// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2019, The Linux Foundation. All rights reserved. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include "pll_drv.h" #include "dp_pll.h" #include "dp_pll_10nm.h" #define DP_PHY_REVISION_ID0 0x0000 #define DP_PHY_REVISION_ID1 0x0004 #define DP_PHY_REVISION_ID2 0x0008 #define DP_PHY_REVISION_ID3 0x000C #define DP_PHY_CFG 0x0010 #define DP_PHY_PD_CTL 0x0018 #define DP_PHY_MODE 0x001C #define DP_PHY_AUX_CFG0 0x0020 #define DP_PHY_AUX_CFG1 0x0024 #define DP_PHY_AUX_CFG2 0x0028 #define DP_PHY_AUX_CFG3 0x002C #define DP_PHY_AUX_CFG4 0x0030 #define DP_PHY_AUX_CFG5 0x0034 #define DP_PHY_AUX_CFG6 0x0038 #define DP_PHY_AUX_CFG7 0x003C #define DP_PHY_AUX_CFG8 0x0040 #define DP_PHY_AUX_CFG9 0x0044 #define DP_PHY_AUX_INTERRUPT_MASK 0x0048 #define DP_PHY_AUX_INTERRUPT_CLEAR 0x004C #define DP_PHY_AUX_BIST_CFG 0x0050 #define DP_PHY_VCO_DIV 0x0064 #define DP_PHY_TX0_TX1_LANE_CTL 0x006C #define DP_PHY_TX2_TX3_LANE_CTL 0x0088 #define DP_PHY_SPARE0 0x00AC #define DP_PHY_STATUS 0x00C0 /* Tx registers */ #define TXn_BIST_MODE_LANENO 0x0000 #define TXn_CLKBUF_ENABLE 0x0008 #define TXn_TX_EMP_POST1_LVL 0x000C #define TXn_TX_DRV_LVL 0x001C #define TXn_RESET_TSYNC_EN 0x0024 #define TXn_PRE_STALL_LDO_BOOST_EN 0x0028 #define TXn_TX_BAND 0x002C #define TXn_SLEW_CNTL 0x0030 #define TXn_INTERFACE_SELECT 0x0034 #define TXn_RES_CODE_LANE_TX 0x003C #define TXn_RES_CODE_LANE_RX 0x0040 #define TXn_RES_CODE_LANE_OFFSET_TX 0x0044 #define TXn_RES_CODE_LANE_OFFSET_RX 0x0048 #define TXn_DEBUG_BUS_SEL 0x0058 #define TXn_TRANSCEIVER_BIAS_EN 0x005C #define TXn_HIGHZ_DRVR_EN 0x0060 #define TXn_TX_POL_INV 0x0064 #define TXn_PARRATE_REC_DETECT_IDLE_EN 0x0068 #define TXn_LANE_MODE_1 0x008C #define TXn_TRAN_DRVR_EMP_EN 0x00C0 #define TXn_TX_INTERFACE_MODE 0x00C4 #define TXn_VMODE_CTRL1 0x00F0 /* PLL register offset */ #define QSERDES_COM_ATB_SEL1 0x0000 #define QSERDES_COM_ATB_SEL2 0x0004 #define QSERDES_COM_FREQ_UPDATE 0x0008 #define QSERDES_COM_BG_TIMER 0x000C #define QSERDES_COM_SSC_EN_CENTER 0x0010 #define QSERDES_COM_SSC_ADJ_PER1 0x0014 #define QSERDES_COM_SSC_ADJ_PER2 0x0018 #define QSERDES_COM_SSC_PER1 0x001C #define QSERDES_COM_SSC_PER2 0x0020 #define QSERDES_COM_SSC_STEP_SIZE1 0x0024 #define QSERDES_COM_SSC_STEP_SIZE2 0x0028 #define QSERDES_COM_POST_DIV 0x002C #define QSERDES_COM_POST_DIV_MUX 0x0030 #define QSERDES_COM_BIAS_EN_CLKBUFLR_EN 0x0034 #define QSERDES_COM_CLK_ENABLE1 0x0038 #define QSERDES_COM_SYS_CLK_CTRL 0x003C #define QSERDES_COM_SYSCLK_BUF_ENABLE 0x0040 #define QSERDES_COM_PLL_EN 0x0044 #define QSERDES_COM_PLL_IVCO 0x0048 #define QSERDES_COM_CMN_IETRIM 0x004C #define QSERDES_COM_CMN_IPTRIM 0x0050 #define QSERDES_COM_CP_CTRL_MODE0 0x0060 #define QSERDES_COM_CP_CTRL_MODE1 0x0064 #define QSERDES_COM_PLL_RCTRL_MODE0 0x0068 #define QSERDES_COM_PLL_RCTRL_MODE1 0x006C #define QSERDES_COM_PLL_CCTRL_MODE0 0x0070 #define QSERDES_COM_PLL_CCTRL_MODE1 0x0074 #define QSERDES_COM_PLL_CNTRL 0x0078 #define QSERDES_COM_BIAS_EN_CTRL_BY_PSM 0x007C #define QSERDES_COM_SYSCLK_EN_SEL 0x0080 #define QSERDES_COM_CML_SYSCLK_SEL 0x0084 #define QSERDES_COM_RESETSM_CNTRL 0x0088 #define