// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ #include #include #include #include #include "msm_vidc_driver.h" #include "msm_vidc_platform.h" #include "msm_vidc_internal.h" #include "msm_vidc_memory.h" #include "msm_vidc_debug.h" #include "venus_hfi.h" #define COUNT_BITS(a, out) ({ \ while ((a) >= 1) { \ (out) += (a) & (1); \ (a) >>= (1); \ } \ }) void print_vidc_buffer(struct msm_vidc_inst *inst, struct msm_vidc_buffer *b) { } int msm_vidc_get_port_from_v4l2_type(u32 type) { int port; if (type == INPUT_PLANE) { port = INPUT_PORT; } else if (type == INPUT_META_PLANE) { port = INPUT_META_PORT; } else if (type == OUTPUT_PLANE) { port = OUTPUT_PORT; } else if (type == OUTPUT_META_PLANE) { port = OUTPUT_META_PORT; } else { d_vpr_e("%s: invalid type %d\n", __func__, type); port = -EINVAL; } return port; } u32 msm_vidc_get_buffer_region(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { u32 region = MSM_VIDC_NON_SECURE; if (!is_secure_session(inst)) return region; switch (buffer_type) { case MSM_VIDC_BUF_INPUT: if (is_encode_session(inst)) region = MSM_VIDC_SECURE_PIXEL; else region = MSM_VIDC_SECURE_BITSTREAM; break; case MSM_VIDC_BUF_OUTPUT: if (is_encode_session(inst)) region = MSM_VIDC_SECURE_BITSTREAM; else region = MSM_VIDC_SECURE_PIXEL; break; case MSM_VIDC_BUF_INPUT_META: case MSM_VIDC_BUF_OUTPUT_META: region = MSM_VIDC_NON_SECURE; break; case MSM_VIDC_BUF_SCRATCH: region = MSM_VIDC_SECURE_BITSTREAM; break; case MSM_VIDC_BUF_SCRATCH_1: region = MSM_VIDC_SECURE_NONPIXEL; break; case MSM_VIDC_BUF_SCRATCH_2: region = MSM_VIDC_SECURE_PIXEL; break; case MSM_VIDC_BUF_PERSIST: if (is_encode_session(inst)) region = MSM_VIDC_SECURE_NONPIXEL; else region = MSM_VIDC_SECURE_BITSTREAM; break; case MSM_VIDC_BUF_PERSIST_1: region = MSM_VIDC_SECURE_NONPIXEL; break; default: s_vpr_e(inst->sid, "%s: invalid buffer type %d\n", __func__, buffer_type); } return region; } struct msm_vidc_buffer_info *msm_vidc_get_buffer_info(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { switch (buffer_type) { case MSM_VIDC_BUF_INPUT: return &inst->buffers.input; case MSM_VIDC_BUF_INPUT_META: return &inst->buffers.input_meta; case MSM_VIDC_BUF_OUTPUT: return &inst->buffers.output; case MSM_VIDC_BUF_OUTPUT_META: return &inst->buffers.output_meta; case MSM_VIDC_BUF_SCRATCH: return &inst->buffers.scratch; case MSM_VIDC_BUF_SCRATCH_1: return &inst->buffers.scratch_1; case MSM_VIDC_BUF_SCRATCH_2: return &inst->buffers.scratch_2; case MSM_VIDC_BUF_PERSIST: return &inst->buffers.persist; case MSM_VIDC_BUF_PERSIST_1: return &inst->buffers.persist_1; default: s_vpr_e(inst->sid, "%s: invalid buffer type %d\n", __func__, buffer_type); return NULL; } } struct msm_vidc_map_info *msm_vidc_get_map_info(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { switch (buffer_type) { case MSM_VIDC_BUF_INPUT: return &inst->maps.input; case MSM_VIDC_BUF_INPUT_META: return &inst->maps.input_meta; case MSM_VIDC_BUF_OUTPUT: return &inst->maps.output; case MSM_VIDC_BUF_OUTPUT_META: return &inst->maps.output_meta; case MSM_VIDC_BUF_SCRATCH: return &inst->maps.scratch; case MSM_VIDC_BUF_SCRATCH_1: return &inst->maps.scratch_1; case MSM_VIDC_BUF_SCRATCH_2: return &inst->maps.scratch_2; case MSM_VIDC_BUF_PERSIST: return &inst->maps.persist; case MSM_VIDC_BUF_PERSIST_1: return &inst->maps.persist_1; default: s_vpr_e(inst->sid, "%s: invalid buffer type %d\n", __func__, buffer_type); return NULL; } } struct msm_vidc_alloc_info *msm_vidc_get_alloc_info(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { switch (buffer_type) { case MSM_VIDC_BUF_SCRATCH: return &inst->allocations.scratch; case MSM_VIDC_BUF_SCRATCH_1: return &inst->allocations.scratch_1; case MSM_VIDC_BUF_SCRATCH_2: return &inst->allocations.scratch_2; case MSM_VIDC_BUF_PERSIST: return &inst->allocations.persist; case MSM_VIDC_BUF_PERSIST_1: return &inst->allocations.persist_1; default: s_vpr_e(inst->sid, "%s: invalid buffer type %d\n", __func__, buffer_type); return NULL; } } int msm_vidc_change_inst_state(struct msm_vidc_inst *inst, enum msm_vidc_inst_state request_state) { if (!inst) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } if (!request_state) { d_vpr_e("%s: invalid request state\n", __func__); return -EINVAL; } if (inst->state == MSM_VIDC_ERROR) { s_vpr_h(inst->sid, "inst is in bad state, can not change state to %d\n", request_state); return 0; } s_vpr_h(inst->sid, "state changed from %d to %d\n", inst->state, request_state); inst->state = request_state; return 0; } int msm_vidc_get_control(struct msm_vidc_inst *inst, struct v4l2_ctrl *ctrl) { int rc = 0; if (!inst || !ctrl) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } switch (ctrl->id) { case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE: ctrl->val = inst->buffers.output.min_count + inst->buffers.output.extra_count; s_vpr_h(inst->sid, "g_min: output buffers %d\n", ctrl->val); break; case V4L2_CID_MIN_BUFFERS_FOR_OUTPUT: ctrl->val = inst->buffers.input.min_count + inst->buffers.input.extra_count; s_vpr_h(inst->sid, "g_min: input buffers %d\n", ctrl->val); break; default: break; } return rc; } u32 msm_vidc_convert_color_fmt(u32 v4l2_fmt) { switch (v4l2_fmt) { case V4L2_PIX_FMT_NV12: return COLOR_FMT_NV12; case V4L2_PIX_FMT_NV21: return COLOR_FMT_NV21; case V4L2_PIX_FMT_NV12_512: return COLOR_FMT_NV12_512; case V4L2_PIX_FMT_SDE_Y_CBCR_H2V2_P010_VENUS: return COLOR_FMT_P010; case V4L2_PIX_FMT_NV12_UBWC: return COLOR_FMT_NV12_UBWC; case V4L2_PIX_FMT_NV12_TP10_UBWC: return COLOR_FMT_NV12_BPP10_UBWC; case V4L2_PIX_FMT_RGBA8888_UBWC: return COLOR_FMT_RGBA8888_UBWC; default: d_vpr_e( "Invalid v4l2 color fmt FMT : %x, Set default(NV12)", v4l2_fmt); return COLOR_FMT_NV12; } } int msm_vidc_create_internal_buffers(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { int rc = 0; struct msm_vidc_buffer_info *buffer_info; struct msm_vidc_alloc_info *alloc_info; struct msm_vidc_map_info *map_info; int i; d_vpr_h("%s()\n", __func__); if (!inst || !inst->core) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } if (!is_internal_buffer(buffer_type)) { s_vpr_e(inst->sid, "%s: buffer type %#d is not internal\n", __func__, buffer_type); return 0; } buffer_info = msm_vidc_get_buffer_info(inst, buffer_type); if (!buffer_info) return -EINVAL; alloc_info = msm_vidc_get_alloc_info(inst, buffer_type); if (!alloc_info) return -EINVAL; map_info = msm_vidc_get_map_info(inst, buffer_type); if (!alloc_info) return -EINVAL; for (i = 0; i < buffer_info->min_count; i++) { struct msm_vidc_buffer *buffer; struct msm_vidc_alloc *alloc; struct msm_vidc_map *map; if (!buffer_info->size) { d_vpr_e("%s: invalid buffer %#x\n", __func__, buffer_type); return -EINVAL; } buffer = kzalloc(sizeof(struct msm_vidc_buffer), GFP_KERNEL); if (!buffer) { s_vpr_e(inst->sid, "%s: msm_vidc_buffer alloc failed\n", __func__); return -ENOMEM; } INIT_LIST_HEAD(&buffer->list); buffer->valid = true; buffer->type = buffer_type; buffer->index = i; buffer->buffer_size = buffer_info->size; list_add_tail(&buffer->list, &buffer_info->list); alloc = kzalloc(sizeof(struct msm_vidc_alloc), GFP_KERNEL); if (!alloc) { s_vpr_e(inst->sid, "%s: msm_vidc_alloc alloc failed\n", __func__); return -ENOMEM; } INIT_LIST_HEAD(&alloc->list); alloc->buffer_type = buffer_type; alloc->region = msm_vidc_get_buffer_region(inst, buffer_type); alloc->size = buffer->buffer_size; rc = msm_vidc_memory_alloc(inst->core, alloc); if (rc) return -ENOMEM; list_add_tail(&alloc->list, &alloc_info->list); map = kzalloc(sizeof(struct msm_vidc_map), GFP_KERNEL); if (!map) { s_vpr_e(inst->sid, "%s: msm_vidc_map alloc failed\n", __func__); return -ENOMEM; } INIT_LIST_HEAD(&map->list); map->buffer_type = alloc->buffer_type; map->region = alloc->region; map->dmabuf = alloc->dmabuf; rc = msm_vidc_memory_map(inst->core, map); if (rc) return -ENOMEM; list_add_tail(&map->list, &map_info->list); s_vpr_e(inst->sid, "%s: created buffer_type %d, size %d\n", __func__, buffer_type, buffer_info->size); } return 0; } int msm_vidc_queue_internal_buffers(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { int rc = 0; struct msm_vidc_buffer_info *buffer_info; struct msm_vidc_buffer *buffer, *dummy; d_vpr_h("%s()\n", __func__); if (!inst || !inst->core) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } if (!is_internal_buffer(buffer_type)) { s_vpr_e(inst->sid, "%s: buffer type %#d is not internal\n", __func__, buffer_type); return 0; } buffer_info = msm_vidc_get_buffer_info(inst, buffer_type); if (!buffer_info) return -EINVAL; list_for_each_entry_safe(buffer, dummy, &buffer_info->list, list) { /* do not queue pending release buffers */ if (buffer->flags & MSM_VIDC_ATTR_PENDING_RELEASE) continue; /* do not queue already queued buffers */ if (buffer->attr & MSM_VIDC_ATTR_QUEUED) continue; rc = venus_hfi_queue_buffer(inst, buffer, NULL); if (rc) return rc; /* mark queued */ buffer->attr |= MSM_VIDC_ATTR_QUEUED; s_vpr_e(inst->sid, "%s: queued buffer_type %d, size %d\n", __func__, buffer_type, buffer_info->size); } return 0; } int msm_vidc_release_internal_buffers(struct msm_vidc_inst *inst, enum msm_vidc_buffer_type buffer_type) { int rc = 0; struct msm_vidc_buffer_info *buffer_info; struct msm_vidc_buffer *buffer, *dummy; d_vpr_h("%s()\n", __func__); if (!inst || !inst->core) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } if (!is_internal_buffer(buffer_type)) { s_vpr_e(inst->sid, "%s: buffer type %#d is not internal\n", __func__, buffer_type); return 0; } buffer_info = msm_vidc_get_buffer_info(inst, buffer_type); if (!buffer_info) return -EINVAL; list_for_each_entry_safe(buffer, dummy, &buffer_info->list, list) { /* do not release already pending release buffers */ if (buffer->attr & MSM_VIDC_ATTR_PENDING_RELEASE) continue; /* release only queued buffers */ if (!(buffer->attr & MSM_VIDC_ATTR_QUEUED)) continue; rc = venus_hfi_release_buffer(inst, buffer); if (rc) return rc; /* mark pending release */ buffer->attr |= MSM_VIDC_ATTR_PENDING_RELEASE; s_vpr_e(inst->sid, "%s: released buffer_type %d, size %d\n", __func__, buffer_type, buffer_info->size); } return 0; } int msm_vidc_setup_event_queue(struct msm_vidc_inst *inst) { int rc = 0; int index; struct msm_vidc_core *core; d_vpr_h("%s()\n", __func__); if (!inst || !inst->core) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } core = inst->core; // TODO: check decode is index = 0 and encode is index 1 if (is_decode_session(inst)) index = 0; else if (is_encode_session(inst)) index = 1; else return -EINVAL; v4l2_fh_init(&inst->event_handler, &core->vdev[index].vdev); v4l2_fh_add(&inst->event_handler); return rc; } static int vb2q_init(struct msm_vidc_inst *inst, struct vb2_queue *q, enum v4l2_buf_type type) { struct msm_vidc_core *core; if (!inst || !q || !inst->core) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } core = inst->core; q->type = type; q->io_modes = VB2_MMAP | VB2_USERPTR; q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; q->ops = core->vb2_ops; q->mem_ops = core->vb2_mem_ops; q->drv_priv = inst; q->allow_zero_bytesused = 1; q->copy_timestamp = 1; return vb2_queue_init(q); } int msm_vidc_vb2_queue_init(struct msm_vidc_inst *inst) { int rc = 0; d_vpr_h("%s()\n", __func__); if (!inst) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } rc = vb2q_init(inst, &inst->vb2q[INPUT_PORT], INPUT_PLANE); if (rc) return rc; rc = vb2q_init(inst, &inst->vb2q[OUTPUT_PORT], OUTPUT_PLANE); if (rc) return rc; rc = vb2q_init(inst, &inst->vb2q[INPUT_META_PORT], INPUT_META_PLANE); if (rc) return rc; rc = vb2q_init(inst, &inst->vb2q[OUTPUT_META_PORT], OUTPUT_META_PLANE); if (rc) return rc; return rc; } int msm_vidc_add_session(struct msm_vidc_inst *inst) { int rc = 0; struct msm_vidc_inst *i; struct msm_vidc_core *core; u32 count = 0; if (!inst || !inst->core) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } core = inst->core; mutex_lock(&core->lock); list_for_each_entry(i, &core->instances, list) count++; if (count < MAX_SUPPORTED_INSTANCES) { list_add_tail(&inst->list, &core->instances); } else { d_vpr_e("%s: total sessions %d exceeded max limit %d\n", __func__, count, MAX_SUPPORTED_INSTANCES); rc = -EINVAL; } mutex_unlock(&core->lock); /* assign session_id */ inst->session_id = count + 1; inst->sid = inst->session_id; return rc; } int msm_vidc_session_open(struct msm_vidc_inst *inst) { int rc = 0; if (!inst) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } rc = venus_hfi_session_open(inst); if (rc) return rc; inst->session_created = true; return 0; } static int msm_vidc_init_core_caps(struct msm_vidc_core *core) { int rc = 0; int i, num_platform_caps; struct msm_platform_core_capability *platform_data; if (!core || !core->platform) { d_vpr_e("%s: invalid params\n", __func__); rc = -EINVAL; goto exit; } platform_data = core->platform->data.core_data; if (!platform_data) { d_vpr_e("%s: platform core data is NULL\n", __func__); rc = -EINVAL; goto exit; } if (!core->capabilities) { core->capabilities = kcalloc(1, (sizeof(struct msm_vidc_core_capability) * CORE_CAP_MAX), GFP_KERNEL); if (!core->capabilities) { d_vpr_e("%s: failed to allocate core capabilities\n", __func__); rc = -ENOMEM; goto exit; } } else { d_vpr_e("%s: capabilities memory is expected to be freed\n", __func__); } num_platform_caps = core->platform->data.core_data_size; /* loop over platform caps */ for (i = 0; i < num_platform_caps; i++) { core->capabilities[platform_data[i].type].type = platform_data[i].type; core->capabilities[platform_data[i].type].value = platform_data[i].value; } exit: return rc; } static void update_inst_capability(struct msm_platform_inst_capability *in, struct msm_vidc_inst_capability *capability) { if (!in || !capability) { d_vpr_e("%s: invalid params %pK %pK\n", __func__, in, capability); return; } if (in->cap < INST_CAP_MAX) { capability->cap[in->cap].cap = in->cap; capability->cap[in->cap].min = in->min; capability->cap[in->cap].max = in->max; capability->cap[in->cap].step_or_menu = in->step_or_menu; capability->cap[in->cap].value = in->value; capability->cap[in->cap].flags = in->flags; capability->cap[in->cap].v4l2_id = in->v4l2_id; capability->cap[in->cap].hfi_id = in->hfi_id; memcpy(capability->cap[in->cap].parents, in->parents, sizeof(capability->cap[in->cap].parents)); memcpy(capability->cap[in->cap].children, in->children, sizeof(capability->cap[in->cap].children)); capability->cap[in->cap].adjust = in->adjust; capability->cap[in->cap].set = in->set; } else { d_vpr_e("%s: invalid cap %d\n", __func__, in->cap); } } static int msm_vidc_init_instance_caps(struct