// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include "aqt1000-registers.h" #include "aqt1000-clsh.h" #define AQT_USLEEP_RANGE 50 #define MAX_IMPED_PARAMS 6 enum aqt_vref_dac_sel { VREF_N1P9V = 0, VREF_N1P86V, VREF_N181V, VREF_N1P74V, VREF_N1P7V, VREF_N0P9V, VREF_N1P576V, VREF_N1P827V, }; enum aqt_vref_ctl { CONTROLLER = 0, I2C, }; enum aqt_hd2_res_div_ctl { DISCONNECT = 0, P5_0P35, P75_0P68, P82_0P77, P9_0P87, }; enum aqt_curr_bias_err_amp { I_0P25UA = 0, I_0P5UA, I_0P75UA, I_1UA, I_1P25UA, I_1P5UA, I_1P75UA, I_2UA, }; static const struct aqt_reg_mask_val imped_table_aqt[][MAX_IMPED_PARAMS] = { { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf2}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf2}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf2}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf4}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf4}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf4}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf7}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x01}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf7}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf7}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x01}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xf9}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xf9}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xf9}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfa}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfa}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfa}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfb}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfb}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfb}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfc}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfc}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfc}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x00}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x00}, }, { {AQT1000_CDC_RX1_RX_VOL_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX1_RX_PATH_SEC1, 0x01, 0x01}, {AQT1000_CDC_RX2_RX_VOL_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX2_RX_VOL_MIX_CTL, 0xff, 0xfd}, {AQT1000_CDC_RX2_RX_PATH_SEC1, 0x01, 0x01}, }, }; static const struct aqt_imped_val imped_index[] = { {4, 0}, {5, 1}, {6, 2}, {7, 3}, {8, 4}, {9, 5}, {10, 6}, {11, 7}, {12, 8}, {13, 9}, }; static void (*clsh_state_fp[NUM_CLSH_STATES])(struct snd_soc_component *, struct aqt_clsh_cdc_data *, u8 req_state, bool en, int mode); static int get_impedance_index(int imped) { int i = 0; if (imped < imped_index[i].imped_val) { pr_debug("%s, detected impedance is less than 4 Ohm\n", __func__); i = 0; goto ret; } if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) { pr_debug("%s, detected impedance is greater than 12 Ohm\n", __func__); i = ARRAY_SIZE(imped_index) - 1; goto ret; } for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) { if (imped >= imped_index[i].imped_val && imped < imped_index[i + 1].imped_val) break; } ret: pr_debug("%s: selected impedance index = %d\n", __func__, imped_index[i].index); return imped_index[i].index; } /* * Function: aqt_clsh_imped_config * Params: component, imped, reset * Description: * This function updates HPHL and HPHR gain settings * according to the impedance value. */ void aqt_clsh_imped_config(struct snd_soc_component *component, int imped, bool