QSERDES_COM_RESETSM_CNTRL2 0x008C #define QSERDES_COM_LOCK_CMP_EN 0x0090 #define QSERDES_COM_LOCK_CMP_CFG 0x0094 #define QSERDES_COM_LOCK_CMP1_MODE0 0x0098 #define QSERDES_COM_LOCK_CMP2_MODE0 0x009C #define QSERDES_COM_LOCK_CMP3_MODE0 0x00A0 #define QSERDES_COM_DEC_START_MODE0 0x00B0 #define QSERDES_COM_DEC_START_MODE1 0x00B4 #define QSERDES_COM_DIV_FRAC_START1_MODE0 0x00B8 #define QSERDES_COM_DIV_FRAC_START2_MODE0 0x00BC #define QSERDES_COM_DIV_FRAC_START3_MODE0 0x00C0 #define QSERDES_COM_DIV_FRAC_START1_MODE1 0x00C4 #define QSERDES_COM_DIV_FRAC_START2_MODE1 0x00C8 #define QSERDES_COM_DIV_FRAC_START3_MODE1 0x00CC #define QSERDES_COM_INTEGLOOP_INITVAL 0x00D0 #define QSERDES_COM_INTEGLOOP_EN 0x00D4 #define QSERDES_COM_INTEGLOOP_GAIN0_MODE0 0x00D8 #define QSERDES_COM_INTEGLOOP_GAIN1_MODE0 0x00DC #define QSERDES_COM_INTEGLOOP_GAIN0_MODE1 0x00E0 #define QSERDES_COM_INTEGLOOP_GAIN1_MODE1 0x00E4 #define QSERDES_COM_VCOCAL_DEADMAN_CTRL 0x00E8 #define QSERDES_COM_VCO_TUNE_CTRL 0x00EC #define QSERDES_COM_VCO_TUNE_MAP 0x00F0 #define QSERDES_COM_CMN_STATUS 0x0124 #define QSERDES_COM_RESET_SM_STATUS 0x0128 #define QSERDES_COM_CLK_SEL 0x0138 #define QSERDES_COM_HSCLK_SEL 0x013C #define QSERDES_COM_CORECLK_DIV_MODE0 0x0148 #define QSERDES_COM_SW_RESET 0x0150 #define QSERDES_COM_CORE_CLK_EN 0x0154 #define QSERDES_COM_C_READY_STATUS 0x0158 #define QSERDES_COM_CMN_CONFIG 0x015C #define QSERDES_COM_SVS_MODE_CLK_SEL 0x0164 #define DP_PHY_PLL_POLL_SLEEP_US 500 #define DP_PHY_PLL_POLL_TIMEOUT_US 10000 #define DP_VCO_RATE_8100MHZDIV1000 8100000UL #define DP_VCO_RATE_9720MHZDIV1000 9720000UL #define DP_VCO_RATE_10800MHZDIV1000 10800000UL int dp_mux_set_parent_10nm(void *context, unsigned int reg, unsigned int val) { struct mdss_pll_resources *dp_res = context; int rc; u32 auxclk_div; rc = mdss_pll_resource_enable(dp_res, true); if (rc) { pr_err("Failed to enable mdss DP PLL resources\n"); return rc; } auxclk_div = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_VCO_DIV); auxclk_div &= ~0x03; /* bits 0 to 1 */ if (val == 0) /* mux parent index = 0 */ auxclk_div |= 1; else if (val == 1) /* mux parent index = 1 */ auxclk_div |= 2; else if (val == 2) /* mux parent index = 2 */ auxclk_div |= 0; MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_VCO_DIV, auxclk_div); /* Make sure the PHY registers writes are done */ wmb(); pr_debug("%s: mux=%d auxclk_div=%x\n", __func__, val, auxclk_div); mdss_pll_resource_enable(dp_res, false); return 0; } int dp_mux_get_parent_10nm(void *context, unsigned int reg, unsigned int *val) { int rc; u32 auxclk_div = 0; struct mdss_pll_resources *dp_res = context; rc = mdss_pll_resource_enable(dp_res, true); if (rc) { pr_err("Failed to enable dp_res resources\n"); return rc; } auxclk_div = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_VCO_DIV); auxclk_div &= 0x03; if (auxclk_div == 1) /* Default divider */ *val = 0; else if (auxclk_div == 2) *val = 1; else if (auxclk_div == 0) *val = 2; mdss_pll_resource_enable(dp_res, false); pr_debug("%s: auxclk_div=%d, val=%d\n", __func__, auxclk_div, *val); return 0; } static int dp_vco_pll_init_db_10nm(struct dp_pll_db *pdb, unsigned long rate) { struct