// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wcd939x-registers.h" #include "internal.h" #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) #include #endif #define WCD939X_ZDET_SUPPORTED true /* Z value defined in milliohm */ #define WCD939X_ZDET_VAL_32 32000 #define WCD939X_ZDET_VAL_400 400000 #define WCD939X_ZDET_VAL_1200 1200000 #define WCD939X_ZDET_VAL_100K 100000000 /* Z floating defined in ohms */ #define WCD939X_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE #define WCD939X_ZDET_NUM_MEASUREMENTS 900 #define WCD939X_MBHC_GET_C1(c) ((c & 0xC000) >> 14) #define WCD939X_MBHC_GET_X1(x) (x & 0x3FFF) /* Z value compared in milliOhm */ #define WCD939X_MBHC_IS_SECOND_RAMP_REQUIRED(z) false #define WCD939X_MBHC_ZDET_CONST (1071 * 1024) #define WCD939X_MBHC_MOISTURE_RREF R_24_KOHM #define OHMS_TO_MILLIOHMS 1000 #define FLOAT_TO_FIXED_XTALK (1UL << 16) #define MAX_XTALK_ALPHA 255 #define MIN_RL_EFF_MOHMS 1 #define MAX_RL_EFF_MOHMS 900000 #define HD2_CODE_BASE_VALUE 0x1D #define HD2_CODE_INV_RESOLUTION 4201025 #define FLOAT_TO_FIXED_LINEARIZER (1UL << 12) #define MIN_TAP_OFFSET -1023 #define MAX_TAP_OFFSET 1023 #define MIN_TAP 0 #define MAX_TAP 1023 #define RDOWN_TIMER_PERIOD_MSEC 100 #define WCD_USBSS_WRITE true #define WCD_USBSS_READ false #define WCD_USBSS_EXT_LIN_EN 0x3D #define WCD_USBSS_EXT_SW_CTRL_1 0x43 #define WCD_USBSS_MG1_BIAS 0x25 #define WCD_USBSS_MG2_BIAS 0x29 static struct wcd_mbhc_register wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = { WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN", WCD939X_MBHC_MECH, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN", WCD939X_MBHC_MECH, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE", WCD939X_MBHC_MECH, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL", WCD939X_PLUG_DETECT_CTL, 0x30, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE", WCD939X_MBHC_ELECT, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL", WCD939X_MECH_DET_CURRENT, 0x1F, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL", WCD939X_MBHC_MECH, 0x04, 2, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE", WCD939X_MBHC_MECH, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE", WCD939X_MBHC_MECH, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND", WCD939X_MBHC_MECH, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC", WCD939X_MBHC_ELECT, 0x06, 1, 0), WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN", WCD939X_MBHC_ELECT, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC", WCD939X_PLUG_DETECT_CTL, 0x0F, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC", WCD939X_CTL_1, 0x03, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF", WCD939X_CTL_2, 0x03, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT", WCD939X_MBHC_RESULT_3, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_IN2P_CLAMP_STATE", WCD939X_MBHC_RESULT_3, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT", WCD939X_MBHC_RESULT_3, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT", WCD939X_MBHC_RESULT_3, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT", WCD939X_MBHC_RESULT_3, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN", WCD939X_HPH_OCP_CTL, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT", WCD939X_MBHC_RESULT_3, 0x07, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL", WCD939X_MBHC_ELECT, 0x70, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT", WCD939X_MBHC_RESULT_3, 0xFF, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL", WCD939X_MICB2, 0xC0, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME", WCD939X_CNP_WG_TIME, 0xFF, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN", WCD939X_HPH, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN", WCD939X_HPH, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN", WCD939X_HPH, 0xC0, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE", WCD939X_MBHC_RESULT_3, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL", 0, 0, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN", WCD939X_CTL_BCS, 0x02, 1, 0), WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS", WCD939X_FSM_STATUS, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL", WCD939X_CTL_2, 0x70, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_MOISTURE_STATUS", WCD939X_FSM_STATUS, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_GND", WCD939X_PA_CTL2, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_GND", WCD939X_PA_CTL2, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN", WCD939X_L_TEST, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN", WCD939X_R_TEST, 0x01, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS", WCD939X_INTR_STATUS_0, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS", WCD939X_INTR_STATUS_0, 0x20, 5, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN", WCD939X_CTL_1, 0x08, 3, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", WCD939X_FSM_STATUS, 0x40, 6, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", WCD939X_FSM_STATUS, 0x80, 7, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", WCD939X_ADC_RESULT, 0xFF, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", WCD939X_MICB2, 0x3F, 0, 0), WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE", WCD939X_CTL_1, 0x10, 4, 0), WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE", WCD939X_CTL_1, 0x04, 2, 0), WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN", WCD939X_MBHC_ZDET, 0x02, 1, 0), }; static const struct wcd_mbhc_intr intr_ids = { .mbhc_sw_intr = WCD939X_IRQ_MBHC_SW_DET, .mbhc_btn_press_intr = WCD939X_IRQ_MBHC_BUTTON_PRESS_DET, .mbhc_btn_release_intr = WCD939X_IRQ_MBHC_BUTTON_RELEASE_DET, .mbhc_hs_ins_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_LEG_DET, .mbhc_hs_rem_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_DET, .hph_left_ocp = WCD939X_IRQ_HPHL_OCP_INT, .hph_right_ocp = WCD939X_IRQ_HPHR_OCP_INT, }; struct wcd939x_mbhc_zdet_param { u16 ldo_ctl; u16 noff; u16 nshift; u16 btn5; u16 btn6; u16 btn7; }; static int wcd939x_mbhc_request_irq(struct snd_soc_component *component, int irq, irq_handler_t handler, const char *name, void *data) { struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev); return wcd_request_irq(&wcd939x->irq_info, irq, name, handler, data); } static void wcd939x_mbhc_irq_control(struct snd_soc_component *component, int irq, bool enable) { struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev); if (enable) wcd_enable_irq(&wcd939x->irq_info, irq); else wcd_disable_irq(&wcd939x->irq_info, irq); } static int wcd939x_mbhc_free_irq(struct snd_soc_component *component, int irq, void *data) { struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev); wcd_free_irq(&wcd939x->irq_info, irq, data); return 0; } static void wcd939x_mbhc_clk_setup(struct snd_soc_component *component, bool enable) { if (enable) snd_soc_component_update_bits(component, WCD939X_CTL_1, 0x80, 0x80); else snd_soc_component_update_bits(component, WCD939X_CTL_1, 0x80, 0x00); } static int wcd939x_mbhc_btn_to_num(struct snd_soc_component *component) { return snd_soc_component_read(component, WCD939X_MBHC_RESULT_3) & 0x7; } static void wcd939x_mbhc_mbhc_bias_control(struct snd_soc_component *component, bool enable) { if (enable) snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT, 0x01, 0x01); else snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT, 0x01, 0x00); } static void wcd939x_mbhc_program_btn_thr(struct snd_soc_component *component, s16 *btn_low, s16 *btn_high, int num_btn, bool is_micbias) { int i; int vth; if (num_btn > WCD_MBHC_DEF_BUTTONS) { dev_err_ratelimited(component->dev, "%s: invalid number of buttons: %d\n", __func__, num_btn); return; } for (i = 0; i < num_btn; i++) { vth = ((btn_high[i] * 2) / 25) & 0x3F; snd_soc_component_update_bits(component, WCD939X_MBHC_BTN0 + i, 0xFC, vth << 2); dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n", __func__, i, btn_high[i], vth); } } static bool wcd939x_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock) { struct snd_soc_component *component = mbhc->component; struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev); wcd939x->wakeup((void*)wcd939x, lock); return true; } static int wcd939x_mbhc_register_notifier(struct wcd_mbhc *mbhc, struct notifier_block *nblock, bool enable) { struct wcd939x_mbhc *wcd939x_mbhc; wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc); if (enable) return blocking_notifier_chain_register(&wcd939x_mbhc->notifier, nblock); else return blocking_notifier_chain_unregister( &wcd939x_mbhc->notifier, nblock); } static bool wcd939x_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num) { u8 val = 0; if (micb_num == MIC_BIAS_2) { val = ((snd_soc_component_read(mbhc->component, WCD939X_MICB2) & 0xC0) >> 6); if (val == 0x01) return true; } return false; } static bool wcd939x_mbhc_hph_pa_on_status(struct snd_soc_component *component) { return (snd_soc_component_read(component, WCD939X_HPH) & 0xC0) ? true : false; } static void wcd939x_mbhc_hph_l_pull_up_control( struct snd_soc_component *component, int pull_up_cur) { /* Default pull up current to 2uA */ if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA || pull_up_cur == HS_PULLUP_I_DEFAULT) pull_up_cur = HS_PULLUP_I_2P0_UA; dev_dbg(component->dev, "%s: HS pull up current:%d\n", __func__, pull_up_cur); snd_soc_component_update_bits(component, WCD939X_MECH_DET_CURRENT, 0x1F, pull_up_cur); } static int wcd939x_mbhc_request_micbias(struct snd_soc_component *component, int micb_num, int req) { int ret = 0; ret = wcd939x_micbias_control(component, micb_num, req, false); return ret; } static void wcd939x_mbhc_micb_ramp_control(struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP, 0x1C, 0x0C); snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP, 0x80, 0x80); } else { snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP, 0x80, 0x00); snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP, 0x1C, 0x00); } } static struct firmware_cal *wcd939x_get_hwdep_fw_cal(struct wcd_mbhc *mbhc, enum wcd_cal_type type) { struct wcd939x_mbhc *wcd939x_mbhc; struct firmware_cal *hwdep_cal; struct snd_soc_component *component = mbhc->component; wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc); if (!component) { pr_err_ratelimited("%s: NULL component pointer\n", __func__); return NULL; } hwdep_cal = wcdcal_get_fw_cal(wcd939x_mbhc->fw_data, type); if (!hwdep_cal) dev_err_ratelimited(component->dev, "%s: cal not sent by %d\n", __func__, type); return hwdep_cal; } static int wcd939x_mbhc_micb_ctrl_threshold_mic( struct snd_soc_component *component, int micb_num, bool req_en) { struct wcd939x_pdata *pdata = dev_get_platdata(component->dev); int rc, micb_mv; if (micb_num != MIC_BIAS_2) return -EINVAL; /* * If device tree micbias level is already above the minimum * voltage needed to detect threshold microphone, then do * not change the micbias, just return. */ if (pdata->micbias.micb2_mv >= WCD_MBHC_THR_HS_MICB_MV) return 0; micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb2_mv; rc = wcd939x_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_2); return rc; } static inline void wcd939x_mbhc_get_result_params(struct wcd939x_priv *wcd939x, s16 *d1_a, u16 noff, int32_t *zdet) { int i; int val, val1; s16 c1; s32 x1, d1; int32_t denom; int minCode_param[] = { 3277, 1639, 820, 410, 205, 103, 52, 26 }; struct wcd939x_mbhc *wcd939x_mbhc = wcd939x->mbhc; regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x20); for (i = 0; i < WCD939X_ZDET_NUM_MEASUREMENTS; i++) { regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_2, &val); if (val & 0x80) break; } val = val << 0x8; regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_1, &val1); val |= val1; wcd939x_mbhc->rdown_prev_iter = val; regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x00); x1 = WCD939X_MBHC_GET_X1(val); c1 = WCD939X_MBHC_GET_C1(val); /* If ramp is not complete, give additional 5ms */ if ((c1 < 2) && x1) usleep_range(5000, 5050); if (!c1 || !x1) { dev_dbg(wcd939x->dev, "%s: Impedance detect ramp error, c1=%d, x1=0x%x\n", __func__, c1, x1); goto ramp_down; } d1 = d1_a[c1]; denom = (x1 * d1) - (1 << (14 - noff)); if (denom > 0) *zdet = (WCD939X_MBHC_ZDET_CONST * 1000) / denom; else if (x1 < minCode_param[noff]) *zdet = WCD939X_ZDET_FLOATING_IMPEDANCE; dev_dbg(wcd939x->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n", __func__, d1, c1, x1, *zdet); ramp_down: i = 0; wcd939x_mbhc->rdown_timer_complete = false; mod_timer(&wcd939x_mbhc->rdown_timer, jiffies + msecs_to_jiffies(RDOWN_TIMER_PERIOD_MSEC)); while (x1) { regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_1, &val); regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_2, &val1); val = val << 0x08; val |= val1; x1 = WCD939X_MBHC_GET_X1(val); i++; if (i == WCD939X_ZDET_NUM_MEASUREMENTS) break; if (wcd939x_mbhc->rdown_timer_complete && wcd939x_mbhc->rdown_prev_iter == val) break; wcd939x_mbhc->rdown_prev_iter = val; } del_timer(&wcd939x_mbhc->rdown_timer); } static void wcd939x_mbhc_zdet_ramp(struct snd_soc_component *component, struct wcd939x_mbhc_zdet_param *zdet_param, int32_t *zl, int32_t *zr, s16 *d1_a) { struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev); int32_t zdet = 0; snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL, 0xF0, 0x80 | (zdet_param->ldo_ctl << 4)); snd_soc_component_update_bits(component, WCD939X_MBHC_BTN5, 0xFC, zdet_param->btn5); snd_soc_component_update_bits(component, WCD939X_MBHC_BTN6, 0xFC, zdet_param->btn6); snd_soc_component_update_bits(component, WCD939X_MBHC_BTN7, 0xFC, zdet_param->btn7); snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL, 0x0F, zdet_param->noff); snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL, 0x0F, zdet_param->nshift); snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL, 0x70, 0x60); /*acc1_min_63 */ if (!zl) goto z_right; /* Start impedance measurement for HPH_L */ regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x80, 0x80); dev_dbg(wcd939x->dev, "%s: ramp for HPH_L, noff = %d\n", __func__, zdet_param->noff); wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet); regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x80, 0x00); *zl = zdet; z_right: if (!zr) return; /* Start impedance measurement for HPH_R */ regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x40, 0x40); dev_dbg(wcd939x->dev, "%s: ramp for HPH_R, noff = %d\n", __func__, zdet_param->noff); wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet); regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x40, 0x00); *zr = zdet; } static inline void wcd939x_wcd_mbhc_qfuse_cal( struct snd_soc_component *component, int32_t *z_val, int flag_l_r) { s16 q1; int q1_cal; q1 = snd_soc_component_read(component, WCD939X_EFUSE_REG_21 + flag_l_r); if (q1 & 0x80) q1_cal = (10000 - ((q1 & 0x7F) * 10)); else q1_cal = (10000 + (q1 * 10)); if (q1_cal > 0) *z_val = ((*z_val) * 10000) / q1_cal; } static void rdown_timer_callback(struct timer_list *timer) { struct wcd939x_mbhc *wcd939x_mbhc = container_of(timer, struct wcd939x_mbhc, rdown_timer); wcd939x_mbhc->rdown_timer_complete = true; } static void update_hd2_codes(struct regmap *regmap, u32 r_gnd_res_tot_mohms, u32 r_load_eff) { u64 hd2_delta = 0; if (!regmap) return; hd2_delta = (HD2_CODE_INV_RESOLUTION * (u64) r_gnd_res_tot_mohms + FLOAT_TO_FIXED_XTALK * (u64) ((r_gnd_res_tot_mohms + r_load_eff) / 2)) / (FLOAT_TO_FIXED_XTALK * (u64) (r_gnd_res_tot_mohms + r_load_eff)); if (hd2_delta >= HD2_CODE_BASE_VALUE) { regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F, 0x00); regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F, 0x00); } else { regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F, HD2_CODE_BASE_VALUE - hd2_delta); regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F, HD2_CODE_BASE_VALUE - hd2_delta); } } static u8 get_xtalk_scale(u32 gain) { u8 i; int target, residue; if (gain == 0) return MAX_XTALK_SCALE; target = FLOAT_TO_FIXED_XTALK / ((int) gain); residue = target; for (i = 0; i <= MAX_XTALK_SCALE; i++) { residue = target - (1 << ((int)((u32) i))); if (residue < 0) return i; } return MAX_XTALK_SCALE; } static u8 get_xtalk_alpha(u32 gain, u8 scale) { u32 two_exp_scale, round_offset, alpha; if (gain == 0) return MIN_XTALK_ALPHA; two_exp_scale = 1 << ((u32) scale); round_offset = FLOAT_TO_FIXED_XTALK / 2; alpha = (((gain * two_exp_scale - FLOAT_TO_FIXED_XTALK) * 255) + round_offset) / FLOAT_TO_FIXED_XTALK; return (alpha <= MAX_XTALK_ALPHA) ? ((u8) alpha) : MAX_XTALK_ALPHA; } static u32 get_v_common_gnd_factor(u32 r_gnd_res_tot_mohms, u32 r_load_eff_mohms, u32 r_aud_res_tot_mohms) { /* Proof 1: The numerator does not overflow. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms = * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms + * r_gnd_par_route2_mohms * * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route{1,2}_mohms are all less * than MAX_USBCSS_HS_IMPEDANCE_MOHMS * --> * FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms <= * FLOAT_TO_FIXED_XTALK * 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = * (1 << 16) * 4 * 20,000 = 65,536 * 80,000 = 3,932,160,000 <= 2^32 - 1 = * 4,294,967,295 = U32_MAX * * Proof 2: The denominator is greater than 0. * r_load_eff_mohms >= MIN_RL_EFF_MOHMS = 1 > 0 * --> * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms > 0 * * Proof 3: The deonominator does not overflow. * r_load_eff_mohms <= MAX_RL_EFF_MOHMS * r_aud_res_tot_mohms and r_gnd_res_tot_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS * --> * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms <= * MAX_RL_EFF_MOHMS + 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 900,000 + 2 * 20,000 = 940,000 * <= U32_MAX = 2^32 - 1 = 4,294,967,295 */ return FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms / (r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms); } static u32 get_v_feedback_tap_factor_digital(u32 r_gnd_int_fet_mohms, u32 r_gnd_par_route1_mohms, u32 r_load_eff_mohms, u32 r_gnd_res_tot_mohms, u32 r_aud_res_tot_mohms) { /* Proof 4: The numerator does not overflow. * r_gnd_int_fet_mohms and r_gnd_par_route1_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS * --> * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) <= * FLOAT_TO_FIXED_XTALK * 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = * (1 << 16) * 2 * 20,000 = 65,536 * 40,000 = 2,621,440,000 <= 2^32 - 1 = * 4,294,967,295 = U32_MAX * * The denominator is greater than 0: See Proof 2 * The deonominator does not overflow: See Proof 3 */ return FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) / (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms); } static u32 get_v_feedback_tap_factor_analog(u32 r_gnd_par_route2_mohms, u32 r_load_eff_mohms, u32 r_gnd_res_tot_mohms, u32 r_aud_res_tot_mohms) { /* Proof 5: The numerator does not overflow. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms = * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms + * r_gnd_par_route2_mohms * * r_gnd_res_tot_mohms - r_gnd_par_route2_mohms = * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms * * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000 * --> * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + * r_gnd_par_route1_mohms) * <= FLOAT_TO_FIXED_XTALK * 3 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = * (1 << 16) * 3 * 20,000 = 65,536 * 60,000 = 3,932,160,000 <= 2^32 - 1 = * 4,294,967,295 = U32_MAX * * The denominator is greater than 0: See Proof 2 * The deonominator does not overflow: See Proof 3 */ return FLOAT_TO_FIXED_XTALK * (r_gnd_res_tot_mohms - r_gnd_par_route2_mohms) / (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms); } static u32 get_xtalk_gain(u32 v_common_gnd_factor, u32 v_feedback_tap_factor) { return v_common_gnd_factor - v_feedback_tap_factor; } static void update_xtalk_scale_and_alpha(struct wcd939x_pdata *pdata, struct regmap *regmap) { u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_common_gnd_factor = 0; u32 v_feedback_tap_factor = 0, xtalk_gain = 0; if (!pdata || pdata->usbcss_hs.xtalk_config == XTALK_NONE) return; /* Orientation-dependent ground impedance parameters */ #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) { r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms; r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms; } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) { r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms; r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms; } else { pdata->usbcss_hs.scale_l = MAX_XTALK_SCALE; pdata->usbcss_hs.alpha_l = MIN_XTALK_ALPHA; pdata->usbcss_hs.scale_r = MAX_XTALK_SCALE; pdata->usbcss_hs.alpha_r = MIN_XTALK_ALPHA; return; } #endif /* Recall assumptions about L and R channel impedance parameters being equivalent */ /* Xtalk gain calculation */ v_common_gnd_factor = get_v_common_gnd_factor(r_gnd_res_tot_mohms, pdata->usbcss_hs.r_load_eff_l_mohms, pdata->usbcss_hs.r_aud_res_tot_l_mohms); if (pdata->usbcss_hs.xtalk_config == XTALK_ANALOG) { v_feedback_tap_factor = get_v_feedback_tap_factor_analog( pdata->usbcss_hs.r_gnd_par_route2_mohms, pdata->usbcss_hs.r_load_eff_l_mohms, r_gnd_res_tot_mohms, pdata->usbcss_hs.r_aud_res_tot_l_mohms); /* Update HD2 codes for analog xtalk */ update_hd2_codes(regmap, r_gnd_res_tot_mohms, pdata->usbcss_hs.r_load_eff_l_mohms); } else { v_feedback_tap_factor = get_v_feedback_tap_factor_digital( r_gnd_int_fet_mohms, pdata->usbcss_hs.r_gnd_par_route1_mohms, pdata->usbcss_hs.r_load_eff_l_mohms, r_gnd_res_tot_mohms, pdata->usbcss_hs.r_aud_res_tot_l_mohms); } xtalk_gain = get_xtalk_gain(v_common_gnd_factor, v_feedback_tap_factor); /* Store scale and alpha values */ pdata->usbcss_hs.scale_l = get_xtalk_scale(xtalk_gain); pdata->usbcss_hs.alpha_l = get_xtalk_alpha(xtalk_gain, pdata->usbcss_hs.scale_l); pdata->usbcss_hs.scale_r = pdata->usbcss_hs.scale_l; pdata->usbcss_hs.alpha_r = pdata->usbcss_hs.alpha_l; } static void update_ext_fet_res(struct wcd939x_pdata *pdata, u32 r_gnd_ext_fet_mohms) { if (!pdata) return; pdata->usbcss_hs.r_gnd_ext_fet_mohms = (r_gnd_ext_fet_mohms > MAX_USBCSS_HS_IMPEDANCE_MOHMS) ? MAX_USBCSS_HS_IMPEDANCE_MOHMS : r_gnd_ext_fet_mohms; pdata->usbcss_hs.r_aud_ext_fet_l_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms; pdata->usbcss_hs.r_aud_ext_fet_r_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms; pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms = get_r_gnd_res_tot_mohms( pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms, pdata->usbcss_hs.r_gnd_ext_fet_mohms, pdata->usbcss_hs.r_gnd_par_tot_mohms); pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms = get_r_gnd_res_tot_mohms( pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms, pdata->usbcss_hs.r_gnd_ext_fet_mohms, pdata->usbcss_hs.r_gnd_par_tot_mohms); pdata->usbcss_hs.r_aud_res_tot_l_mohms = get_r_aud_res_tot_mohms( pdata->usbcss_hs.r_aud_int_fet_l_mohms, pdata->usbcss_hs.r_aud_ext_fet_l_mohms); pdata->usbcss_hs.r_aud_res_tot_r_mohms = get_r_aud_res_tot_mohms( pdata->usbcss_hs.r_aud_int_fet_r_mohms, pdata->usbcss_hs.r_aud_ext_fet_r_mohms); } static void get_linearizer_taps(struct wcd939x_pdata *pdata, u32 *aud_tap, u32 *gnd_tap) { u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_aud1 = 0, v_aud2 = 0; u32 v_gnd_denom = 0, v_gnd1 = 0, v_gnd2 = 0, aud_denom = 0, gnd_denom = 0; if (!pdata) goto err_data; #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) /* Orientation-dependent ground impedance parameters */ if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) { r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms; r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms; } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) { r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms; r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms; } else { goto err_data; } #endif /* Proof 6: Neither aud_denom nor gnd_denom is 0 and neither overflows. * MIN_K_TIMES_100 = -50 <= MAX_K_TIMES_100 <= 10,000 = k_aud_times_100 * --> * 0 < 410 = 0.1 * 4,096 = 0.1 * FLOAT_TO_FIXED_LINEARIZER < {aud,gnd}_denom < * 101 * FLOAT_TO_FIXED_LINEARIZER = * 101 * (1 << 12) < 413,696 <= 4,294,967,295 = U32_MAX */ aud_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER + (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_aud_times_100 / 100)); gnd_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER + (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_gnd_times_100 / 100)); /* Proof 7: v_aud2 does not overflow. * MIN_RL_EFF_MOHMS = 1 = <= pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = * 900,000 * * pdata->usbcss_hs.r_gnd_par_tot_mohms = r_gnd_par_route1_mohms + r_gnd_par_route2_mohms * <= 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 4,0000 * * r_gnd_int_fet_mohms, pdata->usbcss_hs.r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms, * r_gnd_par_route2_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000 * --> * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = * 900,000 + 4 * 20,000 = 980,000 <= 4,294,967,295 = U32_MAX */ v_aud2 = pdata->usbcss_hs.r_load_eff_l_mohms - pdata->usbcss_hs.r3 + r_gnd_int_fet_mohms + pdata->usbcss_hs.r_gnd_ext_fet_mohms + pdata->usbcss_hs.r_gnd_par_tot_mohms; /* Proof 8: v_aud1 does not overflow. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000 * From Proof 7, * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS <= S32_MAX * --> * 1 <= v_aud1 <= MAX_RL_EFF_MOHMS + 5 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = * 900,000 + 5 * 20,000 = 1,000,000 <= 2,147,483,647 = S32_MAX */ v_aud1 = v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms; /* Proof 9: The numerator of v_aud1 does not overflow. * From Proof 8, v_aud1 was less than or equal to 1,000,000 * Thus, the new v_aud1 numerator is less than or equal to * FLOAT_TO_FIXED_LINEARIZER * 1,000,000 = * 4,096 * 1,000,000 = 4,096,000,000 <= 4,294,967,295 = U32_MAX * * Proof 10: The denominator of v_aud1 is not 0. * From Proof 8, v_aud1 was greater than or equal to 1 > 0 * * Proof 11: The denominator does not overflow. * From Proof 8, v_aud1 was less than or equal to 1,000,000 * Thus, the new v_aud1 denominator is less than or equal to * 1,000,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms = 1,000,000 + 20,000 = 1,020,000 <= * 4,294,967,295 = U32_MAX */ v_aud1 = FLOAT_TO_FIXED_LINEARIZER * v_aud1 / (v_aud1 + pdata->usbcss_hs.r_aud_int_fet_l_mohms); /* Proof 12: The numerator of v_aud2 does not overflow. * From Proof 7, v_aud2 was less than or equal to 980,000 * Thus, the new v_aud2 numerator is less than or equal to * FLOAT_TO_FIXED_LINEARIZER * 980,000 = * 4,096 * 980,000 = 4,014,080,000 <= 4,294,967,295 = U32_MAX * * Proof 13: The denominator of v_aud2 is not 0. * From Proof 7, v_aud2 was greater than or equal to 1 > 0 * * Proof 14: The denominator does not overflow. * From Proof 7, v_aud2 was less than or equal to 980,000 * Thus, the new v_aud2 denominator is less than or equal to * 980,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms pdata->usbcss_hs.r_aud_int_fet_l_mohms = * 980,000 + 20,000 + + 20,000 = 1,020,000 <= 4,294,967,295 = U32_MAX */ v_aud2 = FLOAT_TO_FIXED_LINEARIZER * v_aud2 / (v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms + pdata->usbcss_hs.r_aud_int_fet_l_mohms); /* Proof 15: The numerator of aud_tap does not overflow. * Looking at the formula for v_aud1 from Proofs 9 to 11, the greatest value of v_aud1 is * FLOAT_TO_FIXED_LINEARIZER = 4,096 * Looking at the formula for v_aud2 from Proofs 12 to 14, the greatest value of v_aud2 is * FLOAT_TO_FIXED_LINEARIZER = 4,096 * From Proof 6, aud_denom <= 413,696 * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 = * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX * * Proof 16: The denominator of aud_tap is not 0. * From Proof 6, aud_denom > 410 > 0 * * Proof 17: The denominator of aud_tap does not overflow * From Proof 6, aud_denom <= 413,696 <= 4,294,967,295 = U32_MAX * * Proof 18: The result of aud_tap does not overflow. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410 * Thus, the divsion will be at most 1,009,519. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023 * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX * Note: aud_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023 */ *aud_tap = (u32) ((s32) ((1000 * v_aud1 + 10 * pdata->usbcss_hs.k_aud_times_100 * v_aud2 + aud_denom / 2) / aud_denom) + pdata->usbcss_hs.aud_tap_offset); if (*aud_tap > MAX_TAP) *aud_tap = MAX_TAP; else if (*aud_tap < MIN_TAP) *aud_tap = MIN_TAP; /* Proof 19: v_gnd_denom does not overflow. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms * * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_tot_mohms, * pdata->usbcss_hs.r_aud_ext_fet_l_mohms, pdata->usbcss_hs.r_aud_int_fet_l_mohms are all * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000 * * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000 * * --> v_gnd_denom <= 3 * 20,000 + 900,000 + 2 * 20,000 = 60,000 + 900,000 + 40,000 = * 1,000,000 <= 4,294,967,295 = U32_MAX * * Proof 20: v_gnd_denom is not 0. * pdata->usbcss_hs.r_load_eff_l_mohms >= MIN_RL_EFF_MOHMS = 1 * --> v_gnd_denom >= 1 > 0 */ v_gnd_denom = (r_gnd_res_tot_mohms + pdata->usbcss_hs.r_load_eff_l_mohms - pdata->usbcss_hs.r3 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms + pdata->usbcss_hs.r_aud_int_fet_l_mohms); /* Proof 21: v_gnd1 numerator does not overflow. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000 * --> v_gnd1 numerator <= 4,096 * 20,000 = 81,920,000 <= 4,294,967,295 = U32_MAX * * v_gnd1 denominator is not 0: See Proof 20 * v_gnd1 denominator does not overflow: See Proof 19 */ v_gnd1 = FLOAT_TO_FIXED_LINEARIZER * r_gnd_int_fet_mohms / v_gnd_denom; /* Proof 22: v_gnd2 numerator does not overflow. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000 * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000 * --> v_gnd2 numerator <= 4,096 * (20,000 + 900,000) = 4,096 * 920,000 = 3,768,320,000 * <= 4,294,967,295 = U32_MAX * * v_gnd2 denominator is not 0: See Proof 20 * v_gnd2 denominator does not overflow: See Proof 19 */ v_gnd2 = FLOAT_TO_FIXED_LINEARIZER * (r_gnd_int_fet_mohms + pdata->usbcss_hs.r_gnd_ext_fet_mohms) / v_gnd_denom; /* Proof 23: The numerator of gnd_tap does not overflow. * Looking at the formula for v_gnd1 from Proof 21, and considering that * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms, * the greatest value of v_gnd1 is FLOAT_TO_FIXED_LINEARIZER = 4,096. * Looking at the formula for v_aud2 from Proof 22 and again at the definintion of * r_gnd_res_tot_mohms, the greatest value of v_gnd2 is FLOAT_TO_FIXED_LINEARIZER = 4,096 * From Proof 6, gnd_denom <= 413,696 * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 = * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX * * Proof 24: The denominator of gnd_tap is not 0. * From Proof 6, gnd_denom > 410 > 0 * * Proof 25: The denominator of gnd_tap does not overflow * From Proof 6, gnd_denom <= 413,696 <= 4,294,967,295 = U32_MAX * * Proof 26: The result of aud_tap does not overflow. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410 * Thus, the divsion will be at most 1,009,519. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023 * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX * Note: gnd_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023 */ *gnd_tap = (u32) ((s32) ((1000 * v_gnd1 + 10 * pdata->usbcss_hs.k_gnd_times_100 * v_gnd2 + gnd_denom / 2) / gnd_denom) + pdata->usbcss_hs.gnd_tap_offset); if (*gnd_tap > MAX_TAP) *gnd_tap = MAX_TAP; else if (*gnd_tap < MIN_TAP) *gnd_tap = MIN_TAP; return; err_data: *aud_tap = 0; *gnd_tap = 0; } struct usbcss_hs_attr { struct wcd939x_priv *priv; struct kobj_attribute attr; int index; }; static char *usbcss_sysfs_files[] = { "rdson", "r2", "r3", "r4", "r5", "r6", "r7", "lin-k-aud", "lin-k-gnd", "xtalk_config", }; static ssize_t usbcss_sysfs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct usbcss_hs_attr *usbc_attr; struct wcd939x_priv *wcd939x; struct wcd939x_pdata *pdata; struct wcd939x_usbcss_hs_params *usbcss_hs; long val; int rc; u32 aud_tap = 0, gnd_tap = 0; bool update_xtalk = false, update_linearizer = false; usbc_attr = container_of(attr, struct usbcss_hs_attr, attr); wcd939x = usbc_attr->priv; pdata = dev_get_platdata(wcd939x->dev); if (!wcd939x || !pdata) return -EINVAL; usbcss_hs = &pdata->usbcss_hs; rc = kstrtol(buf, 0, &val); if (rc) return rc; if (strcmp(attr->attr.name, "rdson") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r_gnd_ext_fet_customer_mohms = val; update_linearizer = usbcss_hs->xtalk_config == XTALK_ANALOG; } else if (strcmp(attr->attr.name, "r2") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r_conn_par_load_pos_mohms = val; } else if (strcmp(attr->attr.name, "r3") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r3 = val; update_linearizer = true; } else if (strcmp(attr->attr.name, "r4") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r4 = val; update_xtalk = true; update_linearizer = true; switch (usbcss_hs->xtalk_config) { case XTALK_DIGITAL: usbcss_hs->r_gnd_par_route2_mohms = usbcss_hs->r6 + val; break; case XTALK_ANALOG: usbcss_hs->r_gnd_par_route1_mohms = usbcss_hs->r5 + val; break; case XTALK_NONE: fallthrough; default: return count; } } else if (strcmp(attr->attr.name, "r5") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r5 = val; switch (usbcss_hs->xtalk_config) { case XTALK_ANALOG: update_xtalk = true; update_linearizer = true; usbcss_hs->r_gnd_par_route1_mohms = val + usbcss_hs->r4; break; case XTALK_DIGITAL: fallthrough; case XTALK_NONE: fallthrough; default: return count; } } else if (strcmp(attr->attr.name, "r6") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r6 = val; switch (usbcss_hs->xtalk_config) { case XTALK_DIGITAL: update_xtalk = true; update_linearizer = true; usbcss_hs->r_gnd_par_route2_mohms = val + usbcss_hs->r4; break; case XTALK_ANALOG: fallthrough; case XTALK_NONE: fallthrough; default: return count; } } else if (strcmp(attr->attr.name, "r7") == 0) { if (val > MAX_USBCSS_HS_IMPEDANCE_MOHMS) { dev_err(wcd939x->dev, "%s: Value %d out of HS impedance range %d\n", __func__, val, MAX_USBCSS_HS_IMPEDANCE_MOHMS); return count; } usbcss_hs->r7 = val; switch (usbcss_hs->xtalk_config) { case XTALK_DIGITAL: update_xtalk = true; update_linearizer = true; usbcss_hs->r_gnd_par_route1_mohms = val; break; case XTALK_ANALOG: fallthrough; case XTALK_NONE: fallthrough; default: return count; } } else if (strcmp(attr->attr.name, "lin-k-aud") == 0) { if (val < MIN_K_TIMES_100 || val > MAX_K_TIMES_100) { dev_err(wcd939x->dev, "%s: Value %d out of bounds. Min: %d, Max: %d\n", __func__, val, MIN_K_TIMES_100, MAX_K_TIMES_100); return count; } usbcss_hs->k_aud_times_100 = val; update_linearizer = true; } else if (strcmp(attr->attr.name, "lin-k-gnd") == 0) { if (val < MIN_K_TIMES_100 || val > MAX_K_TIMES_100) { dev_err(wcd939x->dev, "%s: Value %d out of bounds. Min: %d, Max: %d\n", __func__, val, MIN_K_TIMES_100, MAX_K_TIMES_100); return count; } usbcss_hs->k_gnd_times_100 = val; update_linearizer = true; } else if (strcmp(attr->attr.name, "xtalk_config") == 0) { pdata->usbcss_hs.xtalk_config = val; update_xtalk = true; switch (val) { case XTALK_NONE: usbcss_hs->scale_l = MAX_XTALK_SCALE; usbcss_hs->scale_r = MAX_XTALK_SCALE; usbcss_hs->alpha_l = MIN_XTALK_ALPHA; usbcss_hs->alpha_r = MIN_XTALK_ALPHA; break; case XTALK_DIGITAL: usbcss_hs->r_gnd_par_route2_mohms = usbcss_hs->r6 + usbcss_hs->r4; usbcss_hs->r_gnd_par_route1_mohms = usbcss_hs->r7; update_linearizer = true; break; case XTALK_ANALOG: usbcss_hs->r_gnd_par_route1_mohms = usbcss_hs->r5 + usbcss_hs->r4; usbcss_hs->r_gnd_par_route2_mohms = 1; update_linearizer = true; break; default: return count; } } if (update_xtalk) { update_xtalk_scale_and_alpha(pdata, wcd939x->regmap); regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC0, 0x1F, pdata->usbcss_hs.scale_l); regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC1, 0xFF, pdata->usbcss_hs.alpha_l); regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC0 + 1, 0x1F, pdata->usbcss_hs.scale_r); regmap_update_bits(wcd939x->regmap, WCD939X_HPHL_RX_PATH_SEC1 + 1, 0xFF, pdata->usbcss_hs.alpha_r); dev_err(wcd939x->dev, "%s: Updated xtalk thru sysfs\n", __func__); } if (update_linearizer) { get_linearizer_taps(pdata, &aud_tap, &gnd_tap); wcd_usbss_set_linearizer_sw_tap(aud_tap, gnd_tap); dev_err(wcd939x->dev, "%s: Updated linearizer thru sysfs\n", __func__); } return count; } static ssize_t usbcss_sysfs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct usbcss_hs_attr *usbc_attr; struct wcd939x_priv *wcd939x; struct wcd939x_pdata *pdata; usbc_attr = container_of(attr, struct usbcss_hs_attr, attr); wcd939x = usbc_attr->priv; pdata = dev_get_platdata(wcd939x->dev); if (strcmp(attr->attr.name, "rdson") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r_gnd_ext_fet_customer_mohms); else if (strcmp(attr->attr.name, "r2") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r_conn_par_load_pos_mohms); else if (strcmp(attr->attr.name, "r3") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r3); else if (strcmp(attr->attr.name, "r4") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r4); else if (strcmp(attr->attr.name, "r5") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r5); else if (strcmp(attr->attr.name, "r6") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r6); else if (strcmp(attr->attr.name, "r7") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.r7); else if (strcmp(attr->attr.name, "lin-k-aud") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.k_aud_times_100); else if (strcmp(attr->attr.name, "lin-k-gnd") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.k_gnd_times_100); else if (strcmp(attr->attr.name, "xtalk_config") == 0) return scnprintf(buf, 10, "%d\n", pdata->usbcss_hs.xtalk_config); return 0; } static int create_sysfs_entry_file(struct wcd939x_priv *wcd939x, char *name, int mode, int index, struct kobject *parent) { struct usbcss_hs_attr *usbc_attr; char *name_copy; usbc_attr = devm_kmalloc(wcd939x->dev, sizeof(*usbc_attr), GFP_KERNEL); if (!usbc_attr) return -ENOMEM; name_copy = devm_kstrdup(wcd939x->dev, name, GFP_KERNEL); if (!name_copy) return -ENOMEM; usbc_attr->priv = wcd939x; usbc_attr->index = index; usbc_attr->attr.attr.name = name_copy; usbc_attr->attr.attr.mode = mode; usbc_attr->attr.show = usbcss_sysfs_show; usbc_attr->attr.store = usbcss_sysfs_store; sysfs_attr_init(&usbc_attr->attr.attr); return sysfs_create_file(parent, &usbc_attr->attr.attr); } static int usbcss_hs_sysfs_init(struct wcd939x_priv *wcd939x) { int rc = 0; int i = 0; struct kobject *kobj = NULL; if (!wcd939x || !wcd939x->dev) { pr_err("%s: Invalid wcd939x private data.\n", __func__); return -EINVAL; } kobj = kobject_create_and_add("usbcss_hs", kernel_kobj); if (!kobj) { dev_err(wcd939x->dev, "%s: Could not create the USBC-SS HS kobj.