// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved. */ #include #include #include "dsi_catalog.h" #include "dsi_ctrl_hw.h" #include "dsi_ctrl_reg.h" #include "dsi_hw.h" #include "dsi_panel.h" #include "dsi_catalog.h" #include "sde_dbg.h" #include "sde_dsc_helper.h" #include "sde_vdc_helper.h" #define MMSS_MISC_CLAMP_REG_OFF 0x0014 #define DSI_CTRL_DYNAMIC_FORCE_ON (0x23F|BIT(8)|BIT(9)|BIT(11)|BIT(21)) #define DSI_CTRL_CMD_MISR_ENABLE BIT(28) #define DSI_CTRL_VIDEO_MISR_ENABLE BIT(16) #define DSI_CTRL_DMA_LINK_SEL (BIT(12)|BIT(13)) #define DSI_CTRL_MDP0_LINK_SEL (BIT(20)|BIT(22)) static bool dsi_dsc_compression_enabled(struct dsi_mode_info *mode) { return (mode->dsc_enabled && mode->dsc); } static bool dsi_vdc_compression_enabled(struct dsi_mode_info *mode) { return (mode->vdc_enabled && mode->vdc); } static bool dsi_compression_enabled(struct dsi_mode_info *mode) { return (dsi_dsc_compression_enabled(mode) || dsi_vdc_compression_enabled(mode)); } /* Unsupported formats default to RGB888 */ static const u8 cmd_mode_format_map[DSI_PIXEL_FORMAT_MAX] = { 0x6, 0x7, 0x8, 0x8, 0x0, 0x3, 0x4 }; static const u8 video_mode_format_map[DSI_PIXEL_FORMAT_MAX] = { 0x0, 0x1, 0x2, 0x3, 0x3, 0x3, 0x3 }; /** * dsi_split_link_setup() - setup dsi split link configurations * @ctrl: Pointer to the controller host hardware. * @cfg: DSI host configuration that is common to both video and * command modes. */ static void dsi_split_link_setup(struct dsi_ctrl_hw *ctrl, struct dsi_host_common_cfg *cfg) { u32 reg; if (!cfg->split_link.enabled) return; reg = DSI_R32(ctrl, DSI_SPLIT_LINK); /* DMA_LINK_SEL */ reg &= ~(0x7 << 12); reg |= DSI_CTRL_DMA_LINK_SEL; /* MDP0_LINK_SEL */ reg &= ~(0x7 << 20); reg |= DSI_CTRL_MDP0_LINK_SEL; /* COMMAND_INPUT_SWAP|VIDEO_INPUT_SWAP */ if (cfg->split_link.sublink_swap) { if (cfg->split_link.panel_mode == DSI_OP_CMD_MODE) reg |= BIT(8); else reg |= BIT(4); } /* EN */ reg |= 0x1; /* DSI_SPLIT_LINK */ DSI_W32(ctrl, DSI_SPLIT_LINK, reg); wmb(); /* make sure split link is asserted */ } /** * dsi_setup_trigger_controls() - setup dsi trigger configurations * @ctrl: Pointer to the controller host hardware. * @cfg: DSI host configuration that is common to both video and * command modes. */ static void dsi_setup_trigger_controls(struct dsi_ctrl_hw *ctrl, struct dsi_host_common_cfg *cfg) { u32 reg = 0; const u8 trigger_map[DSI_TRIGGER_MAX] = { 0x0, 0x2, 0x1, 0x4, 0x5, 0x6 }; reg |= (cfg->te_mode == DSI_TE_ON_EXT_PIN) ? BIT(31) : 0; reg |= (trigger_map[cfg->dma_cmd_trigger] & 0x7); reg |= (trigger_map[cfg->mdp_cmd_trigger] & 0x7) << 4; DSI_W32(ctrl, DSI_TRIG_CTRL, reg); } /** * dsi_ctrl_hw_cmn_host_setup() - setup