mdss_pll_resources *dp_res = pdb->pll; u32 spare_value = 0; spare_value = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_SPARE0); pdb->lane_cnt = spare_value & 0x0F; pdb->orientation = (spare_value & 0xF0) >> 4; pr_debug("%s: spare_value=0x%x, ln_cnt=0x%x, orientation=0x%x\n", __func__, spare_value, pdb->lane_cnt, pdb->orientation); switch (rate) { case DP_VCO_HSCLK_RATE_1620MHZDIV1000: pr_debug("%s: VCO rate: %ld\n", __func__, DP_VCO_RATE_9720MHZDIV1000); pdb->hsclk_sel = 0x0c; pdb->dec_start_mode0 = 0x69; pdb->div_frac_start1_mode0 = 0x00; pdb->div_frac_start2_mode0 = 0x80; pdb->div_frac_start3_mode0 = 0x07; pdb->integloop_gain0_mode0 = 0x3f; pdb->integloop_gain1_mode0 = 0x00; pdb->vco_tune_map = 0x00; pdb->lock_cmp1_mode0 = 0x6f; pdb->lock_cmp2_mode0 = 0x08; pdb->lock_cmp3_mode0 = 0x00; pdb->phy_vco_div = 0x1; pdb->lock_cmp_en = 0x00; break; case DP_VCO_HSCLK_RATE_2700MHZDIV1000: pr_debug("%s: VCO rate: %ld\n", __func__, DP_VCO_RATE_10800MHZDIV1000); pdb->hsclk_sel = 0x04; pdb->dec_start_mode0 = 0x69; pdb->div_frac_start1_mode0 = 0x00; pdb->div_frac_start2_mode0 = 0x80; pdb->div_frac_start3_mode0 = 0x07; pdb->integloop_gain0_mode0 = 0x3f; pdb->integloop_gain1_mode0 = 0x00; pdb->vco_tune_map = 0x00; pdb->lock_cmp1_mode0 = 0x0f; pdb->lock_cmp2_mode0 = 0x0e; pdb->lock_cmp3_mode0 = 0x00; pdb->phy_vco_div = 0x1; pdb->lock_cmp_en = 0x00; break; case DP_VCO_HSCLK_RATE_5400MHZDIV1000: pr_debug("%s: VCO rate: %ld\n", __func__, DP_VCO_RATE_10800MHZDIV1000); pdb->hsclk_sel = 0x00; pdb->dec_start_mode0 = 0x8c; pdb->div_frac_start1_mode0 = 0x00; pdb->div_frac_start2_mode0 = 0x00; pdb->div_frac_start3_mode0 = 0x0a; pdb->integloop_gain0_mode0 = 0x3f; pdb->integloop_gain1_mode0 = 0x00; pdb->vco_tune_map = 0x00; pdb->lock_cmp1_mode0 = 0x1f; pdb->lock_cmp2_mode0 = 0x1c; pdb->lock_cmp3_mode0 = 0x00; pdb->phy_vco_div = 0x2; pdb->lock_cmp_en = 0x00; break; case DP_VCO_HSCLK_RATE_8100MHZDIV1000: pr_debug("%s: VCO rate: %ld\n", __func__, DP_VCO_RATE_8100MHZDIV1000); pdb->hsclk_sel = 0x03; pdb->dec_start_mode0 = 0x69; pdb->div_frac_start1_mode0 = 0x00; pdb->div_frac_start2_mode0 = 0x80; pdb->div_frac_start3_mode0 = 0x07; pdb->integloop_gain0_mode0 = 0x3f; pdb->integloop_gain1_mode0 = 0x00; pdb->vco_tune_map = 0x00; pdb->lock_cmp1_mode0 = 0x2f; pdb->lock_cmp2_mode0 = 0x2a; pdb->lock_cmp3_mode0 = 0x00; pdb->phy_vco_div = 0x0; pdb->lock_cmp_en = 0x08; break; default: return -EINVAL; } return 0; } static int dp_config_vco_rate_10nm(struct dp_pll_vco_clk *vco, unsigned long rate) { u32 res = 0; struct mdss_pll_resources *dp_res = vco->priv; struct dp_pll_db *pdb = (struct dp_pll_db *)dp_res->priv; res = dp_vco_pll_init_db_10nm(pdb, rate); if (res) { pr_err("VCO Init DB failed\n"); return res; } if (pdb->lane_cnt != 4) { if (pdb->orientation == ORIENTATION_CC2) MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x6d); else MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x75); } else { MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x7d); } /* Make sure the PHY register writes are done */ wmb(); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SVS_MODE_CLK_SEL, 