gpio)) { rc = msm_dss_get_gpio_io_mem(avdd_gpio, &io_res->mem); if (rc) DSI_ERR("[%s] failed to retrieve the avdd gpio address\n", display->panel->name); } return rc; } static int dsi_display_pre_release(void *data) { struct dsi_display *display; int i; if (!data) return -EINVAL; display = (struct dsi_display *)data; mutex_lock(&display->display_lock); display->hw_ownership = false; mutex_unlock(&display->display_lock); /* flush work queues */ display_for_each_ctrl(i, display) { struct dsi_display_ctrl *ctrl = &display->ctrl[i]; if (!ctrl->ctrl || !(ctrl->ctrl->post_tx_queued)) continue; flush_workqueue(display->post_cmd_tx_workq); cancel_work_sync(&ctrl->ctrl->post_cmd_tx_work); ctrl->ctrl->post_tx_queued = false; } dsi_display_ctrl_irq_update(display, false); return 0; } static int dsi_display_pre_acquire(void *data) { struct dsi_display *display; if (!data) return -EINVAL; display = (struct dsi_display *)data; mutex_lock(&display->display_lock); display->hw_ownership = true; mutex_unlock(&display->display_lock); dsi_display_ctrl_irq_update((struct dsi_display *)data, true); return 0; } static int dsi_display_init_ctrl(struct dsi_display *display) { struct dsi_display_ctrl *display_ctrl; int i, rc = 0; struct clk_ctrl_cb clk_cb; clk_cb.priv = display; clk_cb.dsi_clk_cb = dsi_display_clk_ctrl_cb; display_for_each_ctrl(i, display) { display_ctrl = &display->ctrl[i]; display_ctrl->ctrl->post_cmd_tx_workq = display->post_cmd_tx_workq; rc = dsi_ctrl_clk_cb_register(display_ctrl->ctrl, &clk_cb); if (rc) { DSI_ERR("[%s] failed to register ctrl clk_cb[%d], rc=%d\n", display->name, i, rc); return rc; } rc = dsi_phy_clk_cb_register(display_ctrl->phy, &clk_cb); if (rc) { DSI_ERR("[%s] failed to register phy clk_cb[%d], rc=%d\n", display->name, i, rc); return rc; } } return rc; } /** * dsi_display_bind - bind dsi device with controlling device * @dev: Pointer to base of platform device * @master: Pointer to container of drm device * @data: Pointer to private data * Returns: Zero on success */ static int dsi_display_bind(struct device *dev, struct device *master, void *data) { struct dsi_display_ctrl *display_ctrl; struct drm_device *drm; struct dsi_display *display; struct dsi_clk_info info; void *handle = NULL; struct platform_device *pdev = to_platform_device(dev); char *client1 = "dsi_clk_client"; char *client2 = "mdp_event_client"; struct msm_vm_ops vm_event_ops = { .vm_get_io_resources = dsi_display_get_io_resources, .vm_pre_hw_release = dsi_display_pre_release, .vm_post_hw_acquire = dsi_display_pre_acquire, }; int i, rc = 0; if (!dev || !pdev || !master) { DSI_ERR("invalid param(s), dev %pK, pdev %pK, master %pK\n", dev, pdev, master); return -EINVAL; } drm = dev_get_drvdata(master); display = platform_get_drvdata(pdev); if (!drm || !display) { DSI_ERR("invalid param(s), drm %pK, display %pK\n", drm, display); return -EINVAL; } if (!display->panel_node && !display->fw) return 0; if (!display->fw) display->name = display->panel_node->name; /* defer bind if ext bridge driver is not loaded */ if (display->panel && display->panel->host_config.ext_bridge_mode) { for (i = 0; i < display->ext_bridge_cnt; i++) { if (!of_drm_find_bridge( display->ext_bridge[i].node_of)) { DSI_DEBUG("defer for bridge[%d] %s\n", i, display->ext_bridge[i].node_of->full_name); return -EPROBE_DEFER; } } } mutex_lock(&display->display_lock); rc = dsi_display_validate_split_link(display); if (rc) { DSI_ERR("[%s] split link validation failed, rc=%d\n", display->name, rc); goto error; } rc = dsi_display_debugfs_init(display); if (rc) { DSI_ERR("[%s] debugfs init failed, rc=%d\n", display->name, rc); goto error; } atomic_set(&display->clkrate_change_pending, 0); display->cached_clk_rate = 0; memset(&info, 0x0, sizeof(info)); display_for_each_ctrl(i, display) { display_ctrl = &display->ctrl[i]; rc = dsi_ctrl_drv_init(display_ctrl->ctrl, display->root); if (rc) { DSI_ERR("[%s] failed to initialize ctrl[%d], rc=%d\n", display->name, i, rc); goto error_ctrl_deinit; } display_ctrl->ctrl->horiz_index = i; rc = dsi_phy_drv_init(display_ctrl->phy); if (rc) { DSI_ERR("[%s] Failed to initialize phy[%d], rc=%d\n", display->name, i, rc); (void)dsi_ctrl_drv_deinit(display_ctrl->ctrl); goto error_ctrl_deinit; } memcpy(&info.c_clks[i], (&display_ctrl->ctrl->clk_info.core_clks), sizeof(struct dsi_core_clk_info)); memcpy(&info.l_hs_clks[i], (&display_ctrl->ctrl->clk_info.hs_link_clks), sizeof(struct dsi_link_hs_clk_info)); memcpy(&info.l_lp_clks[i], (&display_ctrl->ctrl->clk_info.lp_link_clks), sizeof(struct dsi_link_lp_clk_info)); info.c_clks[i].drm = drm; info.ctrl_index[i] = display_ctrl->ctrl->cell_index; } info.pre_clkoff_cb = dsi_pre_clkoff_cb; info.pre_clkon_cb = dsi_pre_clkon_cb; info.post_clkoff_cb = dsi_post_clkoff_cb; info.post_clkon_cb = dsi_post_clkon_cb; info.phy_config_cb = dsi_display_phy_configure; info.phy_pll_toggle_cb = dsi_display_phy_pll_toggle; info.priv_data = display; info.master_ndx = display->clk_master_idx; info.dsi_ctrl_count = display->ctrl_count; info.phy_pll_bypass = phy_pll_bypass(display); snprintf(info.name, MAX_STRING_LEN, "DSI_MNGR-%s", display->name); display->clk_mngr = dsi_display_clk_mngr_register(&info); if (IS_ERR_OR_NULL(display->clk_mngr)) { rc = PTR_ERR(display->clk_mngr); display->clk_mngr = NULL; DSI_ERR("dsi clock registration failed, rc = %d\n", rc); goto error_ctrl_deinit; } handle = dsi_register_clk_handle(display->clk_mngr, client1); if (IS_ERR_OR_NULL(handle)) { rc = PTR_ERR(handle); DSI_ERR("failed to register %s client, rc = %d\n", client1, rc); goto error_clk_deinit; } else { display->dsi_clk_handle = handle; } handle = dsi_register_clk_handle(display->clk_mngr, client2); if (IS_ERR_OR_NULL(handle)) { rc = PTR_ERR(handle); DSI_ERR("failed to register %s client, rc = %d\n", client2, rc); goto error_clk_client_deinit; } else { display->mdp_clk_handle = handle; } dsi_display_update_byte_intf_div(display); rc = dsi_display_mipi_host_init(display); if (rc) { DSI_ERR("[%s] failed to initialize mipi host, rc=%d\n", display->name, rc); goto error_ctrl_deinit; } rc = dsi_panel_drv_init(display->panel, &display->host); if (rc) { if (rc != -EPROBE_DEFER) DSI_ERR("[%s] failed to initialize panel driver, rc=%d\n", display->name, rc); goto error_host_deinit; } DSI_INFO("Successfully bind display panel '%s %s'\n", display->name, display->panel->te_using_watchdog_timer ? "as sim panel" : ""); display->drm_dev = drm; display_for_each_ctrl(i, display) { display_ctrl = &display->ctrl[i]; if (!display_ctrl->phy || !display_ctrl->ctrl) continue; display_ctrl->ctrl->drm_dev = drm; rc = dsi_phy_set_clk_freq(display_ctrl->phy, &display_ctrl->ctrl->clk_freq); if (rc) { DSI_ERR("[%s] failed to set phy clk freq, rc=%d\n", display->name, rc); goto error; } } msm_register_vm_event(master, dev, &vm_event_ops, (void *)display); goto error; error_host_deinit: (void)dsi_display_mipi_host_deinit(display); error_clk_client_deinit: (void)dsi_deregister_clk_handle(display->dsi_clk_handle); error_clk_deinit: (void)dsi_display_clk_mngr_deregister(display->clk_mngr); error_ctrl_deinit: for (i = i - 1; i >= 0; i--) { display_ctrl = &display->ctrl[i]; (void)dsi_phy_drv_deinit(display_ctrl->phy); (void)dsi_ctrl_drv_deinit(display_ctrl->ctrl); dsi_ctrl_put(display_ctrl->ctrl); dsi_phy_put(display_ctrl->phy); } (void)dsi_display_debugfs_deinit(display); error: mutex_unlock(&display->display_lock); return rc; } /** * dsi_display_unbind - unbind dsi from controlling device * @dev: Pointer to base of platform device * @master: Pointer to container of drm device * @data: Pointer to private data */ static void dsi_display_unbind(struct device *dev, struct device *master, void *data) { struct dsi_display_ctrl *display_ctrl; struct dsi_display *display; struct platform_device *pdev = to_platform_device(dev); int i, rc = 0; if (!dev || !pdev || !master) { DSI_ERR("invalid param(s)\n"); return; } display = platform_get_drvdata(pdev); if (!display || !display->panel_node) { DSI_ERR("invalid display\n"); return; } mutex_lock(&display->display_lock); rc = dsi_display_mipi_host_deinit(display); if (rc) DSI_ERR("[%s] failed to deinit mipi hosts, rc=%d\n", display->name, rc); display_for_each_ctrl(i, display) { display_ctrl = &display->ctrl[i]; rc = dsi_phy_drv_deinit(display_ctrl->phy); if (rc) DSI_ERR("[%s] failed to deinit phy%d driver, rc=%d\n", display->name, i, rc); display->ctrl->ctrl->post_cmd_tx_workq = NULL; rc = dsi_ctrl_drv_deinit(display_ctrl->ctrl); if (rc) DSI_ERR("[%s] failed to deinit ctrl%d driver, rc=%d\n", display->name, i, rc); } atomic_set(&display->clkrate_change_pending, 0); (void)dsi_display_debugfs_deinit(display); mutex_unlock(&display->display_lock); } static const struct component_ops dsi_display_comp_ops = { .bind = dsi_display_bind, .unbind = dsi_display_unbind, }; static struct platform_driver dsi_display_driver = { .probe = dsi_display_dev_probe, .remove = dsi_display_dev_remove, .driver = { .name = "msm-dsi-display", .of_match_table = dsi_display_dt_match, .suppress_bind_attrs = true, }, }; static int dsi_display_init(struct dsi_display *display) { int rc = 0; struct platform_device *pdev = display->pdev; mutex_init(&display->display_lock); rc = _dsi_display_dev_init(display); if (rc) { DSI_ERR("device init failed, rc=%d\n", rc); goto end; } /* * Vote on panel regulator is added to make sure panel regulators * are ON for cont-splash enabled usecase. * This panel regulator vote will be removed only in: * 1) device suspend when cont-splash is enabled. * 2) cont_splash_res_disable() when cont-splash is disabled. * For GKI, adding this vote will make sure that sync_state * kernel driver doesn't disable the panel regulators after * dsi probe is complete. */ if (display->panel) { rc = dsi_pwr_enable_regulator(&display->panel->power_info, true); if (rc) { DSI_ERR("[%s] failed to enable vregs, rc=%d\n", display->panel->name, rc); return rc; } } rc = component_add(&pdev->dev, &dsi_display_comp_ops); if (rc) DSI_ERR("component add failed, rc=%d\n", rc); DSI_DEBUG("component add success: %s\n", display->name); end: return rc; } static void dsi_display_firmware_display(const struct firmware *fw, void *context) { struct dsi_display *display = context; if (fw) { DSI_INFO("reading data from firmware, size=%zd\n", fw->size); display->fw = fw; if (!strcmp(display->display_type, "primary")) display->name = "dsi_firmware_display"; else if (!strcmp(display->display_type, "secondary")) display->name = "dsi_firmware_display_secondary"; } else { DSI_INFO("no firmware available, fallback to device node\n"); } if (dsi_display_init(display)) return; DSI_DEBUG("success\n"); } int dsi_display_dev_probe(struct platform_device *pdev) { struct dsi_display *display = NULL; struct device_node *node = NULL, *panel_node = NULL, *mdp_node = NULL; int rc = 0, index = DSI_PRIMARY; bool firm_req = false; struct dsi_display_boot_param *boot_disp; if (!pdev || !pdev->dev.of_node) { DSI_ERR("pdev not found\n"); rc = -ENODEV; goto end; } display = devm_kzalloc(&pdev->dev, sizeof(*display), GFP_KERNEL); if (!display) { rc = -ENOMEM; goto end; } display->post_cmd_tx_workq = create_singlethread_workqueue( "dsi_post_cmd_tx_workq"); if (!display->post_cmd_tx_workq) { DSI_ERR("failed to create work queue\n"); rc = -EINVAL; goto end; } mdp_node = of_parse_phandle(pdev->dev.of_node, "qcom,mdp", 0); if (!mdp_node) { DSI_ERR("mdp_node not found\n"); rc = -ENODEV; goto end; } display->trusted_vm_env = of_property_read_bool(mdp_node, "qcom,sde-trusted-vm-env"); if (display->trusted_vm_env) DSI_INFO("Display enabled with trusted vm path\n"); /* initialize panel id to UINT64_MAX */ display->panel_id = ~0x0; display->display_type = of_get_property(pdev->dev.of_node, "label", NULL); if (!display->display_type) display->display_type = "primary"; if (!strcmp(display->display_type, "secondary")) index = DSI_SECONDARY; boot_disp = &boot_displays[index]; node = pdev->dev.of_node; if (boot_disp->boot_disp_en) { /* The panel name should be same as UEFI name index */ panel_node = of_find_node_by_name(mdp_node, boot_disp->name); if (!panel_node) DSI_WARN("%s panel_node %s not found\n", display->display_type, boot_disp->name); } else { panel_node = of_parse_phandle(node, "qcom,dsi-default-panel", 0); if (!panel_node) DSI_INFO("%s default panel not found\n", display->display_type); } boot_disp->node = pdev->dev.of_node; boot_disp->disp = display; display->panel_node = panel_node; display->pdev = pdev; display->boot_disp = boot_disp; dsi_display_parse_cmdline_topology(display, index); platform_set_drvdata(pdev, display); if (!dsi_display_validate_res(display)) { rc = -EPROBE_DEFER; DSI_ERR("resources required for display probe not present: rc=%d\n", rc); goto end; } /* initialize display in firmware callback */ if (!