/* * Copyright (c) 2019 The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef __HAL_RX_FLOW_H #define __HAL_RX_FLOW_H #include "hal_flow.h" #include "wlan_cfg.h" #include "hal_api.h" #include "qdf_mem.h" #include "rx_flow_search_entry.h" #define HAL_FST_HASH_KEY_SIZE_BITS 315 #define HAL_FST_HASH_KEY_SIZE_BYTES 40 #define HAL_FST_HASH_KEY_SIZE_WORDS 10 #define HAL_FST_HASH_DATA_SIZE 37 #define HAL_FST_HASH_MASK 0x7ffff #define HAL_RX_FST_ENTRY_SIZE (NUM_OF_DWORDS_RX_FLOW_SEARCH_ENTRY * 4) /** * Four possible options for IP SA/DA prefix, currently use 0x0 which * maps to type 2 in HW spec */ #define HAL_FST_IP_DA_SA_PFX_TYPE_IPV4_COMPATIBLE_IPV6 2 #define HAL_IP_DA_SA_PREFIX_IPV4_COMPATIBLE_IPV6 0x0 /** * REO destination indication is a lower 4-bits of hash value * This should match the REO destination used in Rx hash based routing. */ #define HAL_REO_DEST_IND_HASH_MASK 0xF /** * REO destinations are valid from 16-31 for Hawkeye * and 0-15 are not setup for SW */ #define HAL_REO_DEST_IND_START_OFFSET 0x10 /** * struct hal_rx_flow - Rx Flow parameters to be sent to HW * @tuple_info: Rx Flow 5-tuple (src & dest IP, src & dest ports, L4 protocol) * @reo_destination_handler: REO destination for this flow * @reo_destination_indication: REO indication for this flow * @fse_metadata: Flow metadata or tag passed to HW for marking packets */ struct hal_rx_flow { struct hal_flow_tuple_info tuple_info; uint8_t reo_destination_handler; uint8_t reo_destination_indication; uint32_t fse_metadata; }; /** * enum hal_rx_fse_reo_destination_handler * @HAL_RX_FSE_REO_DEST_FT: Use this entry's destination indication * @HAL_RX_FSE_REO_DEST_ASPT: Use Address Search + Peer Table's entry * @HAL_RX_FSE_REO_DEST_FT2: Use FT2's destination indication * @HAL_RX_FSE_REO_DEST_CCE: Use CCE's destination indication for this entry */ enum hal_rx_fse_reo_destination_handler { HAL_RX_FSE_REO_DEST_FT = 0, HAL_RX_FSE_REO_DEST_ASPT = 1, HAL_RX_FSE_REO_DEST_FT2 = 2, HAL_RX_FSE_REO_DEST_CCE = 3, }; /** * struct hal_rx_fst - HAL RX Flow search table context * @base_vaddr: Virtual Base address of HW FST * @base_paddr: Physical Base address of HW FST * @key: Pointer to 320-bit Key read from cfg * @shifted_key: Pointer to left-shifted 320-bit Key used for Toeplitz Hash * @max_entries : Max number of entries in flow searchh table * @max_skid_length : Max search length if there is hash collision * @hash_mask: Hash mask to apply to index into FST * @key_cache: Toepliz Key Cache configured key */ struct hal_rx_fst { uint8_t *base_vaddr; qdf_dma_addr_t base_paddr; uint8_t *key; uint8_t shifted_key[HAL_FST_HASH_KEY_SIZE_BYTES]; uint16_t max_entries; uint16_t max_skid_length; uint16_t hash_mask; uint32_t key_cache[HAL_FST_HASH_KEY_SIZE_BYTES][1 << 8]; }; /** * hal_rx_flow_setup_fse() - Setup a flow search entry in HW FST * @fst: Pointer to the Rx Flow Search Table * @table_offset: offset into the table where the flow is to be setup * @flow: Flow Parameters * * Return: Success/Failure */ static void * hal_rx_flow_setup_fse(struct hal_rx_fst *fst, uint32_t table_offset, struct hal_rx_flow *flow) { uint8_t *fse; bool fse_valid; if (table_offset >= fst->max_entries) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "HAL FSE table offset %u exceeds max entries %u", table_offset, fst->max_entries); return NULL; } fse = (uint8_t *)fst->base_vaddr + (table_offset * HAL_RX_FST_ENTRY_SIZE); fse_valid = HAL_GET_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, VALID); if (fse_valid) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "HAL FSE %pK already valid", fse); return