0x01); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SYSCLK_EN_SEL, 0x37); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SYS_CLK_CTRL, 0x02); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CLK_ENABLE1, 0x0e); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_SYSCLK_BUF_ENABLE, 0x06); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CLK_SEL, 0x30); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CMN_CONFIG, 0x02); /* Different for each clock rates */ MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_HSCLK_SEL, pdb->hsclk_sel); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_DEC_START_MODE0, pdb->dec_start_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_DIV_FRAC_START1_MODE0, pdb->div_frac_start1_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_DIV_FRAC_START2_MODE0, pdb->div_frac_start2_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_DIV_FRAC_START3_MODE0, pdb->div_frac_start3_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_INTEGLOOP_GAIN0_MODE0, pdb->integloop_gain0_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_INTEGLOOP_GAIN1_MODE0, pdb->integloop_gain1_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_VCO_TUNE_MAP, pdb->vco_tune_map); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_LOCK_CMP1_MODE0, pdb->lock_cmp1_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_LOCK_CMP2_MODE0, pdb->lock_cmp2_mode0); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_LOCK_CMP3_MODE0, pdb->lock_cmp3_mode0); /* Make sure the PLL register writes are done */ wmb(); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_BG_TIMER, 0x0a); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CORECLK_DIV_MODE0, 0x0a); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_VCO_TUNE_CTRL, 0x00); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x3f); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CORE_CLK_EN, 0x1f); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_PLL_IVCO, 0x07); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_LOCK_CMP_EN, pdb->lock_cmp_en); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_PLL_CCTRL_MODE0, 0x36); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_PLL_RCTRL_MODE0, 0x16); MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_CP_CTRL_MODE0, 0x06); /* Make sure the PHY register writes are done */ wmb(); if (pdb->orientation == ORIENTATION_CC2) MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_MODE, 0x4c); else MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_MODE, 0x5c); /* Make sure the PLL register writes are done */ wmb(); /* TX Lane configuration */ MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_TX0_TX1_LANE_CTL, 0x05); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_TX2_TX3_LANE_CTL, 0x05); /* TX-0 register configuration */ MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TRANSCEIVER_BIAS_EN, 0x1a); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_VMODE_CTRL1, 0x40); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_PRE_STALL_LDO_BOOST_EN, 0x30); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_INTERFACE_SELECT, 0x3d); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_CLKBUF_ENABLE, 