(boot_displays[DSI_PRIMARY].boot_disp_en || boot_displays[DSI_SECONDARY].boot_disp_en) && IS_ENABLED(CONFIG_DSI_PARSER)) { if (!strcmp(display->display_type, "primary")) firm_req = !request_firmware_nowait( THIS_MODULE, 1, "dsi_prop", &pdev->dev, GFP_KERNEL, display, dsi_display_firmware_display); else if (!strcmp(display->display_type, "secondary")) firm_req = !request_firmware_nowait( THIS_MODULE, 1, "dsi_prop_sec", &pdev->dev, GFP_KERNEL, display, dsi_display_firmware_display); } if (!firm_req) { rc = dsi_display_init(display); if (rc) goto end; } return 0; end: if (display) devm_kfree(&pdev->dev, display); return rc; } int dsi_display_dev_remove(struct platform_device *pdev) { int rc = 0, i = 0; struct dsi_display *display; struct dsi_display_ctrl *ctrl; if (!pdev) { DSI_ERR("Invalid device\n"); return -EINVAL; } display = platform_get_drvdata(pdev); /* decrement ref count */ of_node_put(display->panel_node); if (display->post_cmd_tx_workq) { flush_workqueue(display->post_cmd_tx_workq); destroy_workqueue(display->post_cmd_tx_workq); display->post_cmd_tx_workq = NULL; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; ctrl->ctrl->post_cmd_tx_workq = NULL; } } (void)_dsi_display_dev_deinit(display); platform_set_drvdata(pdev, NULL); devm_kfree(&pdev->dev, display); return rc; } int dsi_display_get_num_of_displays(void) { int i, count = 0; for (i = 0; i < MAX_DSI_ACTIVE_DISPLAY; i++) { struct dsi_display *display = boot_displays[i].disp; if ((display && display->panel_node) || (display && display->fw)) count++; } return count; } int dsi_display_get_active_displays(void **display_array, u32 max_display_count) { int index = 0, count = 0; if (!display_array || !max_display_count) { DSI_ERR("invalid params\n"); return 0; } for (index = 0; index < MAX_DSI_ACTIVE_DISPLAY; index++) { struct dsi_display *display = boot_displays[index].disp; if ((display && display->panel_node) || (display && display->fw)) display_array[count++] = display; } return count; } void dsi_display_set_active_state(struct dsi_display *display, bool is_active) { if (!display) return; mutex_lock(&display->display_lock); display->is_active = is_active; mutex_unlock(&display->display_lock); } int dsi_display_drm_bridge_init(struct dsi_display *display, struct drm_encoder *enc) { int rc = 0; struct dsi_bridge *bridge; struct msm_drm_private *priv = NULL; if (!display || !display->drm_dev || !enc) { DSI_ERR("invalid param(s)\n"); return -EINVAL; } mutex_lock(&display->display_lock); priv = display->drm_dev->dev_private; if (!priv) { DSI_ERR("Private data is not present\n"); rc = -EINVAL; goto error; } if (display->bridge) { DSI_ERR("display is already initialize\n"); goto error; } bridge = dsi_drm_bridge_init(display, display->drm_dev, enc); if (IS_ERR_OR_NULL(bridge)) { rc = PTR_ERR(bridge); DSI_ERR("[%s] brige init failed, %d\n", display->name, rc); goto error; } display->bridge = bridge; priv->bridges[priv->num_bridges++] = &bridge->base; if (display->tx_cmd_buf == NULL) { rc = dsi_host_alloc_cmd_tx_buffer(display); if (rc) DSI_ERR("failed to allocate cmd tx buffer memory\n"); } error: mutex_unlock(&display->display_lock); return rc; } int dsi_display_drm_bridge_deinit(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } mutex_lock(&display->display_lock); dsi_drm_bridge_cleanup(display->bridge); display->bridge = NULL; mutex_unlock(&display->display_lock); return rc; } /* Hook functions to call external connector, pointer validation is * done in dsi_display_drm_ext_bridge_init. */ static enum drm_connector_status dsi_display_drm_ext_detect( struct drm_connector *connector, bool force, void *disp) { struct dsi_display *display = disp; return display->ext_conn->funcs->detect(display->ext_conn, force); } static int dsi_display_drm_ext_get_modes( struct drm_connector *connector, void *disp, const struct msm_resource_caps_info *avail_res) { struct dsi_display *display = disp; struct drm_display_mode *pmode, *pt; int count; /* if there are modes defined in panel, ignore external modes */ if (display->panel->num_timing_nodes) return dsi_connector_get_modes(connector, disp, avail_res); count = display->ext_conn->helper_private->get_modes( display->ext_conn); list_for_each_entry_safe(pmode, pt, &display->ext_conn->probed_modes, head) { list_move_tail(&pmode->head, &connector->probed_modes); } connector->display_info = display->ext_conn->display_info; return count; } static enum drm_mode_status dsi_display_drm_ext_mode_valid( struct drm_connector *connector, struct drm_display_mode *mode, void *disp, const struct msm_resource_caps_info *avail_res) { struct dsi_display *display = disp; enum drm_mode_status status; /* always do internal mode_valid check */ status = dsi_conn_mode_valid(connector, mode, disp, avail_res); if (status != MODE_OK) return status; return display->ext_conn->helper_private->mode_valid( display->ext_conn, mode); } static int dsi_display_drm_ext_atomic_check(struct drm_connector *connector, void *disp, struct drm_atomic_state *state) { struct dsi_display *display = disp; struct drm_connector_state *c_state; c_state = drm_atomic_get_new_connector_state(state, connector); return display->ext_conn->helper_private->atomic_check( display->ext_conn, state); } static int dsi_display_ext_get_info(struct drm_connector *connector, struct msm_display_info *info, void *disp) { struct dsi_display *display; int i; if (!info || !disp) { DSI_ERR("invalid params\n"); return -EINVAL; } display = disp; if (!display->panel) { DSI_ERR("invalid display panel\n"); return -EINVAL; } mutex_lock(&display->display_lock); memset(info, 0, sizeof(struct msm_display_info)); info->intf_type = DRM_MODE_CONNECTOR_DSI; info->num_of_h_tiles = display->ctrl_count; for (i = 0; i < info->num_of_h_tiles; i++) info->h_tile_instance[i] = display->ctrl[i].ctrl->cell_index; info->is_connected = connector->status != connector_status_disconnected; if (!strcmp(display->display_type, "primary")) info->display_type = SDE_CONNECTOR_PRIMARY; else if (!strcmp(display->display_type, "secondary")) info->display_type = SDE_CONNECTOR_SECONDARY; info->capabilities |= (MSM_DISPLAY_CAP_VID_MODE | MSM_DISPLAY_CAP_EDID | MSM_DISPLAY_CAP_HOT_PLUG); info->curr_panel_mode = MSM_DISPLAY_VIDEO_MODE; mutex_unlock(&display->display_lock); return 0; } static int dsi_display_ext_get_mode_info(struct drm_connector *connector, const struct drm_display_mode *drm_mode, struct msm_sub_mode *sub_mode, struct msm_mode_info *mode_info, void *display, const struct msm_resource_caps_info *avail_res) { struct msm_display_topology *topology; if (!drm_mode || !mode_info || !avail_res || !avail_res->max_mixer_width) return -EINVAL; memset(mode_info, 0, sizeof(*mode_info)); mode_info->frame_rate = drm_mode_vrefresh(drm_mode); mode_info->vtotal = drm_mode->vtotal; topology = &mode_info->topology; topology->num_lm = (avail_res->max_mixer_width <= drm_mode->hdisplay) ? 2 : 1; topology->num_enc = 0; topology->num_intf = topology->num_lm; mode_info->comp_info.comp_type = MSM_DISPLAY_COMPRESSION_NONE; return 0; } static struct dsi_display_ext_bridge *dsi_display_ext_get_bridge( struct drm_bridge *bridge) { struct msm_drm_private *priv; struct sde_kms *sde_kms; struct drm_connector *conn; struct drm_connector_list_iter conn_iter; struct sde_connector *sde_conn; struct dsi_display *display; struct dsi_display_ext_bridge *dsi_bridge = NULL; int i; if (!bridge || !bridge->encoder) { SDE_ERROR("invalid argument\n"); return NULL; } priv = bridge->dev->dev_private; sde_kms = to_sde_kms(priv->kms); drm_connector_list_iter_begin(sde_kms->dev, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { sde_conn = to_sde_connector(conn); if (sde_conn->encoder == bridge->encoder) { display = sde_conn->display; display_for_each_ctrl(i, display) { if (display->ext_bridge[i].bridge == bridge) { dsi_bridge = &display->ext_bridge[i]; break; } } } } drm_connector_list_iter_end(&conn_iter); return dsi_bridge; } static void dsi_display_drm_ext_adjust_timing( const struct dsi_display *display, struct drm_display_mode *mode) { mode->hdisplay /= display->ctrl_count; mode->hsync_start /= display->ctrl_count; mode->hsync_end /= display->ctrl_count; mode->htotal /= display->ctrl_count; mode->hskew /= display->ctrl_count; mode->clock /= display->ctrl_count; } static enum drm_mode_status dsi_display_drm_ext_bridge_mode_valid( struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct dsi_display_ext_bridge *ext_bridge; struct drm_display_mode tmp; ext_bridge = dsi_display_ext_get_bridge(bridge); if (!ext_bridge) return MODE_ERROR; tmp = *mode; dsi_display_drm_ext_adjust_timing(ext_bridge->display, &tmp); return ext_bridge->orig_funcs->mode_valid(bridge, info, &tmp); } static bool dsi_display_drm_ext_bridge_mode_fixup( struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct dsi_display_ext_bridge *ext_bridge; struct drm_display_mode tmp; ext_bridge = dsi_display_ext_get_bridge(bridge); if (!ext_bridge) return false; tmp = *mode; dsi_display_drm_ext_adjust_timing(ext_bridge->display, &tmp); return ext_bridge->orig_funcs->mode_fixup(bridge, &tmp, &tmp); } static void dsi_display_drm_ext_bridge_mode_set( struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct dsi_display_ext_bridge *ext_bridge; struct drm_display_mode tmp; ext_bridge = dsi_display_ext_get_bridge(bridge); if (!ext_bridge) return; tmp = *mode; dsi_display_drm_ext_adjust_timing(ext_bridge->display, &tmp); ext_bridge->orig_funcs->mode_set(bridge, &tmp, &tmp); } static int dsi_host_ext_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { struct dsi_display *display = to_dsi_display(host); struct dsi_panel *panel; if (!host || !dsi || !display->panel) { DSI_ERR("Invalid param\n"); return -EINVAL; } DSI_DEBUG("DSI[%s]: channel=%d, lanes=%d, format=%d, mode_flags=%lx\n", dsi->name, dsi->channel, dsi->lanes, dsi->format, dsi->mode_flags); panel = display->panel; panel->host_config.data_lanes = 0; if (dsi->lanes > 0) panel->host_config.data_lanes |= DSI_DATA_LANE_0; if (dsi->lanes > 1) panel->host_config.data_lanes |= DSI_DATA_LANE_1; if (dsi->lanes > 2) panel->host_config.data_lanes |= DSI_DATA_LANE_2; if (dsi->lanes > 3) panel->host_config.data_lanes |= DSI_DATA_LANE_3; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB888; break; case MIPI_DSI_FMT_RGB666: panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB666_LOOSE; break; case MIPI_DSI_FMT_RGB666_PACKED: panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB666; break; case MIPI_DSI_FMT_RGB565: default: panel->host_config.dst_format = DSI_PIXEL_FORMAT_RGB565; break; } if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { panel->panel_mode = DSI_OP_VIDEO_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) panel->video_config.traffic_mode = DSI_VIDEO_TRAFFIC_BURST_MODE; else if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) panel->video_config.traffic_mode = DSI_VIDEO_TRAFFIC_SYNC_PULSES; else panel->video_config.traffic_mode = DSI_VIDEO_TRAFFIC_SYNC_START_EVENTS; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 15, 0)) panel->video_config.hsa_lp11_en = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA; panel->video_config.hbp_lp11_en = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP; panel->video_config.hfp_lp11_en = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP; #else panel->video_config.hsa_lp11_en = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA; panel->video_config.hbp_lp11_en = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP; panel->video_config.hfp_lp11_en = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP; #endif panel->video_config.pulse_mode_hsa_he = dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE; } else { panel->panel_mode = DSI_OP_CMD_MODE; DSI_ERR("command mode not supported by ext bridge\n"); return -ENOTSUPP; } panel->bl_config.type = DSI_BACKLIGHT_UNKNOWN; return 0; } static struct mipi_dsi_host_ops dsi_host_ext_ops = { .attach = dsi_host_ext_attach, .detach = dsi_host_detach, .transfer = dsi_host_transfer, }; struct drm_panel *dsi_display_get_drm_panel(struct dsi_display *display) { if (!display || !display->panel) { pr_err("invalid param(s)\n"); return NULL; } return &display->panel->drm_panel; } bool dsi_display_has_dsc_switch_support(struct dsi_display *display) { if (!display || !display->panel) { pr_err("invalid param(s)\n"); return false; } return display->panel->dsc_switch_supported; } int dsi_display_drm_ext_bridge_init(struct dsi_display *display, struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *drm; struct drm_bridge *bridge; struct drm_bridge *ext_bridge; struct drm_connector *ext_conn; struct sde_connector *sde_conn; struct drm_bridge *prev_bridge; int rc = 0, i; if (!display || !encoder || !connector) return -EINVAL; drm = encoder->dev; bridge = drm_bridge_chain_get_first_bridge(encoder); sde_conn = to_sde_connector(connector); prev_bridge = bridge; if (display->panel && !display->panel->host_config.ext_bridge_mode) return 0; if (!bridge) return -EINVAL; for (i = 0; i < display->ext_bridge_cnt; i++) { struct dsi_display_ext_bridge *ext_bridge_info = &display->ext_bridge[i]; struct drm_encoder *c_encoder; /* return if ext bridge is already initialized */ if (ext_bridge_info->bridge) return 0; ext_bridge = of_drm_find_bridge(ext_bridge_info->node_of); if (IS_ERR_OR_NULL(ext_bridge)) { rc = PTR_ERR(ext_bridge); DSI_ERR("failed to find ext bridge\n"); goto error; } /* override functions for mode adjustment */ if (display->ext_bridge_cnt > 1) { ext_bridge_info->bridge_funcs = *ext_bridge->funcs; if (ext_bridge->funcs->mode_fixup) ext_bridge_info->bridge_funcs.mode_fixup = dsi_display_drm_ext_bridge_mode_fixup; if (ext_bridge->funcs->mode_valid) ext_bridge_info->bridge_funcs.mode_valid = dsi_display_drm_ext_bridge_mode_valid; if (ext_bridge->funcs->mode_set) ext_bridge_info->bridge_funcs.mode_set = dsi_display_drm_ext_bridge_mode_set; ext_bridge_info->orig_funcs = ext_bridge->funcs; ext_bridge->funcs = &ext_bridge_info->bridge_funcs; } rc = drm_bridge_attach(encoder, ext_bridge, prev_bridge, DRM_BRIDGE_ATTACH_NO_CONNECTOR); if (rc) { DSI_ERR("[%s] ext brige attach failed, %d\n", display->name, rc); goto error; } ext_bridge_info->display = display; ext_bridge_info->bridge = ext_bridge; prev_bridge = ext_bridge; /* ext bridge will init its own connector during attach, * we need to extract it out of the connector list */ spin_lock_irq(&drm->mode_config.connector_list_lock); ext_conn = list_last_entry(&drm->mode_config.connector_list, struct drm_connector, head); if (!ext_conn) { DSI_ERR("failed to get external connector\n"); rc = PTR_ERR(ext_conn); spin_unlock_irq(&drm->mode_config.connector_list_lock); goto error; } drm_connector_for_each_possible_encoder(ext_conn, c_encoder) break; if (!c_encoder) { DSI_ERR("failed to get encoder\n"); rc = PTR_ERR(c_encoder); spin_unlock_irq(&drm->mode_config.connector_list_lock); goto error; } if (ext_conn && ext_conn != connector && c_encoder->base.id == bridge->encoder->base.id) { list_del_init(&ext_conn->head); display->ext_conn = ext_conn; } spin_unlock_irq(&drm->mode_config.connector_list_lock); /* if there is no valid external connector created, or in split * mode, default setting is used from panel defined in DT file. */ if (!display->ext_conn || !display->ext_conn->funcs || !display->ext_conn->helper_private || display->ext_bridge_cnt > 1) { display->ext_conn = NULL; continue; } /* otherwise, hook up the functions to use external connector */ if (display->ext_conn->funcs->detect) sde_conn->ops.detect = dsi_display_drm_ext_detect; if (display->ext_conn->helper_private->get_modes) sde_conn->ops.get_modes = dsi_display_drm_ext_get_modes; if (display->ext_conn->helper_private->mode_valid) sde_conn->ops.mode_valid = dsi_display_drm_ext_mode_valid; if (display->ext_conn->helper_private->atomic_check) sde_conn->ops.atomic_check = dsi_display_drm_ext_atomic_check; sde_conn->ops.get_info = dsi_display_ext_get_info; sde_conn->ops.get_mode_info = dsi_display_ext_get_mode_info; /* add support to attach/detach */ display->host.ops = &dsi_host_ext_ops; } return 0; error: return rc; } int dsi_display_get_info(struct drm_connector *connector, struct msm_display_info *info, void *disp) { struct dsi_display *display; struct dsi_panel_phy_props phy_props; struct dsi_host_common_cfg *host; int i, rc; if (!info || !disp) { DSI_ERR("invalid params\n"); return -EINVAL; } display = disp; if (!display->panel) { DSI_ERR("invalid display panel\n"); return -EINVAL; } mutex_lock(&display->display_lock); rc = dsi_panel_get_phy_props(display->panel, &phy_props); if (rc) { DSI_ERR("[%s] failed to get panel phy props, rc=%d\n", display->name, rc); goto error; } memset(info, 0, sizeof(struct msm_display_info)); info->intf_type = DRM_MODE_CONNECTOR_DSI; info->num_of_h_tiles = display->ctrl_count; for (i = 0; i < info->num_of_h_tiles; i++) info->h_tile_instance[i] = display->ctrl[i].ctrl->cell_index; info->is_connected = display->is_active; if (!strcmp(display->display_type, "primary")) info->display_type = SDE_CONNECTOR_PRIMARY; else if (!strcmp(display->display_type, "secondary")) info->display_type = SDE_CONNECTOR_SECONDARY; info->width_mm = phy_props.panel_width_mm; info->height_mm = phy_props.panel_height_mm; info->max_width = 1920; info->max_height = 1080; info->qsync_min_fps = display->panel->qsync_caps.qsync_min_fps; info->has_qsync_min_fps_list = (display->panel->qsync_caps.qsync_min_fps_list_len > 0); info->avr_step_fps = display->panel->avr_caps.avr_step_fps; info->poms_align_vsync = display->panel->poms_align_vsync; info->is_te_using_watchdog_timer = is_sim_panel(display); switch (display->panel->panel_mode) { case DSI_OP_VIDEO_MODE: info->curr_panel_mode = MSM_DISPLAY_VIDEO_MODE; info->capabilities |= MSM_DISPLAY_CAP_VID_MODE; if (display->panel->panel_mode_switch_enabled) info->capabilities |= MSM_DISPLAY_CAP_CMD_MODE; break; case DSI_OP_CMD_MODE: info->curr_panel_mode = MSM_DISPLAY_CMD_MODE; info->capabilities |= MSM_DISPLAY_CAP_CMD_MODE; if (display->panel->panel_mode_switch_enabled) info->capabilities |= MSM_DISPLAY_CAP_VID_MODE; break; default: DSI_ERR("unknwown dsi panel mode %d\n", display->panel->panel_mode); break; } if (display->panel->esd_config.esd_enabled && !is_sim_panel(display)) info->capabilities |= MSM_DISPLAY_ESD_ENABLED; info->te_source = display->te_source; host = &display->panel->host_config; if (host->split_link.enabled) info->capabilities |= MSM_DISPLAY_SPLIT_LINK; info->dsc_count = display->panel->dsc_count; info->lm_count = display->panel->lm_count; error: mutex_unlock(&display->display_lock); return rc; } int dsi_display_get_mode_count(struct dsi_display *display, u32 *count) { if (!display || !display->panel) { DSI_ERR("invalid display:%d panel:%d\n", display != NULL, display ? display->panel != NULL : 0); return -EINVAL; } mutex_lock(&display->display_lock); *count = display->panel->num_display_modes; mutex_unlock(&display->display_lock); return 0; } void dsi_display_adjust_mode_timing(struct dsi_display *display, struct dsi_display_mode *dsi_mode, int lanes, int bpp) { u64 new_htotal, new_vtotal, htotal, vtotal, old_htotal, div; struct dsi_dyn_clk_caps *dyn_clk_caps; u32 bits_per_symbol = 16, num_of_symbols = 7; /* For Cphy */ dyn_clk_caps = &(display->panel->dyn_clk_caps); /* Constant FPS is not supported on command mode */ if (!(dsi_mode->panel_mode_caps & DSI_OP_VIDEO_MODE)) return; if (!dyn_clk_caps->maintain_const_fps) return; /* * When there is a dynamic clock switch, there is small change * in FPS. To compensate for this difference in FPS, hfp or vfp * is adjusted. It has been assumed that the refined porch values * are supported by the panel. This logic can be enhanced further * in future by taking min/max porches supported by the panel. */ switch (dyn_clk_caps->type) { case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_HFP: vtotal = DSI_V_TOTAL(&dsi_mode->timing); old_htotal = dsi_h_total_dce(&dsi_mode->timing); do_div(old_htotal, display->ctrl_count); new_htotal = dsi_mode->timing.clk_rate_hz * lanes; div = bpp * vtotal * dsi_mode->timing.refresh_rate; if (dsi_is_type_cphy(&display->panel->host_config)) { new_htotal = new_htotal * bits_per_symbol; div = div * num_of_symbols; } do_div(new_htotal, div); if (old_htotal > new_htotal) dsi_mode->timing.h_front_porch -= ((old_htotal - new_htotal) * display->ctrl_count); else dsi_mode->timing.h_front_porch += ((new_htotal - old_htotal) * display->ctrl_count); break; case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_VFP: htotal = dsi_h_total_dce(&dsi_mode->timing); do_div(htotal, display->ctrl_count); new_vtotal = dsi_mode->timing.clk_rate_hz * lanes; div = bpp * htotal * dsi_mode->timing.refresh_rate; if (dsi_is_type_cphy(&display->panel->host_config)) { new_vtotal = new_vtotal * bits_per_symbol; div = div * num_of_symbols; } do_div(new_vtotal, div); dsi_mode->timing.v_front_porch = new_vtotal - dsi_mode->timing.v_back_porch - dsi_mode->timing.v_sync_width - dsi_mode->timing.v_active; break; default: break; } dsi_mode->pixel_clk_khz = div_u64(dsi_mode->timing.clk_rate_hz * lanes, bpp); do_div(dsi_mode->pixel_clk_khz, 1000); dsi_mode->pixel_clk_khz *= display->ctrl_count; } static void _dsi_display_populate_bit_clks(struct dsi_display *display, int start, int end) { struct dsi_dyn_clk_caps *dyn_clk_caps; struct dsi_display_mode *src, dst; struct dsi_host_common_cfg *cfg; int i, j, bpp, lanes = 0; if (!display) return; dyn_clk_caps = &(display->panel->dyn_clk_caps); if (!dyn_clk_caps->dyn_clk_support) return; cfg = &(display->panel->host_config); bpp = dsi_pixel_format_to_bpp(cfg->dst_format); if (cfg->data_lanes & DSI_DATA_LANE_0) lanes++; if (cfg->data_lanes & DSI_DATA_LANE_1) lanes++; if (cfg->data_lanes & DSI_DATA_LANE_2) lanes++; if (cfg->data_lanes & DSI_DATA_LANE_3) lanes++; for (i = start; i < end; i++) { src = &display->modes[i]; if (!src) return; if (!src->priv_info->bit_clk_list.count) continue; src->timing.clk_rate_hz = src->priv_info->bit_clk_list.rates[0]; dsi_display_adjust_mode_timing(display, src, lanes, bpp); /* populate mode adjusted values */ for (j = 0; j < src->priv_info->bit_clk_list.count; j++) { memcpy(&dst, src, sizeof(struct dsi_display_mode)); memcpy(&dst.timing, &src->timing, sizeof(struct dsi_mode_info)); dst.timing.clk_rate_hz = src->priv_info->bit_clk_list.rates[j]; dsi_display_adjust_mode_timing(display, &dst, lanes, bpp); /* store the list of RFI matching porches */ switch (dyn_clk_caps->type) { case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_HFP: src->priv_info->bit_clk_list.front_porches[j] = dst.timing.h_front_porch; break; case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_VFP: src->priv_info->bit_clk_list.front_porches[j] = dst.timing.v_front_porch; break; default: break; } /* store the list of RFI matching pixel clocks */ src->priv_info->bit_clk_list.pixel_clks_khz[j] = dst.pixel_clk_khz; } } } static int dsi_display_mode_dyn_clk_cpy(struct dsi_display *display, struct dsi_display_mode *src, struct dsi_display_mode *dst) { int rc = 0; u32 count = 0; struct dsi_dyn_clk_caps *dyn_clk_caps; struct msm_dyn_clk_list *bit_clk_list; dyn_clk_caps = &(display->panel->dyn_clk_caps); if (!dyn_clk_caps->dyn_clk_support) return rc; count = dst->priv_info->bit_clk_list.count; bit_clk_list = &dst->priv_info->bit_clk_list; bit_clk_list->front_porches = kcalloc(count, sizeof(u32), GFP_KERNEL); if (!bit_clk_list->front_porches) { DSI_ERR("failed to allocate space for front porch list\n"); rc = -ENOMEM; goto error; } bit_clk_list->rates = kcalloc(count, sizeof(u32), GFP_KERNEL); if (!bit_clk_list->rates) { DSI_ERR("failed to allocate space for rates list\n"); rc = -ENOMEM; goto error; } memcpy(bit_clk_list->rates, src->priv_info->bit_clk_list.rates, count*sizeof(u32)); bit_clk_list->pixel_clks_khz = kcalloc(count, sizeof(u32), GFP_KERNEL); if (!bit_clk_list->pixel_clks_khz) { DSI_ERR("failed to allocate space for pixel clocks list\n"); rc = -ENOMEM; goto error; } return rc; error: kfree(bit_clk_list->rates); kfree(bit_clk_list->front_porches); kfree(bit_clk_list->pixel_clks_khz); return rc; } int dsi_display_restore_bit_clk(struct dsi_display *display, struct dsi_display_mode *mode) { int i; u32 clk_rate_hz = 0; u32 front_porch = 0; if (!display || !mode || !mode->priv_info) { DSI_ERR("invalid arguments\n"); return -EINVAL; } /* avoid updating bit_clk for dyn clk feature disbaled usecase */ if (!display->panel->dyn_clk_caps.dyn_clk_support) return 0; clk_rate_hz = display->cached_clk_rate; if (mode->priv_info->bit_clk_list.count) { /* use first entry as the default bit clk rate and front porch*/ clk_rate_hz = mode->priv_info->bit_clk_list.rates[0]; front_porch = mode->priv_info->bit_clk_list.front_porches[0]; for (i = 0; i < mode->priv_info->bit_clk_list.count; i++) { if (display->dyn_bit_clk == mode->priv_info->bit_clk_list.rates[i]) { clk_rate_hz = display->dyn_bit_clk; front_porch = mode->priv_info->bit_clk_list.front_porches[i]; } } /* avoid restore front porch if this commit is updating dyn bit clock */ if (!display->dyn_bit_clk_pending && display->dyn_bit_clk) { switch (display->panel->dyn_clk_caps.type) { case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_HFP: mode->timing.h_front_porch = front_porch; break; case DSI_DYN_CLK_TYPE_CONST_FPS_ADJUST_VFP: mode->timing.v_front_porch = front_porch; break; default: break; } } } mode->timing.clk_rate_hz = clk_rate_hz; mode->priv_info->clk_rate_hz = clk_rate_hz; SDE_EVT32(clk_rate_hz, display->cached_clk_rate, display->dyn_bit_clk); DSI_DEBUG("clk_rate_hz:%u, cached_clk_rate:%u, dyn_bit_clk:%u\n", clk_rate_hz, display->cached_clk_rate, display->dyn_bit_clk); return 0; } void dsi_display_put_mode(struct dsi_display *display, struct dsi_display_mode *mode) { dsi_panel_put_mode(mode); } int dsi_display_get_modes_helper(struct dsi_display *display, struct dsi_display_ctrl *ctrl, u32 timing_mode_count, struct dsi_dfps_capabilities dfps_caps, struct dsi_qsync_capabilities *qsync_caps, struct dsi_dyn_clk_caps *dyn_clk_caps, struct dsi_avr_capabilities *avr_caps) { int dsc_modes = 0, nondsc_modes = 0, rc = 0, i, start, end; u32 num_dfps_rates, mode_idx, sublinks_count, array_idx = 0; bool is_split_link, support_cmd_mode, support_video_mode; struct dsi_host_common_cfg *host = &display->panel->host_config; for (mode_idx = 0; mode_idx < timing_mode_count; mode_idx++) { struct dsi_display_mode display_mode; int topology_override = NO_OVERRIDE; bool is_preferred = false; u32 frame_threshold_us = ctrl->ctrl->frame_threshold_time_us; struct msm_dyn_clk_list *bit_clk_list; memset(&display_mode, 0, sizeof(display_mode)); display_mode.priv_info = kzalloc(sizeof(*display_mode.priv_info), GFP_KERNEL); if (!display_mode.priv_info) { rc = -ENOMEM; return rc; } /* Setup widebus support */ display_mode.priv_info->widebus_support = ctrl->ctrl->hw.widebus_support; if (display->cmdline_timing == display_mode.mode_idx) { topology_override = display->cmdline_topology; is_preferred = true; } rc = dsi_panel_get_mode(display->panel, mode_idx, &display_mode, topology_override); if (rc) { DSI_ERR("[%s] failed to get mode idx %d from panel\n", display->name, mode_idx); kfree(display_mode.priv_info); display_mode.priv_info = NULL; rc = -EINVAL; return rc; } support_cmd_mode = display_mode.panel_mode_caps & DSI_OP_CMD_MODE; support_video_mode = display_mode.panel_mode_caps & DSI_OP_VIDEO_MODE; if (display_mode.priv_info->dsc_enabled) dsc_modes++; else nondsc_modes++; /* * Update the host_config.dst_format for compressed RGB101010 pixel format * when there is no widebus support. */ if (host->dst_format == DSI_PIXEL_FORMAT_RGB101010 && display_mode.timing.dsc_enabled && !display_mode.priv_info->widebus_support) { host->dst_format = DSI_PIXEL_FORMAT_RGB888; DSI_DEBUG("updated dst_format from %d to %d\n", DSI_PIXEL_FORMAT_RGB101010, host->dst_format); } num_dfps_rates = ((!dfps_caps.dfps_support || !support_video_mode) ? 1 : dfps_caps.dfps_list_len); /* Calculate dsi frame transfer time */ if (support_cmd_mode) { dsi_panel_calc_dsi_transfer_time( &display->panel->host_config, &display_mode, frame_threshold_us); display_mode.priv_info->dsi_transfer_time_us = display_mode.timing.dsi_transfer_time_us; display_mode.priv_info->min_dsi_clk_hz = display_mode.timing.min_dsi_clk_hz; display_mode.priv_info->mdp_transfer_time_us = display_mode.timing.mdp_transfer_time_us; } is_split_link = host->split_link.enabled; sublinks_count = host->split_link.num_sublinks; if (is_split_link && sublinks_count > 1) { display_mode.timing.h_active *= sublinks_count; display_mode.timing.h_front_porch *= sublinks_count; display_mode.timing.h_sync_width *= sublinks_count; display_mode.timing.h_back_porch *= sublinks_count; display_mode.timing.h_skew *= sublinks_count; display_mode.pixel_clk_khz *= sublinks_count; } else { display_mode.timing.h_active *= display->ctrl_count; display_mode.timing.h_front_porch *= display->ctrl_count; display_mode.timing.h_sync_width *= display->ctrl_count; display_mode.timing.h_back_porch *= display->ctrl_count; display_mode.timing.h_skew *= display->ctrl_count; display_mode.pixel_clk_khz *= display->ctrl_count; } start = array_idx; for (i = 0; i < num_dfps_rates; i++) { struct dsi_display_mode *sub_mode = &display->modes[array_idx]; u32 curr_refresh_rate; if (!sub_mode) { DSI_ERR("invalid mode data\n"); rc = -EFAULT; return rc; } memcpy(sub_mode, &display_mode, sizeof(display_mode)); array_idx++; /* * Populate mode qsync min fps from panel min qsync fps dt property * in video mode & in command mode where per mode qsync min fps is * not defined. */ if (!sub_mode->timing.qsync_min_fps && qsync_caps->qsync_min_fps) sub_mode->timing.qsync_min_fps = qsync_caps->qsync_min_fps; /* populate avr step fps, same way as qsync min fps */ if (!sub_mode->timing.avr_step_fps && avr_caps->avr_step_fps) sub_mode->timing.avr_step_fps = avr_caps->avr_step_fps; /* * Qsync min fps for the mode will be populated in the timing info * in dsi_panel_get_mode function. */ display_mode.priv_info->qsync_min_fps = sub_mode->timing.qsync_min_fps; if (!dfps_caps.dfps_support || !support_video_mode) continue; sub_mode->priv_info = kmemdup(display_mode.priv_info, sizeof(*sub_mode->priv_info), GFP_KERNEL); if (!sub_mode->priv_info) { rc = -ENOMEM; return rc; } rc = dsi_display_mode_dyn_clk_cpy(display, &display_mode, sub_mode); if (rc) { DSI_ERR("unable to copy dyn clock list\n"); return rc; } sub_mode->mode_idx += (array_idx - 1); curr_refresh_rate = sub_mode->timing.refresh_rate; sub_mode->timing.refresh_rate = dfps_caps.dfps_list[i]; /* Override with qsync min fps list in dfps usecases */ if (qsync_caps->qsync_min_fps && qsync_caps->qsync_min_fps_list_len) { sub_mode->timing.qsync_min_fps = qsync_caps->qsync_min_fps_list[i]; sub_mode->priv_info->qsync_min_fps = sub_mode->timing.qsync_min_fps; } /* Override with avr step fps list in dfps usecases */ if (avr_caps->avr_step_fps_list_len) { sub_mode->timing.avr_step_fps = avr_caps->avr_step_fps_list[i]; sub_mode->priv_info->avr_step_fps = sub_mode->timing.avr_step_fps; } dsi_display_get_dfps_timing(display, sub_mode, curr_refresh_rate); /* Avoid override for first sub mode in POMS enabled video mode usecase */ if ((i != start) && support_cmd_mode && support_video_mode) sub_mode->panel_mode_caps = DSI_OP_VIDEO_MODE; } end = array_idx; _dsi_display_populate_bit_clks(display, start, end); if (is_preferred) { /* Set first timing sub mode as preferred mode */ display->modes[start].is_preferred = true; } bit_clk_list = &display_mode.priv_info->bit_clk_list; if (support_video_mode && dfps_caps.dfps_support) { if (dyn_clk_caps->dyn_clk_support) { kfree(bit_clk_list->rates); kfree(bit_clk_list->front_porches); kfree(bit_clk_list->pixel_clks_khz); } kfree(display_mode.priv_info); } } if (dsc_modes && nondsc_modes) display->panel->dsc_switch_supported = true; return rc; } int dsi_display_get_modes(struct dsi_display *display, struct dsi_display_mode **out_modes) { struct dsi_dfps_capabilities dfps_caps; struct dsi_display_ctrl *ctrl; u32 timing_mode_count, display_mode_count; struct dsi_dyn_clk_caps *dyn_clk_caps; int rc = -EINVAL; struct dsi_qsync_capabilities *qsync_caps; struct dsi_avr_capabilities *avr_caps; if (!display || !out_modes) { DSI_ERR("Invalid params\n"); return -EINVAL; } *out_modes = NULL; ctrl = &display->ctrl[0]; mutex_lock(&display->display_lock); if (display->modes) goto exit; display_mode_count = display->panel->num_display_modes; display->modes = kcalloc(display_mode_count, sizeof(*display->modes), GFP_KERNEL); if (!display->modes) { rc = -ENOMEM; goto error; } rc = dsi_panel_get_dfps_caps(display->panel, &dfps_caps); if (rc) { DSI_ERR("[%s] failed to get dfps caps from panel\n", display->name); goto error; } qsync_caps = &(display->panel->qsync_caps); dyn_clk_caps = &(display->panel->dyn_clk_caps); avr_caps = &(display->panel->avr_caps); timing_mode_count = display->panel->num_timing_nodes; /* Validate command line timing */ if ((display->cmdline_timing != NO_OVERRIDE) && (display->cmdline_timing >= timing_mode_count)) display->cmdline_timing = NO_OVERRIDE; rc = dsi_display_get_modes_helper(display, ctrl, timing_mode_count, dfps_caps, qsync_caps, dyn_clk_caps, avr_caps); if (rc) goto error; exit: *out_modes = display->modes; rc = 0; error: if (rc) kfree(display->modes); mutex_unlock(&display->display_lock); return rc; } int dsi_display_get_panel_vfp(void *dsi_display, int h_active, int v_active) { int i, rc = 0; u32 count, refresh_rate = 0; struct dsi_dfps_capabilities dfps_caps; struct dsi_display *display = (struct dsi_display *)dsi_display; struct dsi_host_common_cfg *host; if (!display || !display->panel) return -EINVAL; mutex_lock(&display->display_lock); count = display->panel->num_display_modes; if (display->panel->cur_mode) refresh_rate = display->panel->cur_mode->timing.refresh_rate; dsi_panel_get_dfps_caps(display->panel, &dfps_caps); if (dfps_caps.dfps_support) refresh_rate = dfps_caps.max_refresh_rate; if (!refresh_rate) { mutex_unlock(&display->display_lock); DSI_ERR("Null Refresh Rate\n"); return -EINVAL; } host = &display->panel->host_config; if (host->split_link.enabled) h_active *= host->split_link.num_sublinks; else h_active *= display->ctrl_count; for (i = 0; i < count; i++) { struct dsi_display_mode *m = &display->modes[i]; if (m && v_active == m->timing.v_active && h_active == m->timing.h_active && refresh_rate == m->timing.refresh_rate) { rc = m->timing.v_front_porch; break; } } mutex_unlock(&display->display_lock); return rc; } int dsi_display_get_default_lms(void *dsi_display, u32 *num_lm) { struct dsi_display *display = (struct dsi_display *)dsi_display; u32 count, i; int rc = 0; *num_lm = 0; mutex_lock(&display->display_lock); count = display->panel->num_display_modes; mutex_unlock(&display->display_lock); if (!display->modes) { struct dsi_display_mode *m; rc = dsi_display_get_modes(display, &m); if (rc) return rc; } mutex_lock(&display->display_lock); for (i = 0; i < count; i++) { struct dsi_display_mode *m = &display->modes[i]; *num_lm = max(m->priv_info->topology.num_lm, *num_lm); } mutex_unlock(&display->display_lock); return rc; } int dsi_display_update_transfer_time(void *display, u32 transfer_time) { struct dsi_display *disp = (struct dsi_display *)display; int rc = 0, i = 0; u32 transfer_time_min, transfer_time_max; struct dsi_display_ctrl *ctrl; if (!disp->panel || !disp->panel->cur_mode || !disp->panel->cur_mode->priv_info) return -EINVAL; transfer_time_min = disp->panel->cur_mode->priv_info->mdp_transfer_time_us_min; transfer_time_max = disp->panel->cur_mode->priv_info->mdp_transfer_time_us_max; if (!transfer_time_min || !transfer_time_max) return 0; if (transfer_time < transfer_time_min || transfer_time > transfer_time_max) { DSI_ERR("invalid transfer time %u, min: %u, max: %u\n", transfer_time, transfer_time_min, transfer_time_max); return -EINVAL; } disp->panel->cur_mode->priv_info->mdp_transfer_time_us = transfer_time; disp->panel->cur_mode->priv_info->dsi_transfer_time_us = transfer_time; display_for_each_ctrl(i, disp) { ctrl = &disp->ctrl[i]; rc = dsi_ctrl_update_host_config(ctrl->ctrl, &disp->config, disp->panel->cur_mode, 0x0, disp->dsi_clk_handle); if (rc) { DSI_ERR("[%s] failed to update ctrl config, rc=%d\n", disp->name, rc); return rc; } } rc = dsi_display_set_link_frequencies(disp); if (rc) { DSI_ERR("Failed to set display link frequencies\n"); return rc; } atomic_set(&disp->clkrate_change_pending, 1); return 0; } int dsi_display_get_panel_scan_line(void *display, u16 *scan_line, ktime_t *scan_line_ts) { struct dsi_display *dsi_display = (struct dsi_display *)display; u8 scan_line_tx_buffer[] = {0x6, 0x1, 0x0, 0xa, 0x0, 0x0, 0x1, 0x45}; u8 rx_buffer[2]; int rx_len, rc = 0; ktime_t ts = 0; if (!dsi_display || !scan_line || !scan_line_ts) return -EINVAL; SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); rx_len = dsi_display_cmd_receive(dsi_display, scan_line_tx_buffer, ARRAY_SIZE(scan_line_tx_buffer), rx_buffer, ARRAY_SIZE(rx_buffer), &ts); if (rx_len <= 0) { rc = -EINVAL; goto end; } *scan_line = (rx_buffer[0] << 8) | rx_buffer[1]; *scan_line_ts = ts; end: SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, rx_len, rx_buffer[0], rx_buffer[1], ktime_us_delta(ktime_get(), ts)); return rc; } static bool dsi_display_match_timings(const struct dsi_display_mode *mode1, struct dsi_display_mode *mode2, unsigned int match_flags) { bool is_matching = false; if (match_flags & DSI_MODE_MATCH_ACTIVE_TIMINGS) { is_matching = mode1->timing.h_active == mode2->timing.h_active && mode1->timing.v_active == mode2->timing.v_active && mode1->timing.refresh_rate == mode2->timing.refresh_rate; if (!is_matching) goto end; } if (match_flags & DSI_MODE_MATCH_PORCH_TIMINGS) is_matching = mode1->timing.h_back_porch == mode2->timing.h_back_porch && mode1->timing.h_front_porch == mode2->timing.h_front_porch && mode1->timing.h_sync_width == mode2->timing.h_sync_width && mode1->timing.h_skew == mode2->timing.h_skew && mode1->timing.v_back_porch == mode2->timing.v_back_porch && mode1->timing.v_front_porch == mode2->timing.v_front_porch && mode1->timing.v_sync_width == mode2->timing.v_sync_width; end: return is_matching; } bool dsi_display_mode_match(const struct dsi_display_mode *mode1, struct dsi_display_mode *mode2, unsigned int match_flags) { if (!mode1 && !mode2) return true; if (!mode1 || !mode2) return false; if ((match_flags & DSI_MODE_MATCH_FULL_TIMINGS) && !dsi_display_match_timings(mode1, mode2, match_flags)) return false; if ((match_flags & DSI_MODE_MATCH_DSC_CONFIG) && mode1->priv_info->dsc_enabled != mode2->priv_info->dsc_enabled) return false; if ((match_flags & DSI_MODE_MATCH_NONDSC_BPP_CONFIG) && mode1->pixel_format_caps != mode2->pixel_format_caps) return false; return true; } int dsi_display_find_mode(struct dsi_display *display, struct dsi_display_mode *cmp, struct msm_sub_mode *sub_mode, struct dsi_display_mode **out_mode) { u32 count, i; int rc; struct dsi_display_mode *m; struct dsi_dyn_clk_caps *dyn_clk_caps; unsigned int match_flags = DSI_MODE_MATCH_FULL_TIMINGS; struct dsi_display_mode_priv_info *priv_info; if (!display || !out_mode) return -EINVAL; *out_mode = NULL; mutex_lock(&display->display_lock); count = display->panel->num_display_modes; mutex_unlock(&display->display_lock); if (!display->modes) { rc = dsi_display_get_modes(display, &m); if (rc) return rc; } priv_info = kvzalloc(sizeof(struct dsi_display_mode_priv_info), GFP_KERNEL); if (ZERO_OR_NULL_PTR(priv_info)) return -ENOMEM; mutex_lock(&display->display_lock); dyn_clk_caps = &(display->panel->dyn_clk_caps); for (i = 0; i < count; i++) { m = &display->modes[i]; /** * When dynamic bit clock is enabled with contants FPS, * the adjusted mode porches value may not match the panel * default mode porches and panel mode lookup will fail. * In that case we omit porches in mode matching function. */ if (dyn_clk_caps->maintain_const_fps) match_flags = DSI_MODE_MATCH_ACTIVE_TIMINGS; if (sub_mode && sub_mode->dsc_mode) { match_flags |= DSI_MODE_MATCH_DSC_CONFIG; cmp->priv_info = priv_info; cmp->priv_info->dsc_enabled = (sub_mode->dsc_mode == MSM_DISPLAY_DSC_MODE_ENABLED) ? true : false; } if (sub_mode) { switch (sub_mode->pixel_format_mode) { case MSM_DISPLAY_PIXEL_FORMAT_RGB888: cmp->pixel_format_caps = DSI_PIXEL_FORMAT_RGB888; match_flags |= DSI_MODE_MATCH_NONDSC_BPP_CONFIG; break; case MSM_DISPLAY_PIXEL_FORMAT_RGB101010: cmp->pixel_format_caps = DSI_PIXEL_FORMAT_RGB101010; match_flags |= DSI_MODE_MATCH_NONDSC_BPP_CONFIG; break; default: break; } } if (dsi_display_mode_match(cmp, m, match_flags)) { *out_mode = m; rc = 0; break; } } cmp->priv_info = NULL; mutex_unlock(&display->display_lock); kvfree(priv_info); if (!*out_mode) { DSI_ERR("[%s] failed to find mode for v_active %u h_active %u fps %u pclk %u\n", display->name, cmp->timing.v_active, cmp->timing.h_active, cmp->timing.refresh_rate, cmp->pixel_clk_khz); rc = -ENOENT; } return rc; } static inline bool dsi_display_mode_switch_dfps(struct dsi_display_mode *cur, struct dsi_display_mode *adj) { /* * If there is a change in the hfp or vfp of the current and adjoining * mode,then either it is a dfps mode switch or dynamic clk change with * constant fps. */ if ((cur->timing.h_front_porch != adj->timing.h_front_porch) || (cur->timing.v_front_porch != adj->timing.v_front_porch)) return true; else return false; } /** * dsi_display_validate_mode_change() - Validate mode change case. * @display: DSI display handle. * @cur_mode: Current mode. * @adj_mode: Mode to be set. * MSM_MODE_FLAG_SEAMLESS_VRR flag is set if there * is change in hfp or vfp but vactive and hactive are same. * DSI_MODE_FLAG_DYN_CLK flag is set if there * is change in clk but vactive and hactive are same. * Return: error code. */ int dsi_display_validate_mode_change(struct dsi_display *display, struct dsi_display_mode *cur_mode, struct dsi_display_mode *adj_mode) { int rc = 0; struct dsi_dfps_capabilities dfps_caps; struct dsi_dyn_clk_caps *dyn_clk_caps; struct sde_connector *sde_conn; if (!display || !adj_mode || !display->drm_conn) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (!display->panel || !display->panel->cur_mode) { DSI_DEBUG("Current panel mode not set\n"); return rc; } if ((cur_mode->timing.v_active != adj_mode->timing.v_active) || (cur_mode->timing.h_active != adj_mode->timing.h_active)) { DSI_DEBUG("Avoid VRR and POMS when resolution is changed\n"); return rc; } sde_conn = to_sde_connector(display->drm_conn); mutex_lock(&display->display_lock); if (sde_conn->expected_panel_mode == MSM_DISPLAY_VIDEO_MODE && display->config.panel_mode == DSI_OP_CMD_MODE) { adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_POMS_TO_VID; SDE_EVT32(SDE_EVTLOG_FUNC_CASE1, sde_conn->expected_panel_mode, display->config.panel_mode); DSI_DEBUG("Panel operating mode change to video detected\n"); } else if (sde_conn->expected_panel_mode == MSM_DISPLAY_CMD_MODE && display->config.panel_mode == DSI_OP_VIDEO_MODE) { adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_POMS_TO_CMD; SDE_EVT32(SDE_EVTLOG_FUNC_CASE2, sde_conn->expected_panel_mode, display->config.panel_mode); DSI_DEBUG("Panel operating mode change to command detected\n"); } else if (cur_mode->timing.dsc_enabled != adj_mode->timing.dsc_enabled) { adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_DMS; SDE_EVT32(SDE_EVTLOG_FUNC_CASE3, cur_mode->timing.dsc_enabled, adj_mode->timing.dsc_enabled); DSI_DEBUG("DSC mode change detected\n"); } else if (cur_mode->pixel_format_caps != adj_mode->pixel_format_caps) { adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_NONDSC_BPP_SWITCH; display->panel->host_config.dst_format = adj_mode->pixel_format_caps; SDE_EVT32(SDE_EVTLOG_FUNC_CASE4, cur_mode->pixel_format_caps, adj_mode->pixel_format_caps); DSI_DEBUG("BPP mode change detected\n"); } else { dyn_clk_caps = &(display->panel->dyn_clk_caps); /* dfps and dynamic clock with const fps use case */ if (dsi_display_mode_switch_dfps(cur_mode, adj_mode)) { dsi_panel_get_dfps_caps(display->panel, &dfps_caps); if (dfps_caps.dfps_support || dyn_clk_caps->maintain_const_fps) { DSI_DEBUG("Mode switch is seamless variable