NULL; } HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_0, SRC_IP_127_96) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_0, SRC_IP_127_96, qdf_htonl(flow->tuple_info.src_ip_127_96)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_1, SRC_IP_95_64) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_1, SRC_IP_95_64, qdf_htonl(flow->tuple_info.src_ip_95_64)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_2, SRC_IP_63_32) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_2, SRC_IP_63_32, qdf_htonl(flow->tuple_info.src_ip_63_32)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_3, SRC_IP_31_0) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_3, SRC_IP_31_0, qdf_htonl(flow->tuple_info.src_ip_31_0)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_4, DEST_IP_127_96) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_4, DEST_IP_127_96, qdf_htonl(flow->tuple_info.dest_ip_127_96)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_5, DEST_IP_95_64) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_5, DEST_IP_95_64, qdf_htonl(flow->tuple_info.dest_ip_95_64)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_6, DEST_IP_63_32) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_6, DEST_IP_63_32, qdf_htonl(flow->tuple_info.dest_ip_63_32)); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_7, DEST_IP_31_0) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_7, DEST_IP_31_0, qdf_htonl(flow->tuple_info.dest_ip_31_0)); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_8, DEST_PORT); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_8, DEST_PORT) |= HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_8, DEST_PORT, (flow->tuple_info.dest_port)); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_8, SRC_PORT); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_8, SRC_PORT) |= HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_8, SRC_PORT, (flow->tuple_info.src_port)); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, L4_PROTOCOL); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, L4_PROTOCOL) |= HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_9, L4_PROTOCOL, flow->tuple_info.l4_protocol); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, REO_DESTINATION_HANDLER); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, REO_DESTINATION_HANDLER) |= HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_9, REO_DESTINATION_HANDLER, flow->reo_destination_handler); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, VALID); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, VALID) |= HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_9, VALID, 1); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_10, METADATA); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_10, METADATA) = HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_10, METADATA, flow->fse_metadata); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_11, REO_DESTINATION_INDICATION); HAL_SET_FLD(fse, RX_FLOW_SEARCH_ENTRY_11, REO_DESTINATION_INDICATION) |= HAL_SET_FLD_SM(RX_FLOW_SEARCH_ENTRY_11, REO_DESTINATION_INDICATION, flow->reo_destination_indication); /* Reset all the other fields in FSE */ HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, RESERVED_9); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_11, MSDU_DROP); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_11, RESERVED_11); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_11, MSDU_COUNT); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_12, MSDU_BYTE_COUNT); HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_13, TIMESTAMP); return fse; } /** * hal_rx_flow_delete_entry() - Delete a flow from the Rx Flow Search Table * @fst: Pointer to the Rx Flow Search Table * @hal_rx_fse: Pointer to the Rx Flow that is to be deleted from the FST * * Return: Success/Failure */ static inline QDF_STATUS