// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2022-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include "adreno.h" #include "adreno_a6xx.h" #include "adreno_a6xx_hwsched.h" #include "adreno_hfi.h" #include "adreno_perfcounter.h" #include "adreno_pm4types.h" #include "adreno_trace.h" #include "kgsl_device.h" #include "kgsl_eventlog.h" #include "kgsl_pwrctrl.h" #include "kgsl_trace.h" #include "kgsl_util.h" #define HFI_QUEUE_MAX (HFI_QUEUE_DEFAULT_CNT + HFI_QUEUE_DISPATCH_MAX_CNT) #define DEFINE_QHDR(gmuaddr, id, prio) \ {\ .status = 1, \ .start_addr = GMU_QUEUE_START_ADDR(gmuaddr, id), \ .type = QUEUE_HDR_TYPE(id, prio, 0, 0), \ .queue_size = SZ_4K >> 2, \ .msg_size = 0, \ .unused0 = 0, \ .unused1 = 0, \ .unused2 = 0, \ .unused3 = 0, \ .unused4 = 0, \ .read_index = 0, \ .write_index = 0, \ } static struct dq_info { /** @max_dq: Maximum number of dispatch queues per RB level */ u32 max_dq; /** @base_dq_id: Base dqid for level */ u32 base_dq_id; /** @offset: Next dqid to use for roundrobin context assignment */ u32 offset; } a6xx_hfi_dqs[KGSL_PRIORITY_MAX_RB_LEVELS] = { { 4, 0, }, /* RB0 */ { 4, 4, }, /* RB1 */ { 3, 8, }, /* RB2 */ { 3, 11, }, /* RB3 */ }; static int a6xx_hfi_dispatch_queue_write(struct adreno_device *adreno_dev, uint32_t queue_idx, uint32_t *msg, u32 size_bytes, struct kgsl_drawobj_cmd *cmdobj, struct adreno_submit_time *time); struct a6xx_hwsched_hfi *to_a6xx_hwsched_hfi( struct adreno_device *adreno_dev) { struct a6xx_device *a6xx_dev = container_of(adreno_dev, struct a6xx_device, adreno_dev); struct a6xx_hwsched_device *a6xx_hwsched = container_of(a6xx_dev, struct a6xx_hwsched_device, a6xx_dev); return &a6xx_hwsched->hwsched_hfi; } static void add_waiter(struct a6xx_hwsched_hfi *hfi, u32 hdr, struct pending_cmd *ack) { memset(ack, 0x0, sizeof(*ack)); init_completion(&ack->complete); write_lock_irq(&hfi->msglock); list_add_tail(&ack->node, &hfi->msglist); write_unlock_irq(&hfi->msglock); ack->sent_hdr = hdr; } static void del_waiter(struct a6xx_hwsched_hfi *hfi, struct pending_cmd *ack) { write_lock_irq(&hfi->msglock); list_del(&ack->node); write_unlock_irq(&hfi->msglock); } static void a6xx_receive_ack_async(struct adreno_device *adreno_dev, void *rcvd) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct pending_cmd *cmd = NULL; u32 waiters[64], num_waiters = 0, i; u32 *ack = rcvd; u32 hdr = ack[0]; u32 req_hdr = ack[1]; u32 size_bytes = MSG_HDR_GET_SIZE(hdr) << 2; if (size_bytes > sizeof(cmd->results)) dev_err_ratelimited(&gmu->pdev->dev, "Ack result too big: %d Truncating to: %ld\n", size_bytes, sizeof(cmd->results)); read_lock(&hfi->msglock); list_for_each_entry(cmd, &hfi->msglist, node) { if (CMP_HFI_ACK_HDR(cmd->sent_hdr, req_hdr)) { memcpy(cmd->results, ack, min_t(u32, size_bytes, sizeof(cmd->results))); complete(&cmd->complete); read_unlock(&hfi->msglock); return; } if (num_waiters < ARRAY_SIZE(waiters)) waiters[num_waiters++] = cmd->sent_hdr; } read_unlock(&hfi->msglock); /* Didn't find the sender, list the waiter */ dev_err_ratelimited(&gmu->pdev->dev, "Unexpectedly got id %d seqnum %d. Total waiters: %d Top %d Waiters:\n", MSG_HDR_GET_ID(req_hdr), MSG_HDR_GET_SEQNUM(req_hdr), num_waiters, min_t(u32, num_waiters, 5)); for (i = 0; i < num_waiters && i < 5; i++) dev_err_ratelimited(&gmu->pdev->dev, " id %d seqnum %d\n", MSG_HDR_GET_ID(waiters[i]), MSG_HDR_GET_SEQNUM(waiters[i])); } static void log_profiling_info(struct adreno_device *adreno_dev, u32 *rcvd) { struct hfi_ts_retire_cmd *cmd = (struct hfi_ts_retire_cmd *)rcvd; struct kgsl_context *context; struct retire_info info = {0}; struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); context = kgsl_context_get(device, cmd->ctxt_id); if (context == NULL) return; /* protected GPU work must not be reported */ if (!(context->flags & KGSL_CONTEXT_SECURE)) kgsl_work_period_update(device, context->proc_priv->period, cmd->active); info.timestamp = cmd->ts; info.rb_id = adreno_get_level(context); info.gmu_dispatch_queue = context->gmu_dispatch_queue; info.submitted_to_rb = cmd->submitted_to_rb; info.sop = cmd->sop; info.eop = cmd->eop; if (GMU_VER_MINOR(gmu->ver.hfi) < 4) info.active = cmd->eop - cmd->sop; else info.active = cmd->active; info.retired_on_gmu = cmd->retired_on_gmu; trace_adreno_cmdbatch_retired(context, &info, 0, 0, 0); log_kgsl_cmdbatch_retired_event(context->id, cmd->ts, context->priority, 0, cmd->sop, cmd->eop); kgsl_context_put(context); } /* Look up a particular key's value for a given type of payload */ static u32 a6xx_hwsched_lookup_key_value_legacy(struct adreno_device *adreno_dev, u32 type, u32 key) { struct hfi_context_bad_cmd_legacy *cmd = adreno_dev->hwsched.ctxt_bad; u32 i = 0, payload_bytes; void *start; if (!cmd->hdr) return 0; payload_bytes = (MSG_HDR_GET_SIZE(cmd->hdr) << 2) - offsetof(struct hfi_context_bad_cmd_legacy, payload); start = &cmd->payload[0]; while (i < payload_bytes) { struct payload_section *payload = start + i; if (payload->type == type) return adreno_hwsched_parse_payload(payload, key); i += struct_size(payload, data, payload->dwords); } return 0; } static u32 get_payload_rb_key_legacy(struct adreno_device *adreno_dev, u32 rb_id, u32 key) { struct hfi_context_bad_cmd_legacy *cmd = adreno_dev->hwsched.ctxt_bad; u32 i = 0, payload_bytes; void *start; if (!cmd->hdr) return 0; payload_bytes = (MSG_HDR_GET_SIZE(cmd->hdr) << 2) - offsetof(struct hfi_context_bad_cmd_legacy, payload); start = &cmd->payload[0]; while (i < payload_bytes) { struct payload_section *payload = start + i; if (payload->type == PAYLOAD_RB) { u32 id = adreno_hwsched_parse_payload(payload, KEY_RB_ID); if (id == rb_id) return adreno_hwsched_parse_payload(payload, key); } i += struct_size(payload, data, payload->dwords); } return 0; } static void log_gpu_fault_legacy(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct device *dev = &gmu->pdev->dev; struct hfi_context_bad_cmd_legacy *cmd = adreno_dev->hwsched.ctxt_bad; switch (cmd->error) { case GMU_GPU_HW_HANG: dev_crit_ratelimited(dev, "MISC: GPU hang detected\n"); break; case GMU_GPU_SW_HANG: dev_crit_ratelimited(dev, "gpu timeout ctx %d ts %u\n", cmd->ctxt_id, cmd->ts); break; case GMU_CP_OPCODE_ERROR: dev_crit_ratelimited(dev, "CP opcode error interrupt | opcode=0x%8.8x\n", a6xx_hwsched_lookup_key_value_legacy(adreno_dev, PAYLOAD_FAULT_REGS, KEY_CP_OPCODE_ERROR)); break; case GMU_CP_PROTECTED_ERROR: { u32 status = a6xx_hwsched_lookup_key_value_legacy(adreno_dev, PAYLOAD_FAULT_REGS, KEY_CP_PROTECTED_ERROR); dev_crit_ratelimited(dev, "CP | Protected mode error | %s | addr=0x%5.5x | status=0x%8.8x\n", status & (1 << 20) ? "READ" : "WRITE", status & 0x3FFFF, status); } break; case GMU_CP_ILLEGAL_INST_ERROR: dev_crit_ratelimited(dev, "CP Illegal instruction error\n"); break; case GMU_CP_UCODE_ERROR: dev_crit_ratelimited(dev, "CP ucode error