refresh\n"); adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_VRR; SDE_EVT32(SDE_EVTLOG_FUNC_CASE5, cur_mode->timing.refresh_rate, adj_mode->timing.refresh_rate, cur_mode->timing.h_front_porch, adj_mode->timing.h_front_porch, cur_mode->timing.v_front_porch, adj_mode->timing.v_front_porch); } } /* dynamic clk change use case */ if (display->dyn_bit_clk_pending) { if (dyn_clk_caps->dyn_clk_support) { DSI_DEBUG("dynamic clk change detected\n"); if ((adj_mode->dsi_mode_flags & DSI_MODE_FLAG_VRR) && (!dyn_clk_caps->maintain_const_fps)) { DSI_ERR("dfps and dyn clk not supported in same commit\n"); rc = -ENOTSUPP; goto error; } /** * Set VRR flag whenever there is a dynamic clock * change on video mode panel as dynamic refresh is * always required when fps compensation is enabled. */ if ((display->config.panel_mode == DSI_OP_VIDEO_MODE) && dyn_clk_caps->maintain_const_fps) adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_VRR; adj_mode->dsi_mode_flags |= DSI_MODE_FLAG_DYN_CLK; SDE_EVT32(SDE_EVTLOG_FUNC_CASE6, cur_mode->pixel_clk_khz, adj_mode->pixel_clk_khz); } display->dyn_bit_clk_pending = false; } } error: mutex_unlock(&display->display_lock); return rc; } int dsi_display_validate_mode(struct dsi_display *display, struct dsi_display_mode *mode, u32 flags) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; struct dsi_display_mode adj_mode; if (!display || !mode) { DSI_ERR("Invalid params\n"); return -EINVAL; } mutex_lock(&display->display_lock); adj_mode = *mode; adjust_timing_by_ctrl_count(display, &adj_mode); rc = dsi_panel_validate_mode(display->panel, &adj_mode); if (rc) { DSI_ERR("[%s] panel mode validation failed, rc=%d\n", display->name, rc); goto error; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_validate_timing(ctrl->ctrl, &adj_mode.timing); if (rc) { DSI_ERR("[%s] ctrl mode validation failed, rc=%d\n", display->name, rc); goto error; } rc = dsi_phy_validate_mode(ctrl->phy, &adj_mode.timing); if (rc) { DSI_ERR("[%s] phy mode validation failed, rc=%d\n", display->name, rc); goto error; } } if ((flags & DSI_VALIDATE_FLAG_ALLOW_ADJUST) && (mode->dsi_mode_flags & DSI_MODE_FLAG_SEAMLESS)) { rc = dsi_display_validate_mode_seamless(display, mode); if (rc) { DSI_ERR("[%s] seamless not possible rc=%d\n", display->name, rc); goto error; } } error: mutex_unlock(&display->display_lock); return rc; } int dsi_display_set_mode(struct dsi_display *display, struct dsi_display_mode *mode, u32 flags) { int rc = 0; struct dsi_display_mode adj_mode; struct dsi_mode_info timing; if (!display || !mode || !display->panel) { DSI_ERR("Invalid params\n"); return -EINVAL; } mutex_lock(&display->display_lock); adj_mode = *mode; timing = adj_mode.timing; adjust_timing_by_ctrl_count(display, &adj_mode); if (!display->panel->cur_mode) { display->panel->cur_mode = kzalloc(sizeof(struct dsi_display_mode), GFP_KERNEL); if (!display->panel->cur_mode) { rc = -ENOMEM; goto error; } } rc = dsi_display_validate_mode_set(display, &adj_mode, flags); if (rc) { DSI_ERR("[%s] mode cannot be set\n", display->name); goto error; } rc = dsi_display_set_mode_sub(display, &adj_mode, flags); if (rc) { DSI_ERR("[%s] failed to set mode\n", display->name); goto error; } DSI_INFO("mdp_transfer_time=%d, hactive=%d, vactive=%d, fps=%d, clk_rate=%llu\n", adj_mode.priv_info->mdp_transfer_time_us, timing.h_active, timing.v_active, timing.refresh_rate, adj_mode.priv_info->clk_rate_hz); SDE_EVT32(adj_mode.priv_info->mdp_transfer_time_us, timing.h_active, timing.v_active, timing.refresh_rate, adj_mode.priv_info->clk_rate_hz); memcpy(display->panel->cur_mode, &adj_mode, sizeof(adj_mode)); error: mutex_unlock(&display->display_lock); return rc; } int dsi_display_set_tpg_state(struct dsi_display *display, bool enable, enum dsi_test_pattern type, u32 init_val, enum dsi_ctrl_tpg_pattern pattern) { int rc = 0; int i; struct dsi_display_ctrl *ctrl; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_set_tpg_state(ctrl->ctrl, enable, type, init_val, pattern); if (rc) { DSI_ERR("[%s] failed to set tpg state for host_%d\n", display->name, i); goto error; } if (enable && ctrl->ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) { rc = dsi_ctrl_trigger_test_pattern(ctrl->ctrl); if (rc) { DSI_ERR("[%s] failed to start tpg for host_%d\n", display->name, i); goto error; } } } display->is_tpg_enabled = enable; error: return rc; } static int dsi_display_pre_switch(struct dsi_display *display) { int rc = 0; rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n", display->name, rc); goto error; } rc = dsi_display_ctrl_update(display); if (rc) { DSI_ERR("[%s] failed to update DSI controller, rc=%d\n", display->name, rc); goto error_ctrl_clk_off; } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_LINK_CLK, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI link clocks, rc=%d\n", display->name, rc); goto error_ctrl_deinit; } goto error; error_ctrl_deinit: (void)dsi_display_ctrl_deinit(display); error_ctrl_clk_off: (void)dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_OFF); error: return rc; } static bool _dsi_display_validate_host_state(struct dsi_display *display) { int i; struct dsi_display_ctrl *ctrl; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; if (!ctrl->ctrl) continue; if (!dsi_ctrl_validate_host_state(ctrl->ctrl)) return false; } return true; } static void dsi_display_handle_fifo_underflow(struct work_struct *work) { struct dsi_display *display = NULL; display = container_of(work, struct dsi_display, fifo_underflow_work); if (!display || !display->panel || atomic_read(&display->panel->esd_recovery_pending)) { DSI_DEBUG("Invalid recovery use case\n"); return; } mutex_lock(&display->display_lock); if (!_dsi_display_validate_host_state(display)) { mutex_unlock(&display->display_lock); return; } DSI_INFO("handle DSI FIFO underflow error\n"); SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); dsi_display_soft_reset(display); dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); mutex_unlock(&display->display_lock); if (display->is_spurious_interrupt) { dsi_display_report_dead(display); display->is_spurious_interrupt = false; } } static void dsi_display_handle_fifo_overflow(struct work_struct *work) { struct dsi_display *display = NULL; struct dsi_display_ctrl *ctrl; int i, rc; int mask = BIT(20); /* clock lane */ int (*cb_func)(void *event_usr_ptr, uint32_t event_idx, uint32_t instance_idx, uint32_t data0, uint32_t data1, uint32_t data2, uint32_t data3); void *data; u32 version = 0; display = container_of(work, struct dsi_display, fifo_overflow_work); if (!display || !display->panel || (display->panel->panel_mode != DSI_OP_VIDEO_MODE) || atomic_read(&display->panel->esd_recovery_pending)) { DSI_DEBUG("Invalid recovery use case\n"); return; } mutex_lock(&display->display_lock); if (!_dsi_display_validate_host_state(display)) { mutex_unlock(&display->display_lock); return; } DSI_INFO("handle DSI FIFO overflow error\n"); SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); /* * below recovery sequence is not applicable to * hw version 2.0.0, 2.1.0 and 2.2.0, so return early. */ ctrl = &display->ctrl[display->clk_master_idx]; version = dsi_ctrl_get_hw_version(ctrl->ctrl); if (!version || (version < 0x20020001)) goto end; /* reset ctrl and lanes */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_reset(ctrl->ctrl, mask); rc = dsi_phy_lane_reset(ctrl->phy); } /* wait for display line count to be in active area */ ctrl = &display->ctrl[display->clk_master_idx]; if (ctrl->ctrl->recovery_cb.event_cb) { cb_func = ctrl->ctrl->recovery_cb.event_cb; data = ctrl->ctrl->recovery_cb.event_usr_ptr; rc = cb_func(data, SDE_CONN_EVENT_VID_FIFO_OVERFLOW, display->clk_master_idx, 0, 0, 0, 0); if (rc < 0) { DSI_DEBUG("sde callback failed\n"); goto end; } } /* Enable Video mode for DSI controller */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_ctrl_vid_engine_en(ctrl->ctrl, true); } /* * Add sufficient delay to make sure * pixel transmission has started */ udelay(200); end: dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); mutex_unlock(&display->display_lock); if (display->is_spurious_interrupt) { dsi_display_report_dead(display); display->is_spurious_interrupt = false; } } static void dsi_display_handle_lp_rx_timeout(struct work_struct *work) { struct dsi_display *display = NULL; struct dsi_display_ctrl *ctrl; int i, rc; int mask = (BIT(20) | (0xF << 16)); /* clock lane and 4 data lane */ int (*cb_func)(void *event_usr_ptr, uint32_t event_idx, uint32_t instance_idx, uint32_t data0, uint32_t data1, uint32_t data2, uint32_t data3); void *data; u32 version = 0; display = container_of(work, struct dsi_display, lp_rx_timeout_work); if (!display || !display->panel || (display->panel->panel_mode != DSI_OP_VIDEO_MODE) || atomic_read(&display->panel->esd_recovery_pending)) { DSI_DEBUG("Invalid recovery use case\n"); return; } mutex_lock(&display->display_lock); if (!_dsi_display_validate_host_state(display)) { mutex_unlock(&display->display_lock); return; } DSI_INFO("handle DSI LP RX Timeout error\n"); SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); /* * below recovery sequence is not applicable to * hw version 2.0.0, 2.1.0 and 2.2.0, so return early. */ ctrl = &display->ctrl[display->clk_master_idx]; version = dsi_ctrl_get_hw_version(ctrl->ctrl); if (!version || (version < 0x20020001)) goto end; /* reset ctrl and lanes */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; rc = dsi_ctrl_reset(ctrl->ctrl, mask); rc = dsi_phy_lane_reset(ctrl->phy); } ctrl = &display->ctrl[display->clk_master_idx]; if (ctrl->ctrl->recovery_cb.event_cb) { cb_func = ctrl->ctrl->recovery_cb.event_cb; data = ctrl->ctrl->recovery_cb.event_usr_ptr; rc = cb_func(data, SDE_CONN_EVENT_VID_FIFO_OVERFLOW, display->clk_master_idx, 0, 0, 0, 0); if (rc < 0) { DSI_DEBUG("Target is in suspend/shutdown\n"); goto end; } } /* Enable Video mode for DSI controller */ display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; dsi_ctrl_vid_engine_en(ctrl->ctrl, true); } /* * Add sufficient delay to make sure * pixel transmission as started */ udelay(200); end: dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); mutex_unlock(&display->display_lock); } static int dsi_display_cb_error_handler(void *data, uint32_t event_idx, uint32_t instance_idx, uint32_t data0, uint32_t data1, uint32_t data2, uint32_t data3) { struct dsi_display *display = data; if (!display || !(display->err_workq)) return -EINVAL; switch (event_idx) { case DSI_FIFO_UNDERFLOW: queue_work(display->err_workq, &display->fifo_underflow_work); break; case DSI_FIFO_OVERFLOW: queue_work(display->err_workq, &display->fifo_overflow_work); break; case DSI_LP_Rx_TIMEOUT: queue_work(display->err_workq, &display->lp_rx_timeout_work); break; default: DSI_WARN("unhandled error interrupt: %d\n", event_idx); break; } return 0; } static void dsi_display_register_error_handler(struct dsi_display *display) { int i = 0; struct dsi_display_ctrl *ctrl; struct dsi_event_cb_info event_info; if (!display) return; display->err_workq = create_singlethread_workqueue("dsi_err_workq"); if (!display->err_workq) { DSI_ERR("failed to create dsi workq!