reset) { int i; int index = 0; int table_size; static const struct aqt_reg_mask_val (*imped_table_ptr)[MAX_IMPED_PARAMS]; table_size = ARRAY_SIZE(imped_table_aqt); imped_table_ptr = imped_table_aqt; /* reset = 1, which means request is to reset the register values */ if (reset) { for (i = 0; i < MAX_IMPED_PARAMS; i++) snd_soc_component_update_bits(component, imped_table_ptr[index][i].reg, imped_table_ptr[index][i].mask, 0); return; } index = get_impedance_index(imped); if (index >= (ARRAY_SIZE(imped_index) - 1)) { pr_debug("%s, impedance not in range = %d\n", __func__, imped); return; } if (index >= table_size) { pr_debug("%s, impedance index not in range = %d\n", __func__, index); return; } for (i = 0; i < MAX_IMPED_PARAMS; i++) snd_soc_component_update_bits(component, imped_table_ptr[index][i].reg, imped_table_ptr[index][i].mask, imped_table_ptr[index][i].val); } EXPORT_SYMBOL(aqt_clsh_imped_config); static const char *mode_to_str(int mode) { switch (mode) { case CLS_H_NORMAL: return "CLS_H_NORMAL"; case CLS_H_HIFI: return "CLS_H_HIFI"; case CLS_H_LOHIFI: return "CLS_H_LOHIFI"; case CLS_H_LP: return "CLS_H_LP"; case CLS_H_ULP: return "CLS_H_ULP"; case CLS_AB: return "CLS_AB"; case CLS_AB_HIFI: return "CLS_AB_HIFI"; default: return "CLS_H_INVALID"; }; } static const char *const state_to_str[] = { [AQT_CLSH_STATE_IDLE] = "STATE_IDLE", [AQT_CLSH_STATE_HPHL] = "STATE_HPH_L", [AQT_CLSH_STATE_HPHR] = "STATE_HPH_R", [AQT_CLSH_STATE_HPH_ST] = "STATE_HPH_ST", }; static inline void aqt_enable_clsh_block(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, bool enable) { if ((enable && ++clsh_d->clsh_users == 1) || (!enable && --clsh_d->clsh_users == 0)) snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_CRC, 0x01, (u8) enable); if (clsh_d->clsh_users < 0) clsh_d->clsh_users = 0; dev_dbg(component->dev, "%s: clsh_users %d, enable %d", __func__, clsh_d->clsh_users, enable); } static inline bool aqt_clsh_enable_status(struct snd_soc_component *component) { return snd_soc_component_read32( component, AQT1000_CDC_CLSH_CRC) & 0x01; } static inline int aqt_clsh_get_int_mode(struct aqt_clsh_cdc_data *clsh_d, int clsh_state) { int mode; if ((clsh_state != AQT_CLSH_STATE_HPHL) && (clsh_state != AQT_CLSH_STATE_HPHR)) mode = CLS_NONE; else mode = clsh_d->interpolator_modes[ffs(clsh_state)]; return mode; } static inline void aqt_clsh_set_int_mode(struct aqt_clsh_cdc_data *clsh_d, int clsh_state, int mode) { if ((clsh_state != AQT_CLSH_STATE_HPHL) && (clsh_state != AQT_CLSH_STATE_HPHR)) return; clsh_d->interpolator_modes[ffs(clsh_state)] = mode; } static inline void aqt_clsh_set_buck_mode(struct snd_soc_component *component, int mode) { if (mode == CLS_H_HIFI || mode == CLS_H_LOHIFI || mode == CLS_AB_HIFI || mode == CLS_AB) snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, 0x08, 0x08); /* set to HIFI */ else snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, 0x08, 0x00); /* set to default */ } static inline void aqt_clsh_set_flyback_mode( struct snd_soc_component *component, int mode) { if (mode == CLS_H_HIFI || mode == CLS_H_LOHIFI || mode == CLS_AB_HIFI || mode == CLS_AB) snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, 0x04, 0x04); /* set to HIFI */ else snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, 0x04, 0x00); /* set to Default */ } static inline void aqt_clsh_gm3_boost_disable( struct snd_soc_component *component, int mode) { if (mode == CLS_H_HIFI || mode == CLS_H_LOHIFI || mode == CLS_AB_HIFI || mode == CLS_AB) { snd_soc_component_update_bits(component, AQT1000_HPH_CNP_WG_CTL, 0x80, 0x0); /* disable GM3 Boost */ snd_soc_component_update_bits(component, AQT1000_FLYBACK_VNEG_CTRL_4, 0xF0, 0x80); } else { snd_soc_component_update_bits(component, AQT1000_HPH_CNP_WG_CTL, 0x80, 0x80); /* set to Default */ snd_soc_component_update_bits(component, AQT1000_FLYBACK_VNEG_CTRL_4, 0xF0, 0x70); } } static inline void aqt_clsh_flyback_dac_ctl( struct snd_soc_component *component, int vref) { snd_soc_component_update_bits(component, AQT1000_FLYBACK_VNEGDAC_CTRL_2, 0xE0, (vref << 5)); } static inline void aqt_clsh_mode_vref_ctl(struct snd_soc_component *component, int vref_ctl) { if (vref_ctl == I2C) { snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_3, 0x02, 0x02); snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_2, 0xFF, 0x1C); } else { snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_2, 0xFF, 0x3A); snd_soc_component_update_bits(component, AQT1000_CLASSH_MODE_3, 0x02, 0x00); } } static inline void aqt_clsh_buck_current_bias_ctl( struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, AQT1000_BUCK_5V_IBIAS_CTL_4, 0x70, (I_2UA << 4)); snd_soc_component_update_bits(component, AQT1000_BUCK_5V_IBIAS_CTL_4, 0x07, I_0P25UA); snd_soc_component_update_bits(component, AQT1000_BUCK_5V_CTRL_CCL_2, 0x3F, 0x3F); } else { snd_soc_component_update_bits(component, AQT1000_BUCK_5V_IBIAS_CTL_4, 0x70, (I_1UA << 4)); snd_soc_component_update_bits(component, AQT1000_BUCK_5V_IBIAS_CTL_4, 0x07, I_1UA); snd_soc_component_update_bits(component, AQT1000_BUCK_5V_CTRL_CCL_2, 0x3F, 0x20); } } static inline void aqt_clsh_rdac_hd2_ctl(struct snd_soc_component *component, u8 hd2_div_ctl, u8 state) { u16 reg = 0; if (state == AQT_CLSH_STATE_HPHL) reg = AQT1000_HPH_NEW_INT_RDAC_HD2_CTL_L; else if (state == AQT_CLSH_STATE_HPHR) reg = AQT1000_HPH_NEW_INT_RDAC_HD2_CTL_R; else dev_err(component->dev, "%s: Invalid state: %d\n", __func__, state); if (!reg) snd_soc_component_update_bits(component, reg, 0x0F, hd2_div_ctl); } static inline void aqt_clsh_force_iq_ctl(struct snd_soc_component *component, int mode) { if (mode == CLS_H_LOHIFI || mode == CLS_AB) { snd_soc_component_update_bits(component, AQT1000_HPH_NEW_INT_PA_MISC2, 0x20, 0x20); snd_soc_component_update_bits(component, AQT1000_RX_BIAS_HPH_LOWPOWER, 0xF0, 0xC0); snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL1, 0x0E, 0x02); } else { snd_soc_component_update_bits(component, AQT1000_HPH_NEW_INT_PA_MISC2, 0x20, 0x0); snd_soc_component_update_bits(component, AQT1000_RX_BIAS_HPH_LOWPOWER, 0xF0, 0x80); snd_soc_component_update_bits(component, AQT1000_HPH_PA_CTL1, 0x0E, 0x06); } } static void aqt_clsh_buck_ctrl(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, int mode, bool enable) { /* enable/disable buck */ if ((enable && (++clsh_d->buck_users == 1)) || (!enable && (--clsh_d->buck_users == 0))) snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, (1 << 7), (enable << 7)); dev_dbg(component->dev, "%s: buck_users %d, enable %d, mode: %s", __func__, clsh_d->buck_users, enable, mode_to_str(mode)); /* * 500us sleep is required after buck enable/disable * as per HW requirement */ usleep_range(500, 500 + AQT_USLEEP_RANGE); } static void aqt_clsh_flyback_ctrl(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, int mode, bool enable) { /* enable/disable flyback */ if ((enable && (++clsh_d->flyback_users == 