interrupt\n"); break; case GMU_CP_HW_FAULT_ERROR: dev_crit_ratelimited(dev, "CP | Ringbuffer HW fault | status=0x%8.8x\n", a6xx_hwsched_lookup_key_value_legacy(adreno_dev, PAYLOAD_FAULT_REGS, KEY_CP_HW_FAULT)); break; case GMU_GPU_PREEMPT_TIMEOUT: { u32 cur, next, cur_rptr, cur_wptr, next_rptr, next_wptr; cur = a6xx_hwsched_lookup_key_value_legacy(adreno_dev, PAYLOAD_PREEMPT_TIMEOUT, KEY_PREEMPT_TIMEOUT_CUR_RB_ID); next = a6xx_hwsched_lookup_key_value_legacy(adreno_dev, PAYLOAD_PREEMPT_TIMEOUT, KEY_PREEMPT_TIMEOUT_NEXT_RB_ID); cur_rptr = get_payload_rb_key_legacy(adreno_dev, cur, KEY_RB_RPTR); cur_wptr = get_payload_rb_key_legacy(adreno_dev, cur, KEY_RB_WPTR); next_rptr = get_payload_rb_key_legacy(adreno_dev, next, KEY_RB_RPTR); next_wptr = get_payload_rb_key_legacy(adreno_dev, next, KEY_RB_WPTR); dev_crit_ratelimited(dev, "Preemption Fault: cur=%d R/W=0x%x/0x%x, next=%d R/W=0x%x/0x%x\n", cur, cur_rptr, cur_wptr, next, next_rptr, next_wptr); } break; case GMU_CP_GPC_ERROR: dev_crit_ratelimited(dev, "RBBM: GPC error\n"); break; default: dev_crit_ratelimited(dev, "Unknown GPU fault: %u\n", cmd->error); break; } } /* Look up a particular key's value for a given type of payload */ static u32 a6xx_hwsched_lookup_key_value(struct adreno_device *adreno_dev, u32 type, u32 key) { struct hfi_context_bad_cmd *cmd = adreno_dev->hwsched.ctxt_bad; u32 i = 0, payload_bytes; void *start; if (!cmd->hdr) return 0; payload_bytes = (MSG_HDR_GET_SIZE(cmd->hdr) << 2) - offsetof(struct hfi_context_bad_cmd, payload); start = &cmd->payload[0]; while (i < payload_bytes) { struct payload_section *payload = start + i; if (payload->type == type) return adreno_hwsched_parse_payload(payload, key); i += struct_size(payload, data, payload->dwords); } return 0; } static u32 get_payload_rb_key(struct adreno_device *adreno_dev, u32 rb_id, u32 key) { struct hfi_context_bad_cmd *cmd = adreno_dev->hwsched.ctxt_bad; u32 i = 0, payload_bytes; void *start; if (!cmd->hdr) return 0; payload_bytes = (MSG_HDR_GET_SIZE(cmd->hdr) << 2) - offsetof(struct hfi_context_bad_cmd, payload); start = &cmd->payload[0]; while (i < payload_bytes) { struct payload_section *payload = start + i; if (payload->type == PAYLOAD_RB) { u32 id = adreno_hwsched_parse_payload(payload, KEY_RB_ID); if (id == rb_id) return adreno_hwsched_parse_payload(payload, key); } i += struct_size(payload, data, payload->dwords); } return 0; } static void log_gpu_fault(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct device *dev = &gmu->pdev->dev; struct hfi_context_bad_cmd *cmd = adreno_dev->hwsched.ctxt_bad; switch (cmd->error) { case GMU_GPU_HW_HANG: dev_crit_ratelimited(dev, "MISC: GPU hang detected\n"); break; case GMU_GPU_SW_HANG: dev_crit_ratelimited(dev, "gpu timeout ctx %d ts %d\n", cmd->gc.ctxt_id, cmd->gc.ts); break; case GMU_CP_OPCODE_ERROR: dev_crit_ratelimited(dev, "CP opcode error interrupt | opcode=0x%8.8x\n", a6xx_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS, KEY_CP_OPCODE_ERROR)); break; case GMU_CP_PROTECTED_ERROR: { u32 status = a6xx_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS, KEY_CP_PROTECTED_ERROR); dev_crit_ratelimited(dev, "CP | Protected mode error | %s | addr=0x%5.5x | status=0x%8.8x\n", status & (1 << 20) ? "READ" : "WRITE", status & 0x3FFFF, status); } break; case GMU_CP_ILLEGAL_INST_ERROR: dev_crit_ratelimited(dev, "CP Illegal instruction error\n"); break; case GMU_CP_UCODE_ERROR: dev_crit_ratelimited(dev, "CP ucode error interrupt\n"); break; case GMU_CP_HW_FAULT_ERROR: dev_crit_ratelimited(dev, "CP | Ringbuffer HW fault | status=0x%8.8x\n", a6xx_hwsched_lookup_key_value(adreno_dev, PAYLOAD_FAULT_REGS, KEY_CP_HW_FAULT)); break; case GMU_GPU_PREEMPT_TIMEOUT: { u32 cur, next, cur_rptr, cur_wptr, next_rptr, next_wptr; cur = a6xx_hwsched_lookup_key_value(adreno_dev, PAYLOAD_PREEMPT_TIMEOUT, KEY_PREEMPT_TIMEOUT_CUR_RB_ID); next = a6xx_hwsched_lookup_key_value(adreno_dev, PAYLOAD_PREEMPT_TIMEOUT, KEY_PREEMPT_TIMEOUT_NEXT_RB_ID); cur_rptr = get_payload_rb_key(adreno_dev, cur, KEY_RB_RPTR); cur_wptr = get_payload_rb_key(adreno_dev, cur, KEY_RB_WPTR); next_rptr = get_payload_rb_key(adreno_dev, next, KEY_RB_RPTR); next_wptr = get_payload_rb_key(adreno_dev, next, KEY_RB_WPTR); dev_crit_ratelimited(dev, "Preemption Fault: cur=%d R/W=0x%x/0x%x, next=%d R/W=0x%x/0x%x\n", cur, cur_rptr, cur_wptr, next, next_rptr, next_wptr); } break; case GMU_CP_GPC_ERROR: dev_crit_ratelimited(dev, "RBBM: GPC error\n"); break; default: dev_crit_ratelimited(dev, "Unknown GPU fault: %u\n", cmd->error); break; } } static void process_ctx_bad(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); if (GMU_VER_MINOR(gmu->ver.hfi) < 2) log_gpu_fault_legacy(adreno_dev); else log_gpu_fault(adreno_dev); adreno_hwsched_fault(adreno_dev, ADRENO_HARD_FAULT); } static u32 peek_next_header(struct a6xx_gmu_device *gmu, uint32_t queue_idx) { struct kgsl_memdesc *mem_addr = gmu->hfi.hfi_mem; struct hfi_queue_table *tbl = mem_addr->hostptr; struct hfi_queue_header *hdr = &tbl->qhdr[queue_idx]; u32 *queue; if (hdr->status == HFI_QUEUE_STATUS_DISABLED) return 0; if (hdr->read_index == hdr->write_index) return 0; queue = HOST_QUEUE_START_ADDR(mem_addr, queue_idx); return queue[hdr->read_index]; } static void a6xx_hwsched_process_msgq(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hw_hfi = to_a6xx_hwsched_hfi(adreno_dev); u32 rcvd[MAX_RCVD_SIZE], next_hdr; mutex_lock(&hw_hfi->msgq_mutex); for (;;) { next_hdr = peek_next_header(gmu, HFI_MSG_ID); if (!next_hdr) break; if (MSG_HDR_GET_ID(next_hdr) == F2H_MSG_CONTEXT_BAD) { a6xx_hfi_queue_read(gmu, HFI_MSG_ID, (u32 *)adreno_dev->hwsched.ctxt_bad, HFI_MAX_MSG_SIZE); process_ctx_bad(adreno_dev); continue; } a6xx_hfi_queue_read(gmu, HFI_MSG_ID, rcvd, sizeof(rcvd)); /* * We are assuming that there is only one outstanding ack * because hfi sending thread waits for completion while * holding the device mutex */ if (MSG_HDR_GET_TYPE(rcvd[0]) == HFI_MSG_ACK) { a6xx_receive_ack_async(adreno_dev, rcvd); } else if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_TS_RETIRE) { adreno_hwsched_trigger(adreno_dev); log_profiling_info(adreno_dev, rcvd); } else if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_GMU_CNTR_RELEASE) { struct hfi_gmu_cntr_release_cmd *cmd = (struct hfi_gmu_cntr_release_cmd *) rcvd; adreno_perfcounter_put(adreno_dev, cmd->group_id, cmd->countable, PERFCOUNTER_FLAG_KERNEL); } } mutex_unlock(&hw_hfi->msgq_mutex); } static void process_log_block(struct adreno_device *adreno_dev, void *data) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct hfi_log_block *cmd = data; u32 *log_event = gmu->gmu_log->hostptr; u32 start, end; start = cmd->start_index; end = cmd->stop_index; log_event += start * 4; while (start != end) { trace_gmu_event(log_event); log_event += 4; start++; } } static void a6xx_hwsched_process_dbgq(struct