0x0f); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_RESET_TSYNC_EN, 0x03); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TRAN_DRVR_EMP_EN, 0x03); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_PARRATE_REC_DETECT_IDLE_EN, 0x00); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_INTERFACE_MODE, 0x00); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_BAND, 0x4); /* TX-1 register configuration */ MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TRANSCEIVER_BIAS_EN, 0x1a); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_VMODE_CTRL1, 0x40); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_PRE_STALL_LDO_BOOST_EN, 0x30); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_INTERFACE_SELECT, 0x3d); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_CLKBUF_ENABLE, 0x0f); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_RESET_TSYNC_EN, 0x03); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TRAN_DRVR_EMP_EN, 0x03); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_PARRATE_REC_DETECT_IDLE_EN, 0x00); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_INTERFACE_MODE, 0x00); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_BAND, 0x4); /* Make sure the PHY register writes are done */ wmb(); /* dependent on the vco frequency */ MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_VCO_DIV, pdb->phy_vco_div); return res; } static bool dp_10nm_pll_lock_status(struct mdss_pll_resources *dp_res) { u32 status; bool pll_locked; /* poll for PLL lock status */ if (readl_poll_timeout_atomic((dp_res->pll_base + QSERDES_COM_C_READY_STATUS), status, ((status & BIT(0)) > 0), DP_PHY_PLL_POLL_SLEEP_US, DP_PHY_PLL_POLL_TIMEOUT_US)) { pr_err("%s: C_READY status is not high. Status=%x\n", __func__, status); pll_locked = false; } else { pll_locked = true; } return pll_locked; } static bool dp_10nm_phy_rdy_status(struct mdss_pll_resources *dp_res) { u32 status; bool phy_ready = true; /* poll for PHY ready status */ if (readl_poll_timeout_atomic((dp_res->phy_base + DP_PHY_STATUS), status, ((status & (BIT(1))) > 0), DP_PHY_PLL_POLL_SLEEP_US, DP_PHY_PLL_POLL_TIMEOUT_US)) { pr_err("%s: Phy_ready is not high. Status=%x\n", __func__, status); phy_ready = false; } return phy_ready; } static int dp_pll_enable_10nm(struct clk_hw *hw) { int rc = 0; struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); struct mdss_pll_resources *dp_res = vco->priv; struct dp_pll_db *pdb = (struct dp_pll_db *)dp_res->priv; u32 bias_en, drvr_en; MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_AUX_CFG2, 0x04); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x01); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x05); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x01); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x09); wmb(); /* Make sure the PHY register writes are done */ MDSS_PLL_REG_W(dp_res->pll_base, QSERDES_COM_RESETSM_CNTRL, 0x20); wmb(); /* Make sure the PLL register writes are done */ if (!dp_10nm_pll_lock_status(dp_res)) { rc = -EINVAL; goto lock_err; } MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x19); /* Make sure the PHY register writes are done */ wmb(); /* poll for PHY ready status */ if (!dp_10nm_phy_rdy_status(dp_res)) { rc = -EINVAL; goto lock_err; } pr_debug("%s: PLL is locked\n", __func__); if (pdb->lane_cnt == 1) { bias_en = 0x3e; drvr_en = 0x13; } else { bias_en = 0x3f; drvr_en = 0x10; } if (pdb->lane_cnt != 4) { if (pdb->orientation == ORIENTATION_CC1) { MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_HIGHZ_DRVR_EN, drvr_en); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TRANSCEIVER_BIAS_EN, bias_en); } else { MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_HIGHZ_DRVR_EN, drvr_en); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TRANSCEIVER_BIAS_EN, bias_en); } } else { MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_HIGHZ_DRVR_EN, drvr_en); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TRANSCEIVER_BIAS_EN, bias_en); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_HIGHZ_DRVR_EN, drvr_en); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TRANSCEIVER_BIAS_EN, bias_en); } MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_POL_INV, 0x0a); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_POL_INV, 0x0a); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x18); udelay(2000); MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_CFG, 0x19); /* * Make sure all the register writes are completed before * doing any other operation */ wmb(); /* poll for PHY ready status */ if (!dp_10nm_phy_rdy_status(dp_res)) { rc = -EINVAL; goto lock_err; } MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_DRV_LVL, 0x38); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_DRV_LVL, 0x38); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_TX_EMP_POST1_LVL, 0x20); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_TX_EMP_POST1_LVL, 0x20); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_RES_CODE_LANE_OFFSET_TX, 0x06); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_RES_CODE_LANE_OFFSET_TX, 0x06); MDSS_PLL_REG_W(dp_res->ln_tx0_base, TXn_RES_CODE_LANE_OFFSET_RX, 0x07); MDSS_PLL_REG_W(dp_res->ln_tx1_base, TXn_RES_CODE_LANE_OFFSET_RX, 0x07); /* Make sure the PHY register writes are done */ wmb(); lock_err: return rc; } static int dp_pll_disable_10nm(struct clk_hw *hw) { struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); struct mdss_pll_resources *dp_res = vco->priv; /* Assert DP PHY power down */ MDSS_PLL_REG_W(dp_res->phy_base, DP_PHY_PD_CTL, 0x2); /* * Make sure all the register writes to disable PLL are * completed before doing any other operation */ wmb(); return 0; } int dp_vco_prepare_10nm(struct clk_hw *hw) { int rc = 0; struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); struct mdss_pll_resources *dp_res = vco->priv; pr_debug("rate=%ld\n", vco->rate); rc = mdss_pll_resource_enable(dp_res, true); if (rc) { pr_err("Failed to enable mdss DP pll resources\n"); goto error; } if ((dp_res->vco_cached_rate != 0) && (dp_res->vco_cached_rate == vco->rate)) { rc = vco->hw.init->ops->set_rate(hw, dp_res->vco_cached_rate, dp_res->vco_cached_rate); if (rc) { pr_err("index=%d vco_set_rate failed. rc=%d\n", rc, dp_res->index); mdss_pll_resource_enable(dp_res, false); goto