\n", __func__); return -ENOMEM; } for (i = 0; i < ARRAY_SIZE(usbcss_sysfs_files); i++) { rc = create_sysfs_entry_file(wcd939x, usbcss_sysfs_files[i], 0644, i, kobj); } return 0; } static void wcd939x_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl, uint32_t *zr) { struct snd_soc_component *component = mbhc->component; struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev); struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev); s16 reg0, reg1, reg2, reg3, reg4; uint32_t zdiff_val = 0, r_gnd_int_fet_mohms = 0, rl_eff_mohms = 0, r_gnd_ext_fet_mohms = 0; uint32_t aud_tap = 0, gnd_tap = 0; uint32_t *zdiff = &zdiff_val; int32_t z1L, z1R, z1Ls, z1Diff; int zMono, z_diff1, z_diff2; bool is_fsm_disable = false; struct wcd939x_mbhc_zdet_param zdet_param = {4, 0, 6, 0x18, 0x60, 0x78}; struct wcd939x_mbhc_zdet_param *zdet_param_ptr = &zdet_param; s16 d1[] = {0, 30, 30, 6}; uint32_t cached_regs[4][2] = {{WCD_USBSS_EXT_LIN_EN, 0}, {WCD_USBSS_EXT_SW_CTRL_1, 0}, {WCD_USBSS_MG1_BIAS, 0}, {WCD_USBSS_MG2_BIAS, 0}}; uint32_t l_3_6V_regs[4][2] = {{WCD_USBSS_EXT_LIN_EN, 0x00}, {WCD_USBSS_EXT_SW_CTRL_1, 0x00}, {WCD_USBSS_MG1_BIAS, 0x0E}, {WCD_USBSS_MG2_BIAS, 0x0E}}; uint32_t diff_regs[2][2] = {{WCD_USBSS_EXT_LIN_EN, 0x00}, {WCD_USBSS_EXT_SW_CTRL_1, 0xE8}}; WCD_MBHC_RSC_ASSERT_LOCKED(mbhc); /* Turn on RX supplies */ if (wcd939x->version == WCD939X_VERSION_2_0) { /* Start up Buck/Flyback, Enable RX bias, Use MBHC RCO for MBHC Zdet, Enable Vneg */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x4C, 0x4C); /* Wait 100us for settling */ usleep_range(100, 110); /* Enable VNEGDAC_LDO */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x10, 0x10); /* Wait 100us for settling */ usleep_range(100, 110); /* Keep PA left/right channels disabled */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x01, 0x01); /* Enable VPOS */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x20); /* Wait 500us for settling */ usleep_range(500, 510); } #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) /* Cache relevant USB-SS registers */ wcd_usbss_register_update(cached_regs, WCD_USBSS_READ, ARRAY_SIZE(cached_regs)); #endif /* Store register values */ reg0 = snd_soc_component_read(component, WCD939X_MBHC_BTN5); reg1 = snd_soc_component_read(component, WCD939X_MBHC_BTN6); reg2 = snd_soc_component_read(component, WCD939X_MBHC_BTN7); reg3 = snd_soc_component_read(component, WCD939X_CTL_CLK); reg4 = snd_soc_component_read(component, WCD939X_ZDET_ANA_CTL); /* Disable the detection FSM */ if (snd_soc_component_read(component, WCD939X_MBHC_ELECT) & 0x80) { is_fsm_disable = true; regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ELECT, 0x80, 0x00); } /* For NO-jack, disable L_DET_EN before Z-det measurements */ if (mbhc->hphl_swh) regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_MECH, 0x80, 0x00); /* Turn off 100k pull down on HPHL */ regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_MECH, 0x01, 0x00); /* Disable surge protection before impedance detection. * This is done to give correct value for high impedance. */ regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_EN, 0xC0, 0x00); /* 1ms delay needed after disable surge protection */ usleep_range(1000, 1010); #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) /* Disable sense switch and MIC for USB-C analog platforms */ if (mbhc->mbhc_cfg->enable_usbc_analog) { wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_DISABLE); wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_DISABLE); } #endif /* L-channel impedance */ #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) wcd_usbss_register_update(l_3_6V_regs, WCD_USBSS_WRITE, ARRAY_SIZE(l_3_6V_regs)); #endif wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1); if ((z1L == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1L > WCD939X_ZDET_VAL_100K)) { *zl = WCD939X_ZDET_FLOATING_IMPEDANCE; } else { *zl = z1L; wcd939x_wcd_mbhc_qfuse_cal(component, zl, 0); } /* Differential measurement for USB-C analog platforms */ if (mbhc->mbhc_cfg->enable_usbc_analog) { dev_dbg(component->dev, "%s: effective impedance on HPH_L = %d(mohms)\n", __func__, *zl); goto diff_impedance; } dev_dbg(component->dev, "%s: impedance on HPH_L = %d(mohms)\n", __func__, *zl); /* R-channel impedance */ wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1); if ((z1R == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1R > WCD939X_ZDET_VAL_100K)) { *zr = WCD939X_ZDET_FLOATING_IMPEDANCE; } else { *zr = z1R; wcd939x_wcd_mbhc_qfuse_cal(component, zr, 4); } dev_dbg(component->dev, "%s: impedance on HPH_R = %d(mohms)\n", __func__, *zr); /* Convert from mohms to ohms (rounded) */ *zl = (*zl + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS; *zr = (*zr + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS; goto mono_stereo_detection; diff_impedance: #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) /* Disable AGND switch */ wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_DISABLE); wcd_usbss_register_update(diff_regs, WCD_USBSS_WRITE, ARRAY_SIZE(diff_regs)); #endif /* Enable HPHR NCLAMP */ regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x08); /* Diffrential impedance */ wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Diff, NULL, d1); if ((z1Diff == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1Diff > WCD939X_ZDET_VAL_100K)) { *zdiff = WCD939X_ZDET_FLOATING_IMPEDANCE; } else { *zdiff = z1Diff; wcd939x_wcd_mbhc_qfuse_cal(component, zdiff, 0); } dev_dbg(component->dev, "%s: effective impedance on HPH_diff after calib = %d(mohms)\n", __func__, *zdiff); /* Disable HPHR NCLAMP */ regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x00); #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) /* Enable AGND switch */ wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_ENABLE); /* Get ground internal resistance based on orientation */ if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) { r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms; } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) { r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms; } else { *zl = 0; *zr = 0; dev_dbg(component->dev, "%s: Invalid SBU switch orientation\n", __func__); goto zdet_complete; } #endif /* Compute external fet and effective load impedance */ r_gnd_ext_fet_mohms = *zl - *zdiff / 2 + pdata->usbcss_hs.r_surge_mohms / 2 - pdata->usbcss_hs.r_gnd_par_tot_mohms - r_gnd_int_fet_mohms; rl_eff_mohms = *zdiff / 2 - pdata->usbcss_hs.r_aud_int_fet_r_mohms - pdata->usbcss_hs.r_gnd_ext_fet_mohms - pdata->usbcss_hs.r_surge_mohms / 2 - pdata->usbcss_hs.r_gnd_par_tot_mohms; /* Store values */ *zl = (rl_eff_mohms - pdata->usbcss_hs.r_conn_par_load_pos_mohms - pdata->usbcss_hs.r3 + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS; *zr = *zl; /* Update USBC-SS HS params */ if (rl_eff_mohms > MAX_RL_EFF_MOHMS) rl_eff_mohms = MAX_RL_EFF_MOHMS; else if (rl_eff_mohms == 0) rl_eff_mohms = MIN_RL_EFF_MOHMS; pdata->usbcss_hs.r_load_eff_l_mohms = rl_eff_mohms; pdata->usbcss_hs.r_load_eff_r_mohms = rl_eff_mohms; update_ext_fet_res(pdata, r_gnd_ext_fet_mohms); update_xtalk_scale_and_alpha(pdata, wcd939x->regmap); dev_dbg(component->dev, "%s: Xtalk scale is 0x%x and alpha is 0x%x\n", __func__, pdata->usbcss_hs.scale_l, pdata->usbcss_hs.alpha_l); get_linearizer_taps(pdata, &aud_tap, &gnd_tap); #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) wcd_usbss_set_linearizer_sw_tap(aud_tap, gnd_tap); #endif dev_dbg(component->dev, "%s: Linearizer aud_tap is 0x%x and gnd_tap is 0x%x\n", __func__, aud_tap, gnd_tap); mono_stereo_detection: /* Mono/stereo detection */ if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) && (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE)) { dev_dbg(component->dev, "%s: plug type is invalid or extension cable\n", __func__); goto zdet_complete; } if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) || (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE) || ((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) || ((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) { dev_dbg(component->dev, "%s: Mono plug type with one ch floating or shorted to GND\n", __func__); mbhc->hph_type = WCD_MBHC_HPH_MONO; goto