/* * Copyright (c) 2015-2016 The Linux Foundation. All rights reserved. * * Previously licensed under the ISC license by Qualcomm Atheros, Inc. * * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /* * This file was originally distributed by Qualcomm Atheros, Inc. * under proprietary terms before Copyright ownership was assigned * to the Linux Foundation. */ /** * DOC: hif_napi.c * * HIF NAPI interface implementation */ #include /* memset */ /* Linux headers */ #include #include #include #include #include #ifdef HELIUMPLUS #include #include #endif #include /* Driver headers */ #include #include #include #include #include #include enum napi_decision_vector { HIF_NAPI_NOEVENT = 0, HIF_NAPI_INITED = 1, HIF_NAPI_CONF_UP = 2 }; #define ENABLE_NAPI_MASK (HIF_NAPI_INITED | HIF_NAPI_CONF_UP) #ifdef HELIUMPLUS static inline int hif_get_irq_for_ce(int ce_id) { return pld_snoc_get_irq(ce_id); } #else /* HELIUMPLUS */ static inline int hif_get_irq_for_ce(int ce_id) { return -EINVAL; } static int hif_napi_cpu_migrate(struct qca_napi_data *napid, int cpu, int action) { return 0; } int hif_napi_cpu_blacklist(bool is_on) { return 0; } #endif /* HELIUMPLUS */ /** * hif_napi_create() - creates the NAPI structures for a given CE * @hif : pointer to hif context * @pipe_id: the CE id on which the instance will be created * @poll : poll function to be used for this NAPI instance * @budget : budget to be registered with the NAPI instance * @scale : scale factor on the weight (to scaler budget to 1000) * * Description: * Creates NAPI instances. This function is called * unconditionally during initialization. It creates * napi structures through the proper HTC/HIF calls. * The structures are disabled on creation. * Note that for each NAPI instance a separate dummy netdev is used * * Return: * < 0: error * = 0: * > 0: id of the created object (for multi-NAPI, number of objects created) */ int hif_napi_create(struct hif_opaque_softc *hif_ctx, int (*poll)(struct napi_struct *, int), int budget, int scale) { int i; struct qca_napi_data *napid; struct qca_napi_info *napii; struct CE_state *ce_state; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); int rc = 0; NAPI_DEBUG("-->(budget=%d, scale=%d)", budget, scale); NAPI_DEBUG("hif->napi_data.state = 0x%08x", hif->napi_data.state); NAPI_DEBUG("hif->napi_data.ce_map = 0x%08x", hif->napi_data.ce_map); napid = &(hif->napi_data); if (0 == (napid->state & HIF_NAPI_INITED)) { memset(napid, 0, sizeof(struct qca_napi_data)); spin_lock_init(&(napid->lock)); napid->state |= HIF_NAPI_INITED; rc = hif_napi_cpu_init(napid); if (rc != 0) { HIF_ERROR("NAPI_initialization failed,. %d", rc); goto hnc_err; } HIF_INFO("%s: NAPI structures initialized, rc=%d", __func__, rc); } for (i = 0; i < hif->ce_count; i++) { ce_state = hif->ce_id_to_state[i]; NAPI_DEBUG("ce %d: htt_rx=%d htt_tx=%d", i, ce_state->htt_rx_data, ce_state->htt_tx_data); if (!ce_state->htt_rx_data) continue; /* Now this is a CE where we need NAPI on */ NAPI_DEBUG("Creating NAPI on pipe %d", i); napii = &(napid->napis[i]); memset(napii, 0, sizeof(struct qca_napi_info)); napii->scale = scale; napii->id = NAPI_PIPE2ID(i); napii->hif_ctx = hif_ctx; napii->irq = hif_get_irq_for_ce(i); if (napii->irq < 0) HIF_WARN("%s: bad IRQ value for CE %d: %d", __func__, i, napii->irq); init_dummy_netdev(&(napii->netdev)); NAPI_DEBUG("adding napi=%p to netdev=%p (poll=%p, bdgt=%d)", &(napii->napi), &(napii->netdev), poll, budget); netif_napi_add(&(napii->netdev), &(napii->napi), poll, budget); NAPI_DEBUG("after napi_add"); NAPI_DEBUG("napi=0x%p, netdev=0x%p", &(napii->napi), &(napii->netdev)); NAPI_DEBUG("napi.dev_list.prev=0x%p, next=0x%p", napii->napi.dev_list.prev, napii->napi.dev_list.next); NAPI_DEBUG("dev.napi_list.prev=0x%p, next=0x%p", napii->netdev.napi_list.prev, napii->netdev.napi_list.next); /* It