adreno_device *adreno_dev, bool limited) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); u32 rcvd[MAX_RCVD_SIZE]; bool recovery = false; while (a6xx_hfi_queue_read(gmu, HFI_DBG_ID, rcvd, sizeof(rcvd)) > 0) { if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_ERR) { adreno_a6xx_receive_err_req(gmu, rcvd); recovery = true; break; } if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_DEBUG) adreno_a6xx_receive_debug_req(gmu, rcvd); if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_LOG_BLOCK) process_log_block(adreno_dev, rcvd); /* Process one debug queue message and return to not delay msgq processing */ if (limited) break; } if (!recovery) return; adreno_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT); } /* HFI interrupt handler */ static irqreturn_t a6xx_hwsched_hfi_handler(int irq, void *data) { struct adreno_device *adreno_dev = data; struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); u32 status = 0; /* * A6XX_GMU_GMU2HOST_INTR_INFO may have bits set not specified in hfi->irq_mask. * Read and clear only those irq bits that we are processing here. */ gmu_core_regread(device, A6XX_GMU_GMU2HOST_INTR_INFO, &status); gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, status & hfi->irq_mask); /* * If interrupts are not enabled on the HFI message queue, * the inline message processing loop will process it, * else, process it here. */ if (!(hfi->irq_mask & HFI_IRQ_MSGQ_MASK)) status &= ~HFI_IRQ_MSGQ_MASK; if (status & (HFI_IRQ_MSGQ_MASK | HFI_IRQ_DBGQ_MASK)) { wake_up_interruptible(&hfi->f2h_wq); adreno_hwsched_trigger(adreno_dev); } if (status & HFI_IRQ_CM3_FAULT_MASK) { atomic_set(&gmu->cm3_fault, 1); /* make sure other CPUs see the update */ smp_wmb(); dev_err_ratelimited(&gmu->pdev->dev, "GMU CM3 fault interrupt received\n"); adreno_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT); } /* Ignore OOB bits */ status &= GENMASK(31 - (oob_max - 1), 0); if (status & ~hfi->irq_mask) dev_err_ratelimited(&gmu->pdev->dev, "Unhandled HFI interrupts 0x%x\n", status & ~hfi->irq_mask); return IRQ_HANDLED; } #define HFI_IRQ_MSGQ_MASK BIT(0) static int check_ack_failure(struct adreno_device *adreno_dev, struct pending_cmd *ack) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); if (ack->results[2] != 0xffffffff) return 0; dev_err(&gmu->pdev->dev, "ACK error: sender id %d seqnum %d\n", MSG_HDR_GET_ID(ack->sent_hdr), MSG_HDR_GET_SEQNUM(ack->sent_hdr)); return -EINVAL; } int a6xx_hfi_send_cmd_async(struct adreno_device *adreno_dev, void *data, u32 size_bytes) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); u32 *cmd = data; u32 seqnum; int rc; struct pending_cmd pending_ack; seqnum = atomic_inc_return(&gmu->hfi.seqnum); *cmd = MSG_HDR_SET_SEQNUM_SIZE(*cmd, seqnum, size_bytes >> 2); add_waiter(hfi, *cmd, &pending_ack); rc = a6xx_hfi_cmdq_write(adreno_dev, cmd, size_bytes); if (rc) goto done; rc = adreno_hwsched_wait_ack_completion(adreno_dev, &gmu->pdev->dev, &pending_ack, a6xx_hwsched_process_msgq); if (rc) goto done; rc = check_ack_failure(adreno_dev, &pending_ack); done: del_waiter(hfi, &pending_ack); return rc; } static void init_queues(struct a6xx_hfi *hfi) { u32 gmuaddr = hfi->hfi_mem->gmuaddr; struct hfi_queue_table hfi_table = { .qtbl_hdr = { .version = 0, .size = sizeof(struct hfi_queue_table) >> 2, .qhdr0_offset = sizeof(struct hfi_queue_table_header) >> 2, .qhdr_size = sizeof(struct hfi_queue_header) >> 2, .num_q = HFI_QUEUE_MAX, .num_active_q = HFI_QUEUE_MAX, }, .qhdr = { DEFINE_QHDR(gmuaddr, HFI_CMD_ID, 0), DEFINE_QHDR(gmuaddr, HFI_MSG_ID, 0), DEFINE_QHDR(gmuaddr, HFI_DBG_ID, 0), /* 4 DQs for RB priority 0 */ DEFINE_QHDR(gmuaddr, 3, 0), DEFINE_QHDR(gmuaddr, 4, 0), DEFINE_QHDR(gmuaddr, 5, 0), DEFINE_QHDR(gmuaddr, 6, 0), /* 4 DQs for RB priority 1 */ DEFINE_QHDR(gmuaddr, 7, 1), DEFINE_QHDR(gmuaddr, 8, 1), DEFINE_QHDR(gmuaddr, 9, 1), DEFINE_QHDR(gmuaddr, 10, 1), /* 3 DQs for RB priority 2 */ DEFINE_QHDR(gmuaddr, 11, 2), DEFINE_QHDR(gmuaddr, 12, 2), DEFINE_QHDR(gmuaddr, 13, 2), /* 3 DQs for RB priority 3 */ DEFINE_QHDR(gmuaddr, 14, 3), DEFINE_QHDR(gmuaddr, 15, 3), DEFINE_QHDR(gmuaddr, 16, 3), }, }; memcpy(hfi->hfi_mem->hostptr, &hfi_table, sizeof(hfi_table)); } /* Total header sizes + queue sizes + 16 for alignment */ #define HFIMEM_SIZE (sizeof(struct hfi_queue_table) + 16 + \ (SZ_4K * HFI_QUEUE_MAX)) static int hfi_f2h_main(void *arg); int a6xx_hwsched_hfi_init(struct adreno_device *adreno_dev) { struct a6xx_hwsched_hfi *hw_hfi = to_a6xx_hwsched_hfi(adreno_dev); struct a6xx_hfi *hfi = to_a6xx_hfi(adreno_dev); if (IS_ERR_OR_NULL(hw_hfi->big_ib)) { hw_hfi->big_ib = reserve_gmu_kernel_block(to_a6xx_gmu(adreno_dev), 0, HWSCHED_MAX_IBS * sizeof(struct hfi_issue_ib), GMU_NONCACHED_KERNEL, 0); if (IS_ERR(hw_hfi->big_ib)) return PTR_ERR(hw_hfi->big_ib); } if (ADRENO_FEATURE(adreno_dev, ADRENO_LSR) && IS_ERR_OR_NULL(hw_hfi->big_ib_recurring)) { hw_hfi->big_ib_recurring = reserve_gmu_kernel_block( to_a6xx_gmu(adreno_dev), 0, HWSCHED_MAX_IBS * sizeof(struct hfi_issue_ib), GMU_NONCACHED_KERNEL, 0); if (IS_ERR(hw_hfi->big_ib_recurring)) return PTR_ERR(hw_hfi->big_ib_recurring); } if (IS_ERR_OR_NULL(hfi->hfi_mem)) { hfi->hfi_mem = reserve_gmu_kernel_block(to_a6xx_gmu(adreno_dev), 0, HFIMEM_SIZE, GMU_NONCACHED_KERNEL, 0); if (IS_ERR(hfi->hfi_mem)) return PTR_ERR(hfi->hfi_mem); init_queues(hfi); } if (IS_ERR_OR_NULL(hw_hfi->f2h_task)) hw_hfi->f2h_task = kthread_run(hfi_f2h_main, adreno_dev, "gmu_f2h"); return PTR_ERR_OR_ZERO(hw_hfi->f2h_task); } static int get_attrs(u32 flags) { int attrs = IOMMU_READ; if (flags & HFI_MEMFLAG_GMU_PRIV) attrs |= IOMMU_PRIV; if (flags & HFI_MEMFLAG_GMU_WRITEABLE) attrs |= IOMMU_WRITE; return attrs; } static int gmu_import_buffer(struct adreno_device *adreno_dev, struct hfi_mem_alloc_entry *entry) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct hfi_mem_alloc_desc *desc = &entry->desc; int attrs = get_attrs(desc->flags); struct gmu_vma_entry *vma = &gmu->vma[GMU_NONCACHED_KERNEL]; int ret; if (desc->flags & HFI_MEMFLAG_GMU_CACHEABLE) vma = &gmu->vma[GMU_CACHE]; if ((vma->next_va + desc->size) > (vma->start + vma->size)) { dev_err(&gmu->pdev->dev, "GMU mapping too big. available: %d required: %d\n", vma->next_va - vma->start, desc->size); return -ENOMEM; } ret = gmu_core_map_memdesc(gmu->domain, entry->md, vma->next_va, attrs); if (ret) { dev_err(&gmu->pdev->dev, "gmu map err: 0x%08x, %x\n", vma->next_va, attrs); return ret; } entry->md->gmuaddr = vma->next_va; vma->next_va += desc->size; return 0; } static struct hfi_mem_alloc_entry *lookup_mem_alloc_table( struct adreno_device *adreno_dev, struct hfi_mem_alloc_desc *desc) { struct a6xx_hwsched_hfi *hw_hfi = to_a6xx_hwsched_hfi(adreno_dev); int i; for (i = 0; i < hw_hfi->mem_alloc_entries; i++) { struct hfi_mem_alloc_entry *entry = &hw_hfi->mem_alloc_table[i]; if ((entry->desc.mem_kind == desc->mem_kind) && (entry->desc.gmu_mem_handle == desc->gmu_mem_handle)) return entry; } return NULL; } static struct hfi_mem_alloc_entry *get_mem_alloc_entry( struct adreno_device *adreno_dev, struct hfi_mem_alloc_desc *desc) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct hfi_mem_alloc_entry *entry = lookup_mem_alloc_table(adreno_dev, desc); struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); u64 flags = 0; u32 priv = 0; int ret; const char *memkind_string = desc->mem_kind < HFI_MEMKIND_MAX ? hfi_memkind_strings[desc->mem_kind] : "UNKNOWN"; if (entry) return entry; if (desc->mem_kind >= HFI_MEMKIND_MAX) { dev_err(&gmu->pdev->dev, "Invalid mem kind: %d\n", desc->mem_kind); return ERR_PTR(-EINVAL); } if (hfi->mem_alloc_entries == ARRAY_SIZE(hfi->mem_alloc_table)) { dev_err(&gmu->pdev->dev, "Reached max mem alloc entries\n"); return ERR_PTR(-ENOMEM); } entry = &hfi->mem_alloc_table[hfi->mem_alloc_entries]; memcpy(&entry->desc, desc, sizeof(*desc)); entry->desc.host_mem_handle = desc->gmu_mem_handle; if (desc->flags & HFI_MEMFLAG_GFX_PRIV) priv |= KGSL_MEMDESC_PRIVILEGED; if (!(desc->flags & HFI_MEMFLAG_GFX_WRITEABLE)) flags |= KGSL_MEMFLAGS_GPUREADONLY; if (desc->flags & HFI_MEMFLAG_GFX_SECURE) flags |= KGSL_MEMFLAGS_SECURE; if (!(desc->flags & HFI_MEMFLAG_GFX_ACC)) { if (desc->mem_kind == HFI_MEMKIND_MMIO_IPC_CORE) entry->md = reserve_gmu_kernel_block_fixed(gmu, 0, desc->size, (desc->flags & HFI_MEMFLAG_GMU_CACHEABLE) ? GMU_CACHE : GMU_NONCACHED_KERNEL, "qcom,ipc-core", get_attrs(desc->flags), desc->align); else entry->md = reserve_gmu_kernel_block(gmu, 0, desc->size, (desc->flags & HFI_MEMFLAG_GMU_CACHEABLE) ? GMU_CACHE : GMU_NONCACHED_KERNEL, desc->align); if (IS_ERR(entry->md)) { int ret = PTR_ERR(entry->md); memset(entry, 0, sizeof(*entry)); return ERR_PTR(ret); } entry->desc.size = entry->md->size; entry->desc.gmu_addr = entry->md->gmuaddr; goto done; } entry->md = kgsl_allocate_global(device, desc->size, 0, flags, priv, memkind_string); if (IS_ERR(entry->md)) { int ret = PTR_ERR(entry->md); memset(entry, 0, sizeof(*entry)); return ERR_PTR(ret); } entry->desc.size = entry->md->size; entry->desc.gpu_addr = entry->md->gpuaddr; if (!(desc->flags & HFI_MEMFLAG_GMU_ACC)) goto done; /* * If gmu mapping fails, then we have to live with * leaking the gpu global buffer allocated above. */ ret = gmu_import_buffer(adreno_dev, entry); if (ret) { dev_err(&gmu->pdev->dev, "gpuaddr: 0x%llx size: %lld bytes lost\n", entry->md->gpuaddr, entry->md->size); memset(entry, 0, sizeof(*entry)); return ERR_PTR(ret); } entry->desc.gmu_addr = entry->md->gmuaddr; done: hfi->mem_alloc_entries++; return entry; } static int process_mem_alloc(struct adreno_device *adreno_dev, struct hfi_mem_alloc_desc *mad) { struct hfi_mem_alloc_entry *entry; entry = get_mem_alloc_entry(adreno_dev, mad); if (IS_ERR(entry)) return PTR_ERR(entry); if (entry->md) { mad->gpu_addr = entry->md->gpuaddr; mad->gmu_addr = entry->md->gmuaddr; } /* * GMU uses the host_mem_handle to check if this memalloc was * successful */ mad->host_mem_handle = mad->gmu_mem_handle; return 0; } static int mem_alloc_reply(struct adreno_device *adreno_dev, void *rcvd) { struct hfi_mem_alloc_desc desc = {0}; struct hfi_mem_alloc_reply_cmd out = {0}; struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); u32 seqnum; int ret; hfi_get_mem_alloc_desc(rcvd, &desc); ret = process_mem_alloc(adreno_dev, &desc); if (ret) return ret; memcpy(&out.desc, &desc, sizeof(out.desc)); out.hdr = ACK_MSG_HDR(F2H_MSG_MEM_ALLOC); seqnum = atomic_inc_return(&gmu->hfi.seqnum); out.hdr = MSG_HDR_SET_SEQNUM_SIZE(out.hdr, seqnum, sizeof(out) >> 2); out.req_hdr = *(u32 *)rcvd; return a6xx_hfi_cmdq_write(adreno_dev, (u32 *)&out, sizeof(out)); } static int gmu_cntr_register_reply(struct adreno_device *adreno_dev, void *rcvd) { struct hfi_gmu_cntr_register_cmd *in = (struct hfi_gmu_cntr_register_cmd *)rcvd; struct hfi_gmu_cntr_register_reply_cmd out = {0}; struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); u32 lo = 0, hi = 0, seqnum; /* * Failure to allocate counter is not fatal. Sending lo = 0, hi = 0 * indicates to GMU that counter allocation failed. */ adreno_perfcounter_get(adreno_dev, in->group_id, in->countable, &lo, &hi, PERFCOUNTER_FLAG_KERNEL); out.hdr = ACK_MSG_HDR(F2H_MSG_GMU_CNTR_REGISTER); seqnum = atomic_inc_return(&gmu->hfi.seqnum); out.hdr = MSG_HDR_SET_SEQNUM_SIZE(out.hdr, seqnum, sizeof(out) >> 2); out.req_hdr = in->hdr; out.group_id = in->group_id; out.countable = in->countable; /* Fill in byte offset of counter */ out.cntr_lo = lo << 2; out.cntr_hi = hi << 2; return a6xx_hfi_cmdq_write(adreno_dev, (u32 *)&out, sizeof(out)); } static int send_start_msg(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); u32 seqnum; int rc; struct hfi_start_cmd cmd; u32 rcvd[MAX_RCVD_SIZE]; struct pending_cmd pending_ack = {0}; rc = CMD_MSG_HDR(cmd, H2F_MSG_START); if (rc) return rc; seqnum = atomic_inc_return(&gmu->hfi.seqnum); cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2); pending_ack.sent_hdr = cmd.hdr; rc = a6xx_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd)); if (rc) return rc; poll: rc = gmu_core_timed_poll_check(device, A6XX_GMU_GMU2HOST_INTR_INFO, HFI_IRQ_MSGQ_MASK, HFI_RSP_TIMEOUT, HFI_IRQ_MSGQ_MASK); if (rc) { dev_err(&gmu->pdev->dev, "Timed out processing MSG_START seqnum: %d\n", seqnum); gmu_core_fault_snapshot(device); return rc; } /* Clear the interrupt */ gmu_core_regwrite(device, A6XX_GMU_GMU2HOST_INTR_CLR, HFI_IRQ_MSGQ_MASK); if (a6xx_hfi_queue_read(gmu, HFI_MSG_ID, rcvd, sizeof(rcvd)) <= 0) { dev_err(&gmu->pdev->dev, "MSG_START: no payload\n"); gmu_core_fault_snapshot(device); return -EINVAL; } if (MSG_HDR_GET_TYPE(rcvd[0]) == HFI_MSG_ACK) { rc = a6xx_receive_ack_cmd(gmu, rcvd, &pending_ack); if (rc) return rc; return check_ack_failure(adreno_dev, &pending_ack); } if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_MEM_ALLOC) { rc = mem_alloc_reply(adreno_dev, rcvd); if (rc) return rc; goto poll; } if (MSG_HDR_GET_ID(rcvd[0]) == F2H_MSG_GMU_CNTR_REGISTER) { rc = gmu_cntr_register_reply(adreno_dev, rcvd); if (rc) return rc; goto poll; } dev_err(&gmu->pdev->dev, "MSG_START: unexpected response id:%d, type:%d\n", MSG_HDR_GET_ID(rcvd[0]), MSG_HDR_GET_TYPE(rcvd[0])); gmu_core_fault_snapshot(device); return rc; } static void reset_hfi_mem_records(struct adreno_device *adreno_dev) { struct a6xx_hwsched_hfi *hw_hfi = to_a6xx_hwsched_hfi(adreno_dev); struct kgsl_memdesc *md = NULL; u32 i; for (i = 0; i < hw_hfi->mem_alloc_entries; i++) { struct hfi_mem_alloc_desc *desc = &hw_hfi->mem_alloc_table[i].desc; if (desc->flags & HFI_MEMFLAG_HOST_INIT) { md = hw_hfi->mem_alloc_table[i].md; memset(md->hostptr, 0x0, md->size); } } } static void reset_hfi_queues(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct hfi_queue_table *tbl = gmu->hfi.hfi_mem->hostptr; u32 i; /* Flush HFI queues */ for (i = 0; i < HFI_QUEUE_MAX; i++) { struct hfi_queue_header *hdr = &tbl->qhdr[i]; if (hdr->status == HFI_QUEUE_STATUS_DISABLED) continue; hdr->read_index = hdr->write_index; } } void a6xx_hwsched_hfi_stop(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); hfi->irq_mask &= ~HFI_IRQ_MSGQ_MASK; /* * In some corner cases, it is possible that GMU put TS_RETIRE * on the msgq after we have turned off gmu interrupts. Hence, * drain the queue one last time before we reset HFI queues. */ a6xx_hwsched_process_msgq(adreno_dev); /* Drain the debug queue before we reset HFI queues */ a6xx_hwsched_process_dbgq(adreno_dev, false); kgsl_pwrctrl_axi(KGSL_DEVICE(adreno_dev), false); clear_bit(GMU_PRIV_HFI_STARTED, &gmu->flags); /* * Reset the hfi host access memory records, As GMU expects hfi memory * records to be clear in bootup. */ reset_hfi_mem_records(adreno_dev); } static void enable_async_hfi(struct adreno_device *adreno_dev) { struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); hfi->irq_mask |= HFI_IRQ_MSGQ_MASK; gmu_core_regwrite(KGSL_DEVICE(adreno_dev), A6XX_GMU_GMU2HOST_INTR_MASK, (u32)~hfi->irq_mask); } static int enable_preemption(struct adreno_device *adreno_dev) { u32 data; int ret; if (!adreno_is_preemption_enabled(adreno_dev)) return 0; /* * Bits [0:1] contains the preemption level * Bit 2 is to enable/disable gmem save/restore * Bit 3 is to enable/disable skipsaverestore */ data = FIELD_PREP(GENMASK(1, 0), adreno_dev->preempt.preempt_level) | FIELD_PREP(BIT(2), adreno_dev->preempt.usesgmem) | FIELD_PREP(BIT(3), adreno_dev->preempt.skipsaverestore); ret = a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_PREEMPTION, 1, data); if (ret) return ret; /* * Bits[3:0] contain the preemption timeout enable bit per ringbuffer * Bits[31:4] contain the timeout in ms */ return a6xx_hfi_send_set_value(adreno_dev, HFI_VALUE_BIN_TIME, 1, FIELD_PREP(GENMASK(31, 4), ADRENO_PREEMPT_TIMEOUT) | FIELD_PREP(GENMASK(3, 0), 0xf)); } static int enable_gmu_stats(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); u32 data; if (!gmu->stats_enable) return 0; /* * Bits [23:0] contains the countables mask * Bits [31:24] is the sampling interval */ data = FIELD_PREP(GENMASK(23, 0), gmu->stats_mask) | FIELD_PREP(GENMASK(31, 24), gmu->stats_interval); return a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_GMU_STATS, 1, data); } static int a6xx_hfi_send_perfcounter_feature_ctrl(struct adreno_device *adreno_dev) { /* * Perfcounter retention is disabled by default in GMU firmware. * In case perfcounter retention behaviour is overwritten by sysfs * setting dynmaically, send this HFI feature with 'enable = 0' to * disable this feature in GMU firmware. */ if (adreno_dev->perfcounter) return a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_PERF_NORETAIN, 0, 0); return 0; } int a6xx_hwsched_hfi_start(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; reset_hfi_queues(adreno_dev); ret = a6xx_gmu_hfi_start(adreno_dev); if (ret) goto err; ret = a6xx_hfi_send_generic_req(adreno_dev, &gmu->hfi.dcvs_table, sizeof(gmu->hfi.dcvs_table)); if (ret) goto err; ret = a6xx_hfi_send_generic_req(adreno_dev, &gmu->hfi.bw_table, sizeof(gmu->hfi.bw_table)); if (ret) goto err; ret = a6xx_hfi_send_acd_feature_ctrl(adreno_dev); if (ret) goto err; ret = a6xx_hfi_send_lm_feature_ctrl(adreno_dev); if (ret) goto err; ret = a6xx_hfi_send_bcl_feature_ctrl(adreno_dev); if (ret) goto err; ret = a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_HWSCHED, 1, 0); if (ret) goto err; ret = a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_A6XX_KPROF, 1, 0); if (ret) goto err; if (ADRENO_FEATURE(adreno_dev, ADRENO_LSR)) { ret = a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_LSR, 1, 0); if (ret) goto err; } ret = a6xx_hfi_send_perfcounter_feature_ctrl(adreno_dev); if (ret) goto err; /* Enable the long ib timeout detection */ if (adreno_long_ib_detect(adreno_dev)) { ret = a6xx_hfi_send_feature_ctrl(adreno_dev, HFI_FEATURE_BAIL_OUT_TIMER, 1, 0); if (ret) goto err; } enable_gmu_stats(adreno_dev); if (gmu->log_stream_enable) a6xx_hfi_send_set_value(adreno_dev, HFI_VALUE_LOG_STREAM_ENABLE, 0, 1); if (gmu->log_group_mask) a6xx_hfi_send_set_value(adreno_dev, HFI_VALUE_LOG_GROUP, 0, gmu->log_group_mask); ret = a6xx_hfi_send_core_fw_start(adreno_dev); if (ret) goto err; ret = enable_preemption(adreno_dev); if (ret) goto err; ret = send_start_msg(adreno_dev); if (ret) goto err; enable_async_hfi(adreno_dev); set_bit(GMU_PRIV_HFI_STARTED, &gmu->flags); /* Request default DCVS level */ ret = kgsl_pwrctrl_set_default_gpu_pwrlevel(device); if (ret) goto err; /* Request default BW vote */ ret = kgsl_pwrctrl_axi(device, true); if (ret) goto err; /* Switch to min GMU clock */ a6xx_rdpm_cx_freq_update(gmu, gmu->freqs[0] / 1000); ret = kgsl_clk_set_rate(gmu->clks, gmu->num_clks, "gmu_clk", gmu->freqs[0]); if (ret) dev_err(&gmu->pdev->dev, "GMU clock:%d set failed:%d\n", gmu->freqs[0], ret); err: if (ret) a6xx_hwsched_hfi_stop(adreno_dev); return ret; } static int submit_raw_cmds(struct adreno_device *adreno_dev, void *cmds, u32 size_bytes, const char *str) { int ret; ret = a6xx_hfi_send_cmd_async(adreno_dev, cmds, size_bytes); if (ret) return ret; ret = gmu_core_timed_poll_check(KGSL_DEVICE(adreno_dev), A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, 0, 200, BIT(23)); if (ret) a6xx_spin_idle_debug(adreno_dev, str); return ret; } static int cp_init(struct adreno_device *adreno_dev) { u32 cmds[A6XX_CP_INIT_DWORDS + 1]; cmds[0] = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD_RAW, HFI_MSG_CMD); a6xx_cp_init_cmds(adreno_dev, &cmds[1]); return submit_raw_cmds(adreno_dev, cmds, sizeof(cmds), "CP initialization failed to idle\n"); } static int send_switch_to_unsecure(struct adreno_device *adreno_dev) { u32 cmds[3]; cmds[0] = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD_RAW, HFI_MSG_CMD); cmds[1] = cp_type7_packet(CP_SET_SECURE_MODE, 1); cmds[2] = 0; return submit_raw_cmds(adreno_dev, cmds, sizeof(cmds), "Switch to unsecure failed to idle\n"); } int a6xx_hwsched_cp_init(struct adreno_device *adreno_dev) { const struct adreno_a6xx_core *a6xx_core = to_a6xx_core(adreno_dev); struct adreno_firmware *fw = ADRENO_FW(adreno_dev, ADRENO_FW_SQE); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; /* Program the ucode base for CP */ kgsl_regwrite(device, A6XX_CP_SQE_INSTR_BASE_LO, lower_32_bits(fw->memdesc->gpuaddr)); kgsl_regwrite(device, A6XX_CP_SQE_INSTR_BASE_HI, upper_32_bits(fw->memdesc->gpuaddr)); ret = cp_init(adreno_dev); if (ret) return ret; ret = adreno_zap_shader_load(adreno_dev, a6xx_core->zap_name); if (ret) return ret; if (!adreno_dev->zap_loaded) kgsl_regwrite(KGSL_DEVICE(adreno_dev), A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); else ret = send_switch_to_unsecure(adreno_dev); return ret; } static int register_global_ctxt(struct adreno_device *adreno_dev) { struct adreno_hwsched *hwsched = &adreno_dev->hwsched; struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct hfi_register_ctxt_cmd rcmd = {0}; struct hfi_context_pointers_cmd pcmd = {0}; int ret; if (hwsched->global_ctxt_gmu_registered) return 0; ret = CMD_MSG_HDR(rcmd, H2F_MSG_REGISTER_CONTEXT); if (ret) return ret; rcmd.ctxt_id = KGSL_GLOBAL_CTXT_ID; rcmd.flags = (KGSL_CONTEXT_PRIORITY_HIGH << KGSL_CONTEXT_PRIORITY_SHIFT); ret = a6xx_hfi_send_cmd_async(adreno_dev, &rcmd, sizeof(rcmd)); if (ret) return ret; ret = CMD_MSG_HDR(pcmd, H2F_MSG_CONTEXT_POINTERS); if (ret) return ret; pcmd.ctxt_id = KGSL_GLOBAL_CTXT_ID; pcmd.sop_addr = MEMSTORE_ID_GPU_ADDR(device, KGSL_GLOBAL_CTXT_ID, soptimestamp); pcmd.eop_addr = MEMSTORE_ID_GPU_ADDR(device, KGSL_GLOBAL_CTXT_ID, eoptimestamp); ret = a6xx_hfi_send_cmd_async(adreno_dev, &pcmd, sizeof(pcmd)); if (!ret) hwsched->global_ctxt_gmu_registered = true; return ret; } #define HFI_DSP_IRQ_BASE 2 #define DISPQ_IRQ_BIT(_idx) BIT((_idx) + HFI_DSP_IRQ_BASE) static int submit_global_ctxt_cmd(struct adreno_device *adreno_dev, u64 gpuaddr, u32 size) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct { struct hfi_submit_cmd submit_cmd; struct hfi_issue_ib issue_ib; } cmd = {0}; u32 seqnum, cmd_size = sizeof(cmd); static u32 ts; int ret = 0; cmd.submit_cmd.ctxt_id = KGSL_GLOBAL_CTXT_ID; cmd.submit_cmd.ts = ++ts; cmd.submit_cmd.numibs = 1; cmd.issue_ib.addr = gpuaddr; cmd.issue_ib.size = size; seqnum = atomic_inc_return(&adreno_dev->hwsched.submission_seqnum); cmd.submit_cmd.hdr = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD, HFI_MSG_CMD); cmd.submit_cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.submit_cmd.hdr, seqnum, cmd_size >> 2); ret = a6xx_hfi_dispatch_queue_write(adreno_dev, HFI_DSP_ID_0, (u32 *)&cmd, cmd_size, NULL, NULL); /* Send interrupt to GMU to receive the message */ if (!ret) gmu_core_regwrite(device, A6XX_GMU_HOST2GMU_INTR_SET, DISPQ_IRQ_BIT(0)); return ret; } int a6xx_hwsched_counter_inline_enable(struct adreno_device *adreno_dev, const struct adreno_perfcount_group *group, u32 counter, u32 countable) { struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct adreno_perfcount_register *reg = &group->regs[counter]; u32 val, *cmds, count = 0; int ret; ret = register_global_ctxt(adreno_dev); if (ret) goto err; ret = adreno_allocate_global(device, &hfi->perfctr_scratch, PAGE_SIZE, 0, KGSL_MEMFLAGS_GPUREADONLY, 0, "perfctr_scratch"); if (ret) goto err; if (group->flags & ADRENO_PERFCOUNTER_GROUP_RESTORE) a6xx_perfcounter_update(adreno_dev, reg, false); cmds = hfi->perfctr_scratch->hostptr; cmds[count++] = cp_type7_packet(CP_WAIT_FOR_IDLE, 0); cmds[count++] = cp_type4_packet(reg->select, 1); cmds[count++] = countable; ret = submit_global_ctxt_cmd(adreno_dev, hfi->perfctr_scratch->gpuaddr, count << 2); if (ret) goto err; /* Wait till the register is programmed with the countable */ ret = kgsl_regmap_read_poll_timeout(&device->regmap, reg->select, val, val == countable, 100, ADRENO_IDLE_TIMEOUT); if (!ret) { reg->value = 0; return ret; } err: dev_err(device->dev, "Perfcounter %s/%u/%u start via commands failed\n", group->name, counter, countable); return ret; } static bool is_queue_empty(struct adreno_device *adreno_dev, u32 queue_idx) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct kgsl_memdesc *mem_addr = gmu->hfi.hfi_mem; struct hfi_queue_table *tbl = mem_addr->hostptr; struct hfi_queue_header *hdr = &tbl->qhdr[queue_idx]; if (hdr->status == HFI_QUEUE_STATUS_DISABLED) return true; if (hdr->read_index == hdr->write_index) return true; return false; } static int hfi_f2h_main(void *arg) { struct adreno_device *adreno_dev = arg; struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); while (!kthread_should_stop()) { wait_event_interruptible(hfi->f2h_wq, kthread_should_stop() || /* If msgq irq is enabled and msgq has messages to process */ (((hfi->irq_mask & HFI_IRQ_MSGQ_MASK) && !is_queue_empty(adreno_dev, HFI_MSG_ID)) || /* Trace buffer has messages to process */ !gmu_core_is_trace_empty(gmu->trace.md->hostptr) || /* Dbgq has messages to process */ !is_queue_empty(adreno_dev, HFI_DBG_ID))); if (kthread_should_stop()) break; a6xx_hwsched_process_msgq(adreno_dev); gmu_core_process_trace_data(KGSL_DEVICE(adreno_dev), &gmu->pdev->dev, &gmu->trace); a6xx_hwsched_process_dbgq(adreno_dev, true); } return 0; } int a6xx_hwsched_hfi_probe(struct adreno_device *adreno_dev) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hw_hfi = to_a6xx_hwsched_hfi(adreno_dev); gmu->hfi.irq = kgsl_request_irq(gmu->pdev, "kgsl_hfi_irq", a6xx_hwsched_hfi_handler, adreno_dev); if (gmu->hfi.irq < 0) return gmu->hfi.irq; hw_hfi->irq_mask = HFI_IRQ_MASK; rwlock_init(&hw_hfi->msglock); INIT_LIST_HEAD(&hw_hfi->msglist); init_waitqueue_head(&hw_hfi->f2h_wq); mutex_init(&hw_hfi->msgq_mutex); return 0; } void a6xx_hwsched_hfi_remove(struct adreno_device *adreno_dev) { struct a6xx_hwsched_hfi *hw_hfi = to_a6xx_hwsched_hfi(adreno_dev); if (hw_hfi->f2h_task) kthread_stop(hw_hfi->f2h_task); } static void a6xx_add_profile_events(struct adreno_device *adreno_dev, struct kgsl_drawobj_cmd *cmdobj, struct adreno_submit_time *time) { unsigned long flags; u64 time_in_s; unsigned long time_in_ns; struct kgsl_drawobj *drawobj = DRAWOBJ(cmdobj); struct kgsl_context *context = drawobj->context; struct submission_info info = {0}; if (!time) return; /* * Here we are attempting to create a mapping between the * GPU time domain (alwayson counter) and the CPU time domain * (local_clock) by sampling both values as close together as * possible. This is useful for many types of debugging and * profiling. In order to make this mapping as accurate as * possible, we must turn off interrupts to avoid running * interrupt handlers between the two samples. */ local_irq_save(flags); /* Read always on registers */ time->ticks = a6xx_read_alwayson(adreno_dev); /* Trace the GPU time to create a mapping to ftrace time */ trace_adreno_cmdbatch_sync(context->id, context->priority, drawobj->timestamp, time->ticks); /* Get the kernel clock for time since boot */ time->ktime = local_clock(); /* Get the timeofday for the wall time (for the user) */ ktime_get_real_ts64(&time->utime); local_irq_restore(flags); /* Return kernel clock time to the client if requested */ time_in_s = time->ktime; time_in_ns = do_div(time_in_s, 1000000000); info.inflight = -1; info.rb_id = adreno_get_level(context); info.gmu_dispatch_queue = context->gmu_dispatch_queue; cmdobj->submit_ticks = time->ticks; msm_perf_events_update(MSM_PERF_GFX, MSM_PERF_SUBMIT, pid_nr(context->proc_priv->pid), context->id, drawobj->timestamp, !!