error; } } rc = dp_pll_enable_10nm(hw); if (rc) { mdss_pll_resource_enable(dp_res, false); pr_err("ndx=%d failed to enable dp pll\n", dp_res->index); goto error; } mdss_pll_resource_enable(dp_res, false); error: return rc; } void dp_vco_unprepare_10nm(struct clk_hw *hw) { struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); struct mdss_pll_resources *dp_res = vco->priv; if (!dp_res) { pr_err("Invalid input parameter\n"); return; } if (!dp_res->pll_on && mdss_pll_resource_enable(dp_res, true)) { pr_err("pll resource can't be enabled\n"); return; } dp_res->vco_cached_rate = vco->rate; dp_pll_disable_10nm(hw); dp_res->handoff_resources = false; mdss_pll_resource_enable(dp_res, false); dp_res->pll_on = false; } int dp_vco_set_rate_10nm(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); struct mdss_pll_resources *dp_res = vco->priv; int rc; rc = mdss_pll_resource_enable(dp_res, true); if (rc) { pr_err("pll resource can't be enabled\n"); return rc; } pr_debug("DP lane CLK rate=%ld\n", rate); rc = dp_config_vco_rate_10nm(vco, rate); if (rc) pr_err("%s: Failed to set clk rate\n", __func__); mdss_pll_resource_enable(dp_res, false); vco->rate = rate; return 0; } unsigned long dp_vco_recalc_rate_10nm(struct clk_hw *hw, unsigned long parent_rate) { struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); int rc; u32 div, hsclk_div, link_clk_div = 0; u64 vco_rate; struct mdss_pll_resources *dp_res = vco->priv; rc = mdss_pll_resource_enable(dp_res, true); if (rc) { pr_err("Failed to enable mdss DP pll=%d\n", dp_res->index); return rc; } div = MDSS_PLL_REG_R(dp_res->pll_base, QSERDES_COM_HSCLK_SEL); div &= 0x0f; if (div == 12) hsclk_div = 6; /* Default */ else if (div == 4) hsclk_div = 4; else if (div == 0) hsclk_div = 2; else if (div == 3) hsclk_div = 1; else { pr_debug("unknown divider. forcing to default\n"); hsclk_div = 5; } div = MDSS_PLL_REG_R(dp_res->phy_base, DP_PHY_AUX_CFG2); div >>= 2; if ((div & 0x3) == 0) link_clk_div = 5; else if ((div & 0x3) == 1) link_clk_div = 10; else if ((div & 0x3) == 2) link_clk_div = 20; else pr_err("%s: unsupported div. Phy_mode: %d\n", __func__, div); if (link_clk_div == 20) { vco_rate = DP_VCO_HSCLK_RATE_2700MHZDIV1000; } else { if (hsclk_div == 6) vco_rate = DP_VCO_HSCLK_RATE_1620MHZDIV1000; else if (hsclk_div == 4) vco_rate = DP_VCO_HSCLK_RATE_2700MHZDIV1000; else if (hsclk_div == 2) vco_rate = DP_VCO_HSCLK_RATE_5400MHZDIV1000; else vco_rate = DP_VCO_HSCLK_RATE_8100MHZDIV1000; } pr_debug("returning vco rate = %lu\n", (unsigned long)vco_rate); mdss_pll_resource_enable(dp_res, false); dp_res->vco_cached_rate = vco->rate = vco_rate; return (unsigned long)vco_rate; } long dp_vco_round_rate_10nm(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { unsigned long rrate = rate; struct dp_pll_vco_clk *vco = to_dp_vco_hw(hw); if (rate <= vco->min_rate) rrate = vco->min_rate; else if (rate <= DP_VCO_HSCLK_RATE_2700MHZDIV1000) rrate = DP_VCO_HSCLK_RATE_2700MHZDIV1000; else if (rate <= DP_VCO_HSCLK_RATE_5400MHZDIV1000) rrate = DP_VCO_HSCLK_RATE_5400MHZDIV1000; else rrate = vco->max_rate; pr_debug("%s: rrate=%ld\n", __func__, rrate); *parent_rate = rrate; return rrate; }