is OK to change the state variable below without * protection as there should be no-one around yet */ napid->ce_map |= (0x01 << i); HIF_INFO("%s: NAPI id %d created for pipe %d", __func__, napii->id, i); } NAPI_DEBUG("NAPI idscreated for pipe all applicable pipes"); hnc_err: NAPI_DEBUG("<--napi_instances_map=%x]", napid->ce_map); return napid->ce_map; } /** * * hif_napi_destroy() - destroys the NAPI structures for a given instance * @hif : pointer to hif context * @ce_id : the CE id whose napi instance will be destroyed * @force : if set, will destroy even if entry is active (de-activates) * * Description: * Destroy a given NAPI instance. This function is called * unconditionally during cleanup. * Refuses to destroy an entry of it is still enabled (unless force=1) * Marks the whole napi_data invalid if all instances are destroyed. * * Return: * -EINVAL: specific entry has not been created * -EPERM : specific entry is still active * 0 < : error * 0 = : success */ int hif_napi_destroy(struct hif_opaque_softc *hif_ctx, uint8_t id, int force) { uint8_t ce = NAPI_ID2PIPE(id); int rc = 0; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); NAPI_DEBUG("-->(id=%d, force=%d)", id, force); if (0 == (hif->napi_data.state & HIF_NAPI_INITED)) { HIF_ERROR("%s: NAPI not initialized or entry %d not created", __func__, id); rc = -EINVAL; } else if (0 == (hif->napi_data.ce_map & (0x01 << ce))) { HIF_ERROR("%s: NAPI instance %d (pipe %d) not created", __func__, id, ce); rc = -EINVAL; } else { struct qca_napi_data *napid; struct qca_napi_info *napii; napid = &(hif->napi_data); napii = &(napid->napis[ce]); if (hif->napi_data.state == HIF_NAPI_CONF_UP) { if (force) { napi_disable(&(napii->napi)); HIF_INFO("%s: NAPI entry %d force disabled", __func__, id); NAPI_DEBUG("NAPI %d force disabled", id); } else { HIF_ERROR("%s: Cannot destroy active NAPI %d", __func__, id); rc = -EPERM; } } if (0 == rc) { NAPI_DEBUG("before napi_del"); NAPI_DEBUG("napi.dlist.prv=0x%p, next=0x%p", napii->napi.dev_list.prev, napii->napi.dev_list.next); NAPI_DEBUG("dev.napi_l.prv=0x%p, next=0x%p", napii->netdev.napi_list.prev, napii->netdev.napi_list.next); netif_napi_del(&(napii->napi)); napid->ce_map &= ~(0x01 << ce); napii->scale = 0; HIF_INFO("%s: NAPI %d destroyed\n", __func__, id); /* if there are no active instances and * if they are all destroyed, * set the whole structure to uninitialized state */ if (napid->ce_map == 0) { rc = hif_napi_cpu_deinit(napid); /* caller is tolerant to receiving !=0 rc */ memset(napid, 0, sizeof(struct qca_napi_data)); HIF_INFO("%s: no NAPI instances. Zapped.", __func__); } } } return rc; } /** * * hif_napi_get_all() - returns the address of the whole HIF NAPI structure * @hif: pointer to hif context * * Description: * Returns the address of the whole structure * * Return: * : address of the whole HIF NAPI structure */ inline struct qca_napi_data *hif_napi_get_all(struct hif_opaque_softc *hif_ctx) { struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); return &(hif->napi_data); } /** * * hif_napi_event() - reacts to events that impact NAPI * @hif : pointer to hif context * @evnt: event that has been detected * @data: more data regarding the event * * Description: * This function handles two types of events: * 1- Events that change the state of NAPI (enabled/disabled): * {NAPI_EVT_INI_FILE, NAPI_EVT_CMD_STATE} * The state is retrievable by "hdd_napi_enabled(-1)" * - NAPI will be on if either INI file is on and it has not been disabled * by a subsequent vendor CMD, * or it has been enabled by a vendor CMD. * 2- Events that