msm_vidc_core *core) { int rc = 0; u8 enc_valid_codecs, dec_valid_codecs; u8 count_bits, enc_codec_count; u8 codecs_count = 0; int i, j, check_bit, num_platform_caps; struct msm_platform_inst_capability *platform_data = NULL; if (!core || !core->platform || !core->capabilities) { d_vpr_e("%s: invalid params\n", __func__); rc = -EINVAL; goto exit; } platform_data = core->platform->data.instance_data; if (!platform_data) { d_vpr_e("%s: platform instance data is NULL\n", __func__); rc = -EINVAL; goto exit; } enc_valid_codecs = core->capabilities[ENC_CODECS].value; count_bits = enc_valid_codecs; COUNT_BITS(count_bits, codecs_count); enc_codec_count = codecs_count; dec_valid_codecs = core->capabilities[DEC_CODECS].value; count_bits = dec_valid_codecs; COUNT_BITS(count_bits, codecs_count); if (!core->inst_caps) { core->inst_caps = kcalloc(codecs_count, sizeof(struct msm_vidc_inst_capability), GFP_KERNEL); if (!core->inst_caps) { d_vpr_e("%s: failed to allocate core capabilities\n", __func__); rc = -ENOMEM; goto exit; } } else { d_vpr_e("%s: capabilities memory is expected to be freed\n", __func__); } check_bit = 0; /* determine codecs for enc domain */ for (i = 0; i < enc_codec_count; i++) { while (check_bit < (sizeof(enc_valid_codecs) * 8)) { if (enc_valid_codecs & BIT(check_bit)) { core->inst_caps[i].domain = MSM_VIDC_ENCODER; core->inst_caps[i].codec = enc_valid_codecs & BIT(check_bit); check_bit++; break; } check_bit++; } } /* reset checkbit to check from 0th bit of decoder codecs set bits*/ check_bit = 0; /* determine codecs for dec domain */ for (; i < codecs_count; i++) { while (check_bit < (sizeof(dec_valid_codecs) * 8)) { if (dec_valid_codecs & BIT(check_bit)) { core->inst_caps[i].domain = MSM_VIDC_DECODER; core->inst_caps[i].codec = dec_valid_codecs & BIT(check_bit); check_bit++; break; } check_bit++; } } num_platform_caps = core->platform->data.instance_data_size; d_vpr_h("%s: num caps %d\n", __func__, num_platform_caps); /* loop over each platform capability */ for (i = 0; i < num_platform_caps; i++) { /* select matching core codec and update it */ for (j = 0; j < codecs_count; j++) { if ((platform_data[i].domain & core->inst_caps[j].domain) && (platform_data[i].codec & core->inst_caps[j].codec)) { /* update core capability */ update_inst_capability(&platform_data[i], &core->inst_caps[j]); } } } exit: return rc; } int msm_vidc_core_init(struct msm_vidc_core *core) { int rc = 0; d_vpr_h("%s()\n", __func__); if (!core || !core->platform) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } mutex_lock(&core->lock); if (core->state == MSM_VIDC_CORE_ERROR) { d_vpr_e("%s: core invalid state\n", __func__); rc = -EINVAL; goto unlock; } if (core->state == MSM_VIDC_CORE_INIT) { rc = 0; goto unlock; } rc = msm_vidc_init_core_caps(core); if (rc) goto unlock; rc = msm_vidc_init_instance_caps(core); if (rc) goto unlock; rc = venus_hfi_core_init(core); if (rc) { d_vpr_e("%s: core init failed\n", __func__); core->state = MSM_VIDC_CORE_DEINIT; goto unlock; } core->state = MSM_VIDC_CORE_INIT; core->smmu_fault_handled = false; core->ssr.trigger = false; unlock: mutex_unlock(&core->lock); return rc; } int msm_vidc_smmu_fault_handler(struct iommu_domain *domain, struct device *dev, unsigned long iova, int flags, void *data) { return -EINVAL; } int msm_vidc_trigger_ssr(struct msm_vidc_core *core, enum msm_vidc_ssr_trigger_type type) { return 0; } void msm_vidc_ssr_handler(struct work_struct *work) { } void msm_vidc_pm_work_handler(struct work_struct *work) { } void msm_vidc_fw_unload_handler(struct work_struct *work) { } void msm_vidc_batch_handler(struct work_struct *work) { }