zdet_complete; } snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x02); snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x01); wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Ls, NULL, d1); snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x00); snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x00); z1Ls /= 1000; wcd939x_wcd_mbhc_qfuse_cal(component, &z1Ls, 0); /* Parallel of left Z and 9 ohm pull down resistor */ zMono = ((*zl) * 9) / ((*zl) + 9); z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls); z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl)); if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) { dev_dbg(component->dev, "%s: stereo plug type detected\n", __func__); mbhc->hph_type = WCD_MBHC_HPH_STEREO; } else { dev_dbg(component->dev, "%s: MONO plug type detected\n", __func__); mbhc->hph_type = WCD_MBHC_HPH_MONO; } zdet_complete: #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) /* Enable sense switch and MIC for USB-C analog platforms */ if (mbhc->mbhc_cfg->enable_usbc_analog) { wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_ENABLE); wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_ENABLE); } #endif /* Enable surge protection again after impedance detection */ regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_EN, 0xC0, 0xC0); snd_soc_component_write(component, WCD939X_MBHC_BTN5, reg0); snd_soc_component_write(component, WCD939X_MBHC_BTN6, reg1); snd_soc_component_write(component, WCD939X_MBHC_BTN7, reg2); /* Turn on 100k pull down on HPHL */ regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_MECH, 0x01, 0x01); /* For NO-jack, re-enable L_DET_EN after Z-det measurements */ if (mbhc->hphl_swh) regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_MECH, 0x80, 0x80); snd_soc_component_write(component, WCD939X_ZDET_ANA_CTL, reg4); snd_soc_component_write(component, WCD939X_CTL_CLK, reg3); if (is_fsm_disable) regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ELECT, 0x80, 0x80); #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C) wcd_usbss_register_update(cached_regs, WCD_USBSS_WRITE, ARRAY_SIZE(cached_regs)); #endif /* Turn off RX supplies */ if (wcd939x->version == WCD939X_VERSION_2_0) { /* Set VPOS to be controlled by RX */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x00); /* Wait 500us for settling */ usleep_range(500, 510); /* Set PA Left/Right channels and VNEGDAC_LDO to be controlled by RX */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x11, 0x00); /* Wait 100us for settling */ usleep_range(100, 110); /* Set Vneg mode and enable to be controlled by RX */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x06, 0x00); /* Wait 100us for settling */ usleep_range(100, 110); /* Set RX bias to be controlled by RX and set Buck/Flyback back to SWR Rx clock */ regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x48, 0x00); } } static void wcd939x_mbhc_gnd_det_ctrl(struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, WCD939X_MBHC_MECH, 0x02, 0x02); snd_soc_component_update_bits(component, WCD939X_MBHC_MECH, 0x40, 0x40); } else { snd_soc_component_update_bits(component, WCD939X_MBHC_MECH, 0x40, 0x00); snd_soc_component_update_bits(component, WCD939X_MBHC_MECH, 0x02, 0x00); } } static void wcd939x_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component, bool enable) { if (enable) { snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x40); snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x10, 0x10); } else { snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x00); snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x10, 0x00); } } static void wcd939x_mbhc_moisture_config(struct wcd_mbhc *mbhc) { struct snd_soc_component *component = mbhc->component; if ((mbhc->moist_rref == R_OFF) || (mbhc->mbhc_cfg->enable_usbc_analog)) { snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, R_OFF << 2); return; } /* Do not enable moisture detection if jack type is NC */ if (!mbhc->hphl_swh) { dev_dbg(component->dev, "%s: disable moisture detection for NC\n", __func__); snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, R_OFF << 2); return; } snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, mbhc->moist_rref << 2); } static void wcd939x_mbhc_moisture_detect_en(struct wcd_mbhc *mbhc, bool enable) { struct snd_soc_component *component = mbhc->component; if (enable) snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, mbhc->moist_rref << 2); else snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, R_OFF << 2); } static bool wcd939x_mbhc_get_moisture_status(struct wcd_mbhc *mbhc) { struct snd_soc_component *component = mbhc->component; bool ret = false; if ((mbhc->moist_rref == R_OFF) || (mbhc->mbhc_cfg->enable_usbc_analog)) { snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, R_OFF << 2); goto done; } /* Do not enable moisture detection if jack type is NC */ if (!mbhc->hphl_swh) { dev_dbg(component->dev, "%s: disable moisture detection for NC\n", __func__); snd_soc_component_update_bits(component, WCD939X_CTL_2, 0x0C, R_OFF << 2); goto done; } /* * If moisture_en is already enabled, then skip to plug type * detection. */ if ((snd_soc_component_read(component, WCD939X_CTL_2) & 0x0C)) goto done; wcd939x_mbhc_moisture_detect_en(mbhc, true); /* Read moisture comparator status */ ret = ((snd_soc_component_read(component, WCD939X_FSM_STATUS) & 0x20) ? 0 : 1); done: return ret; } static void wcd939x_mbhc_moisture_polling_ctrl(struct wcd_mbhc *mbhc, bool enable) { struct snd_soc_component *component = mbhc->component; snd_soc_component_update_bits(component, WCD939X_MOISTURE_DET_POLLING_CTRL, 0x04, (enable << 2)); } static void wcd939x_mbhc_bcs_enable(struct wcd_mbhc *mbhc, bool bcs_enable) { if (bcs_enable) wcd939x_disable_bcs_before_slow_insert(mbhc->component, false); else wcd939x_disable_bcs_before_slow_insert(mbhc->component, true); } static void wcd939x_surge_reset_routine(struct wcd_mbhc *mbhc) { struct wcd939x_priv *wcd939x = snd_soc_component_get_drvdata(mbhc->component); regcache_mark_dirty(wcd939x->regmap); regcache_sync(wcd939x->regmap); } static void wcd939x_mbhc_zdet_leakage_resistance(struct wcd_mbhc *mbhc, bool enable) { if (enable) snd_soc_component_update_bits(mbhc->component, WCD939X_ZDET_BIAS_CTL, 0x80, 0x80); /* disable 1M pull-up */ else snd_soc_component_update_bits(mbhc->component, WCD939X_ZDET_BIAS_CTL, 0x80, 0x00); /* enable 1M pull-up */ } static const struct wcd_mbhc_cb mbhc_cb = { .request_irq = wcd939x_mbhc_request_irq, .irq_control = wcd939x_mbhc_irq_control, .free_irq = wcd939x_mbhc_free_irq, .clk_setup = wcd939x_mbhc_clk_setup, .map_btn_code_to_num = wcd939x_mbhc_btn_to_num, .mbhc_bias = wcd939x_mbhc_mbhc_bias_control, .set_btn_thr = wcd939x_mbhc_program_btn_thr, .lock_sleep = wcd939x_mbhc_lock_sleep, .register_notifier = wcd939x_mbhc_register_notifier, .micbias_enable_status = wcd939x_mbhc_micb_en_status, .hph_pa_on_status = wcd939x_mbhc_hph_pa_on_status, .hph_pull_up_control_v2 = wcd939x_mbhc_hph_l_pull_up_control, .mbhc_micbias_control = wcd939x_mbhc_request_micbias, .mbhc_micb_ramp_control = wcd939x_mbhc_micb_ramp_control, .get_hwdep_fw_cal = wcd939x_get_hwdep_fw_cal, .mbhc_micb_ctrl_thr_mic = wcd939x_mbhc_micb_ctrl_threshold_mic, .compute_impedance = wcd939x_wcd_mbhc_calc_impedance, .mbhc_gnd_det_ctrl = wcd939x_mbhc_gnd_det_ctrl, .hph_pull_down_ctrl = wcd939x_mbhc_hph_pull_down_ctrl, .mbhc_moisture_config = wcd939x_mbhc_moisture_config, .mbhc_get_moisture_status = wcd939x_mbhc_get_moisture_status, .mbhc_moisture_polling_ctrl = wcd939x_mbhc_moisture_polling_ctrl, .mbhc_moisture_detect_en = wcd939x_mbhc_moisture_detect_en, .bcs_enable = wcd939x_mbhc_bcs_enable, .surge_reset_routine = wcd939x_surge_reset_routine, .zdet_leakage_resistance = wcd939x_mbhc_zdet_leakage_resistance, }; static int wcd939x_get_hph_type(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component); struct wcd_mbhc *mbhc; if (!wcd939x_mbhc) { dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__); return -EINVAL; } mbhc = &wcd939x_mbhc->wcd_mbhc; ucontrol->value.integer.value[0] = (u32) mbhc->hph_type; dev_dbg(component->dev, "%s: hph_type = %u\n", __func__, mbhc->hph_type); return 0; } static int wcd939x_hph_impedance_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { uint32_t zl, zr; bool hphr; struct soc_multi_mixer_control *mc; struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component); if (!wcd939x_mbhc) { dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__); return -EINVAL; } mc = (struct soc_multi_mixer_control *)(kcontrol->private_value); hphr = mc->shift; wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, &zl, &zr); dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__, zl, zr); ucontrol->value.integer.value[0] = hphr ? zr : zl; return 0; } static const struct snd_kcontrol_new hph_type_detect_controls[] = { SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0, wcd939x_get_hph_type, NULL), }; static const struct snd_kcontrol_new impedance_detect_controls[] = { SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0, wcd939x_hph_impedance_get, NULL), SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0, wcd939x_hph_impedance_get, NULL), }; /* * wcd939x_mbhc_get_impedance: get impedance of headphone * left and right channels * @wcd939x_mbhc: handle to struct wcd939x_mbhc * * @zl: handle to left-ch impedance * @zr: handle to right-ch impedance * return 0 for success or error code in case of failure */ int wcd939x_mbhc_get_impedance(struct wcd939x_mbhc *wcd939x_mbhc, uint32_t *zl, uint32_t *zr) { if (!wcd939x_mbhc) { pr_err_ratelimited("%s: mbhc not initialized!\n", __func__); return -EINVAL; } if (!zl || !zr) { pr_err_ratelimited("%s: zl or zr null!\n", __func__); return -EINVAL; } return wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, zl, zr); } EXPORT_SYMBOL(wcd939x_mbhc_get_impedance); /* * wcd939x_mbhc_hs_detect: starts mbhc insertion/removal functionality * @codec: handle to snd_soc_component * * @mbhc_cfg: handle to mbhc configuration structure * return 0 if mbhc_start is success or error code in case of failure */ int wcd939x_mbhc_hs_detect(struct snd_soc_component *component, struct wcd_mbhc_config *mbhc_cfg) { struct wcd939x_priv *wcd939x = NULL; struct wcd939x_mbhc *wcd939x_mbhc = NULL; if (!component) { pr_err_ratelimited("%s: component is NULL\n", __func__); return -EINVAL; } wcd939x = snd_soc_component_get_drvdata(component); if (!wcd939x) { pr_err_ratelimited("%s: wcd939x is NULL\n", __func__); return -EINVAL; } wcd939x_mbhc = wcd939x->mbhc; if (!wcd939x_mbhc) { dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__); return -EINVAL; } return wcd_mbhc_start(&wcd939x_mbhc->wcd_mbhc, mbhc_cfg); } EXPORT_SYMBOL(wcd939x_mbhc_hs_detect); /* * wcd939x_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality * @component: handle to snd_soc_component * */ void wcd939x_mbhc_hs_detect_exit(struct snd_soc_component *component) { struct wcd939x_priv *wcd939x = NULL; struct wcd939x_mbhc *wcd939x_mbhc = NULL; if (!component) { pr_err_ratelimited("%s: component is NULL\n", __func__); return; } wcd939x = snd_soc_component_get_drvdata(component); if (!wcd939x) { pr_err_ratelimited("%s: wcd939x is NULL\n", __func__); return; } wcd939x_mbhc = wcd939x->mbhc; if (!wcd939x_mbhc) { dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__); return; } wcd_mbhc_stop(&wcd939x_mbhc->wcd_mbhc); } EXPORT_SYMBOL(wcd939x_mbhc_hs_detect_exit); /* * wcd939x_mbhc_ssr_down: stop mbhc during * wcd939x subsystem restart * mbhc: pointer to wcd937x_mbhc structure * component: handle to snd_soc_component * */ void wcd939x_mbhc_ssr_down(struct wcd939x_mbhc *mbhc, struct snd_soc_component *component) { struct wcd_mbhc *wcd_mbhc = NULL; if (!mbhc || !component) return; wcd_mbhc = &mbhc->wcd_mbhc; if (!wcd_mbhc) { dev_err_ratelimited(component->dev, "%s: wcd_mbhc is NULL\n", __func__); return; } wcd939x_mbhc_hs_detect_exit(component); wcd_mbhc_deinit(wcd_mbhc); } EXPORT_SYMBOL(wcd939x_mbhc_ssr_down); /* * wcd939x_mbhc_post_ssr_init: initialize mbhc for * wcd939x post subsystem restart * @mbhc: poniter to wcd939x_mbhc structure * @component: handle to snd_soc_component * * * return 0 if mbhc_init is success or error code in case of failure */ int wcd939x_mbhc_post_ssr_init(struct wcd939x_mbhc *mbhc, struct snd_soc_component *component) { int ret = 0; struct wcd_mbhc *wcd_mbhc = NULL; if (!mbhc || !component) return -EINVAL; wcd_mbhc = &mbhc->wcd_mbhc; if (wcd_mbhc == NULL) { pr_err("%s: wcd_mbhc is NULL\n", __func__); return -EINVAL; } /* Reset detection type to insertion after SSR recovery */ snd_soc_component_update_bits(component, WCD939X_MBHC_MECH, 0x20, 0x20); ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids, wcd_mbhc_registers, WCD939X_ZDET_SUPPORTED); if (ret) { dev_err(component->dev, "%s: mbhc initialization failed\n", __func__); goto done; } done: return ret; } EXPORT_SYMBOL(wcd939x_mbhc_post_ssr_init); /* * wcd939x_mbhc_init: initialize mbhc for wcd939x * @mbhc: poniter to wcd939x_mbhc struct pointer to store the configs * @codec: handle to snd_soc_component * * @fw_data: handle to firmware data * * return 0 if mbhc_init is success or error code in case of failure */ int wcd939x_mbhc_init(struct wcd939x_mbhc **mbhc, struct snd_soc_component *component, struct fw_info *fw_data) { struct wcd939x_mbhc *wcd939x_mbhc = NULL; struct wcd_mbhc *wcd_mbhc = NULL; int ret = 0; struct wcd939x_pdata *pdata; struct wcd939x_priv *wcd939x; if (!component) { pr_err("%s: component is NULL\n", __func__); return -EINVAL; } wcd939x_mbhc = devm_kzalloc(component->dev, sizeof(struct wcd939x_mbhc), GFP_KERNEL); if (!wcd939x_mbhc) return -ENOMEM; wcd939x_mbhc->fw_data = fw_data; BLOCKING_INIT_NOTIFIER_HEAD(&wcd939x_mbhc->notifier); wcd_mbhc = &wcd939x_mbhc->wcd_mbhc; if (wcd_mbhc == NULL) { pr_err("%s: wcd_mbhc is NULL\n", __func__); ret = -EINVAL; goto err; } /* Setting default mbhc detection logic to ADC */ wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC; /* Down ramp timer set-up */ timer_setup(&wcd939x_mbhc->rdown_timer, rdown_timer_callback, 0); wcd939x_mbhc->rdown_prev_iter = 0; wcd939x_mbhc->rdown_timer_complete = false; pdata = dev_get_platdata(component->dev); if (!pdata) { dev_err(component->dev, "%s: pdata pointer is NULL\n", __func__); ret = -EINVAL; goto err; } wcd_mbhc->micb_mv = pdata->micbias.micb2_mv; ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids, wcd_mbhc_registers, WCD939X_ZDET_SUPPORTED); if (ret) { dev_err(component->dev, "%s: mbhc initialization failed\n", __func__); goto err; } (*mbhc) = wcd939x_mbhc; snd_soc_add_component_controls(component, impedance_detect_controls, ARRAY_SIZE(impedance_detect_controls)); snd_soc_add_component_controls(component, hph_type_detect_controls, ARRAY_SIZE(hph_type_detect_controls)); wcd939x = dev_get_drvdata(component->dev); if (!wcd939x) { dev_err(component->dev, "%s: wcd939x pointer is NULL\n", __func__); ret = -EINVAL; goto err; } usbcss_hs_sysfs_init(wcd939x); return 0; err: if (wcd939x_mbhc) del_timer(&wcd939x_mbhc->rdown_timer); devm_kfree(component->dev, wcd939x_mbhc); return ret; } EXPORT_SYMBOL(wcd939x_mbhc_init); /* * wcd939x_mbhc_deinit: deinitialize mbhc for wcd939x * @codec: handle to snd_soc_component * */ void wcd939x_mbhc_deinit(struct snd_soc_component *component) { struct wcd939x_priv *wcd939x; struct wcd939x_mbhc *wcd939x_mbhc; if (!component) { pr_err("%s: component is NULL\n", __func__); return; } wcd939x = snd_soc_component_get_drvdata(component); if (!wcd939x) { pr_err("%s: wcd939x is NULL\n", __func__); return; } wcd939x_mbhc = wcd939x->mbhc; if (wcd939x_mbhc) { del_timer(&wcd939x_mbhc->rdown_timer); wcd_mbhc_deinit(&wcd939x_mbhc->wcd_mbhc); devm_kfree(component->dev, wcd939x_mbhc); } } EXPORT_SYMBOL(wcd939x_mbhc_deinit);