change the CPU affinity of a NAPI instance/IRQ: * {NAPI_EVT_TPUT_STATE, NAPI_EVT_CPU_STATE} * - NAPI will support a throughput mode (HI/LO), kept at napid->napi_mode * - NAPI will switch throughput mode based on hdd_napi_throughput_policy() * - In LO tput mode, NAPI will yield control if its interrupts to the system * management functions. However in HI throughput mode, NAPI will actively * manage its interrupts/instances (by trying to disperse them out to * separate performance cores). * - CPU eligibility is kept up-to-date by NAPI_EVT_CPU_STATE events. * * Return: * < 0: some error * = 0: event handled successfully */ int hif_napi_event(struct hif_opaque_softc *hif_ctx, enum qca_napi_event event, void *data) { int rc = 0; uint32_t prev_state; int i; struct napi_struct *napi; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); struct qca_napi_data *napid = &(hif->napi_data); enum qca_napi_tput_state tput_mode = QCA_NAPI_TPUT_UNINITIALIZED; NAPI_DEBUG("%s: -->(event=%d, aux=%p)", __func__, event, data); spin_lock_bh(&(napid->lock)); prev_state = napid->state; switch (event) { case NAPI_EVT_INI_FILE: case NAPI_EVT_CMD_STATE: { int on = (data != ((void *)0)); HIF_INFO("%s: received evnt: CONF %s; v = %d (state=0x%0x)", __func__, (event == NAPI_EVT_INI_FILE)?".ini file":"cmd", on, prev_state); if (on) if (prev_state & HIF_NAPI_CONF_UP) { HIF_INFO("%s: duplicate NAPI conf ON msg", __func__); } else { HIF_INFO("%s: setting configuration to ON", __func__); napid->state |= HIF_NAPI_CONF_UP; } else /* off request */ if (prev_state & HIF_NAPI_CONF_UP) { HIF_INFO("%s: setting configuration to OFF", __func__); napid->state &= ~HIF_NAPI_CONF_UP; } else { HIF_INFO("%s: duplicate NAPI conf OFF msg", __func__); } break; } /* case NAPI_INIT_FILE/CMD_STATE */ case NAPI_EVT_CPU_STATE: { int cpu = ((unsigned long int)data >> 16); int val = ((unsigned long int)data & 0x0ff); NAPI_DEBUG("%s: evt=CPU_STATE on CPU %d value=%d", __func__, cpu, val); /* state has already been set by hnc_cpu_notify_cb */ if ((val == QCA_NAPI_CPU_DOWN) && (napid->napi_mode == QCA_NAPI_TPUT_HI) && /* we manage */ (napid->napi_cpu[cpu].napis != 0)) { NAPI_DEBUG("%s: Migrating NAPIs out of cpu %d", __func__, cpu); rc = hif_napi_cpu_migrate(napid, cpu, HNC_ACT_RELOCATE); napid->napi_cpu[cpu].napis = 0; } /* in QCA_NAPI_TPUT_LO case, napis MUST == 0 */ break; } case NAPI_EVT_TPUT_STATE: { tput_mode = (enum qca_napi_tput_state)data; if (tput_mode == QCA_NAPI_TPUT_LO) { /* from TPUT_HI -> TPUT_LO */ NAPI_DEBUG("%s: Moving to napi_tput_LO state", __func__); rc = hif_napi_cpu_migrate(napid, HNC_ANY_CPU, HNC_ACT_COLLAPSE); } else { /* from TPUT_LO -> TPUT->HI */ NAPI_DEBUG("%s: Moving to napi_tput_HI state", __func__); rc = hif_napi_cpu_migrate(napid, HNC_ANY_CPU, HNC_ACT_DISPERSE); } napid->napi_mode = tput_mode; break; } default: { HIF_ERROR("%s: unknown event: %d (data=0x%0lx)", __func__, event, (unsigned long) data); break; } /* default */ }; /* switch */ spin_unlock_bh(&(napid->lock)); /* Call this API without spin_locks hif_napi_cpu_blacklist */ if (tput_mode == QCA_NAPI_TPUT_LO) /* yield control of IRQs to kernel */ hif_napi_cpu_blacklist(false); else if (tput_mode == QCA_NAPI_TPUT_HI) hif_napi_cpu_blacklist(true); if (prev_state != hif->napi_data.state) { if (hif->napi_data.state == ENABLE_NAPI_MASK) { rc = 1; for (i = 0; i < CE_COUNT_MAX; i++) if ((hif->napi_data.ce_map & (0x01 << i))) { napi = &(hif->napi_data.napis[i].napi); NAPI_DEBUG("%s: enabling NAPI %d", __func__, i); napi_enable(napi); } } else { rc = 0; for (i = 0; i < CE_COUNT_MAX; i++) if (hif->napi_data.ce_map & (0x01 << i)) { napi = &(hif->napi_data.napis[i].napi); NAPI_DEBUG("%s: disabling NAPI %d", __func__, i); napi_disable(napi); } } } else { HIF_INFO("%s: no change in hif napi state (still %d)", __func__, prev_state); } NAPI_DEBUG("<--[rc=%d]", rc); return rc; } /** * hif_napi_enabled() - checks whether NAPI is enabled for given ce or not * @hif: hif context * @ce : CE instance (or -1, to check if any CEs are enabled) * * Return: bool */ int hif_napi_enabled(struct hif_opaque_softc *hif_ctx, int ce) { int rc; struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); if (-1 == ce) rc = ((hif->napi_data.state == ENABLE_NAPI_MASK)); else rc = ((hif->napi_data.state == ENABLE_NAPI_MASK) && (hif->napi_data.ce_map & (0x01 << ce))); return rc; }; /** * hif_napi_enable_irq() - enables bus interrupts after napi_complete * * @hif: hif context * @id : id of NAPI instance calling this (used to determine the CE) * * Return: void */ inline void hif_napi_enable_irq(struct hif_opaque_softc *hif, int id) { struct hif_softc *scn = HIF_GET_SOFTC(hif); hif_irq_enable(scn, NAPI_ID2PIPE(id)); } /** * hif_napi_schedule() - schedules napi, updates stats * @scn: hif context * @ce_id: index of napi instance * * Return: void */ int hif_napi_schedule(struct hif_opaque_softc *hif_ctx, int ce_id) { int cpu = smp_processor_id(); struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); hif_record_ce_desc_event(scn, ce_id, NAPI_SCHEDULE, NULL, NULL, 0); scn->napi_data.napis[ce_id].stats[cpu].napi_schedules++; NAPI_DEBUG("scheduling napi %d (ce:%d)", scn->napi_data.napis[ce_id].id, ce_id); napi_schedule(&(scn->napi_data.napis[ce_id].napi)); return true; } /** * hif_napi_poll() - NAPI poll routine * @napi : pointer to NAPI struct as kernel holds it * @budget: * * This is the body of the poll function. * The poll function is called by kernel. So, there is a wrapper * function in HDD, which in turn calls this function. * Two main reasons why the whole thing is not implemented in HDD: * a) references to things like ce_service that HDD is not aware of * b) proximity to the implementation of ce_tasklet, which the body * of this function should be very close to. * * NOTE TO THE MAINTAINER: * Consider this function and ce_tasklet very tightly coupled pairs. * Any changes to ce_tasklet or this function may likely need to be * reflected in the counterpart. * * Returns: * int: the amount of work done in this poll ( <= budget) */ int hif_napi_poll(struct hif_opaque_softc *hif_ctx, struct napi_struct *napi, int budget) { int rc = 0; /* default: no work done, also takes care of error */ int normalized, bucket; int cpu = smp_processor_id(); struct hif_softc *hif = HIF_GET_SOFTC(hif_ctx); struct qca_napi_info *napi_info; struct CE_state *ce_state = NULL; napi_info = (struct qca_napi_info *) container_of(napi, struct qca_napi_info, napi); NAPI_DEBUG("%s -->(napi(%d, irq=%d), budget=%d)", __func__, napi_info->id, napi_info->irq, budget); napi_info->stats[cpu].napi_polls++; hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id), NAPI_POLL_ENTER, NULL, NULL, cpu); if (unlikely(NULL == hif)) QDF_ASSERT(hif != NULL); /* emit a warning if hif NULL */ else { rc = ce_per_engine_service(hif, NAPI_ID2PIPE(napi_info->id)); NAPI_DEBUG("%s: ce_per_engine_service processed %d msgs", __func__, rc); } napi_info->stats[cpu].napi_workdone += rc; normalized = (rc / napi_info->scale); if (NULL != hif) { ce_state = hif->ce_id_to_state[NAPI_ID2PIPE(napi_info->id)]; if (ce_state && ce_state->lro_flush_cb) ce_state->lro_flush_cb(ce_state->lro_data); } /* do not return 0, if there was some work done, * even if it is below the scale */ if (rc) normalized++; bucket = (normalized / QCA_NAPI_DEF_SCALE); napi_info->stats[cpu].napi_budget_uses[bucket]++; /* if ce_per engine reports 0, then poll should be terminated */ if (0 == rc) NAPI_DEBUG("%s:%d: nothing processed by CE. Completing NAPI", __func__, __LINE__); if (ce_state && (!ce_check_rx_pending(ce_state) || 0 == rc)) { napi_info->stats[cpu].napi_completes++; hif_record_ce_desc_event(hif, ce_state->id, NAPI_COMPLETE, NULL, NULL, 0); if (normalized >= budget) normalized = budget - 1; /* enable interrupts */ napi_complete(napi); if (NULL != hif) { hif_napi_enable_irq(hif_ctx, napi_info->id); /* support suspend/resume */ qdf_atomic_dec(&(hif->active_tasklet_cnt)); } NAPI_DEBUG("%s:%d: napi_complete + enabling the interrupts", __func__, __LINE__); } else { /* 4.4 kernel NAPI implementation requires drivers to * return full work when they ask to be re-scheduled, * or napi_complete and re-start with a fresh interrupt */ normalized = budget; } hif_record_ce_desc_event(hif, NAPI_ID2PIPE(napi_info->id), NAPI_POLL_EXIT, NULL, NULL, normalized); NAPI_DEBUG("%s <--[normalized=%d]", __func__, normalized); return normalized; } #ifdef HELIUMPLUS /* * Local functions * - no argument checks, all internal/trusted callers */ #ifdef FEATURE_NAPI_DEBUG static void hnc_dump_cpus(struct qca_napi_data *napid) { int i; struct qca_napi_cpu *cpu = napid->napi_cpu; NAPI_DEBUG("%s: NAPI CPU TABLE", __func__); NAPI_DEBUG("lilclhead=%d, bigclhead=%d", napid->lilcl_head, napid->bigcl_head); for (i = 0; i < NR_CPUS; i++) { NAPI_DEBUG("CPU[%02d]: state:%d crid=%02d clid=%02d " "crmk:0x%0lx thmk:0x%0lx frq:%d eff:%ld " "napi = 0x%08x lnk:%d", i, cpu[i].state, cpu[i].core_id, cpu[i].cluster_id, cpu[i].core_mask.bits[0], cpu[i].thread_mask.bits[0], cpu[i].max_freq, cpu[i].efficiency, cpu[i].napis, cpu[i].cluster_nxt); } /* return; -- Linus does not like it, I do. */ } #else static void hnc_dump_cpus(struct qca_napi_data *napid) { /* no-op */ }; #endif /* FEATURE_NAPI_DEBUG */ /** * hnc_link_clusters() - partitions to cpu table into clusters * @napid: pointer to NAPI data * * Takes in a CPU topology table and builds two linked lists * (big cluster cores, list-head at bigcl_head, and little cluster * cores, list-head at lilcl_head) out of it. * * If there are more than two clusters: * - bigcl_head and lilcl_head will be different, * - the cluster with highest cpufreq will be considered the "big" cluster. * If there are more than one with the highest frequency, the *last* of such * clusters will be designated as the "big cluster" * - the cluster with lowest cpufreq will be considered the "li'l" cluster. * If there are more than one clusters with the lowest cpu freq, the *first* * of such clusters will be designated as the "little cluster" * - We only support up to 32 clusters * Return: 0 : OK * !0: error (at least one of lil/big clusters could not be found) */ #define HNC_MIN_CLUSTER 0 #define HNC_MAX_CLUSTER 31 static int hnc_link_clusters(struct qca_napi_data *napid) { int rc = 0; int i; int it = 0; uint32_t cl_done = 0x0; int cl, curcl, curclhead; int more; unsigned int lilfrq = INT_MAX; unsigned int bigfrq = 0; unsigned int clfrq; unsigned long cleff; int prev; struct qca_napi_cpu *cpus = napid->napi_cpu; napid->lilcl_head = napid->bigcl_head = -1; do { more = 0; it++; curcl = -1; for (i = 0; i < NR_CPUS; i++) { cl = cpus[i].cluster_id; NAPI_DEBUG("Processing cpu[%d], cluster=%d\n", i, cl); if ((cl < HNC_MIN_CLUSTER) || (cl > HNC_MAX_CLUSTER)) { NAPI_DEBUG("Bad cluster (%d). SKIPPED\n", cl); QDF_ASSERT(0); /* continue if ASSERTs are disabled */ continue; }; if (cpumask_weight(&(cpus[i].core_mask)) == 0) { NAPI_DEBUG("Core mask 0. SKIPPED\n"); continue; } if (cl_done & (0x01 << cl)) { NAPI_DEBUG("Cluster already processed. " "SKIPPED\n"); continue; } else { if (more == 0) { more = 1; curcl = cl; curclhead = i; /* row */ clfrq = cpus[i].max_freq; cleff = cpus[i].efficiency; prev = -1; }; if ((curcl >= 0) && (curcl != cl)) { NAPI_DEBUG("Entry cl(%d) != curcl(%d). " "SKIPPED\n", cl, curcl); continue; } if (cpus[i].efficiency != cleff) NAPI_DEBUG("WARN: ef(%ld)!