hal_rx_flow_delete_entry(struct hal_rx_fst *fst, void *hal_rx_fse) { uint8_t *fse = (uint8_t *)hal_rx_fse; if (!HAL_GET_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, VALID)) return QDF_STATUS_E_NOENT; HAL_CLR_FLD(fse, RX_FLOW_SEARCH_ENTRY_9, VALID); return QDF_STATUS_SUCCESS; } /** * hal_rx_fst_key_configure() - Configure the Toeplitz key in the FST * @fst: Pointer to the Rx Flow Search Table * * Return: Success/Failure */ static void hal_rx_fst_key_configure(struct hal_rx_fst *fst) { uint8_t key_bytes[HAL_FST_HASH_KEY_SIZE_BYTES]; qdf_mem_copy(key_bytes, fst->key, HAL_FST_HASH_KEY_SIZE_BYTES); /** * The Toeplitz algorithm as per the Microsoft spec works in a * “big-endian” manner, using the MSBs of the key to hash the * initial bytes of the input going on to use up the lower order bits * of the key to hash further bytes of the input until the LSBs of the * key are used finally. * * So first, rightshift 320-bit input key 5 times to get 315 MS bits */ key_bitwise_shift_left(key_bytes, HAL_FST_HASH_KEY_SIZE_BYTES, 5); key_reverse(fst->shifted_key, key_bytes, HAL_FST_HASH_KEY_SIZE_BYTES); } /** * hal_rx_fst_get_base() - Retrieve the virtual base address of the Rx FST * @fst: Pointer to the Rx Flow Search Table * * Return: Success/Failure */ static inline void *hal_rx_fst_get_base(struct hal_rx_fst *fst) { return fst->base_vaddr; } /** * hal_rx_fst_get_fse_size() - Retrieve the size of each entry(flow) in Rx FST * * Return: size of each entry/flow in Rx FST */ static inline uint32_t hal_rx_fst_get_fse_size(void) { return HAL_RX_FST_ENTRY_SIZE; } /** * hal_rx_flow_get_tuple_info() - Retrieve the 5-tuple flow info for an entry * @hal_fse: Pointer to the Flow in Rx FST * @tuple_info: 5-tuple info of the flow returned to the caller * * Return: Success/Failure */ QDF_STATUS hal_rx_flow_get_tuple_info(void *hal_fse, struct hal_flow_tuple_info *tuple_info) { if (!hal_fse || !tuple_info) return QDF_STATUS_E_INVAL; if (!HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_9, VALID)) return QDF_STATUS_E_NOENT; tuple_info->src_ip_127_96 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_0, SRC_IP_127_96)); tuple_info->src_ip_95_64 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_1, SRC_IP_95_64)); tuple_info->src_ip_63_32 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_2, SRC_IP_63_32)); tuple_info->src_ip_31_0 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_3, SRC_IP_31_0)); tuple_info->dest_ip_127_96 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_4, DEST_IP_127_96)); tuple_info->dest_ip_95_64 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_5, DEST_IP_95_64)); tuple_info->dest_ip_63_32 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_6, DEST_IP_63_32)); tuple_info->dest_ip_31_0 = qdf_ntohl(HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_7, DEST_IP_31_0)); tuple_info->dest_port = (HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_8, DEST_PORT)); tuple_info->src_port = (HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_8, SRC_PORT)); tuple_info->l4_protocol = HAL_GET_FLD(hal_fse, RX_FLOW_SEARCH_ENTRY_9, L4_PROTOCOL); return QDF_STATUS_SUCCESS; } /** * hal_flow_toeplitz_create_cache() - Calculate hashes for each possible * byte value with the key taken as is * * @fst: FST Handle * @key: Hash Key * * Return: Success/Failure */ void hal_flow_toeplitz_create_cache(struct hal_rx_fst *fst) { int bit; int val; int i; uint8_t *key = fst->shifted_key; /* * Initialise to first 32 bits of the key; shift in further key material * through the loop */ uint32_t cur_key = (key[0] << 24) | (key[1] << 16) | (key[2] << 8) | key[3]; for (i = 0; i < HAL_FST_HASH_KEY_SIZE_BYTES; i++) { uint8_t new_key_byte; uint32_t shifted_key[8]; if (i + 4 < HAL_FST_HASH_KEY_SIZE_BYTES) new_key_byte = key[i + 4]; else new_key_byte = 0; shifted_key[0] = cur_key; for (bit = 1; bit < 8; bit++) { /* * For each iteration, shift out one more bit of the * current key and shift in one more bit of the new key * material */ shifted_key[bit] = cur_key << bit | new_key_byte >> (8 - bit); } for (val = 0; val < (1 << 8); val++) { uint32_t hash = 0; int mask; /* * For each bit set in the input, XOR in * the appropriately shifted key */ for (bit = 0, mask = 1 << 7; bit < 8; bit++, mask >>= 1) if ((val & mask)) hash ^= shifted_key[bit]; fst->key_cache[i][val] = hash; } cur_key = cur_key << 8 | new_key_byte; } } /** * hal_rx_fst_attach() - Initialize Rx flow search table in HW FST * * @qdf_dev: QDF device handle * @hal_fst_base_paddr: Pointer to the physical base address of the Rx FST * @max_entries: Max number of flows allowed in the FST * @max_search: Number of collisions allowed in the hash-based FST * @hash_key: Toeplitz key used for the hash FST * * Return: */ static struct hal_rx_fst * hal_rx_fst_attach(qdf_device_t qdf_dev, uint64_t *hal_fst_base_paddr, uint16_t max_entries, uint16_t max_search, uint8_t *hash_key) { struct hal_rx_fst *fst = qdf_mem_malloc(sizeof(struct hal_rx_fst)); if (!fst) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("hal fst allocation failed,")); return NULL; } qdf_mem_set(fst, 0, sizeof(struct hal_rx_fst)); fst->key = hash_key; fst->max_skid_length = max_search; fst->max_entries = max_entries; fst->hash_mask = max_entries - 1; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "HAL FST allocation %x %d * %d\n", fst, fst->max_entries, HAL_RX_FST_ENTRY_SIZE); fst->base_vaddr = (uint8_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev, (fst->max_entries * HAL_RX_FST_ENTRY_SIZE), &fst->base_paddr); if (!fst->base_vaddr) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("hal fst->base_vaddr allocation failed")); qdf_mem_free(fst); return NULL; } QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_DEBUG, (void *)fst->key, HAL_FST_HASH_KEY_SIZE_BYTES); qdf_mem_set((uint8_t *)fst->base_vaddr, 0, (fst->max_entries * HAL_RX_FST_ENTRY_SIZE)); hal_rx_fst_key_configure(fst); hal_flow_toeplitz_create_cache(fst); *hal_fst_base_paddr = (uint64_t)fst->base_paddr; return fst; } /** * hal_rx_fst_detach() - De-init the Rx flow search table from HW * * @rx_fst: Pointer to the Rx FST * @qdf_dev: QDF device handle * * Return: */ void hal_rx_fst_detach(struct hal_rx_fst *rx_fst, qdf_device_t qdf_dev) { if (!rx_fst || !qdf_dev) return; qdf_mem_free_consistent(qdf_dev, qdf_dev->dev, rx_fst->max_entries * HAL_RX_FST_ENTRY_SIZE, rx_fst->base_vaddr, rx_fst->base_paddr, 0); qdf_mem_free(rx_fst); } /** * hal_flow_toeplitz_hash() - Calculate Toeplitz hash by using the cached key * * @hal_fst: FST Handle * @flow: Flow Parameters * * Return: Success/Failure */ static inline uint32_t hal_flow_toeplitz_hash(void *hal_fst, struct hal_rx_flow *flow) { int i, j; uint32_t hash = 0; struct hal_rx_fst *fst = (struct hal_rx_fst *)hal_fst; uint32_t input[HAL_FST_HASH_KEY_SIZE_WORDS]; uint8_t *tuple; qdf_mem_zero(input, HAL_FST_HASH_KEY_SIZE_BYTES); *(uint32_t *)&input[0] = qdf_htonl(flow->tuple_info.src_ip_127_96); *(uint32_t *)&input[1] = qdf_htonl(flow->tuple_info.src_ip_95_64); *(uint32_t *)&input[2] = qdf_htonl(flow->tuple_info.src_ip_63_32); *(uint32_t *)&input[3] = qdf_htonl(flow->tuple_info.src_ip_31_0); *(uint32_t *)&input[4] = qdf_htonl(flow->tuple_info.dest_ip_127_96); *(uint32_t *)&input[5] = qdf_htonl(flow->tuple_info.dest_ip_95_64); *(uint32_t *)&input[6] = qdf_htonl(flow->tuple_info.dest_ip_63_32); *(uint32_t *)&input[7] = qdf_htonl(flow->tuple_info.dest_ip_31_0); *(uint32_t *)&input[8] = (flow->tuple_info.dest_port << 16) | (flow->tuple_info.src_port); *(uint32_t *)&input[9] = flow->tuple_info.l4_protocol; tuple = (uint8_t *)input; QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, tuple, sizeof(input)); for (i = 0, j = HAL_FST_HASH_DATA_SIZE - 1; i < HAL_FST_HASH_KEY_SIZE_BYTES && j >= 0; i++, j--) { hash ^= fst->key_cache[i][tuple[j]]; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW, "Hash value %u %u truncated hash %u\n", hash, (hash >> 12), (hash >> 12) % (fst->max_entries)); hash >>= 12; hash &= (fst->max_entries - 1); return hash; } /** * hal_rx_get_hal_hash() - Retrieve hash index of a flow in the FST table * * @hal_fst: HAL Rx FST Handle * @flow_hash: Flow hash computed from flow tuple * * Return: hash index truncated to the size of the hash table */ inline uint32_t hal_rx_get_hal_hash(struct hal_rx_fst *hal_fst, uint32_t flow_hash) { uint32_t trunc_hash = flow_hash; /* Take care of hash wrap around scenario */ if (flow_hash >= hal_fst->max_entries) trunc_hash &= hal_fst->hash_mask; return trunc_hash; } /** * hal_rx_insert_flow_entry() - Add a flow into the FST table * * @hal_fst: HAL Rx FST Handle * @flow_hash: Flow hash computed from flow tuple * @flow_tuple_info: Flow tuple used to compute the hash * @flow_index: Hash index of the flow in the table when inserted successfully * * Return: Success if flow is inserted into the table, error otherwise */ QDF_STATUS hal_rx_insert_flow_entry(struct hal_rx_fst *fst, uint32_t flow_hash, void *flow_tuple_info, uint32_t *flow_idx) { int i; void *hal_fse; uint32_t hal_hash; struct hal_flow_tuple_info hal_tuple_info = { 0 }; QDF_STATUS status; for (i = 0; i < fst->max_skid_length; i++) { hal_hash = hal_rx_get_hal_hash(fst, (flow_hash + i)); hal_fse = (uint8_t *)fst->base_vaddr + (hal_hash * HAL_RX_FST_ENTRY_SIZE); status = hal_rx_flow_get_tuple_info(hal_fse, &hal_tuple_info); if (QDF_STATUS_E_NOENT == status) break; /* Find the matching flow entry in HW FST */ if (!qdf_mem_cmp(&hal_tuple_info, flow_tuple_info, sizeof(struct hal_flow_tuple_info))) { dp_err("Duplicate flow entry in FST %u at skid %u ", hal_hash, i); return QDF_STATUS_E_EXISTS; } } if (i == fst->max_skid_length) { dp_err("Max skid length reached for hash %u", flow_hash); return QDF_STATUS_E_RANGE; } *flow_idx = hal_hash; dp_info("flow_hash = %u, skid_entry = %d, flow_addr = %pK flow_idx = %d", flow_hash, i, hal_fse, *flow_idx); return QDF_STATUS_SUCCESS; } /** * hal_rx_find_flow_from_tuple() - Find a flow in the FST table * * @fst: HAL Rx FST Handle * @flow_hash: Flow hash computed from flow tuple * @flow_tuple_info: Flow tuple used to compute the hash * @flow_index: Hash index of the flow in the table when found * * Return: Success if matching flow is found in the table, error otherwise */ QDF_STATUS hal_rx_find_flow_from_tuple(struct hal_rx_fst *fst, uint32_t flow_hash, void *flow_tuple_info, uint32_t *flow_idx) { int i; void *hal_fse; uint32_t hal_hash; struct hal_flow_tuple_info hal_tuple_info = { 0 }; QDF_STATUS status; for (i = 0; i < fst->max_skid_length; i++) { hal_hash = hal_rx_get_hal_hash(fst, (flow_hash + i)); hal_fse = (uint8_t *)fst->base_vaddr + (hal_hash * HAL_RX_FST_ENTRY_SIZE); status = hal_rx_flow_get_tuple_info(hal_fse, &hal_tuple_info); if (QDF_STATUS_SUCCESS != status) continue; /* Find the matching flow entry in HW FST */ if (!qdf_mem_cmp(&hal_tuple_info, flow_tuple_info, sizeof(struct hal_flow_tuple_info))) { break; } } if (i == fst->max_skid_length) { dp_err("Max skid length reached for hash %u", flow_hash); return QDF_STATUS_E_RANGE; } *flow_idx = hal_hash; dp_info("flow_hash = %u, skid_entry = %d, flow_addr = %pK flow_idx = %d", flow_hash, i, hal_fse, *flow_idx); return QDF_STATUS_SUCCESS; } #endif /* HAL_RX_FLOW_H */