\n"); return; } INIT_WORK(&display->fifo_underflow_work, dsi_display_handle_fifo_underflow); INIT_WORK(&display->fifo_overflow_work, dsi_display_handle_fifo_overflow); INIT_WORK(&display->lp_rx_timeout_work, dsi_display_handle_lp_rx_timeout); memset(&event_info, 0, sizeof(event_info)); event_info.event_cb = dsi_display_cb_error_handler; event_info.event_usr_ptr = display; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; ctrl->ctrl->irq_info.irq_err_cb = event_info; } } static void dsi_display_unregister_error_handler(struct dsi_display *display) { int i = 0; struct dsi_display_ctrl *ctrl; if (!display) return; display_for_each_ctrl(i, display) { ctrl = &display->ctrl[i]; memset(&ctrl->ctrl->irq_info.irq_err_cb, 0, sizeof(struct dsi_event_cb_info)); } if (display->err_workq) { destroy_workqueue(display->err_workq); display->err_workq = NULL; } } int dsi_display_prepare(struct dsi_display *display) { int rc = 0; struct dsi_display_mode *mode; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (!display->panel->cur_mode) { DSI_ERR("no valid mode set for the display\n"); return -EINVAL; } SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); mutex_lock(&display->display_lock); display->hw_ownership = true; mode = display->panel->cur_mode; dsi_display_init_ctrl(display); dsi_display_set_ctrl_esd_check_flag(display, false); /* Set up ctrl isr before enabling core clk */ if (!display->trusted_vm_env) dsi_display_ctrl_isr_configure(display, true); if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) { if (display->is_cont_splash_enabled && display->config.panel_mode == DSI_OP_VIDEO_MODE) { DSI_ERR("DMS not supported on first frame\n"); rc = -EINVAL; goto error; } if (!is_skip_op_required(display)) { /* update dsi ctrl for new mode */ rc = dsi_display_pre_switch(display); if (rc) DSI_ERR("[%s] panel pre-switch failed, rc=%d\n", display->name, rc); goto error; } } if (!display->poms_pending && (!is_skip_op_required(display))) { /* * For continuous splash/trusted vm, we skip panel * pre prepare since the regulator vote is already * taken care in splash resource init */ rc = dsi_panel_pre_prepare(display->panel); if (rc) { DSI_ERR("[%s] panel pre-prepare failed, rc=%d\n", display->name, rc); goto error; } } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI core clocks, rc=%d\n", display->name, rc); goto error_panel_post_unprep; } /* * If ULPS during suspend feature is enabled, then DSI PHY was * left on during suspend. In this case, we do not need to reset/init * PHY. This would have already been done when the CORE clocks are * turned on. However, if cont splash is disabled, the first time DSI * is powered on, phy init needs to be done unconditionally. */ if (!display->panel->ulps_suspend_enabled || !display->ulps_enabled) { rc = dsi_display_phy_sw_reset(display); if (rc) { DSI_ERR("[%s] failed to reset phy, rc=%d\n", display->name, rc); goto error_ctrl_clk_off; } rc = dsi_display_phy_enable(display); if (rc) { DSI_ERR("[%s] failed to enable DSI PHY, rc=%d\n", display->name, rc); goto error_ctrl_clk_off; } } rc = dsi_display_ctrl_init(display); if (rc) { DSI_ERR("[%s] failed to setup DSI controller, rc=%d\n", display->name, rc); goto error_phy_disable; } /* Set up DSI ERROR event callback */ dsi_display_register_error_handler(display); rc = dsi_display_ctrl_host_enable(display); if (rc) { DSI_ERR("[%s] failed to enable DSI host, rc=%d\n", display->name, rc); goto error_ctrl_deinit; } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_LINK_CLK, DSI_CLK_ON); if (rc) { DSI_ERR("[%s] failed to enable DSI link clocks, rc=%d\n", display->name, rc); goto error_host_engine_off; } if (!is_skip_op_required(display)) { /* * For continuous splash/trusted vm, skip panel prepare and * ctl reset since the pnael and ctrl is already in active * state and panel on commands are not needed */ rc = dsi_display_soft_reset(display); if (rc) { DSI_ERR("[%s] failed soft reset, rc=%d\n", display->name, rc); goto error_ctrl_link_off; } if (!display->poms_pending) { rc = dsi_panel_prepare(display->panel); if (rc) { DSI_ERR("[%s] panel prepare failed, rc=%d\n", display->name, rc); goto error_ctrl_link_off; } } } goto error; error_ctrl_link_off: (void)dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_LINK_CLK, DSI_CLK_OFF); error_host_engine_off: (void)dsi_display_ctrl_host_disable(display); error_ctrl_deinit: (void)dsi_display_ctrl_deinit(display); error_phy_disable: (void)dsi_display_phy_disable(display); error_ctrl_clk_off: (void)dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_OFF); error_panel_post_unprep: (void)dsi_panel_post_unprepare(display->panel); error: mutex_unlock(&display->display_lock); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); return rc; } static int dsi_display_calc_ctrl_roi(const struct dsi_display *display, const struct dsi_display_ctrl *ctrl, const struct msm_roi_list *req_rois, struct dsi_rect *out_roi) { const struct dsi_rect *bounds = &ctrl->ctrl->mode_bounds; struct dsi_display_mode *cur_mode; struct msm_roi_caps *roi_caps; struct dsi_rect req_roi = { 0 }; int rc = 0; cur_mode = display->panel->cur_mode; if (!cur_mode) return 0; roi_caps = &cur_mode->priv_info->roi_caps; if (req_rois->num_rects > roi_caps->num_roi) { DSI_ERR("request for %d rois greater than max %d\n", req_rois->num_rects, roi_caps->num_roi); rc = -EINVAL; goto exit; } /** * if no rois, user wants to reset back to full resolution * note: h_active is already divided by ctrl_count */ if (!req_rois->num_rects) { *out_roi = *bounds; goto exit; } /* intersect with the bounds */ req_roi.x = req_rois->roi[0].x1; req_roi.y = req_rois->roi[0].y1; req_roi.w = req_rois->roi[0].x2 - req_rois->roi[0].x1; req_roi.h = req_rois->roi[0].y2 - req_rois->roi[0].y1; dsi_rect_intersect(&req_roi, bounds, out_roi); exit: /* adjust the ctrl origin to be top left within the ctrl */ out_roi->x = out_roi->x - bounds->x; DSI_DEBUG("ctrl%d:%d: req (%d,%d,%d,%d) bnd (%d,%d,%d,%d) out (%d,%d,%d,%d)\n", ctrl->dsi_ctrl_idx, ctrl->ctrl->cell_index, req_roi.x, req_roi.y, req_roi.w, req_roi.h, bounds->x, bounds->y, bounds->w, bounds->h, out_roi->x, out_roi->y, out_roi->w, out_roi->h); return rc; } static int dsi_display_qsync(struct dsi_display *display, bool enable) { int i; int rc = 0; mutex_lock(&display->display_lock); display->queue_cmd_waits = true; display_for_each_ctrl(i, display) { if (enable) { /* send the commands to enable qsync */ rc = dsi_panel_send_qsync_on_dcs(display->panel, i); if (rc) { DSI_ERR("fail qsync ON cmds rc:%d\n", rc); goto exit; } } else { /* send the commands to enable qsync */ rc = dsi_panel_send_qsync_off_dcs(display->panel, i); if (rc) { DSI_ERR("fail qsync OFF cmds rc:%d\n", rc); goto exit; } } dsi_ctrl_setup_avr(display->ctrl[i].ctrl, enable); } exit: display->queue_cmd_waits = false; SDE_EVT32(enable, display->panel->qsync_caps.qsync_min_fps, rc); mutex_unlock(&display->display_lock); return rc; } static int dsi_display_set_roi(struct dsi_display *display, struct msm_roi_list *rois) { struct dsi_display_mode *cur_mode; struct msm_roi_caps *roi_caps; int rc = 0; int i; if (!display || !rois || !display->panel) return -EINVAL; cur_mode = display->panel->cur_mode; if (!cur_mode) return 0; roi_caps = &cur_mode->priv_info->roi_caps; if (!roi_caps->enabled) return 0; display_for_each_ctrl(i, display) { struct dsi_display_ctrl *ctrl = &display->ctrl[i]; struct dsi_rect ctrl_roi; bool changed = false; rc = dsi_display_calc_ctrl_roi(display, ctrl, rois, &ctrl_roi); if (rc) { DSI_ERR("dsi_display_calc_ctrl_roi failed rc %d\n", rc); return rc; } rc = dsi_ctrl_set_roi(ctrl->ctrl, &ctrl_roi, &changed); if (rc) { DSI_ERR("dsi_ctrl_set_roi failed rc %d\n", rc); return rc; } if (!changed) continue; /* re-program the ctrl with the timing based on the new roi */ rc = dsi_ctrl_timing_setup(ctrl->ctrl); if (rc) { DSI_ERR("dsi_ctrl_setup failed rc %d\n", rc); return rc; } /* send the new roi to the panel via dcs commands */ rc = dsi_panel_send_roi_dcs(display->panel, i, &ctrl_roi); if (rc) { DSI_ERR("dsi_panel_set_roi failed rc %d\n", rc); return rc; } } return rc; } int dsi_display_pre_kickoff(struct drm_connector *connector, struct dsi_display *display, struct msm_display_kickoff_params *params) { struct dsi_display_mode *mode; int rc = 0, ret = 0; int i; mode = display->panel->cur_mode; /* check and setup MISR */ if (display->misr_enable) _dsi_display_setup_misr(display); /* dynamic DSI clock setting */ if (atomic_read(&display->clkrate_change_pending)) { mutex_lock(&display->display_lock); /* * acquire panel_lock to make sure no commands are in progress */ dsi_panel_acquire_panel_lock(display->panel); /* * Wait for DSI command engine not to be busy sending data * from display engine. * If waiting fails, return "rc" instead of below "ret" so as * not to impact DRM commit. The clock updating would be * deferred to the next DRM commit. */ display_for_each_ctrl(i, display) { struct dsi_ctrl *ctrl = display->ctrl[i].ctrl; ret = dsi_ctrl_wait_for_cmd_mode_mdp_idle(ctrl); if (ret) goto wait_failure; } if (mode->priv_info->phy_timing_len) { display_for_each_ctrl(i, display) { struct dsi_display_ctrl *ctrl; bool commit_phy_timing = false; if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) commit_phy_timing = true; ctrl = &display->ctrl[i]; ret = dsi_phy_set_timing_params(ctrl->phy, mode->priv_info->phy_timing_val, mode->priv_info->phy_timing_len, commit_phy_timing); if (ret) DSI_ERR("failed to add DSI PHY timing params\n"); } } /* * Don't check the return value so as not to impact DRM commit * when error occurs. */ (void)dsi_display_force_update_dsi_clk(display); wait_failure: /* release panel_lock */ dsi_panel_release_panel_lock(display->panel); mutex_unlock(&display->display_lock); } if (!ret) rc = dsi_display_set_roi(display, params->rois); return rc; } int dsi_display_config_ctrl_for_cont_splash(struct dsi_display *display) { int rc = 0; if (!display || !display->panel) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (!display->panel->cur_mode) { DSI_ERR("no valid mode set for the display\n"); return -EINVAL; } if (display->config.panel_mode == DSI_OP_VIDEO_MODE) { rc = dsi_display_vid_engine_enable(display); if (rc) { DSI_ERR("[%s]failed to enable DSI video engine, rc=%d\n", display->name, rc); goto error_out; } } else if (display->config.panel_mode == DSI_OP_CMD_MODE) { rc = dsi_display_cmd_engine_enable(display); if (rc) { DSI_ERR("[%s]failed to enable DSI cmd engine, rc=%d\n", display->name, rc); goto error_out; } } else { DSI_ERR("[%s] Invalid configuration\n", display->name); rc = -EINVAL; } error_out: return rc; } int dsi_display_pre_commit(void *display, struct msm_display_conn_params *params) { bool enable = false; int rc = 0; if (!display || !params) { pr_err("Invalid params\n"); return -EINVAL; } if (params->qsync_update) { enable = (params->qsync_mode > 0) ? true : false; rc = dsi_display_qsync(display, enable); if (rc) pr_err("%s failed to send qsync commands\n", __func__); SDE_EVT32(params->qsync_mode, rc); } return rc; } static void dsi_display_panel_id_notification(struct dsi_display *display) { if (display->panel_id != ~0x0 && display->ctrl[0].ctrl->panel_id_cb.event_cb) { display->ctrl[0].ctrl->panel_id_cb.event_cb( display->ctrl[0].ctrl->panel_id_cb.event_usr_ptr, display->ctrl[0].ctrl->panel_id_cb.event_idx, 0, ((display->panel_id & 0xffffffff00000000) >> 32), (display->panel_id & 0xffffffff), 0, 0); } } int dsi_display_enable(struct dsi_display *display) { int rc = 0; struct dsi_display_mode *mode; if (!display || !display->panel) { DSI_ERR("Invalid params\n"); return -EINVAL; } if (!display->panel->cur_mode) { DSI_ERR("no valid mode set for the display\n"); return -EINVAL; } SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); /* * Engine states and panel states are populated during splash * resource/trusted vm and hence we return early */ if (is_skip_op_required(display)) { dsi_display_config_ctrl_for_cont_splash(display); rc = dsi_display_splash_res_cleanup(display); if (rc) { DSI_ERR("Continuous splash res cleanup failed, rc=%d\n", rc); return -EINVAL; } display->panel->panel_initialized = true; DSI_DEBUG("cont splash enabled, display enable not required\n"); dsi_display_panel_id_notification(display); return 0; } mutex_lock(&display->display_lock); mode = display->panel->cur_mode; if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) { rc = dsi_panel_post_switch(display->panel); if (rc) { DSI_ERR("[%s] failed to switch DSI panel mode, rc=%d\n", display->name, rc); goto error; } } else if (!display->poms_pending) { rc = dsi_panel_enable(display->panel); if (rc) { DSI_ERR("[%s] failed to enable DSI panel, rc=%d\n", display->name, rc); goto error; } } dsi_display_panel_id_notification(display); /* Block sending pps command if modeset is due to fps difference */ if ((mode->priv_info->dsc_enabled || mode->priv_info->vdc_enabled) && !