=clef(%ld)\n", cpus[i].efficiency, cleff); if (cpus[i].max_freq != clfrq) NAPI_DEBUG("WARN: frq(%d)!=clfrq(%d)\n", cpus[i].max_freq, clfrq); if (clfrq >= bigfrq) { bigfrq = clfrq; napid->bigcl_head = curclhead; NAPI_DEBUG("bigcl=%d\n", curclhead); } if (clfrq < lilfrq) { lilfrq = clfrq; napid->lilcl_head = curclhead; NAPI_DEBUG("lilcl=%d\n", curclhead); } if (prev != -1) cpus[prev].cluster_nxt = i; prev = i; } } if (curcl >= 0) cl_done |= (0x01 << curcl); } while (more); if (qdf_unlikely((napid->lilcl_head < 0) && (napid->bigcl_head < 0))) rc = -EFAULT; hnc_dump_cpus(napid); /* if NAPI_DEBUG */ return rc; } #undef HNC_MIN_CLUSTER #undef HNC_MAX_CLUSTER /* * hotplug function group */ /** * hnc_cpu_notify_cb() - handles CPU hotplug events * * On transitions to online, we onlu handle the ONLINE event, * and ignore the PREP events, because we dont want to act too * early. * On transtion to offline, we act on PREP events, because * we may need to move the irqs/NAPIs to another CPU before * it is actually off-lined. * * Return: NOTIFY_OK (dont block action) */ static int hnc_cpu_notify_cb(struct notifier_block *nb, unsigned long action, void *hcpu) { int rc = NOTIFY_OK; unsigned long cpu = (unsigned long)hcpu; struct hif_opaque_softc *hif; struct qca_napi_data *napid = NULL; NAPI_DEBUG("-->%s(act=%ld, cpu=%ld)", __func__, action, cpu); hif = (struct hif_opaque_softc *)cds_get_context(QDF_MODULE_ID_HIF); if (qdf_likely(hif != NULL)) napid = hif_napi_get_all(hif); if (qdf_unlikely(napid == NULL)) { NAPI_DEBUG("%s: hif/napid NULL (%p/%p)", __func__, hif, napid); goto lab_hnc_notify; } switch (action) { case CPU_ONLINE: napid->napi_cpu[cpu].state = QCA_NAPI_CPU_UP; NAPI_DEBUG("%s: CPU %ld marked %d", __func__, cpu, napid->napi_cpu[cpu].state); break; case CPU_DEAD: /* already dead; we have marked it before, but ... */ case CPU_DEAD_FROZEN: napid->napi_cpu[cpu].state = QCA_NAPI_CPU_DOWN; NAPI_DEBUG("%s: CPU %ld marked %d", __func__, cpu, napid->napi_cpu[cpu].state); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: napid->napi_cpu[cpu].state = QCA_NAPI_CPU_DOWN; NAPI_DEBUG("%s: CPU %ld marked %d; updating affinity", __func__, cpu, napid->napi_cpu[cpu].state); /** * we need to move any NAPIs on this CPU out. * if we are in LO throughput mode, then this is valid * if the CPU is the the low designated CPU. */ hif_napi_event(hif, NAPI_EVT_CPU_STATE, (void *) ((cpu << 16) | napid->napi_cpu[cpu].state)); break; default: NAPI_DEBUG("%s: ignored. action: %ld", __func__, action); break; } /* switch */ lab_hnc_notify: NAPI_DEBUG("<--%s [%d]", __func__, rc); return rc; } /** * hnc_hotplug_hook() - installs a hotplug notifier * @register: !0 => register , =0 => deregister * Note that this is different from the cpu notifier used by * rx_thread (cds_schedule.c). * We may consider combining these modifiers in the future. * * Return: 0: success * <0: error */ static struct notifier_block hnc_cpu_notifier = { .notifier_call = hnc_cpu_notify_cb, }; static int hnc_hotplug_hook(int install) { int rc = 0; NAPI_DEBUG("-->%s(%d)", __func__, install); if (install) rc = register_hotcpu_notifier(&hnc_cpu_notifier); else unregister_hotcpu_notifier(&hnc_cpu_notifier); NAPI_DEBUG("<--%s()[%d]", __func__, rc); return rc; } /** * hnc_install_tput() - installs a callback in the throughput detector * @register: !0 => register; =0: unregister * * installs a callback to be called when wifi driver throughput (tx+rx) * crosses a threshold. Currently, we are using the