(drawobj->flags & KGSL_DRAWOBJ_END_OF_FRAME)); trace_adreno_cmdbatch_submitted(drawobj, &info, time->ticks, (unsigned long) time_in_s, time_in_ns / 1000, 0); log_kgsl_cmdbatch_submitted_event(context->id, drawobj->timestamp, context->priority, drawobj->flags); } static u32 get_next_dq(u32 priority) { struct dq_info *info = &a6xx_hfi_dqs[priority]; u32 next = info->base_dq_id + info->offset; info->offset = (info->offset + 1) % info->max_dq; return next; } static u32 get_dq_id(struct kgsl_context *context) { u32 level = adreno_get_level(context); return get_next_dq(level); } static int send_context_register(struct adreno_device *adreno_dev, struct kgsl_context *context) { struct hfi_register_ctxt_cmd cmd; struct kgsl_pagetable *pt = context->proc_priv->pagetable; int ret, asid = kgsl_mmu_pagetable_get_asid(pt, context); if (asid < 0) return asid; ret = CMD_MSG_HDR(cmd, H2F_MSG_REGISTER_CONTEXT); if (ret) return ret; cmd.ctxt_id = context->id; cmd.flags = HFI_CTXT_FLAG_NOTIFY | context->flags; /* * HLOS SMMU driver programs context bank to look up ASID from TTBR0 during a page * table walk. So the TLB entries are tagged with the ASID from TTBR0. TLBIASID * invalidates TLB entries whose ASID matches the value that was written to the * CBn_TLBIASID register. Set ASID along with PT address. */ cmd.pt_addr = kgsl_mmu_pagetable_get_ttbr0(pt) | FIELD_PREP(GENMASK_ULL(63, KGSL_IOMMU_ASID_START_BIT), asid); cmd.ctxt_idr = pid_nr(context->proc_priv->pid); cmd.ctxt_bank = kgsl_mmu_pagetable_get_context_bank(pt, context); return a6xx_hfi_send_cmd_async(adreno_dev, &cmd, sizeof(cmd)); } static int send_context_pointers(struct adreno_device *adreno_dev, struct kgsl_context *context) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct hfi_context_pointers_cmd cmd = {0}; int ret; ret = CMD_MSG_HDR(cmd, H2F_MSG_CONTEXT_POINTERS); if (ret) return ret; cmd.ctxt_id = context->id; cmd.sop_addr = MEMSTORE_ID_GPU_ADDR(device, context->id, soptimestamp); cmd.eop_addr = MEMSTORE_ID_GPU_ADDR(device, context->id, eoptimestamp); if (context->user_ctxt_record) cmd.user_ctxt_record_addr = context->user_ctxt_record->memdesc.gpuaddr; return a6xx_hfi_send_cmd_async(adreno_dev, &cmd, sizeof(cmd)); } static int hfi_context_register(struct adreno_device *adreno_dev, struct kgsl_context *context) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct kgsl_device *device = KGSL_DEVICE(adreno_dev); int ret; if (context->gmu_registered) return 0; ret = send_context_register(adreno_dev, context); if (ret) { dev_err(&gmu->pdev->dev, "Unable to register context %u: %d\n", context->id, ret); if (device->gmu_fault) adreno_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT); return ret; } ret = send_context_pointers(adreno_dev, context); if (ret) { dev_err(&gmu->pdev->dev, "Unable to register context %u pointers: %d\n", context->id, ret); if (device->gmu_fault) adreno_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT); return ret; } context->gmu_registered = true; context->gmu_dispatch_queue = get_dq_id(context); return 0; } static void populate_ibs(struct adreno_device *adreno_dev, struct hfi_submit_cmd *cmd, struct kgsl_drawobj_cmd *cmdobj) { struct hfi_issue_ib *issue_ib; struct kgsl_memobj_node *ib; if (cmdobj->numibs > HWSCHED_MAX_DISPATCH_NUMIBS) { struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct kgsl_memdesc *big_ib; if (test_bit(CMDOBJ_RECURRING_START, &cmdobj->priv)) big_ib = hfi->big_ib_recurring; else big_ib = hfi->big_ib; /* * The dispatcher ensures that there is only one big IB inflight */ cmd->big_ib_gmu_va = big_ib->gmuaddr; cmd->flags |= CMDBATCH_INDIRECT; issue_ib = big_ib->hostptr; } else { issue_ib = (struct hfi_issue_ib *)&cmd[1]; } list_for_each_entry(ib, &cmdobj->cmdlist, node) { issue_ib->addr = ib->gpuaddr; issue_ib->size = ib->size; issue_ib++; } cmd->numibs = cmdobj->numibs; } /* Size in below functions are in unit of dwords */ static int a6xx_hfi_dispatch_queue_write(struct adreno_device *adreno_dev, uint32_t queue_idx, uint32_t *msg, u32 size_bytes, struct kgsl_drawobj_cmd *cmdobj, struct adreno_submit_time *time) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct hfi_queue_table *tbl = gmu->hfi.hfi_mem->hostptr; struct hfi_queue_header *hdr = &tbl->qhdr[queue_idx]; uint32_t *queue; uint32_t i, write, empty_space; uint32_t size_dwords = size_bytes >> 2; u32 align_size = ALIGN(size_dwords, SZ_4); uint32_t id = MSG_HDR_GET_ID(*msg); if (hdr->status == HFI_QUEUE_STATUS_DISABLED || !IS_ALIGNED(size_bytes, sizeof(u32))) return -EINVAL; queue = HOST_QUEUE_START_ADDR(gmu->hfi.hfi_mem, queue_idx); empty_space = (hdr->write_index >= hdr->read_index) ? (hdr->queue_size - (hdr->write_index - hdr->read_index)) : (hdr->read_index - hdr->write_index); if (empty_space <= align_size) return -ENOSPC; write = hdr->write_index; for (i = 0; i < size_dwords; i++) { queue[write] = msg[i]; write = (write + 1) % hdr->queue_size; } /* Cookify any non used data at the end of the write buffer */ if (GMU_VER_MAJOR(gmu->ver.hfi) >= 2) { for (; i < align_size; i++) { queue[write] = 0xFAFAFAFA; write = (write + 1) % hdr->queue_size; } } /* Ensure packet is written out before proceeding */ wmb(); if (!cmdobj) goto done; a6xx_add_profile_events(adreno_dev, cmdobj, time); /* * Put the profiling information in the user profiling buffer. * The hfi_update_write_idx below has a wmb() before the actual * write index update to ensure that the GMU does not see the * packet before the profile data is written out. */ adreno_profile_submit_time(time); done: trace_kgsl_hfi_send(id, size_dwords, MSG_HDR_GET_SEQNUM(*msg)); hfi_update_write_idx(&hdr->write_index, write); return 0; } int a6xx_hwsched_submit_drawobj(struct adreno_device *adreno_dev, struct kgsl_drawobj *drawobj) { int ret = 0; u32 cmd_sizebytes, seqnum; struct kgsl_drawobj_cmd *cmdobj = CMDOBJ(drawobj); struct hfi_submit_cmd *cmd; struct adreno_submit_time time = {0}; static void *cmdbuf; struct adreno_context *drawctxt = ADRENO_CONTEXT(drawobj->context); if (cmdbuf == NULL) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); cmdbuf = devm_kzalloc(&device->pdev->dev, HFI_MAX_MSG_SIZE, GFP_KERNEL); if (!cmdbuf) return -ENOMEM; } ret = hfi_context_register(adreno_dev, drawobj->context); if (ret) return ret; /* Add a *issue_ib struct for each IB */ if (cmdobj->numibs > HWSCHED_MAX_DISPATCH_NUMIBS || test_bit(CMDOBJ_SKIP, &cmdobj->priv)) cmd_sizebytes = sizeof(*cmd); else cmd_sizebytes = sizeof(*cmd) + (sizeof(struct hfi_issue_ib) * cmdobj->numibs); if (WARN_ON(cmd_sizebytes > HFI_MAX_MSG_SIZE)) return -EMSGSIZE; memset(cmdbuf, 0x0, cmd_sizebytes); cmd = cmdbuf; cmd->ctxt_id = drawobj->context->id; cmd->flags = HFI_CTXT_FLAG_NOTIFY; if (drawobj->flags & KGSL_DRAWOBJ_END_OF_FRAME) cmd->flags |= CMDBATCH_EOF; cmd->ts = drawobj->timestamp; if (test_bit(CMDOBJ_SKIP, &cmdobj->priv)) goto skipib; populate_ibs(adreno_dev, cmd, cmdobj); if ((drawobj->flags & KGSL_DRAWOBJ_PROFILING) && cmdobj->profiling_buf_entry) { time.drawobj = drawobj; cmd->profile_gpuaddr_lo = lower_32_bits(cmdobj->profiling_buffer_gpuaddr); cmd->profile_gpuaddr_hi = upper_32_bits(cmdobj->profiling_buffer_gpuaddr); /* Indicate to GMU to do user profiling for this submission */ cmd->flags |= CMDBATCH_PROFILING; } skipib: adreno_drawobj_set_constraint(KGSL_DEVICE(adreno_dev), drawobj); seqnum = atomic_inc_return(&adreno_dev->hwsched.submission_seqnum); cmd->hdr = CREATE_MSG_HDR(H2F_MSG_ISSUE_CMD, HFI_MSG_CMD); cmd->hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd->hdr, seqnum, cmd_sizebytes >> 2); ret = a6xx_hfi_dispatch_queue_write(adreno_dev, HFI_DSP_ID_0 + drawobj->context->gmu_dispatch_queue, (u32 *)cmd, cmd_sizebytes, cmdobj, &time); if (ret) return ret; /* Send interrupt to GMU to receive the message */ gmu_core_regwrite(KGSL_DEVICE(adreno_dev), A6XX_GMU_HOST2GMU_INTR_SET, DISPQ_IRQ_BIT(drawobj->context->gmu_dispatch_queue)); /* * We don't need the drawctxt spinlock here because hardware fences are not enabled for a6x */ drawctxt->internal_timestamp = drawobj->timestamp; return ret; } int a6xx_hwsched_send_recurring_cmdobj(struct adreno_device *adreno_dev, struct kgsl_drawobj_cmd *cmdobj) { struct adreno_hwsched *hwsched = &adreno_dev->hwsched; struct kgsl_drawobj *drawobj = DRAWOBJ(cmdobj); struct hfi_submit_cmd *cmd; struct kgsl_memobj_node *ib; u32 cmd_sizebytes; int ret; static bool active; if (adreno_gpu_halt(adreno_dev) || adreno_hwsched_gpu_fault(adreno_dev)) return -EBUSY; if (test_bit(CMDOBJ_RECURRING_STOP, &cmdobj->priv)) { cmdobj->numibs = 0; } else { list_for_each_entry(ib, &cmdobj->cmdlist, node) cmdobj->numibs++; } if (cmdobj->numibs > HWSCHED_MAX_IBS) return -EINVAL; if (cmdobj->numibs > HWSCHED_MAX_DISPATCH_NUMIBS) cmd_sizebytes = sizeof(*cmd); else cmd_sizebytes = sizeof(*cmd) + (sizeof(struct hfi_issue_ib) * cmdobj->numibs); if (WARN_ON(cmd_sizebytes > HFI_MAX_MSG_SIZE)) return -EMSGSIZE; cmd = kzalloc(cmd_sizebytes, GFP_KERNEL); if (cmd == NULL) return -ENOMEM; if (test_bit(CMDOBJ_RECURRING_START, &cmdobj->priv)) { if (!active) { ret = adreno_active_count_get(adreno_dev); if (ret) { kfree(cmd); return ret; } active = true; } cmd->flags |= CMDBATCH_RECURRING_START; populate_ibs(adreno_dev, cmd, cmdobj); } else cmd->flags |= CMDBATCH_RECURRING_STOP; cmd->ctxt_id = drawobj->context->id; ret = hfi_context_register(adreno_dev, drawobj->context); if (ret) { adreno_active_count_put(adreno_dev); active = false; kfree(cmd); return ret; } cmd->hdr = CREATE_MSG_HDR(H2F_MSG_ISSUE_RECURRING_CMD, HFI_MSG_CMD); ret = a6xx_hfi_send_cmd_async(adreno_dev, cmd, cmd_sizebytes); kfree(cmd); if (ret) { adreno_active_count_put(adreno_dev); active = false; return ret; } if (test_bit(CMDOBJ_RECURRING_STOP, &cmdobj->priv)) { adreno_hwsched_retire_cmdobj(hwsched, hwsched->recurring_cmdobj); hwsched->recurring_cmdobj = NULL; del_timer_sync(&hwsched->lsr_timer); if (active) adreno_active_count_put(adreno_dev); active = false; return ret; } hwsched->recurring_cmdobj = cmdobj; /* Star LSR timer for power stats collection */ mod_timer(&hwsched->lsr_timer, jiffies + msecs_to_jiffies(10)); return ret; } static void trigger_context_unregister_fault(struct adreno_device *adreno_dev, struct kgsl_context *context) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); gmu_core_fault_snapshot(device); /* * Trigger dispatcher based reset and recovery. Invalidate the * context so that any un-finished inflight submissions are not * replayed after recovery. */ adreno_drawctxt_set_guilty(device, context); adreno_hwsched_fault(adreno_dev, ADRENO_GMU_FAULT); } static int send_context_unregister_hfi(struct adreno_device *adreno_dev, struct kgsl_context *context, u32 ts) { struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct pending_cmd pending_ack; struct hfi_unregister_ctxt_cmd cmd; u32 seqnum; int ret; /* Only send HFI if device is not in SLUMBER */ if (!context->gmu_registered || !test_bit(GMU_PRIV_GPU_STARTED, &gmu->flags)) return 0; ret = CMD_MSG_HDR(cmd, H2F_MSG_UNREGISTER_CONTEXT); if (ret) return ret; cmd.ctxt_id = context->id, cmd.ts = ts, /* * Although we know device is powered on, we can still enter SLUMBER * because the wait for ack below is done without holding the mutex. So * take an active count before releasing the mutex so as to avoid a * concurrent SLUMBER sequence while GMU is un-registering this context. */ ret = a6xx_hwsched_active_count_get(adreno_dev); if (ret) { trigger_context_unregister_fault(adreno_dev, context); return ret; } seqnum = atomic_inc_return(&gmu->hfi.seqnum); cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2); add_waiter(hfi, cmd.hdr, &pending_ack); ret = a6xx_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd)); if (ret) { trigger_context_unregister_fault(adreno_dev, context); goto done; } ret = adreno_hwsched_ctxt_unregister_wait_completion(adreno_dev, &gmu->pdev->dev, &pending_ack, a6xx_hwsched_process_msgq, &cmd); if (ret) { trigger_context_unregister_fault(adreno_dev, context); goto done; } ret = check_ack_failure(adreno_dev, &pending_ack); done: a6xx_hwsched_active_count_put(adreno_dev); del_waiter(hfi, &pending_ack); return ret; } void a6xx_hwsched_context_detach(struct adreno_context *drawctxt) { struct kgsl_context *context = &drawctxt->base; struct kgsl_device *device = context->device; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); int ret = 0; mutex_lock(&device->mutex); ret = send_context_unregister_hfi(adreno_dev, context, drawctxt->internal_timestamp); if (!ret) { kgsl_sharedmem_writel(device->memstore, KGSL_MEMSTORE_OFFSET(context->id, soptimestamp), drawctxt->timestamp); kgsl_sharedmem_writel(device->memstore, KGSL_MEMSTORE_OFFSET(context->id, eoptimestamp), drawctxt->timestamp); adreno_profile_process_results(adreno_dev); } context->gmu_registered = false; mutex_unlock(&device->mutex); } u32 a6xx_hwsched_preempt_count_get(struct adreno_device *adreno_dev) { struct kgsl_device *device = KGSL_DEVICE(adreno_dev); struct hfi_get_value_cmd cmd; struct a6xx_gmu_device *gmu = to_a6xx_gmu(adreno_dev); struct a6xx_hwsched_hfi *hfi = to_a6xx_hwsched_hfi(adreno_dev); struct pending_cmd pending_ack; int rc; u32 seqnum; if (device->state != KGSL_STATE_ACTIVE) return 0; rc = CMD_MSG_HDR(cmd, H2F_MSG_GET_VALUE); if (rc) return 0; seqnum = atomic_inc_return(&gmu->hfi.seqnum); cmd.hdr = MSG_HDR_SET_SEQNUM_SIZE(cmd.hdr, seqnum, sizeof(cmd) >> 2); cmd.type = HFI_VALUE_PREEMPT_COUNT; cmd.subtype = 0; add_waiter(hfi, cmd.hdr, &pending_ack); rc = a6xx_hfi_cmdq_write(adreno_dev, (u32 *)&cmd, sizeof(cmd)); if (rc) goto done; rc = adreno_hwsched_wait_ack_completion(adreno_dev, &gmu->pdev->dev, &pending_ack, a6xx_hwsched_process_msgq); if (rc) goto done; rc = check_ack_failure(adreno_dev, &pending_ack); done: del_waiter(hfi, &pending_ack); return rc ? 0 : pending_ack.results[2]; }