/* * Copyright (c) 2013-2016 The Linux Foundation. All rights reserved. * * Previously licensed under the ISC license by Qualcomm Atheros, Inc. * * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /* * This file was originally distributed by Qualcomm Atheros, Inc. * under proprietary terms before Copyright ownership was assigned * to the Linux Foundation. */ #include "targcfg.h" #include "qdf_lock.h" #include "qdf_status.h" #include "qdf_status.h" #include <qdf_atomic.h> /* qdf_atomic_read */ #include <targaddrs.h> #include "hif_io32.h" #include <hif.h> #include "regtable.h" #define ATH_MODULE_NAME hif #include <a_debug.h> #include "hif_main.h" #include "ce_api.h" #include "qdf_trace.h" #include "pld_common.h" #include "hif_debug.h" #include "ce_internal.h" #include "ce_reg.h" #include "ce_assignment.h" #include "ce_tasklet.h" #ifndef CONFIG_WIN #include "qwlan_version.h" #endif #define CE_POLL_TIMEOUT 10 /* ms */ #define AGC_DUMP 1 #define CHANINFO_DUMP 2 #define BB_WATCHDOG_DUMP 3 #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG #define PCIE_ACCESS_DUMP 4 #endif #include "mp_dev.h" /* Forward references */ static int hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info); /* * Fix EV118783, poll to check whether a BMI response comes * other than waiting for the interruption which may be lost. */ /* #define BMI_RSP_POLLING */ #define BMI_RSP_TO_MILLISEC 1000 #ifdef CONFIG_BYPASS_QMI #define BYPASS_QMI 1 #else #define BYPASS_QMI 0 #endif #ifdef CONFIG_WIN #if ENABLE_10_4_FW_HDR #define WDI_IPA_SERVICE_GROUP 5 #define WDI_IPA_TX_SVC MAKE_SERVICE_ID(WDI_IPA_SERVICE_GROUP, 0) #define HTT_DATA2_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 1) #define HTT_DATA3_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 2) #endif /* ENABLE_10_4_FW_HDR */ #endif static int hif_post_recv_buffers(struct hif_softc *scn); static void hif_config_rri_on_ddr(struct hif_softc *scn); /** * hif_target_access_log_dump() - dump access log * * dump access log * * Return: n/a */ #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG static void hif_target_access_log_dump(void) { hif_target_dump_access_log(); } #endif void hif_trigger_dump(struct hif_opaque_softc *hif_ctx, uint8_t cmd_id, bool start) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); switch (cmd_id) { case AGC_DUMP: if (start) priv_start_agc(scn); else priv_dump_agc(scn); break; case CHANINFO_DUMP: if (start) priv_start_cap_chaninfo(scn); else priv_dump_chaninfo(scn); break; case BB_WATCHDOG_DUMP: priv_dump_bbwatchdog(scn); break; #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG case PCIE_ACCESS_DUMP: hif_target_access_log_dump(); break; #endif default: HIF_ERROR("%s: Invalid htc dump command", __func__); break; } } static void ce_poll_timeout(void *arg) { struct CE_state *CE_state = (struct CE_state *)arg; if (CE_state->timer_inited) { ce_per_engine_service(CE_state->scn, CE_state->id); qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT); } } static unsigned int roundup_pwr2(unsigned int n) { int i; unsigned int test_pwr2; if (!(n & (n - 1))) return n; /* already a power of 2 */ test_pwr2 = 4; for (i = 0; i < 29; i++) { if (test_pwr2 > n) return test_pwr2; test_pwr2 = test_pwr2 << 1; } QDF_ASSERT(0); /* n too large */ return 0; } #define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C #define ADRASTEA_DST_WR_INDEX_OFFSET 0x40 static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = { { 0, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 3, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 4, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 5, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 7, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 1, ADRASTEA_DST_WR_INDEX_OFFSET}, { 2, ADRASTEA_DST_WR_INDEX_OFFSET}, { 7, ADRASTEA_DST_WR_INDEX_OFFSET}, { 8, ADRASTEA_DST_WR_INDEX_OFFSET}, #ifdef QCA_WIFI_3_0_ADRASTEA { 9, ADRASTEA_DST_WR_INDEX_OFFSET}, { 10, ADRASTEA_DST_WR_INDEX_OFFSET}, { 11, ADRASTEA_DST_WR_INDEX_OFFSET}, #endif }; static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = { { 0, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 3, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 4, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 7, ADRASTEA_SRC_WR_INDEX_OFFSET}, { 1, ADRASTEA_DST_WR_INDEX_OFFSET}, { 2, ADRASTEA_DST_WR_INDEX_OFFSET}, { 5, ADRASTEA_DST_WR_INDEX_OFFSET}, { 7, ADRASTEA_DST_WR_INDEX_OFFSET}, { 8, ADRASTEA_DST_WR_INDEX_OFFSET}, }; /* CE_PCI TABLE */ /* * NOTE: the table below is out of date, though still a useful reference. * Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual * mapping of HTC services to HIF pipes. */ /* * This authoritative table defines Copy Engine configuration and the mapping * of services/endpoints to CEs. A subset of this information is passed to * the Target during startup as a prerequisite to entering BMI phase. * See: * target_service_to_ce_map - Target-side mapping * hif_map_service_to_pipe - Host-side mapping * target_ce_config - Target-side configuration * host_ce_config - Host-side configuration ============================================================================ Purpose | Service / Endpoint | CE | Dire | Xfer | Xfer | | | ctio | Size | Frequency | | | n | | ============================================================================ tx | HTT_DATA (downlink) | CE 0 | h->t | medium - | very frequent descriptor | | | | O(100B) | and regular download | | | | | ---------------------------------------------------------------------------- rx | HTT_DATA (uplink) | CE 1 | t->h | small - | frequent and indication | | | | O(10B) | regular upload | | | | | ---------------------------------------------------------------------------- MSDU | DATA_BK (uplink) | CE 2 | t->h | large - | rare upload | | | | O(1000B) | (frequent e.g. noise | | | | | during IP1.0 packets | | | | | testing) ---------------------------------------------------------------------------- MSDU | DATA_BK (downlink) | CE 3 | h->t | large - | very rare download | | | | O(1000B) | (frequent e.g. | | | | | during IP1.0 misdirecte | | | | | testing) d EAPOL | | | | | packets | | | | | ---------------------------------------------------------------------------- n/a | DATA_BE, DATA_VI | CE 2 | t->h | | never(?) | DATA_VO (uplink) | | | | ---------------------------------------------------------------------------- n/a | DATA_BE, DATA_VI | CE 3 | h->t | | never(?) | DATA_VO (downlink) | | | | ---------------------------------------------------------------------------- WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent | | | | O(100B) | ---------------------------------------------------------------------------- WMI | WMI_CONTROL | CE 5 | h->t | medium - | infrequent messages | (downlink) | | | O(100B) | | | | | | ---------------------------------------------------------------------------- n/a | HTC_CTRL_RSVD, | CE 1 | t->h | | never(?) | HTC_RAW_STREAMS | | | | | (uplink) | | | | ---------------------------------------------------------------------------- n/a | HTC_CTRL_RSVD, | CE 0 | h->t | | never(?) | HTC_RAW_STREAMS | | | | | (downlink) | | | | ---------------------------------------------------------------------------- diag | none (raw CE) | CE 7 | t<>h | 4 | Diag Window | | | | | infrequent ============================================================================ */ /* * Map from service/endpoint to Copy Engine. * This table is derived from the CE_PCI TABLE, above. * It is passed to the Target at startup for use by firmware. */ static struct service_to_pipe target_service_to_ce_map_wlan[] = { { WMI_DATA_VO_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_VO_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_DATA_BK_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_BK_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_DATA_BE_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_BE_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_DATA_VI_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_VI_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_CONTROL_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_CONTROL_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 0, /* could be moved to 3 (share with WMI) */ }, { HTC_CTRL_RSVD_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { HTC_RAW_STREAMS_SVC, /* not currently used */ PIPEDIR_OUT, /* out = UL = host -> target */ 0, }, { HTC_RAW_STREAMS_SVC, /* not currently used */ PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { HTT_DATA_MSG_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 4, }, { HTT_DATA_MSG_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { WDI_IPA_TX_SVC, PIPEDIR_OUT, /* in = DL = target -> host */ 5, }, #if defined(QCA_WIFI_3_0_ADRASTEA) { HTT_DATA2_MSG_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 9, }, { HTT_DATA3_MSG_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 10, }, { PACKET_LOG_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 11, }, #endif /* (Additions here) */ { /* Must be last */ 0, 0, 0, }, }; static struct service_to_pipe target_service_to_ce_map_ar900b[] = { { WMI_DATA_VO_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_VO_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_DATA_BK_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_BK_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_DATA_BE_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_BE_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_DATA_VI_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_DATA_VI_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { WMI_CONTROL_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { WMI_CONTROL_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 0, /* could be moved to 3 (share with WMI) */ }, { HTC_CTRL_RSVD_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { HTC_RAW_STREAMS_SVC, /* not currently used */ PIPEDIR_OUT, /* out = UL = host -> target */ 0, }, { HTC_RAW_STREAMS_SVC, /* not currently used */ PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { HTT_DATA_MSG_SVC, PIPEDIR_OUT, /* out = UL = host -> target */ 4, }, #if WLAN_FEATURE_FASTPATH { HTT_DATA_MSG_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 5, }, #else /* WLAN_FEATURE_FASTPATH */ { HTT_DATA_MSG_SVC, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, #endif /* WLAN_FEATURE_FASTPATH */ /* (Additions here) */ { /* Must be last */ 0, 0, 0, }, }; static struct service_to_pipe *target_service_to_ce_map = target_service_to_ce_map_wlan; static int target_service_to_ce_map_sz = sizeof(target_service_to_ce_map_wlan); static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map; static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map); static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = { {WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */ {WMI_DATA_VO_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */ {WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,}, /* out = UL = host -> target */ {WMI_DATA_BK_SVC, PIPEDIR_IN, 1,}, /* in = DL = target -> host */ {WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */ {WMI_DATA_BE_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */ {WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */ {WMI_DATA_VI_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */ {WMI_CONTROL_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */ {WMI_CONTROL_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */ {HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */ {HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */ {HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */ {HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */ {HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,}, /* out = UL = host -> target */ {HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,}, /* in = DL = target -> host */ {0, 0, 0,}, /* Must be last */ }; /** * ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly * @ce_state : pointer to the state context of the CE * * Description: * Sets htt_rx_data attribute of the state structure if the * CE serves one of the HTT DATA services. * * Return: * false (attribute set to false) * true (attribute set to true); */ bool ce_mark_datapath(struct CE_state *ce_state) { struct service_to_pipe *svc_map; size_t map_sz; int i; bool rc = false; struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(ce_state->scn); struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl); if (ce_state != NULL) { if (QDF_IS_EPPING_ENABLED(hif_get_conparam(ce_state->scn))) { svc_map = target_service_to_ce_map_wlan_epping; map_sz = sizeof(target_service_to_ce_map_wlan_epping) / sizeof(struct service_to_pipe); } else { switch (tgt_info->target_type) { default: svc_map = target_service_to_ce_map_wlan; map_sz = sizeof(target_service_to_ce_map_wlan) / sizeof(struct service_to_pipe); break; case TARGET_TYPE_AR900B: case TARGET_TYPE_QCA9984: case TARGET_TYPE_IPQ4019: case TARGET_TYPE_QCA9888: case TARGET_TYPE_AR9888: case TARGET_TYPE_AR9888V2: svc_map = target_service_to_ce_map_ar900b; map_sz = sizeof(target_service_to_ce_map_ar900b) / sizeof(struct service_to_pipe); break; } } for (i = 0; i < map_sz; i++) { if ((svc_map[i].pipenum == ce_state->id) && ((svc_map[i].service_id == HTT_DATA_MSG_SVC) || (svc_map[i].service_id == HTT_DATA2_MSG_SVC) || (svc_map[i].service_id == HTT_DATA3_MSG_SVC))) { /* HTT CEs are unidirectional */ if (svc_map[i].pipedir == PIPEDIR_IN) ce_state->htt_rx_data = true; else ce_state->htt_tx_data = true; rc = true; } } } return rc; } /** * ce_ring_test_initial_indexes() - tests the initial ce ring indexes * @ce_id: ce in question * @ring: ring state being examined * @type: "src_ring" or "dest_ring" string for identifying the ring * * Warns on non-zero index values. * Causes a kernel panic if the ring is not empty durring initialization. */ static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring, char *type) { if (ring->write_index != 0 || ring->sw_index != 0) HIF_ERROR("ce %d, %s, initial sw_index = %d, initial write_index =%d", ce_id, type, ring->sw_index, ring->write_index); if (ring->write_index != ring->sw_index) QDF_BUG(0); } /** * ce_srng_based() - Does this target use srng * @ce_state : pointer to the state context of the CE * * Description: * returns true if the target is SRNG based * * Return: * false (attribute set to false) * true (attribute set to true); */ bool ce_srng_based(struct hif_softc *scn) { struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn); struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl); switch (tgt_info->target_type) { #ifdef QCA_WIFI_QCA8074 case TARGET_TYPE_QCA8074: return true; #endif default: return false; } return false; } struct ce_ops *ce_services_attach(struct hif_softc *scn) { #ifdef QCA_WIFI_QCA8074 if (ce_srng_based(scn)) return ce_services_srng(); #endif return ce_services_legacy(); } static inline uint32_t ce_get_desc_size(struct hif_softc *scn, uint8_t ring_type) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); return hif_state->ce_services->ce_get_desc_size(ring_type); } struct CE_ring_state *ce_alloc_ring_state(struct CE_state *CE_state, uint8_t ring_type, uint32_t nentries) { uint32_t ce_nbytes; char *ptr; qdf_dma_addr_t base_addr; struct CE_ring_state *ce_ring; uint32_t desc_size; struct hif_softc *scn = CE_state->scn; ce_nbytes = sizeof(struct CE_ring_state) + (nentries * sizeof(void *)); ptr = qdf_mem_malloc(ce_nbytes); if (!ptr) return NULL; qdf_mem_zero(ptr, ce_nbytes); ce_ring = (struct CE_ring_state *)ptr; ptr += sizeof(struct CE_ring_state); ce_ring->nentries = nentries; ce_ring->nentries_mask = nentries - 1; ce_ring->low_water_mark_nentries = 0; ce_ring->high_water_mark_nentries = nentries; ce_ring->per_transfer_context = (void **)ptr; desc_size = ce_get_desc_size(scn, ring_type); /* Legacy platforms that do not support cache * coherent DMA are unsupported */ ce_ring->base_addr_owner_space_unaligned = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev, (nentries * desc_size + CE_DESC_RING_ALIGN), &base_addr); if (ce_ring->base_addr_owner_space_unaligned == NULL) { HIF_ERROR("%s: ring has no DMA mem", __func__); qdf_mem_free(ptr); return NULL; } ce_ring->base_addr_CE_space_unaligned = base_addr; /* Correctly initialize memory to 0 to * prevent garbage data crashing system * when download firmware */ qdf_mem_zero(ce_ring->base_addr_owner_space_unaligned, nentries * desc_size + CE_DESC_RING_ALIGN); if (ce_ring->base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN - 1)) { ce_ring->base_addr_CE_space = (ce_ring->base_addr_CE_space_unaligned + CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1); ce_ring->base_addr_owner_space = (void *) (((size_t) ce_ring->base_addr_owner_space_unaligned + CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1)); } else { ce_ring->base_addr_CE_space = ce_ring->base_addr_CE_space_unaligned; ce_ring->base_addr_owner_space = ce_ring->base_addr_owner_space_unaligned; } return ce_ring; } static void ce_ring_setup(struct hif_softc *scn, uint8_t ring_type, uint32_t ce_id, struct CE_ring_state *ring, struct CE_attr *attr) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); hif_state->ce_services->ce_ring_setup(scn, ring_type, ce_id, ring, attr); } /* * Initialize a Copy Engine based on caller-supplied attributes. * This may be called once to initialize both source and destination * rings or it may be called twice for separate source and destination * initialization. It may be that only one side or the other is * initialized by software/firmware. * * This should be called durring the initialization sequence before * interupts are enabled, so we don't have to worry about thread safety. */ struct CE_handle *ce_init(struct hif_softc *scn, unsigned int CE_id, struct CE_attr *attr) { struct CE_state *CE_state; uint32_t ctrl_addr; unsigned int nentries; bool malloc_CE_state = false; bool malloc_src_ring = false; QDF_ASSERT(CE_id < scn->ce_count); ctrl_addr = CE_BASE_ADDRESS(CE_id); CE_state = scn->ce_id_to_state[CE_id]; if (!CE_state) { CE_state = (struct CE_state *)qdf_mem_malloc(sizeof(*CE_state)); if (!CE_state) { HIF_ERROR("%s: CE_state has no mem", __func__); return NULL; } malloc_CE_state = true; qdf_mem_zero(CE_state, sizeof(*CE_state)); scn->ce_id_to_state[CE_id] = CE_state; qdf_spinlock_create(&CE_state->ce_index_lock); CE_state->id = CE_id; CE_state->ctrl_addr = ctrl_addr; CE_state->state = CE_RUNNING; CE_state->attr_flags = attr->flags; } CE_state->scn = scn; qdf_atomic_init(&CE_state->rx_pending); if (attr == NULL) { /* Already initialized; caller wants the handle */ return (struct CE_handle *)CE_state; } if (CE_state->src_sz_max) QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max); else CE_state->src_sz_max = attr->src_sz_max; ce_init_ce_desc_event_log(CE_id, attr->src_nentries + attr->dest_nentries); /* source ring setup */ nentries = attr->src_nentries; if (nentries) { struct CE_ring_state *src_ring; nentries = roundup_pwr2(nentries); if (CE_state->src_ring) { QDF_ASSERT(CE_state->src_ring->nentries == nentries); } else { src_ring = CE_state->src_ring = ce_alloc_ring_state(CE_state, CE_RING_SRC, nentries); if (!src_ring) { /* cannot allocate src ring. If the * CE_state is allocated locally free * CE_State and return error. */ HIF_ERROR("%s: src ring has no mem", __func__); if (malloc_CE_state) { /* allocated CE_state locally */ scn->ce_id_to_state[CE_id] = NULL; qdf_mem_free(CE_state); malloc_CE_state = false; } return NULL; } else { /* we can allocate src ring. * Mark that the src ring is * allocated locally */ malloc_src_ring = true; } /* * Also allocate a shadow src ring in * regular mem to use for faster access. */ src_ring->shadow_base_unaligned = qdf_mem_malloc(nentries * sizeof(struct CE_src_desc) + CE_DESC_RING_ALIGN); if (src_ring->shadow_base_unaligned == NULL) { HIF_ERROR("%s: src ring no shadow_base mem", __func__); goto error_no_dma_mem; } src_ring->shadow_base = (struct CE_src_desc *) (((size_t) src_ring->shadow_base_unaligned + CE_DESC_RING_ALIGN - 1) & ~(CE_DESC_RING_ALIGN - 1)); if (Q_TARGET_ACCESS_BEGIN(scn) < 0) goto error_target_access; ce_ring_setup(scn, CE_RING_SRC, CE_id, src_ring, attr); if (Q_TARGET_ACCESS_END(scn) < 0) goto error_target_access; ce_ring_test_initial_indexes(CE_id, src_ring, "src_ring"); } } /* destination ring setup */ nentries = attr->dest_nentries; if (nentries) { struct CE_ring_state *dest_ring; nentries = roundup_pwr2(nentries); if (CE_state->dest_ring) { QDF_ASSERT(CE_state->dest_ring->nentries == nentries); } else { dest_ring = CE_state->dest_ring = ce_alloc_ring_state(CE_state, CE_RING_DEST, nentries); if (!dest_ring) { /* cannot allocate dst ring. If the CE_state * or src ring is allocated locally free * CE_State and src ring and return error. */ HIF_ERROR("%s: dest ring has no mem", __func__); if (malloc_src_ring) { qdf_mem_free(CE_state->src_ring); CE_state->src_ring = NULL; malloc_src_ring = false; } if (malloc_CE_state) { /* allocated CE_state locally */ scn->ce_id_to_state[CE_id] = NULL; qdf_mem_free(CE_state); malloc_CE_state = false; } return NULL; } if (Q_TARGET_ACCESS_BEGIN(scn) < 0) goto error_target_access; ce_ring_setup(scn, CE_RING_DEST, CE_id, dest_ring, attr); if (Q_TARGET_ACCESS_END(scn) < 0) goto error_target_access; ce_ring_test_initial_indexes(CE_id, dest_ring, "dest_ring"); #ifdef QCA_WIFI_QCA8074 /* For srng based target, init status ring here */ if (ce_srng_based(CE_state->scn)) { CE_state->status_ring = ce_alloc_ring_state(CE_state, CE_RING_STATUS, nentries); if (CE_state->status_ring == NULL) { /*Allocation failed. Cleanup*/ qdf_mem_free(CE_state->dest_ring); if (malloc_src_ring) { qdf_mem_free (CE_state->src_ring); CE_state->src_ring = NULL; malloc_src_ring = false; } if (malloc_CE_state) { /* allocated CE_state locally */ scn->ce_id_to_state[CE_id] = NULL; qdf_mem_free(CE_state); malloc_CE_state = false; } return NULL; } if (Q_TARGET_ACCESS_BEGIN(scn) < 0) goto error_target_access; ce_ring_setup(scn, CE_RING_STATUS, CE_id, CE_state->status_ring, attr); if (Q_TARGET_ACCESS_END(scn) < 0) goto error_target_access; } #endif /* epping */ /* poll timer */ if ((CE_state->attr_flags & CE_ATTR_ENABLE_POLL)) { qdf_timer_init(scn->qdf_dev, &CE_state->poll_timer, ce_poll_timeout, CE_state, QDF_TIMER_TYPE_SW); CE_state->timer_inited = true; qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT); } } } if (!ce_srng_based(scn)) { /* Enable CE error interrupts */ if (Q_TARGET_ACCESS_BEGIN(scn) < 0) goto error_target_access; CE_ERROR_INTR_ENABLE(scn, ctrl_addr); if (Q_TARGET_ACCESS_END(scn) < 0) goto error_target_access; } /* update the htt_data attribute */ ce_mark_datapath(CE_state); return (struct CE_handle *)CE_state; error_target_access: error_no_dma_mem: ce_fini((struct CE_handle *)CE_state); return NULL; } #ifdef WLAN_FEATURE_FASTPATH /** * hif_enable_fastpath() Update that we have enabled fastpath mode * @hif_ctx: HIF context * * For use in data path * * Retrun: void */ void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); HIF_INFO("%s, Enabling fastpath mode", __func__); scn->fastpath_mode_on = true; } /** * hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled * @hif_ctx: HIF Context * * For use in data path to skip HTC * * Return: bool */ bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); return scn->fastpath_mode_on; } /** * hif_get_ce_handle - API to get CE handle for FastPath mode * @hif_ctx: HIF Context * @id: CopyEngine Id * * API to return CE handle for fastpath mode * * Return: void */ void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); return scn->ce_id_to_state[id]; } /** * ce_h2t_tx_ce_cleanup() Place holder function for H2T CE cleanup. * No processing is required inside this function. * @ce_hdl: Cope engine handle * Using an assert, this function makes sure that, * the TX CE has been processed completely. * * This is called while dismantling CE structures. No other thread * should be using these structures while dismantling is occuring * therfore no locking is needed. * * Return: none */ void ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl) { struct CE_state *ce_state = (struct CE_state *)ce_hdl; struct CE_ring_state *src_ring = ce_state->src_ring; struct hif_softc *sc = ce_state->scn; uint32_t sw_index, write_index; if (hif_is_nss_wifi_enabled(sc)) return; if (sc->fastpath_mode_on && ce_state->htt_tx_data) { HIF_INFO("%s %d Fastpath mode ON, Cleaning up HTT Tx CE", __func__, __LINE__); sw_index = src_ring->sw_index; write_index = src_ring->sw_index; /* At this point Tx CE should be clean */ qdf_assert_always(sw_index == write_index); } } /** * ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue. * @ce_hdl: Handle to CE * * These buffers are never allocated on the fly, but * are allocated only once during HIF start and freed * only once during HIF stop. * NOTE: * The assumption here is there is no in-flight DMA in progress * currently, so that buffers can be freed up safely. * * Return: NONE */ void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl) { struct CE_state *ce_state = (struct CE_state *)ce_hdl; struct CE_ring_state *dst_ring = ce_state->dest_ring; qdf_nbuf_t nbuf; int i; if (!ce_state->fastpath_handler) return; /* * when fastpath_mode is on and for datapath CEs. Unlike other CE's, * this CE is completely full: does not leave one blank space, to * distinguish between empty queue & full queue. So free all the * entries. */ for (i = 0; i < dst_ring->nentries; i++) { nbuf = dst_ring->per_transfer_context[i]; /* * The reasons for doing this check are: * 1) Protect against calling cleanup before allocating buffers * 2) In a corner case, FASTPATH_mode_on may be set, but we * could have a partially filled ring, because of a memory * allocation failure in the middle of allocating ring. * This check accounts for that case, checking * fastpath_mode_on flag or started flag would not have * covered that case. This is not in performance path, * so OK to do this. */ if (nbuf) qdf_nbuf_free(nbuf); } } /** * hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1 * @scn: HIF handle * * Datapath Rx CEs are special case, where we reuse all the message buffers. * Hence we have to post all the entries in the pipe, even, in the beginning * unlike for other CE pipes where one less than dest_nentries are filled in * the beginning. * * Return: None */ static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn) { int pipe_num; struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); if (scn->fastpath_mode_on == false) return; for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct HIF_CE_pipe_info *pipe_info = &hif_state->pipe_info[pipe_num]; struct CE_state *ce_state = scn->ce_id_to_state[pipe_info->pipe_num]; if (ce_state->htt_rx_data) atomic_inc(&pipe_info->recv_bufs_needed); } } #else static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn) { } static inline bool ce_is_fastpath_enabled(struct hif_softc *scn) { return false; } static inline bool ce_is_fastpath_handler_registered(struct CE_state *ce_state) { return false; } #endif /* WLAN_FEATURE_FASTPATH */ void ce_fini(struct CE_handle *copyeng) { struct CE_state *CE_state = (struct CE_state *)copyeng; unsigned int CE_id = CE_state->id; struct hif_softc *scn = CE_state->scn; CE_state->state = CE_UNUSED; scn->ce_id_to_state[CE_id] = NULL; if (CE_state->src_ring) { /* Cleanup the datapath Tx ring */ ce_h2t_tx_ce_cleanup(copyeng); if (CE_state->src_ring->shadow_base_unaligned) qdf_mem_free(CE_state->src_ring->shadow_base_unaligned); if (CE_state->src_ring->base_addr_owner_space_unaligned) qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev, (CE_state->src_ring->nentries * sizeof(struct CE_src_desc) + CE_DESC_RING_ALIGN), CE_state->src_ring-> base_addr_owner_space_unaligned, CE_state->src_ring-> base_addr_CE_space, 0); qdf_mem_free(CE_state->src_ring); } if (CE_state->dest_ring) { /* Cleanup the datapath Rx ring */ ce_t2h_msg_ce_cleanup(copyeng); if (CE_state->dest_ring->base_addr_owner_space_unaligned) qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev, (CE_state->dest_ring->nentries * sizeof(struct CE_dest_desc) + CE_DESC_RING_ALIGN), CE_state->dest_ring-> base_addr_owner_space_unaligned, CE_state->dest_ring-> base_addr_CE_space, 0); qdf_mem_free(CE_state->dest_ring); /* epping */ if (CE_state->timer_inited) { CE_state->timer_inited = false; qdf_timer_free(&CE_state->poll_timer); } } #ifdef QCA_WIFI_QCA8074 if (CE_state->status_ring) { /* Cleanup the datapath Tx ring */ ce_h2t_tx_ce_cleanup(copyeng); if (CE_state->status_ring->shadow_base_unaligned) qdf_mem_free( CE_state->status_ring->shadow_base_unaligned); if (CE_state->status_ring->base_addr_owner_space_unaligned) qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev, (CE_state->status_ring->nentries * sizeof(struct CE_src_desc) + CE_DESC_RING_ALIGN), CE_state->status_ring-> base_addr_owner_space_unaligned, CE_state->status_ring-> base_addr_CE_space, 0); qdf_mem_free(CE_state->status_ring); } #endif qdf_mem_free(CE_state); } void hif_detach_htc(struct hif_opaque_softc *hif_ctx) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx); qdf_mem_zero(&hif_state->msg_callbacks_pending, sizeof(hif_state->msg_callbacks_pending)); qdf_mem_zero(&hif_state->msg_callbacks_current, sizeof(hif_state->msg_callbacks_current)); } /* Send the first nbytes bytes of the buffer */ QDF_STATUS hif_send_head(struct hif_opaque_softc *hif_ctx, uint8_t pipe, unsigned int transfer_id, unsigned int nbytes, qdf_nbuf_t nbuf, unsigned int data_attr) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx); struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]); struct CE_handle *ce_hdl = pipe_info->ce_hdl; int bytes = nbytes, nfrags = 0; struct ce_sendlist sendlist; int status, i = 0; unsigned int mux_id = 0; QDF_ASSERT(nbytes <= qdf_nbuf_len(nbuf)); transfer_id = (mux_id & MUX_ID_MASK) | (transfer_id & TRANSACTION_ID_MASK); data_attr &= DESC_DATA_FLAG_MASK; /* * The common case involves sending multiple fragments within a * single download (the tx descriptor and the tx frame header). * So, optimize for the case of multiple fragments by not even * checking whether it's necessary to use a sendlist. * The overhead of using a sendlist for a single buffer download * is not a big deal, since it happens rarely (for WMI messages). */ ce_sendlist_init(&sendlist); do { qdf_dma_addr_t frag_paddr; int frag_bytes; frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags); frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags); /* * Clear the packet offset for all but the first CE desc. */ if (i++ > 0) data_attr &= ~QDF_CE_TX_PKT_OFFSET_BIT_M; status = ce_sendlist_buf_add(&sendlist, frag_paddr, frag_bytes > bytes ? bytes : frag_bytes, qdf_nbuf_get_frag_is_wordstream (nbuf, nfrags) ? 0 : CE_SEND_FLAG_SWAP_DISABLE, data_attr); if (status != QDF_STATUS_SUCCESS) { HIF_ERROR("%s: error, frag_num %d larger than limit", __func__, nfrags); return status; } bytes -= frag_bytes; nfrags++; } while (bytes > 0); /* Make sure we have resources to handle this request */ qdf_spin_lock_bh(&pipe_info->completion_freeq_lock); if (pipe_info->num_sends_allowed < nfrags) { qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock); ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE); return QDF_STATUS_E_RESOURCES; } pipe_info->num_sends_allowed -= nfrags; qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock); if (qdf_unlikely(ce_hdl == NULL)) { HIF_ERROR("%s: error CE handle is null", __func__); return A_ERROR; } QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF); DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD, qdf_nbuf_data_addr(nbuf), sizeof(qdf_nbuf_data(nbuf)), QDF_TX)); status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id); QDF_ASSERT(status == QDF_STATUS_SUCCESS); return status; } void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe, int force) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx); if (!force) { int resources; /* * Decide whether to actually poll for completions, or just * wait for a later chance. If there seem to be plenty of * resources left, then just wait, since checking involves * reading a CE register, which is a relatively expensive * operation. */ resources = hif_get_free_queue_number(hif_ctx, pipe); /* * If at least 50% of the total resources are still available, * don't bother checking again yet. */ if (resources > (hif_state->host_ce_config[pipe].src_nentries >> 1)) { return; } } #if ATH_11AC_TXCOMPACT ce_per_engine_servicereap(scn, pipe); #else ce_per_engine_service(scn, pipe); #endif } uint16_t hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx); struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]); uint16_t rv; qdf_spin_lock_bh(&pipe_info->completion_freeq_lock); rv = pipe_info->num_sends_allowed; qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock); return rv; } /* Called by lower (CE) layer when a send to Target completes. */ void hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context, void *transfer_context, qdf_dma_addr_t CE_data, unsigned int nbytes, unsigned int transfer_id, unsigned int sw_index, unsigned int hw_index, unsigned int toeplitz_hash_result) { struct HIF_CE_pipe_info *pipe_info = (struct HIF_CE_pipe_info *)ce_context; struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state; struct hif_softc *scn = HIF_GET_SOFTC(hif_state); unsigned int sw_idx = sw_index, hw_idx = hw_index; struct hif_msg_callbacks *msg_callbacks = &pipe_info->pipe_callbacks; do { /* * The upper layer callback will be triggered * when last fragment is complteted. */ if (transfer_context != CE_SENDLIST_ITEM_CTXT) { if (scn->target_status == TARGET_STATUS_RESET) qdf_nbuf_free(transfer_context); else msg_callbacks->txCompletionHandler( msg_callbacks->Context, transfer_context, transfer_id, toeplitz_hash_result); } qdf_spin_lock(&pipe_info->completion_freeq_lock); pipe_info->num_sends_allowed++; qdf_spin_unlock(&pipe_info->completion_freeq_lock); } while (ce_completed_send_next(copyeng, &ce_context, &transfer_context, &CE_data, &nbytes, &transfer_id, &sw_idx, &hw_idx, &toeplitz_hash_result) == QDF_STATUS_SUCCESS); } /** * hif_ce_do_recv(): send message from copy engine to upper layers * @msg_callbacks: structure containing callback and callback context * @netbuff: skb containing message * @nbytes: number of bytes in the message * @pipe_info: used for the pipe_number info * * Checks the packet length, configures the lenght in the netbuff, * and calls the upper layer callback. * * return: None */ static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks, qdf_nbuf_t netbuf, int nbytes, struct HIF_CE_pipe_info *pipe_info) { if (nbytes <= pipe_info->buf_sz) { qdf_nbuf_set_pktlen(netbuf, nbytes); msg_callbacks-> rxCompletionHandler(msg_callbacks->Context, netbuf, pipe_info->pipe_num); } else { HIF_ERROR("%s: Invalid Rx msg buf:%p nbytes:%d", __func__, netbuf, nbytes); qdf_nbuf_free(netbuf); } } /* Called by lower (CE) layer when data is received from the Target. */ void hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context, void *transfer_context, qdf_dma_addr_t CE_data, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct HIF_CE_pipe_info *pipe_info = (struct HIF_CE_pipe_info *)ce_context; struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state; struct CE_state *ce_state = (struct CE_state *) copyeng; struct hif_softc *scn = HIF_GET_SOFTC(hif_state); #ifdef HIF_PCI struct hif_pci_softc *hif_pci_sc = HIF_GET_PCI_SOFTC(hif_state); #endif struct hif_msg_callbacks *msg_callbacks = &pipe_info->pipe_callbacks; do { #ifdef HIF_PCI hif_pm_runtime_mark_last_busy(hif_pci_sc->dev); #endif qdf_nbuf_unmap_single(scn->qdf_dev, (qdf_nbuf_t) transfer_context, QDF_DMA_FROM_DEVICE); atomic_inc(&pipe_info->recv_bufs_needed); hif_post_recv_buffers_for_pipe(pipe_info); if (scn->target_status == TARGET_STATUS_RESET) qdf_nbuf_free(transfer_context); else hif_ce_do_recv(msg_callbacks, transfer_context, nbytes, pipe_info); /* Set up force_break flag if num of receices reaches * MAX_NUM_OF_RECEIVES */ ce_state->receive_count++; if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) { ce_state->force_break = 1; break; } } while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context, &CE_data, &nbytes, &transfer_id, &flags) == QDF_STATUS_SUCCESS); } /* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */ void hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused, struct hif_msg_callbacks *callbacks) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx); #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG spin_lock_init(&pcie_access_log_lock); #endif /* Save callbacks for later installation */ qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks, sizeof(hif_state->msg_callbacks_pending)); } int hif_completion_thread_startup(struct HIF_CE_state *hif_state) { struct CE_handle *ce_diag = hif_state->ce_diag; int pipe_num; struct hif_softc *scn = HIF_GET_SOFTC(hif_state); struct hif_msg_callbacks *hif_msg_callbacks = &hif_state->msg_callbacks_current; /* daemonize("hif_compl_thread"); */ if (scn->ce_count == 0) { HIF_ERROR("%s: Invalid ce_count", __func__); return -EINVAL; } if (!hif_msg_callbacks || !hif_msg_callbacks->rxCompletionHandler || !hif_msg_callbacks->txCompletionHandler) { HIF_ERROR("%s: no completion handler registered", __func__); return -EFAULT; } A_TARGET_ACCESS_LIKELY(scn); for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct CE_attr attr; struct HIF_CE_pipe_info *pipe_info; pipe_info = &hif_state->pipe_info[pipe_num]; if (pipe_info->ce_hdl == ce_diag) { continue; /* Handle Diagnostic CE specially */ } attr = hif_state->host_ce_config[pipe_num]; if (attr.src_nentries) { /* pipe used to send to target */ HIF_INFO_MED("%s: pipe_num:%d pipe_info:0x%p", __func__, pipe_num, pipe_info); ce_send_cb_register(pipe_info->ce_hdl, hif_pci_ce_send_done, pipe_info, attr.flags & CE_ATTR_DISABLE_INTR); pipe_info->num_sends_allowed = attr.src_nentries - 1; } if (attr.dest_nentries) { /* pipe used to receive from target */ ce_recv_cb_register(pipe_info->ce_hdl, hif_pci_ce_recv_data, pipe_info, attr.flags & CE_ATTR_DISABLE_INTR); } if (attr.src_nentries) qdf_spinlock_create(&pipe_info->completion_freeq_lock); qdf_mem_copy(&pipe_info->pipe_callbacks, hif_msg_callbacks, sizeof(pipe_info->pipe_callbacks)); } A_TARGET_ACCESS_UNLIKELY(scn); return 0; } /* * Install pending msg callbacks. * * TBDXXX: This hack is needed because upper layers install msg callbacks * for use with HTC before BMI is done; yet this HIF implementation * needs to continue to use BMI msg callbacks. Really, upper layers * should not register HTC callbacks until AFTER BMI phase. */ static void hif_msg_callbacks_install(struct hif_softc *scn) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); qdf_mem_copy(&hif_state->msg_callbacks_current, &hif_state->msg_callbacks_pending, sizeof(hif_state->msg_callbacks_pending)); } void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe, uint8_t *DLPipe) { int ul_is_polled, dl_is_polled; (void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC, ULPipe, DLPipe, &ul_is_polled, &dl_is_polled); } /** * hif_dump_pipe_debug_count() - Log error count * @scn: hif_softc pointer. * * Output the pipe error counts of each pipe to log file * * Return: N/A */ void hif_dump_pipe_debug_count(struct hif_softc *scn) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); int pipe_num; if (hif_state == NULL) { HIF_ERROR("%s hif_state is NULL", __func__); return; } for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct HIF_CE_pipe_info *pipe_info; pipe_info = &hif_state->pipe_info[pipe_num]; if (pipe_info->nbuf_alloc_err_count > 0 || pipe_info->nbuf_dma_err_count > 0 || pipe_info->nbuf_ce_enqueue_err_count) HIF_ERROR( "%s: pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u", __func__, pipe_info->pipe_num, atomic_read(&pipe_info->recv_bufs_needed), pipe_info->nbuf_alloc_err_count, pipe_info->nbuf_dma_err_count, pipe_info->nbuf_ce_enqueue_err_count); } } static int hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info) { struct CE_handle *ce_hdl; qdf_size_t buf_sz; struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state); QDF_STATUS ret; uint32_t bufs_posted = 0; buf_sz = pipe_info->buf_sz; if (buf_sz == 0) { /* Unused Copy Engine */ return 0; } ce_hdl = pipe_info->ce_hdl; qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock); while (atomic_read(&pipe_info->recv_bufs_needed) > 0) { qdf_dma_addr_t CE_data; /* CE space buffer address */ qdf_nbuf_t nbuf; int status; atomic_dec(&pipe_info->recv_bufs_needed); qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock); nbuf = qdf_nbuf_alloc(scn->qdf_dev, buf_sz, 0, 4, false); if (!nbuf) { qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock); pipe_info->nbuf_alloc_err_count++; qdf_spin_unlock_bh( &pipe_info->recv_bufs_needed_lock); HIF_ERROR( "%s buf alloc error [%d] needed %d, nbuf_alloc_err_count = %u", __func__, pipe_info->pipe_num, atomic_read(&pipe_info->recv_bufs_needed), pipe_info->nbuf_alloc_err_count); atomic_inc(&pipe_info->recv_bufs_needed); return 1; } /* * qdf_nbuf_peek_header(nbuf, &data, &unused); * CE_data = dma_map_single(dev, data, buf_sz, ); * DMA_FROM_DEVICE); */ ret = qdf_nbuf_map_single(scn->qdf_dev, nbuf, QDF_DMA_FROM_DEVICE); if (unlikely(ret != QDF_STATUS_SUCCESS)) { qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock); pipe_info->nbuf_dma_err_count++; qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock); HIF_ERROR( "%s buf alloc error [%d] needed %d, nbuf_dma_err_count = %u", __func__, pipe_info->pipe_num, atomic_read(&pipe_info->recv_bufs_needed), pipe_info->nbuf_dma_err_count); qdf_nbuf_free(nbuf); atomic_inc(&pipe_info->recv_bufs_needed); return 1; } CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0); qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data, buf_sz, DMA_FROM_DEVICE); status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data); QDF_ASSERT(status == QDF_STATUS_SUCCESS); if (status != EOK) { qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock); pipe_info->nbuf_ce_enqueue_err_count++; qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock); HIF_ERROR( "%s buf alloc error [%d] needed %d, nbuf_alloc_err_count = %u", __func__, pipe_info->pipe_num, atomic_read(&pipe_info->recv_bufs_needed), pipe_info->nbuf_ce_enqueue_err_count); qdf_nbuf_unmap_single(scn->qdf_dev, nbuf, QDF_DMA_FROM_DEVICE); atomic_inc(&pipe_info->recv_bufs_needed); qdf_nbuf_free(nbuf); return 1; } qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock); bufs_posted++; } pipe_info->nbuf_alloc_err_count = (pipe_info->nbuf_alloc_err_count > bufs_posted) ? pipe_info->nbuf_alloc_err_count - bufs_posted : 0; pipe_info->nbuf_dma_err_count = (pipe_info->nbuf_dma_err_count > bufs_posted) ? pipe_info->nbuf_dma_err_count - bufs_posted : 0; pipe_info->nbuf_ce_enqueue_err_count = (pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ? pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0; qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock); return 0; } /* * Try to post all desired receive buffers for all pipes. * Returns 0 if all desired buffers are posted, * non-zero if were were unable to completely * replenish receive buffers. */ static int hif_post_recv_buffers(struct hif_softc *scn) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); int pipe_num, rv = 0; struct CE_state *ce_state; A_TARGET_ACCESS_LIKELY(scn); for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct HIF_CE_pipe_info *pipe_info; ce_state = scn->ce_id_to_state[pipe_num]; pipe_info = &hif_state->pipe_info[pipe_num]; if (hif_is_nss_wifi_enabled(scn) && ce_state && (ce_state->htt_rx_data)) { continue; } if (hif_post_recv_buffers_for_pipe(pipe_info)) { rv = 1; goto done; } } done: A_TARGET_ACCESS_UNLIKELY(scn); return rv; } QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); hif_update_fastpath_recv_bufs_cnt(scn); hif_msg_callbacks_install(scn); if (hif_completion_thread_startup(hif_state)) return QDF_STATUS_E_FAILURE; /* Post buffers once to start things off. */ (void)hif_post_recv_buffers(scn); hif_state->started = true; return QDF_STATUS_SUCCESS; } void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info) { struct hif_softc *scn; struct CE_handle *ce_hdl; uint32_t buf_sz; struct HIF_CE_state *hif_state; qdf_nbuf_t netbuf; qdf_dma_addr_t CE_data; void *per_CE_context; buf_sz = pipe_info->buf_sz; if (buf_sz == 0) { /* Unused Copy Engine */ return; } hif_state = pipe_info->HIF_CE_state; if (!hif_state->started) { return; } scn = HIF_GET_SOFTC(hif_state); ce_hdl = pipe_info->ce_hdl; if (scn->qdf_dev == NULL) { return; } while (ce_revoke_recv_next (ce_hdl, &per_CE_context, (void **)&netbuf, &CE_data) == QDF_STATUS_SUCCESS) { qdf_nbuf_unmap_single(scn->qdf_dev, netbuf, QDF_DMA_FROM_DEVICE); qdf_nbuf_free(netbuf); } } void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info) { struct CE_handle *ce_hdl; struct HIF_CE_state *hif_state; struct hif_softc *scn; qdf_nbuf_t netbuf; void *per_CE_context; qdf_dma_addr_t CE_data; unsigned int nbytes; unsigned int id; uint32_t buf_sz; uint32_t toeplitz_hash_result; buf_sz = pipe_info->buf_sz; if (buf_sz == 0) { /* Unused Copy Engine */ return; } hif_state = pipe_info->HIF_CE_state; if (!hif_state->started) { return; } scn = HIF_GET_SOFTC(hif_state); ce_hdl = pipe_info->ce_hdl; while (ce_cancel_send_next (ce_hdl, &per_CE_context, (void **)&netbuf, &CE_data, &nbytes, &id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) { if (netbuf != CE_SENDLIST_ITEM_CTXT) { /* * Packets enqueued by htt_h2t_ver_req_msg() and * htt_h2t_rx_ring_cfg_msg_ll() have already been * freed in htt_htc_misc_pkt_pool_free() in * wlantl_close(), so do not free them here again * by checking whether it's the endpoint * which they are queued in. */ if (id == scn->htc_htt_tx_endpoint) return; /* Indicate the completion to higher * layer to free the buffer */ if (pipe_info->pipe_callbacks. txCompletionHandler) pipe_info->pipe_callbacks. txCompletionHandler(pipe_info-> pipe_callbacks.Context, netbuf, id, toeplitz_hash_result); } } } /* * Cleanup residual buffers for device shutdown: * buffers that were enqueued for receive * buffers that were to be sent * Note: Buffers that had completed but which were * not yet processed are on a completion queue. They * are handled when the completion thread shuts down. */ void hif_buffer_cleanup(struct HIF_CE_state *hif_state) { int pipe_num; struct hif_softc *scn = HIF_GET_SOFTC(hif_state); struct CE_state *ce_state; for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct HIF_CE_pipe_info *pipe_info; ce_state = scn->ce_id_to_state[pipe_num]; if (hif_is_nss_wifi_enabled(scn) && ce_state && ((ce_state->htt_tx_data) || (ce_state->htt_rx_data))) { continue; } pipe_info = &hif_state->pipe_info[pipe_num]; hif_recv_buffer_cleanup_on_pipe(pipe_info); hif_send_buffer_cleanup_on_pipe(pipe_info); } } void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); hif_buffer_cleanup(hif_state); } void hif_ce_stop(struct hif_softc *scn) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); int pipe_num; scn->hif_init_done = false; /* * At this point, asynchronous threads are stopped, * The Target should not DMA nor interrupt, Host code may * not initiate anything more. So we just need to clean * up Host-side state. */ if (scn->athdiag_procfs_inited) { athdiag_procfs_remove(); scn->athdiag_procfs_inited = false; } hif_buffer_cleanup(hif_state); for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct HIF_CE_pipe_info *pipe_info; pipe_info = &hif_state->pipe_info[pipe_num]; if (pipe_info->ce_hdl) { ce_fini(pipe_info->ce_hdl); pipe_info->ce_hdl = NULL; pipe_info->buf_sz = 0; } } if (hif_state->sleep_timer_init) { qdf_timer_stop(&hif_state->sleep_timer); qdf_timer_free(&hif_state->sleep_timer); hif_state->sleep_timer_init = false; } hif_state->started = false; } /** * hif_get_target_ce_config() - get copy engine configuration * @target_ce_config_ret: basic copy engine configuration * @target_ce_config_sz_ret: size of the basic configuration in bytes * @target_service_to_ce_map_ret: service mapping for the copy engines * @target_service_to_ce_map_sz_ret: size of the mapping in bytes * @target_shadow_reg_cfg_ret: shadow register configuration * @shadow_cfg_sz_ret: size of the shadow register configuration in bytes * * providing accessor to these values outside of this file. * currently these are stored in static pointers to const sections. * there are multiple configurations that are selected from at compile time. * Runtime selection would need to consider mode, target type and bus type. * * Return: return by parameter. */ void hif_get_target_ce_config(struct hif_softc *scn, struct CE_pipe_config **target_ce_config_ret, int *target_ce_config_sz_ret, struct service_to_pipe **target_service_to_ce_map_ret, int *target_service_to_ce_map_sz_ret, struct shadow_reg_cfg **target_shadow_reg_cfg_ret, int *shadow_cfg_sz_ret) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); *target_ce_config_ret = hif_state->target_ce_config; *target_ce_config_sz_ret = hif_state->target_ce_config_sz; *target_service_to_ce_map_ret = target_service_to_ce_map; *target_service_to_ce_map_sz_ret = target_service_to_ce_map_sz; if (target_shadow_reg_cfg_ret) *target_shadow_reg_cfg_ret = target_shadow_reg_cfg; if (shadow_cfg_sz_ret) *shadow_cfg_sz_ret = shadow_cfg_sz; } /** * hif_wlan_enable(): call the platform driver to enable wlan * @scn: HIF Context * * This function passes the con_mode and CE configuration to * platform driver to enable wlan. * * Return: linux error code */ int hif_wlan_enable(struct hif_softc *scn) { struct pld_wlan_enable_cfg cfg; enum pld_driver_mode mode; uint32_t con_mode = hif_get_conparam(scn); hif_get_target_ce_config(scn, (struct CE_pipe_config **)&cfg.ce_tgt_cfg, &cfg.num_ce_tgt_cfg, (struct service_to_pipe **)&cfg.ce_svc_cfg, &cfg.num_ce_svc_pipe_cfg, (struct shadow_reg_cfg **)&cfg.shadow_reg_cfg, &cfg.num_shadow_reg_cfg); /* translate from structure size to array size */ cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config); cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe); cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg); if (QDF_GLOBAL_FTM_MODE == con_mode) mode = PLD_FTM; else if (QDF_IS_EPPING_ENABLED(con_mode)) mode = PLD_EPPING; else mode = PLD_MISSION; if (BYPASS_QMI) return 0; else return pld_wlan_enable(scn->qdf_dev->dev, &cfg, mode, QWLAN_VERSIONSTR); } #define CE_EPPING_USES_IRQ true /** * hif_ce_prepare_config() - load the correct static tables. * @scn: hif context * * Epping uses different static attribute tables than mission mode. */ void hif_ce_prepare_config(struct hif_softc *scn) { uint32_t mode = hif_get_conparam(scn); struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn); struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); /* if epping is enabled we need to use the epping configuration. */ if (QDF_IS_EPPING_ENABLED(mode)) { if (CE_EPPING_USES_IRQ) hif_state->host_ce_config = host_ce_config_wlan_epping_irq; else hif_state->host_ce_config = host_ce_config_wlan_epping_poll; hif_state->target_ce_config = target_ce_config_wlan_epping; hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_epping); target_service_to_ce_map = target_service_to_ce_map_wlan_epping; target_service_to_ce_map_sz = sizeof(target_service_to_ce_map_wlan_epping); target_shadow_reg_cfg = target_shadow_reg_cfg_epping; shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping); } switch (tgt_info->target_type) { default: hif_state->host_ce_config = host_ce_config_wlan; hif_state->target_ce_config = target_ce_config_wlan; hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan); break; case TARGET_TYPE_AR900B: case TARGET_TYPE_QCA9984: case TARGET_TYPE_IPQ4019: case TARGET_TYPE_QCA9888: hif_state->host_ce_config = host_ce_config_wlan_ar900b; hif_state->target_ce_config = target_ce_config_wlan_ar900b; hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_ar900b); target_service_to_ce_map = target_service_to_ce_map_ar900b; target_service_to_ce_map_sz = sizeof(target_service_to_ce_map_ar900b); break; case TARGET_TYPE_AR9888: case TARGET_TYPE_AR9888V2: hif_state->host_ce_config = host_ce_config_wlan_ar9888; hif_state->target_ce_config = target_ce_config_wlan_ar9888; hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_ar9888); target_service_to_ce_map = target_service_to_ce_map_ar900b; target_service_to_ce_map_sz = sizeof(target_service_to_ce_map_ar900b); break; #ifdef QCA_WIFI_QCA8074 case TARGET_TYPE_QCA8074: hif_state->host_ce_config = host_ce_config_wlan_qca8074; hif_state->target_ce_config = target_ce_config_wlan_qca8074; hif_state->target_ce_config_sz = sizeof(target_ce_config_wlan_qca8074); break; #endif } } /** * hif_ce_open() - do ce specific allocations * @hif_sc: pointer to hif context * * return: 0 for success or QDF_STATUS_E_NOMEM */ QDF_STATUS hif_ce_open(struct hif_softc *hif_sc) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc); qdf_spinlock_create(&hif_state->irq_reg_lock); qdf_spinlock_create(&hif_state->keep_awake_lock); return QDF_STATUS_SUCCESS; } /** * hif_ce_close() - do ce specific free * @hif_sc: pointer to hif context */ void hif_ce_close(struct hif_softc *hif_sc) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc); qdf_spinlock_destroy(&hif_state->irq_reg_lock); } /** * hif_unconfig_ce() - ensure resources from hif_config_ce are freed * @hif_sc: hif context * * uses state variables to support cleaning up when hif_config_ce fails. */ void hif_unconfig_ce(struct hif_softc *hif_sc) { int pipe_num; struct HIF_CE_pipe_info *pipe_info; struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc); for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) { pipe_info = &hif_state->pipe_info[pipe_num]; if (pipe_info->ce_hdl) { ce_unregister_irq(hif_state, (1 << pipe_num)); hif_sc->request_irq_done = false; ce_fini(pipe_info->ce_hdl); pipe_info->ce_hdl = NULL; pipe_info->buf_sz = 0; } } if (hif_sc->athdiag_procfs_inited) { athdiag_procfs_remove(); hif_sc->athdiag_procfs_inited = false; } } #ifdef CONFIG_BYPASS_QMI #define FW_SHARED_MEM (2 * 1024 * 1024) /** * hif_post_static_buf_to_target() - post static buffer to WLAN FW * @scn: pointer to HIF structure * * WLAN FW needs 2MB memory from DDR when QMI is disabled. * * Return: void */ static void hif_post_static_buf_to_target(struct hif_softc *scn) { void *target_va; phys_addr_t target_pa; target_va = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev, FW_SHARED_MEM, &target_pa); if (NULL == target_va) { HIF_TRACE("Memory allocation failed could not post target buf"); return; } hif_write32_mb(scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa); HIF_TRACE("target va %pK target pa %pa", target_va, &target_pa); } #else static inline void hif_post_static_buf_to_target(struct hif_softc *scn) { return; } #endif #ifdef WLAN_SUSPEND_RESUME_TEST static void hif_fake_apps_init_ctx(struct hif_softc *scn) { INIT_WORK(&scn->fake_apps_ctx.resume_work, hif_fake_apps_resume_work); } #else static inline void hif_fake_apps_init_ctx(struct hif_softc *scn) {} #endif /** * hif_config_ce() - configure copy engines * @scn: hif context * * Prepares fw, copy engine hardware and host sw according * to the attributes selected by hif_ce_prepare_config. * * also calls athdiag_procfs_init * * return: 0 for success nonzero for failure. */ int hif_config_ce(struct hif_softc *scn) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn); struct HIF_CE_pipe_info *pipe_info; int pipe_num; struct CE_state *ce_state; #ifdef ADRASTEA_SHADOW_REGISTERS int i; #endif QDF_STATUS rv = QDF_STATUS_SUCCESS; scn->notice_send = true; hif_post_static_buf_to_target(scn); hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS; hif_config_rri_on_ddr(scn); hif_state->ce_services = ce_services_attach(scn); /* During CE initializtion */ scn->ce_count = HOST_CE_COUNT; for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) { struct CE_attr *attr; pipe_info = &hif_state->pipe_info[pipe_num]; pipe_info->pipe_num = pipe_num; pipe_info->HIF_CE_state = hif_state; attr = &hif_state->host_ce_config[pipe_num]; pipe_info->ce_hdl = ce_init(scn, pipe_num, attr); ce_state = scn->ce_id_to_state[pipe_num]; QDF_ASSERT(pipe_info->ce_hdl != NULL); if (pipe_info->ce_hdl == NULL) { rv = QDF_STATUS_E_FAILURE; A_TARGET_ACCESS_UNLIKELY(scn); goto err; } if (pipe_num == DIAG_CE_ID) { /* Reserve the ultimate CE for * Diagnostic Window support */ hif_state->ce_diag = pipe_info->ce_hdl; continue; } if (hif_is_nss_wifi_enabled(scn) && ce_state && (ce_state->htt_rx_data)) continue; pipe_info->buf_sz = (qdf_size_t) (attr->src_sz_max); qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock); if (attr->dest_nentries > 0) { atomic_set(&pipe_info->recv_bufs_needed, init_buffer_count(attr->dest_nentries - 1)); /*SRNG based CE has one entry less */ if (ce_srng_based(scn)) atomic_dec(&pipe_info->recv_bufs_needed); } else { atomic_set(&pipe_info->recv_bufs_needed, 0); } ce_tasklet_init(hif_state, (1 << pipe_num)); ce_register_irq(hif_state, (1 << pipe_num)); scn->request_irq_done = true; } if (athdiag_procfs_init(scn) != 0) { A_TARGET_ACCESS_UNLIKELY(scn); goto err; } scn->athdiag_procfs_inited = true; HIF_INFO_MED("%s: ce_init done", __func__); init_tasklet_workers(hif_hdl); hif_fake_apps_init_ctx(scn); HIF_TRACE("%s: X, ret = %d", __func__, rv); #ifdef ADRASTEA_SHADOW_REGISTERS HIF_INFO("%s, Using Shadow Registers instead of CE Registers", __func__); for (i = 0; i < NUM_SHADOW_REGISTERS; i++) { HIF_INFO("%s Shadow Register%d is mapped to address %x", __func__, i, (A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2)); } #endif return rv != QDF_STATUS_SUCCESS; err: /* Failure, so clean up */ hif_unconfig_ce(scn); HIF_TRACE("%s: X, ret = %d", __func__, rv); return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE; } #ifdef WLAN_FEATURE_FASTPATH /** * hif_ce_fastpath_cb_register() - Register callback for fastpath msg handler * @handler: Callback funtcion * @context: handle for callback function * * Return: QDF_STATUS_SUCCESS on success or QDF_STATUS_E_FAILURE */ int hif_ce_fastpath_cb_register(struct hif_opaque_softc *hif_ctx, fastpath_msg_handler handler, void *context) { struct CE_state *ce_state; struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); int i; if (!scn) { HIF_ERROR("%s: scn is NULL", __func__); QDF_ASSERT(0); return QDF_STATUS_E_FAILURE; } if (!scn->fastpath_mode_on) { HIF_WARN("%s: Fastpath mode disabled", __func__); return QDF_STATUS_E_FAILURE; } for (i = 0; i < scn->ce_count; i++) { ce_state = scn->ce_id_to_state[i]; if (ce_state->htt_rx_data) { ce_state->fastpath_handler = handler; ce_state->context = context; } } return QDF_STATUS_SUCCESS; } #endif #ifdef IPA_OFFLOAD /** * hif_ce_ipa_get_ce_resource() - get uc resource on hif * @scn: bus context * @ce_sr_base_paddr: copyengine source ring base physical address * @ce_sr_ring_size: copyengine source ring size * @ce_reg_paddr: copyengine register physical address * * IPA micro controller data path offload feature enabled, * HIF should release copy engine related resource information to IPA UC * IPA UC will access hardware resource with released information * * Return: None */ void hif_ce_ipa_get_ce_resource(struct hif_softc *scn, qdf_dma_addr_t *ce_sr_base_paddr, uint32_t *ce_sr_ring_size, qdf_dma_addr_t *ce_reg_paddr) { struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]); struct CE_handle *ce_hdl = pipe_info->ce_hdl; ce_ipa_get_resource(ce_hdl, ce_sr_base_paddr, ce_sr_ring_size, ce_reg_paddr); return; } #endif /* IPA_OFFLOAD */ #ifdef ADRASTEA_SHADOW_REGISTERS /* Current shadow register config ----------------------------------------------------------- Shadow Register | CE | src/dst write index ----------------------------------------------------------- 0 | 0 | src 1 No Config - Doesn't point to anything 2 No Config - Doesn't point to anything 3 | 3 | src 4 | 4 | src 5 | 5 | src 6 No Config - Doesn't point to anything 7 | 7 | src 8 No Config - Doesn't point to anything 9 No Config - Doesn't point to anything 10 No Config - Doesn't point to anything 11 No Config - Doesn't point to anything ----------------------------------------------------------- 12 No Config - Doesn't point to anything 13 | 1 | dst 14 | 2 | dst 15 No Config - Doesn't point to anything 16 No Config - Doesn't point to anything 17 No Config - Doesn't point to anything 18 No Config - Doesn't point to anything 19 | 7 | dst 20 | 8 | dst 21 No Config - Doesn't point to anything 22 No Config - Doesn't point to anything 23 No Config - Doesn't point to anything ----------------------------------------------------------- ToDo - Move shadow register config to following in the future This helps free up a block of shadow registers towards the end. Can be used for other purposes ----------------------------------------------------------- Shadow Register | CE | src/dst write index ----------------------------------------------------------- 0 | 0 | src 1 | 3 | src 2 | 4 | src 3 | 5 | src 4 | 7 | src ----------------------------------------------------------- 5 | 1 | dst 6 | 2 | dst 7 | 7 | dst 8 | 8 | dst ----------------------------------------------------------- 9 No Config - Doesn't point to anything 12 No Config - Doesn't point to anything 13 No Config - Doesn't point to anything 14 No Config - Doesn't point to anything 15 No Config - Doesn't point to anything 16 No Config - Doesn't point to anything 17 No Config - Doesn't point to anything 18 No Config - Doesn't point to anything 19 No Config - Doesn't point to anything 20 No Config - Doesn't point to anything 21 No Config - Doesn't point to anything 22 No Config - Doesn't point to anything 23 No Config - Doesn't point to anything ----------------------------------------------------------- */ u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr) { u32 addr = 0; u32 ce = COPY_ENGINE_ID(ctrl_addr); switch (ce) { case 0: addr = SHADOW_VALUE0; break; case 3: addr = SHADOW_VALUE3; break; case 4: addr = SHADOW_VALUE4; break; case 5: addr = SHADOW_VALUE5; break; case 7: addr = SHADOW_VALUE7; break; default: HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce); QDF_ASSERT(0); } return addr; } u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr) { u32 addr = 0; u32 ce = COPY_ENGINE_ID(ctrl_addr); switch (ce) { case 1: addr = SHADOW_VALUE13; break; case 2: addr = SHADOW_VALUE14; break; case 5: addr = SHADOW_VALUE17; break; case 7: addr = SHADOW_VALUE19; break; case 8: addr = SHADOW_VALUE20; break; case 9: addr = SHADOW_VALUE21; break; case 10: addr = SHADOW_VALUE22; break; case 11: addr = SHADOW_VALUE23; break; default: HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce); QDF_ASSERT(0); } return addr; } #endif #if defined(FEATURE_LRO) /** * ce_lro_flush_cb_register() - register the LRO flush * callback * @scn: HIF context * @handler: callback function * @data: opaque data pointer to be passed back * * Store the LRO flush callback provided * * Return: Number of instances the callback is registered for */ int ce_lro_flush_cb_register(struct hif_opaque_softc *hif_hdl, void (handler)(void *), void *data) { int rc = 0; int i; struct CE_state *ce_state; struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); QDF_ASSERT(scn != NULL); if (scn != NULL) { for (i = 0; i < scn->ce_count; i++) { ce_state = scn->ce_id_to_state[i]; if ((ce_state != NULL) && (ce_state->htt_rx_data)) { ce_state->lro_flush_cb = handler; ce_state->lro_data = data; rc++; } } } else { HIF_ERROR("%s: hif_state NULL!", __func__); } return rc; } /** * ce_lro_flush_cb_deregister() - deregister the LRO flush * callback * @scn: HIF context * * Remove the LRO flush callback * * Return: Number of instances the callback is de-registered */ int ce_lro_flush_cb_deregister(struct hif_opaque_softc *hif_hdl) { int rc = 0; int i; struct CE_state *ce_state; struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); QDF_ASSERT(scn != NULL); if (scn != NULL) { for (i = 0; i < scn->ce_count; i++) { ce_state = scn->ce_id_to_state[i]; if ((ce_state != NULL) && (ce_state->htt_rx_data)) { ce_state->lro_flush_cb = NULL; ce_state->lro_data = NULL; rc++; } } } else { HIF_ERROR("%s: hif_state NULL!", __func__); } return rc; } #endif /** * hif_map_service_to_pipe() - returns the ce ids pertaining to * this service * @scn: hif_softc pointer. * @svc_id: Service ID for which the mapping is needed. * @ul_pipe: address of the container in which ul pipe is returned. * @dl_pipe: address of the container in which dl pipe is returned. * @ul_is_polled: address of the container in which a bool * indicating if the UL CE for this service * is polled is returned. * @dl_is_polled: address of the container in which a bool * indicating if the DL CE for this service * is polled is returned. * * Return: Indicates whether the service has been found in the table. * Upon return, ul_is_polled is updated only if ul_pipe is updated. * There will be warning logs if either leg has not been updated * because it missed the entry in the table (but this is not an err). */ int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id, uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled, int *dl_is_polled) { int status = QDF_STATUS_E_INVAL; unsigned int i; struct service_to_pipe element; struct service_to_pipe *tgt_svc_map_to_use; size_t sz_tgt_svc_map_to_use; struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); uint32_t mode = hif_get_conparam(scn); struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl); bool dl_updated = false; bool ul_updated = false; struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); if (QDF_IS_EPPING_ENABLED(mode)) { tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping; sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_wlan_epping); } else { switch (tgt_info->target_type) { default: tgt_svc_map_to_use = target_service_to_ce_map_wlan; sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_wlan); break; case TARGET_TYPE_AR900B: case TARGET_TYPE_QCA9984: case TARGET_TYPE_IPQ4019: case TARGET_TYPE_QCA9888: case TARGET_TYPE_AR9888: case TARGET_TYPE_AR9888V2: tgt_svc_map_to_use = target_service_to_ce_map_ar900b; sz_tgt_svc_map_to_use = sizeof(target_service_to_ce_map_ar900b); break; } } *dl_is_polled = 0; /* polling for received messages not supported */ for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) { memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element)); if (element.service_id == svc_id) { if (element.pipedir == PIPEDIR_OUT) { *ul_pipe = element.pipenum; *ul_is_polled = (hif_state->host_ce_config[*ul_pipe].flags & CE_ATTR_DISABLE_INTR) != 0; ul_updated = true; } else if (element.pipedir == PIPEDIR_IN) { *dl_pipe = element.pipenum; dl_updated = true; } status = QDF_STATUS_SUCCESS; } } if (ul_updated == false) HIF_WARN("%s: ul pipe is NOT updated for service %d", __func__, svc_id); if (dl_updated == false) HIF_WARN("%s: dl pipe is NOT updated for service %d", __func__, svc_id); return status; } #ifdef SHADOW_REG_DEBUG inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn, uint32_t CE_ctrl_addr) { uint32_t read_from_hw, srri_from_ddr = 0; read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS); srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr)); if (read_from_hw != srri_from_ddr) { HIF_ERROR("%s: error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x", __func__, srri_from_ddr, read_from_hw, CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr)); QDF_ASSERT(0); } return srri_from_ddr; } inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn, uint32_t CE_ctrl_addr) { uint32_t read_from_hw, drri_from_ddr = 0; read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS); drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr)); if (read_from_hw != drri_from_ddr) { HIF_ERROR("error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x", drri_from_ddr, read_from_hw, CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr)); QDF_ASSERT(0); } return drri_from_ddr; } #endif #ifdef ADRASTEA_RRI_ON_DDR /** * hif_get_src_ring_read_index(): Called to get the SRRI * * @scn: hif_softc pointer * @CE_ctrl_addr: base address of the CE whose RRI is to be read * * This function returns the SRRI to the caller. For CEs that * dont have interrupts enabled, we look at the DDR based SRRI * * Return: SRRI */ inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn, uint32_t CE_ctrl_addr) { struct CE_attr attr; struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)]; if (attr.flags & CE_ATTR_DISABLE_INTR) return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr); else return A_TARGET_READ(scn, (CE_ctrl_addr) + CURRENT_SRRI_ADDRESS); } /** * hif_get_dst_ring_read_index(): Called to get the DRRI * * @scn: hif_softc pointer * @CE_ctrl_addr: base address of the CE whose RRI is to be read * * This function returns the DRRI to the caller. For CEs that * dont have interrupts enabled, we look at the DDR based DRRI * * Return: DRRI */ inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn, uint32_t CE_ctrl_addr) { struct CE_attr attr; struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); attr = hif_state->host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)]; if (attr.flags & CE_ATTR_DISABLE_INTR) return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr); else return A_TARGET_READ(scn, (CE_ctrl_addr) + CURRENT_DRRI_ADDRESS); } /** * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism * * @scn: hif_softc pointer * * This function allocates non cached memory on ddr and sends * the physical address of this memory to the CE hardware. The * hardware updates the RRI on this particular location. * * Return: None */ static inline void hif_config_rri_on_ddr(struct hif_softc *scn) { unsigned int i; qdf_dma_addr_t paddr_rri_on_ddr; uint32_t high_paddr, low_paddr; scn->vaddr_rri_on_ddr = (uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev, (CE_COUNT*sizeof(uint32_t)), &paddr_rri_on_ddr); low_paddr = BITS0_TO_31(paddr_rri_on_ddr); high_paddr = BITS32_TO_35(paddr_rri_on_ddr); HIF_INFO("%s using srri and drri from DDR", __func__); WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr); WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr); for (i = 0; i < CE_COUNT; i++) CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i)); qdf_mem_zero(scn->vaddr_rri_on_ddr, CE_COUNT*sizeof(uint32_t)); return; } #else /** * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism * * @scn: hif_softc pointer * * This is a dummy implementation for platforms that don't * support this functionality. * * Return: None */ static inline void hif_config_rri_on_ddr(struct hif_softc *scn) { return; } #endif /** * hif_dump_ce_registers() - dump ce registers * @scn: hif_opaque_softc pointer. * * Output the copy engine registers * * Return: 0 for success or error code */ int hif_dump_ce_registers(struct hif_softc *scn) { struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn); uint32_t ce_reg_address = CE0_BASE_ADDRESS; uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2]; uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2; uint16_t i; QDF_STATUS status; for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) { if (scn->ce_id_to_state[i] == NULL) { HIF_DBG("CE%d not used.", i); continue; } status = hif_diag_read_mem(hif_hdl, ce_reg_address, (uint8_t *) &ce_reg_values[0], ce_reg_word_size * sizeof(uint32_t)); if (status != QDF_STATUS_SUCCESS) { HIF_ERROR("Dumping CE register failed!"); return -EACCES; } HIF_ERROR("CE%d=>\n", i); qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG, (uint8_t *) &ce_reg_values[0], ce_reg_word_size * sizeof(uint32_t)); qdf_print("ADDR:[0x%08X], SR_WR_INDEX:%d\n", (ce_reg_address + SR_WR_INDEX_ADDRESS), ce_reg_values[SR_WR_INDEX_ADDRESS/4]); qdf_print("ADDR:[0x%08X], CURRENT_SRRI:%d\n", (ce_reg_address + CURRENT_SRRI_ADDRESS), ce_reg_values[CURRENT_SRRI_ADDRESS/4]); qdf_print("ADDR:[0x%08X], DST_WR_INDEX:%d\n", (ce_reg_address + DST_WR_INDEX_ADDRESS), ce_reg_values[DST_WR_INDEX_ADDRESS/4]); qdf_print("ADDR:[0x%08X], CURRENT_DRRI:%d\n", (ce_reg_address + CURRENT_DRRI_ADDRESS), ce_reg_values[CURRENT_DRRI_ADDRESS/4]); qdf_print("---\n"); } return 0; } #ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc, struct hif_pipe_addl_info *hif_info, uint32_t pipe) { struct hif_softc *scn = HIF_GET_SOFTC(osc); struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc); struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]); struct CE_handle *ce_hdl = pipe_info->ce_hdl; struct CE_state *ce_state = (struct CE_state *)ce_hdl; struct CE_ring_state *src_ring = ce_state->src_ring; struct CE_ring_state *dest_ring = ce_state->dest_ring; if (src_ring) { hif_info->ul_pipe.nentries = src_ring->nentries; hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask; hif_info->ul_pipe.sw_index = src_ring->sw_index; hif_info->ul_pipe.write_index = src_ring->write_index; hif_info->ul_pipe.hw_index = src_ring->hw_index; hif_info->ul_pipe.base_addr_CE_space = src_ring->base_addr_CE_space; hif_info->ul_pipe.base_addr_owner_space = src_ring->base_addr_owner_space; } if (dest_ring) { hif_info->dl_pipe.nentries = dest_ring->nentries; hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask; hif_info->dl_pipe.sw_index = dest_ring->sw_index; hif_info->dl_pipe.write_index = dest_ring->write_index; hif_info->dl_pipe.hw_index = dest_ring->hw_index; hif_info->dl_pipe.base_addr_CE_space = dest_ring->base_addr_CE_space; hif_info->dl_pipe.base_addr_owner_space = dest_ring->base_addr_owner_space; } hif_info->pci_mem = pci_resource_start(sc->pdev, 0); hif_info->ctrl_addr = ce_state->ctrl_addr; return hif_info; } uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode) { struct hif_softc *scn = HIF_GET_SOFTC(osc); scn->nss_wifi_ol_mode = mode; return 0; } #endif void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num) { struct hif_softc *scn = HIF_GET_SOFTC(osc); struct CE_state *CE_state = scn->ce_id_to_state[pipe_num]; uint32_t ctrl_addr = CE_state->ctrl_addr; Q_TARGET_ACCESS_BEGIN(scn); CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr); Q_TARGET_ACCESS_END(scn); } /** * hif_fw_event_handler() - hif fw event handler * @hif_state: pointer to hif ce state structure * * Process fw events and raise HTC callback to process fw events. * * Return: none */ static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state) { struct hif_msg_callbacks *msg_callbacks = &hif_state->msg_callbacks_current; if (!msg_callbacks->fwEventHandler) return; msg_callbacks->fwEventHandler(msg_callbacks->Context, QDF_STATUS_E_FAILURE); } #ifndef QCA_WIFI_3_0 /** * hif_fw_interrupt_handler() - FW interrupt handler * @irq: irq number * @arg: the user pointer * * Called from the PCI interrupt handler when a * firmware-generated interrupt to the Host. * * Return: status of handled irq */ irqreturn_t hif_fw_interrupt_handler(int irq, void *arg) { struct hif_softc *scn = arg; struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); uint32_t fw_indicator_address, fw_indicator; if (Q_TARGET_ACCESS_BEGIN(scn) < 0) return ATH_ISR_NOSCHED; fw_indicator_address = hif_state->fw_indicator_address; /* For sudden unplug this will return ~0 */ fw_indicator = A_TARGET_READ(scn, fw_indicator_address); if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) { /* ACK: clear Target-side pending event */ A_TARGET_WRITE(scn, fw_indicator_address, fw_indicator & ~FW_IND_EVENT_PENDING); if (Q_TARGET_ACCESS_END(scn) < 0) return ATH_ISR_SCHED; if (hif_state->started) { hif_fw_event_handler(hif_state); } else { /* * Probable Target failure before we're prepared * to handle it. Generally unexpected. */ AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: Early firmware event indicated\n", __func__)); } } else { if (Q_TARGET_ACCESS_END(scn) < 0) return ATH_ISR_SCHED; } return ATH_ISR_SCHED; } #else irqreturn_t hif_fw_interrupt_handler(int irq, void *arg) { return ATH_ISR_SCHED; } #endif /* #ifdef QCA_WIFI_3_0 */ /** * hif_wlan_disable(): call the platform driver to disable wlan * @scn: HIF Context * * This function passes the con_mode to platform driver to disable * wlan. * * Return: void */ void hif_wlan_disable(struct hif_softc *scn) { enum pld_driver_mode mode; uint32_t con_mode = hif_get_conparam(scn); if (QDF_GLOBAL_FTM_MODE == con_mode) mode = PLD_FTM; else if (QDF_IS_EPPING_ENABLED(con_mode)) mode = PLD_EPPING; else mode = PLD_MISSION; pld_wlan_disable(scn->qdf_dev->dev, mode); }