same criteria as * TCP ack suppression (500 packets/100ms by default). * * Return: 0 : success * <0: failure */ static int hnc_tput_hook(int install) { int rc = 0; /* * Nothing, until the bw_calculation accepts registration * it is now hardcoded in the wlan_hdd_main.c::hdd_bus_bw_compute_cbk * hdd_napi_throughput_policy(...) */ return rc; } /* * Implementation of hif_napi_cpu API */ /** * hif_napi_cpu_init() - initialization of irq affinity block * @ctx: pointer to qca_napi_data * * called by hif_napi_create, after the first instance is called * - builds napi_rss_cpus table from cpu topology * - links cores of the same clusters together * - installs hot-plug notifier * - installs throughput trigger notifier (when such mechanism exists) * * Return: 0: OK * <0: error code */ int hif_napi_cpu_init(void *ctx) { int rc = 0; int i; struct qca_napi_data *napid = (struct qca_napi_data *)ctx; struct qca_napi_cpu *cpus = napid->napi_cpu; NAPI_DEBUG("--> "); if (cpus[0].state != QCA_NAPI_CPU_UNINITIALIZED) { NAPI_DEBUG("NAPI RSS table already initialized.\n"); rc = -EALREADY; goto lab_rss_init; } /* build CPU topology table */ for_each_possible_cpu(i) { cpus[i].state = ((cpumask_test_cpu(i, cpu_online_mask) ? QCA_NAPI_CPU_UP : QCA_NAPI_CPU_DOWN)); cpus[i].core_id = topology_core_id(i); cpus[i].cluster_id = topology_physical_package_id(i); cpumask_copy(&(cpus[i].core_mask), topology_core_cpumask(i)); cpumask_copy(&(cpus[i].thread_mask), topology_sibling_cpumask(i)); cpus[i].max_freq = cpufreq_quick_get_max(i); cpus[i].efficiency = arch_get_cpu_efficiency(i); cpus[i].napis = 0x0; cpus[i].cluster_nxt = -1; /* invalid */ } /* link clusters together */ rc = hnc_link_clusters(napid); if (0 != rc) goto lab_err_topology; /* install hotplug notifier */ rc = hnc_hotplug_hook(1); if (0 != rc) goto lab_err_hotplug; /* install throughput notifier */ rc = hnc_tput_hook(1); if (0 == rc) goto lab_rss_init; lab_err_hotplug: hnc_tput_hook(0); hnc_hotplug_hook(0); lab_err_topology: memset(napid->napi_cpu, sizeof(struct qca_napi_cpu) * NR_CPUS, 0); lab_rss_init: NAPI_DEBUG("<-- [rc=%d]", rc); return rc; } /** * hif_napi_cpu_deinit() - clean-up of irq affinity block * * called by hif_napi_destroy, when the last instance is removed * - uninstalls throughput and hotplug notifiers * - clears cpu topology table * Return: 0: OK */ int hif_napi_cpu_deinit(void *ctx) { int rc = 0; struct qca_napi_data *napid = (struct qca_napi_data *)ctx; NAPI_DEBUG("-->%s(...)", __func__); /* uninstall tput notifier */ rc = hnc_tput_hook(0); /* uninstall hotplug notifier */ rc = hnc_hotplug_hook(0); /* clear the topology table */ memset(napid->napi_cpu, sizeof(struct qca_napi_cpu) * NR_CPUS, 0); NAPI_DEBUG("<--%s[rc=%d]", __func__, rc); return rc; } /** * hncm_migrate_to() - migrates a NAPI to a CPU * @napid: pointer to NAPI block * @ce_id: CE_id of the NAPI instance * @didx : index in the CPU topology table for the CPU to migrate to * * Migrates NAPI (identified by the CE_id) to the destination core * Updates the napi_map of the destination entry * * Return: * =0 : success * <0 : error */ int hncm_migrate_to(struct qca_napi_data *napid, int napi_ce, int didx) { int rc = 0; cpumask_t cpumask; NAPI_DEBUG("-->%s(napi_cd=%d, didx=%d)", __func__, napi_ce, didx); cpumask.bits[0] = (1 << didx); rc = irq_set_affinity_hint(napid->napis[napi_ce].irq, &cpumask); napid->napi_cpu[didx].napis |= (1 << napi_ce); NAPI_DEBUG("<--%s[%d]", __func__, rc); return rc; } /** * hncm_dest_cpu() - finds a destination CPU for NAPI * @napid: pointer to NAPI block * @act : RELOCATE | COLLAPSE | DISPERSE * * Finds the designated destionation for the next IRQ. * RELOCATE: translated to either COLLAPSE or DISPERSE based * on