(mode->dsi_mode_flags & DSI_MODE_FLAG_DMS_FPS)) { rc = dsi_panel_update_pps(display->panel); if (rc) { DSI_ERR("[%s] panel pps cmd update failed, rc=%d\n", display->name, rc); goto error; } } if (mode->dsi_mode_flags & DSI_MODE_FLAG_DMS) { rc = dsi_panel_switch(display->panel); if (rc) DSI_ERR("[%s] failed to switch DSI panel mode, rc=%d\n", display->name, rc); goto error; } if (display->config.panel_mode == DSI_OP_VIDEO_MODE) { DSI_DEBUG("%s:enable video timing eng\n", __func__); rc = dsi_display_vid_engine_enable(display); if (rc) { DSI_ERR("[%s]failed to enable DSI video engine, rc=%d\n", display->name, rc); goto error_disable_panel; } } else if (display->config.panel_mode == DSI_OP_CMD_MODE) { DSI_DEBUG("%s:enable command timing eng\n", __func__); rc = dsi_display_cmd_engine_enable(display); if (rc) { DSI_ERR("[%s]failed to enable DSI cmd engine, rc=%d\n", display->name, rc); goto error_disable_panel; } } else { DSI_ERR("[%s] Invalid configuration\n", display->name); rc = -EINVAL; goto error_disable_panel; } goto error; error_disable_panel: (void)dsi_panel_disable(display->panel); error: mutex_unlock(&display->display_lock); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); return rc; } int dsi_display_post_enable(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } mutex_lock(&display->display_lock); if (display->panel->cur_mode->dsi_mode_flags & DSI_MODE_FLAG_POMS_TO_CMD) { dsi_panel_switch_cmd_mode_in(display->panel); } else if (display->panel->cur_mode->dsi_mode_flags & DSI_MODE_FLAG_POMS_TO_VID) dsi_panel_switch_video_mode_in(display->panel); else { rc = dsi_panel_post_enable(display->panel); if (rc) DSI_ERR("[%s] panel post-enable failed, rc=%d\n", display->name, rc); } /* remove the clk vote for CMD mode panels */ if (display->config.panel_mode == DSI_OP_CMD_MODE) dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_OFF); mutex_unlock(&display->display_lock); return rc; } int dsi_display_pre_disable(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } mutex_lock(&display->display_lock); /* enable the clk vote for CMD mode panels */ if (display->config.panel_mode == DSI_OP_CMD_MODE) dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_ALL_CLKS, DSI_CLK_ON); if (display->poms_pending) { if (display->config.panel_mode == DSI_OP_CMD_MODE) dsi_panel_switch_cmd_mode_out(display->panel); if (display->config.panel_mode == DSI_OP_VIDEO_MODE) dsi_panel_switch_video_mode_out(display->panel); } else { rc = dsi_panel_pre_disable(display->panel); if (rc) DSI_ERR("[%s] panel pre-disable failed, rc=%d\n", display->name, rc); } mutex_unlock(&display->display_lock); return rc; } static void dsi_display_handle_poms_te(struct work_struct *work) { struct dsi_display *display = NULL; struct delayed_work *dw = to_delayed_work(work); struct mipi_dsi_device *dsi = NULL; struct dsi_panel *panel = NULL; int rc = 0; display = container_of(dw, struct dsi_display, poms_te_work); if (!display || !display->panel) { DSI_ERR("Invalid params\n"); return; } panel = display->panel; mutex_lock(&panel->panel_lock); if (!dsi_panel_initialized(panel)) { rc = -EINVAL; goto error; } dsi = &panel->mipi_device; rc = mipi_dsi_dcs_set_tear_off(dsi); error: mutex_unlock(&panel->panel_lock); if (rc < 0) DSI_ERR("failed to set tear off\n"); } int dsi_display_disable(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); mutex_lock(&display->display_lock); /* cancel delayed work */ if (display->poms_pending && display->panel->poms_align_vsync) cancel_delayed_work_sync(&display->poms_te_work); rc = dsi_display_wake_up(display); if (rc) DSI_ERR("[%s] display wake up failed, rc=%d\n", display->name, rc); if (display->config.panel_mode == DSI_OP_VIDEO_MODE) { rc = dsi_display_vid_engine_disable(display); if (rc) DSI_ERR("[%s]failed to disable DSI vid engine, rc=%d\n", display->name, rc); } else if (display->config.panel_mode == DSI_OP_CMD_MODE) { /** * On POMS request , disable panel TE through * delayed work queue. */ if (display->poms_pending && display->panel->poms_align_vsync) { INIT_DELAYED_WORK(&display->poms_te_work, dsi_display_handle_poms_te); queue_delayed_work(system_wq, &display->poms_te_work, msecs_to_jiffies(100)); } rc = dsi_display_cmd_engine_disable(display); if (rc) DSI_ERR("[%s]failed to disable DSI cmd engine, rc=%d\n", display->name, rc); } else { DSI_ERR("[%s] Invalid configuration\n", display->name); rc = -EINVAL; } if (!display->poms_pending && !is_skip_op_required(display)) { rc = dsi_panel_disable(display->panel); if (rc) DSI_ERR("[%s] failed to disable DSI panel, rc=%d\n", display->name, rc); } if (is_skip_op_required(display)) { /* applicable only for trusted vm */ display->panel->panel_initialized = false; display->panel->power_mode = SDE_MODE_DPMS_OFF; } mutex_unlock(&display->display_lock); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); return rc; } int dsi_display_update_pps(char *pps_cmd, void *disp) { struct dsi_display *display; if (pps_cmd == NULL || disp == NULL) { DSI_ERR("Invalid parameter\n"); return -EINVAL; } display = disp; mutex_lock(&display->display_lock); memcpy(display->panel->dce_pps_cmd, pps_cmd, DSI_CMD_PPS_SIZE); mutex_unlock(&display->display_lock); return 0; } int dsi_display_update_dyn_bit_clk(struct dsi_display *display, struct dsi_display_mode *mode) { struct dsi_dyn_clk_caps *dyn_clk_caps; struct dsi_host_common_cfg *host_cfg; int bpp, lanes = 0; if (!display || !mode) { DSI_ERR("invalid arguments\n"); return -EINVAL; } dyn_clk_caps = &(display->panel->dyn_clk_caps); if (!dyn_clk_caps->dyn_clk_support) { DSI_DEBUG("dynamic bit clock support not enabled\n"); return 0; } else if (!display->dyn_bit_clk_pending) { DSI_DEBUG("dynamic bit clock rate not updated\n"); return 0; } else if (!display->dyn_bit_clk) { DSI_DEBUG("dynamic bit clock rate cleared\n"); return 0; } else if (display->dyn_bit_clk < mode->priv_info->min_dsi_clk_hz) { DSI_ERR("dynamic bit clock rate %llu smaller than minimum value:%llu\n", display->dyn_bit_clk, mode->priv_info->min_dsi_clk_hz); return -EINVAL; } /* update mode clk rate with user value */ mode->timing.clk_rate_hz = display->dyn_bit_clk; mode->priv_info->clk_rate_hz = display->dyn_bit_clk; host_cfg = &(display->panel->host_config); bpp = dsi_pixel_format_to_bpp(host_cfg->dst_format); if (host_cfg->data_lanes & DSI_DATA_LANE_0) lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_1) lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_2) lanes++; if (host_cfg->data_lanes & DSI_DATA_LANE_3) lanes++; dsi_display_adjust_mode_timing(display, mode, lanes, bpp); SDE_EVT32(display->dyn_bit_clk, mode->priv_info->min_dsi_clk_hz, mode->pixel_clk_khz); DSI_DEBUG("dynamic bit clk:%u, min dsi clk:%llu, lanes:%d, bpp:%d, pck:%d Khz\n", display->dyn_bit_clk, mode->priv_info->min_dsi_clk_hz, lanes, bpp, mode->pixel_clk_khz); return 0; } int dsi_display_dump_clks_state(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("invalid display argument\n"); return -EINVAL; } if (!display->clk_mngr) { DSI_ERR("invalid clk manager\n"); return -EINVAL; } if (!display->dsi_clk_handle || !display->mdp_clk_handle) { DSI_ERR("invalid clk handles\n"); return -EINVAL; } mutex_lock(&display->display_lock); rc = dsi_display_dump_clk_handle_state(display->dsi_clk_handle); if (rc) { DSI_ERR("failed to dump dsi clock state\n"); goto end; } rc = dsi_display_dump_clk_handle_state(display->mdp_clk_handle); if (rc) { DSI_ERR("failed to dump mdp clock state\n"); goto end; } end: mutex_unlock(&display->display_lock); return rc; } int dsi_display_unprepare(struct dsi_display *display) { int rc = 0; if (!display) { DSI_ERR("Invalid params\n"); return -EINVAL; } SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY); mutex_lock(&display->display_lock); rc = dsi_display_wake_up(display); if (rc) DSI_ERR("[%s] display wake up failed, rc=%d\n", display->name, rc); if (!display->poms_pending && !is_skip_op_required(display)) { rc = dsi_panel_unprepare(display->panel); if (rc) DSI_ERR("[%s] panel unprepare failed, rc=%d\n", display->name, rc); } rc = dsi_display_ctrl_host_disable(display); if (rc) DSI_ERR("[%s] failed to disable DSI host, rc=%d\n", display->name, rc); rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_LINK_CLK, DSI_CLK_OFF); if (rc) DSI_ERR("[%s] failed to disable Link clocks, rc=%d\n", display->name, rc); rc = dsi_display_ctrl_deinit(display); if (rc) DSI_ERR("[%s] failed to deinit controller, rc=%d\n", display->name, rc); if (!display->panel->ulps_suspend_enabled) { rc = dsi_display_phy_disable(display); if (rc) DSI_ERR("[%s] failed to disable DSI PHY, rc=%d\n", display->name, rc); } rc = dsi_display_clk_ctrl(display->dsi_clk_handle, DSI_CORE_CLK, DSI_CLK_OFF); if (rc) DSI_ERR("[%s] failed to disable DSI clocks, rc=%d\n", display->name, rc); /* destrory dsi isr set up */ dsi_display_ctrl_isr_configure(display, false); if (!display->poms_pending && !is_skip_op_required(display)) { rc = dsi_panel_post_unprepare(display->panel); if (rc) DSI_ERR("[%s] panel post-unprepare failed, rc=%d\n", display->name, rc); } display->hw_ownership = false; mutex_unlock(&display->display_lock); /* Free up DSI ERROR event callback */ dsi_display_unregister_error_handler(display); SDE_EVT32(SDE_EVTLOG_FUNC_EXIT); return rc; } void dsi_display_report_dead(struct dsi_display *display) { struct sde_connector *c_conn = to_sde_connector(display->drm_conn); /* disable work queue */ sde_connector_schedule_status_work(display->drm_conn, false); sde_connector_report_panel_dead(c_conn, false); } void __init dsi_display_register(void) { dsi_phy_drv_register(); dsi_ctrl_drv_register(); dsi_display_parse_boot_display_selection(); platform_driver_register(&dsi_display_driver); } void __exit dsi_display_unregister(void) { platform_driver_unregister(&dsi_display_driver); dsi_ctrl_drv_unregister(); dsi_phy_drv_unregister(); } module_param_string(dsi_display0, dsi_display_primary, MAX_CMDLINE_PARAM_LEN, 0600); MODULE_PARM_DESC(dsi_display0, "msm_drm.dsi_display0=: where is 'primary dsi display node name' and where x represents index in the topology list"); module_param_string(dsi_display1, dsi_display_secondary, MAX_CMDLINE_PARAM_LEN, 0600); MODULE_PARM_DESC(dsi_display1, "msm_drm.dsi_display1=: where is 'secondary dsi display node name' and where x represents index in the topology list");