1)) || (!enable && (--clsh_d->flyback_users == 0))) { snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, (1 << 6), (enable << 6)); /* 100usec delay is needed as per HW requirement */ usleep_range(100, 110); } dev_dbg(component->dev, "%s: flyback_users %d, enable %d, mode: %s", __func__, clsh_d->flyback_users, enable, mode_to_str(mode)); /* * 500us sleep is required after flyback enable/disable * as per HW requirement */ usleep_range(500, 500 + AQT_USLEEP_RANGE); } static void aqt_clsh_set_hph_mode(struct snd_soc_component *component, int mode) { u8 val = 0; u8 gain = 0; u8 res_val = VREF_FILT_R_0OHM; u8 ipeak = DELTA_I_50MA; switch (mode) { case CLS_H_NORMAL: res_val = VREF_FILT_R_50KOHM; val = 0x00; gain = DAC_GAIN_0DB; ipeak = DELTA_I_50MA; break; case CLS_AB: val = 0x00; gain = DAC_GAIN_0DB; ipeak = DELTA_I_50MA; break; case CLS_AB_HIFI: val = 0x08; break; case CLS_H_HIFI: val = 0x08; gain = DAC_GAIN_M0P2DB; ipeak = DELTA_I_50MA; break; case CLS_H_LOHIFI: val = 0x00; break; case CLS_H_ULP: val = 0x0C; break; case CLS_H_LP: val = 0x04; ipeak = DELTA_I_30MA; break; default: return; }; if (mode == CLS_H_LOHIFI || mode == CLS_AB) val = 0x04; snd_soc_component_update_bits(component, AQT1000_ANA_HPH, 0x0C, val); } static void aqt_clsh_set_buck_regulator_mode( struct snd_soc_component *component, int mode) { snd_soc_component_update_bits(component, AQT1000_ANA_RX_SUPPLIES, 0x02, 0x00); } static void aqt_clsh_state_hph_st(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, u8 req_state, bool is_enable, int mode) { dev_dbg(component->dev, "%s: mode: %s, %s\n", __func__, mode_to_str(mode), is_enable ? "enable" : "disable"); if (mode == CLS_AB || mode == CLS_AB_HIFI) return; if (is_enable) { if (req_state == AQT_CLSH_STATE_HPHL) snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CFG0, 0x40, 0x40); if (req_state == AQT_CLSH_STATE_HPHR) snd_soc_component_update_bits(component, AQT1000_CDC_RX2_RX_PATH_CFG0, 0x40, 0x40); } else { if (req_state == AQT_CLSH_STATE_HPHL) snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CFG0, 0x40, 0x00); if (req_state == AQT_CLSH_STATE_HPHR) snd_soc_component_update_bits(component, AQT1000_CDC_RX2_RX_PATH_CFG0, 0x40, 0x00); } } static void aqt_clsh_state_hph_r(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, u8 req_state, bool is_enable, int mode) { dev_dbg(component->dev, "%s: mode: %s, %s\n", __func__, mode_to_str(mode), is_enable ? "enable" : "disable"); if (mode == CLS_H_NORMAL) { dev_err(component->dev, "%s: Normal mode not applicable for hph_r\n", __func__); return; } if (is_enable) { if (mode != CLS_AB && mode != CLS_AB_HIFI) { aqt_enable_clsh_block(component, clsh_d, true); /* * These K1 values depend on the Headphone Impedance * For now it is assumed to be 16 ohm */ snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_K1_MSB, 0x0F, 0x00); snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_K1_LSB, 0xFF, 0xC0); snd_soc_component_update_bits(component, AQT1000_CDC_RX2_RX_PATH_CFG0, 0x40, 0x40); } aqt_clsh_set_buck_regulator_mode(component, mode); aqt_clsh_set_flyback_mode(component, mode); aqt_clsh_gm3_boost_disable(component, mode); aqt_clsh_flyback_dac_ctl(component, VREF_N0P9V); aqt_clsh_mode_vref_ctl(component, I2C); aqt_clsh_force_iq_ctl(component, mode); aqt_clsh_rdac_hd2_ctl(component, P82_0P77, req_state); aqt_clsh_flyback_ctrl(component, clsh_d, mode, true); aqt_clsh_flyback_dac_ctl(component, VREF_N1P827V); aqt_clsh_set_buck_mode(component, mode); aqt_clsh_buck_ctrl(component, clsh_d, mode, true); aqt_clsh_mode_vref_ctl(component, CONTROLLER); aqt_clsh_buck_current_bias_ctl(component, true); aqt_clsh_set_hph_mode(component, mode); } else { aqt_clsh_set_hph_mode(component, CLS_H_NORMAL); aqt_clsh_buck_current_bias_ctl(component, false); if (mode != CLS_AB && mode != CLS_AB_HIFI) { snd_soc_component_update_bits(component, AQT1000_CDC_RX2_RX_PATH_CFG0, 0x40, 0x00); aqt_enable_clsh_block(component, clsh_d, false); } /* buck and flyback set to default mode and disable */ aqt_clsh_buck_ctrl(component, clsh_d, CLS_H_NORMAL, false); aqt_clsh_flyback_ctrl(component, clsh_d, CLS_H_NORMAL, false); aqt_clsh_rdac_hd2_ctl(component, P5_0P35, req_state); aqt_clsh_force_iq_ctl(component, CLS_H_NORMAL); aqt_clsh_gm3_boost_disable(component, CLS_H_NORMAL); aqt_clsh_set_flyback_mode(component, CLS_H_NORMAL); aqt_clsh_set_buck_mode(component, CLS_H_NORMAL); aqt_clsh_set_buck_regulator_mode(component, CLS_H_NORMAL); } } static void aqt_clsh_state_hph_l(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, u8 req_state, bool is_enable, int mode) { dev_dbg(component->dev, "%s: mode: %s, %s\n", __func__, mode_to_str(mode), is_enable ? "enable" : "disable"); if (mode == CLS_H_NORMAL) { dev_err(component->dev, "%s: Normal mode not applicable for hph_l\n", __func__); return; } if (is_enable) { if (mode != CLS_AB && mode != CLS_AB_HIFI) { aqt_enable_clsh_block(component, clsh_d, true); /* * These K1 values depend on the Headphone Impedance * For now it is assumed to be 16 ohm */ snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_K1_MSB, 0x0F, 0x00); snd_soc_component_update_bits(component, AQT1000_CDC_CLSH_K1_LSB, 0xFF, 0xC0); snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CFG0, 0x40, 0x40); } aqt_clsh_set_buck_regulator_mode(component, mode); aqt_clsh_set_flyback_mode(component, mode); aqt_clsh_gm3_boost_disable(component, mode); aqt_clsh_flyback_dac_ctl(component, VREF_N0P9V); aqt_clsh_mode_vref_ctl(component, I2C); aqt_clsh_force_iq_ctl(component, mode); aqt_clsh_rdac_hd2_ctl(component, P82_0P77, req_state); aqt_clsh_flyback_ctrl(component, clsh_d, mode, true); aqt_clsh_flyback_dac_ctl(component, VREF_N1P827V); aqt_clsh_set_buck_mode(component, mode); aqt_clsh_buck_ctrl(component, clsh_d, mode, true); aqt_clsh_mode_vref_ctl(component, CONTROLLER); aqt_clsh_buck_current_bias_ctl(component, true); aqt_clsh_set_hph_mode(component, mode); } else { aqt_clsh_set_hph_mode(component, CLS_H_NORMAL); aqt_clsh_buck_current_bias_ctl(component, false); if (mode != CLS_AB && mode != CLS_AB_HIFI) { snd_soc_component_update_bits(component, AQT1000_CDC_RX1_RX_PATH_CFG0, 0x40, 0x00); aqt_enable_clsh_block(component, clsh_d, false); } /* set buck and flyback to Default Mode */ aqt_clsh_buck_ctrl(component, clsh_d, CLS_H_NORMAL, false); aqt_clsh_flyback_ctrl(component, clsh_d, CLS_H_NORMAL, false); aqt_clsh_rdac_hd2_ctl(component, P5_0P35, req_state); aqt_clsh_force_iq_ctl(component, CLS_H_NORMAL); aqt_clsh_gm3_boost_disable(component, CLS_H_NORMAL); aqt_clsh_set_flyback_mode(component, CLS_H_NORMAL); aqt_clsh_set_buck_mode(component, CLS_H_NORMAL); aqt_clsh_set_buck_regulator_mode(component, CLS_H_NORMAL); } } static void aqt_clsh_state_err(struct snd_soc_component *component, struct aqt_clsh_cdc_data *clsh_d, u8 req_state, bool is_enable, int mode) { dev_err(component->dev, "%s Wrong request for class H state machine requested to %s %s", __func__, is_enable ? "enable" : "disable", state_to_str[req_state]); } /* * Function: aqt_clsh_is_state_valid * Params: state * Description: * Provides information on valid states of Class H configuration */ static bool aqt_clsh_is_state_valid(u8 state) { switch (state) { case AQT_CLSH_STATE_IDLE: case AQT_CLSH_STATE_HPHL: case AQT_CLSH_STATE_HPHR: case AQT_CLSH_STATE_HPH_ST: return true; default: return false; }; } /* * Function: aqt_clsh_fsm * Params: component, cdc_clsh_d, req_state, req_type, clsh_event * Description: * This function handles PRE DAC and POST DAC conditions of different devices * and updates class H configuration of different combination of devices * based on validity of their states. cdc_clsh_d will contain current * class h state information */ void aqt_clsh_fsm(struct snd_soc_component *component, struct aqt_clsh_cdc_data *cdc_clsh_d, u8 clsh_event, u8 req_state, int int_mode) { u8 old_state, new_state; switch (clsh_event) { case AQT_CLSH_EVENT_PRE_DAC: old_state = cdc_clsh_d->state; new_state = old_state | req_state; if (!aqt_clsh_is_state_valid(new_state)) { dev_err(component->dev, "%s: Class-H not a valid new state: %s\n", __func__, state_to_str[new_state]); return; } if (new_state == old_state) { dev_err(component->dev, "%s: Class-H already in requested state: %s\n", __func__, state_to_str[new_state]); return; } cdc_clsh_d->state = new_state; aqt_clsh_set_int_mode(cdc_clsh_d, req_state, int_mode); (*clsh_state_fp[new_state]) (component, cdc_clsh_d, req_state, CLSH_REQ_ENABLE, int_mode); dev_dbg(component->dev, "%s: ClassH state transition from %s to %s\n", __func__, state_to_str[old_state], state_to_str[cdc_clsh_d->state]); break; case AQT_CLSH_EVENT_POST_PA: old_state = cdc_clsh_d->state; new_state = old_state & (~req_state); if (new_state < NUM_CLSH_STATES) { if (!aqt_clsh_is_state_valid(old_state)) { dev_err(component->dev, "%s:Invalid old state:%s\n", __func__, state_to_str[old_state]); return; } if (new_state == old_state) { dev_err(component->dev, "%s: Class-H already in requested state: %s\n", __func__,state_to_str[new_state]); return; } (*clsh_state_fp[old_state]) (component, cdc_clsh_d, req_state, CLSH_REQ_DISABLE, int_mode); cdc_clsh_d->state = new_state; aqt_clsh_set_int_mode(cdc_clsh_d, req_state, CLS_NONE); dev_dbg(component->dev, "%s: ClassH state transition from %s to %s\n", __func__, state_to_str[old_state], state_to_str[cdc_clsh_d->state]); } break; }; } EXPORT_SYMBOL(aqt_clsh_fsm); /* * Function: aqt_clsh_get_clsh_state * Params: clsh * Description: * This function returns the state of the class H controller */ int aqt_clsh_get_clsh_state(struct aqt_clsh_cdc_data *clsh) { return clsh->state; } EXPORT_SYMBOL(aqt_clsh_get_clsh_state); /* * Function: aqt_clsh_init * Params: clsh * Description: * This function initializes the class H controller */ void aqt_clsh_init(struct aqt_clsh_cdc_data *clsh) { int i; clsh->state = AQT_CLSH_STATE_IDLE; for (i = 0; i < NUM_CLSH_STATES; i++) clsh_state_fp[i] = aqt_clsh_state_err; clsh_state_fp[AQT_CLSH_STATE_HPHL] = aqt_clsh_state_hph_l; clsh_state_fp[AQT_CLSH_STATE_HPHR] = aqt_clsh_state_hph_r; clsh_state_fp[AQT_CLSH_STATE_HPH_ST] = aqt_clsh_state_hph_st; /* Set interpolator modes to NONE */ aqt_clsh_set_int_mode(clsh, AQT_CLSH_STATE_HPHL, CLS_NONE); aqt_clsh_set_int_mode(clsh, AQT_CLSH_STATE_HPHR, CLS_NONE); clsh->flyback_users = 0; clsh->buck_users = 0; clsh->clsh_users = 0; } EXPORT_SYMBOL(aqt_clsh_init);