napid->napi_mode (throughput state) * COLLAPSE: All have the same destination: the first online CPU in lilcl * DISPERSE: One of the CPU in bigcl, which has the smallest number of * NAPIs on it * * Return: >=0 : index in the cpu topology table * : < 0 : error */ int hncm_dest_cpu(struct qca_napi_data *napid, int act) { int destidx = -1; int head, i; NAPI_DEBUG("-->%s(act=%d)", __func__, act); if (act == HNC_ACT_RELOCATE) { if (napid->napi_mode == QCA_NAPI_TPUT_LO) act = HNC_ACT_COLLAPSE; else act = HNC_ACT_DISPERSE; NAPI_DEBUG("%s: act changed from HNC_ACT_RELOCATE to %d", __func__, act); } if (act == HNC_ACT_COLLAPSE) { head = i = napid->lilcl_head; retry_collapse: while (i >= 0) { if (napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) { destidx = i; break; } else { i = napid->napi_cpu[i].cluster_nxt; } } if ((destidx < 0) && (head == napid->lilcl_head)) { NAPI_DEBUG("%s: COLLAPSE: no lilcl dest, try bigcl", __func__); head = i = napid->bigcl_head; goto retry_collapse; } } else { /* HNC_ACT_DISPERSE */ int smallest = 99; /* all 32 bits full */ int smallidx = -1; head = i = napid->bigcl_head; retry_disperse: while (i >= 0) { if ((napid->napi_cpu[i].state == QCA_NAPI_CPU_UP) && (hweight32(napid->napi_cpu[i].napis) <= smallest)) { smallest = napid->napi_cpu[i].napis; smallidx = i; } i = napid->napi_cpu[i].cluster_nxt; } destidx = smallidx; if ((destidx < 0) && (head == napid->bigcl_head)) { NAPI_DEBUG("%s: DISPERSE: no bigcl dest, try lilcl", __func__); head = i = napid->lilcl_head; goto retry_disperse; } } NAPI_DEBUG("<--%s[dest=%d]", __func__, destidx); return destidx; } /** * hif_napi_cpu_migrate() - migrate IRQs away * @cpu: -1: all CPUs specific CPU * @act: COLLAPSE | DISPERSE * * Moves IRQs/NAPIs from specific or all CPUs (specified by @cpu) to eligible * cores. Eligible cores are: * act=COLLAPSE -> the first online core of the little cluster * act=DISPERSE -> separate cores of the big cluster, so that each core will * host minimum number of NAPIs/IRQs (napid->cpus[cpu].napis) * * Note that this function is called with a spinlock acquired already. * * Return: =0: success * <0: error */ int hif_napi_cpu_migrate(struct qca_napi_data *napid, int cpu, int action) { int rc = 0; struct qca_napi_cpu *cpup; int i, dind; uint32_t napis; NAPI_DEBUG("-->%s(.., cpu=%d, act=%d)", __func__, cpu, action); /* the following is really: hif_napi_enabled() with less overhead */ if (napid->ce_map == 0) { NAPI_DEBUG("%s: NAPI disabled. Not migrating.", __func__); goto hncm_return; } cpup = napid->napi_cpu; switch (action) { case HNC_ACT_RELOCATE: case HNC_ACT_DISPERSE: case HNC_ACT_COLLAPSE: { /* first find the src napi set */ if (cpu == HNC_ANY_CPU) napis = napid->ce_map; else napis = cpup[cpu].napis; /* then clear the napi bitmap on each CPU */ for (i = 0; i < NR_CPUS; i++) cpup[i].napis = 0; /* then for each of the NAPIs to disperse: */ for (i = 0; i < CE_COUNT_MAX; i++) if (napis & (1 << i)) { /* find a destination CPU */ dind = hncm_dest_cpu(napid, action); if (dind >= 0) { NAPI_DEBUG("Migrating NAPI ce%d to %d", i, dind); rc = hncm_migrate_to(napid, i, dind); } else { NAPI_DEBUG("No dest for NAPI ce%d", i); hnc_dump_cpus(napid); rc = -1; } } break; } default: { NAPI_DEBUG("%s: bad action: %d\n", __func__, action); QDF_BUG(0); break; } } /* switch action */ hncm_return: hnc_dump_cpus(napid); return rc; } /** * hif_napi_cpu_blacklist() - calls kernel API to enable/disable blacklisting * * Return: from the API */ int hif_napi_cpu_blacklist(bool is_on) { int rc = 0; NAPI_DEBUG("-->%s(%d)", __func__, is_on); if (is_on) rc = irq_blacklist_on(); else rc = irq_blacklist_off(); NAPI_DEBUG("<--%s[%d]", __func__, rc); return rc; } #endif /* ifdef HELIUMPLUS */