dsi host configuration * @ctrl: Pointer to the controller host hardware. * @cfg: DSI host configuration that is common to both video and * command modes. */ void dsi_ctrl_hw_cmn_host_setup(struct dsi_ctrl_hw *ctrl, struct dsi_host_common_cfg *cfg) { u32 reg_value = 0; dsi_setup_trigger_controls(ctrl, cfg); dsi_split_link_setup(ctrl, cfg); /* Setup clocking timing controls */ reg_value = ((cfg->t_clk_post & 0x3F) << 8); reg_value |= (cfg->t_clk_pre & 0x3F); DSI_W32(ctrl, DSI_CLKOUT_TIMING_CTRL, reg_value); /* EOT packet control */ reg_value = cfg->append_tx_eot ? 1 : 0; reg_value |= (cfg->ignore_rx_eot ? (1 << 4) : 0); DSI_W32(ctrl, DSI_EOT_PACKET_CTRL, reg_value); /* Turn on dsi clocks */ DSI_W32(ctrl, DSI_CLK_CTRL, 0x23F); /* Setup DSI control register */ reg_value = DSI_R32(ctrl, DSI_CTRL); reg_value |= (cfg->en_crc_check ? BIT(24) : 0); reg_value |= (cfg->en_ecc_check ? BIT(20) : 0); reg_value |= BIT(8); /* Clock lane */ reg_value |= ((cfg->data_lanes & DSI_DATA_LANE_3) ? BIT(7) : 0); reg_value |= ((cfg->data_lanes & DSI_DATA_LANE_2) ? BIT(6) : 0); reg_value |= ((cfg->data_lanes & DSI_DATA_LANE_1) ? BIT(5) : 0); reg_value |= ((cfg->data_lanes & DSI_DATA_LANE_0) ? BIT(4) : 0); DSI_W32(ctrl, DSI_CTRL, reg_value); if (cfg->phy_type == DSI_PHY_TYPE_CPHY) DSI_W32(ctrl, DSI_CPHY_MODE_CTRL, BIT(0)); if (ctrl->phy_isolation_enabled) DSI_W32(ctrl, DSI_DEBUG_CTRL, BIT(28)); DSI_CTRL_HW_DBG(ctrl, "Host configuration complete\n"); } /** * ulps_request() - request ulps entry for specified lanes * @ctrl: Pointer to the controller host hardware. * @lanes: ORed list of lanes (enum dsi_data_lanes) which need * to enter ULPS. * * Caller should check if lanes are in ULPS mode by calling * get_lanes_in_ulps() operation. */ void dsi_ctrl_hw_cmn_ulps_request(struct dsi_ctrl_hw *ctrl, u32 lanes) { u32 reg = 0; reg = DSI_R32(ctrl, DSI_LANE_CTRL); if (lanes & DSI_CLOCK_LANE) reg |= BIT(4); if (lanes & DSI_DATA_LANE_0) reg |= BIT(0); if (lanes & DSI_DATA_LANE_1) reg |= BIT(1); if (lanes & DSI_DATA_LANE_2) reg |= BIT(2); if (lanes & DSI_DATA_LANE_3) reg |= BIT(3); /* * ULPS entry request. Wait for short time to make sure * that the lanes enter ULPS. Recommended as per HPG. */ DSI_W32(ctrl, DSI_LANE_CTRL, reg); usleep_range(100, 110); DSI_CTRL_HW_DBG(ctrl, "ULPS requested for lanes 0x%x\n", lanes); } /** * ulps_exit() - exit ULPS on specified lanes * @ctrl: Pointer to the controller host hardware. * @lanes: ORed list of lanes (enum dsi_data_lanes) which need * to exit ULPS. * * Caller should check if lanes are in active mode by calling * get_lanes_in_ulps() operation. */ void dsi_ctrl_hw_cmn_ulps_exit(struct dsi_ctrl_hw *ctrl, u32 lanes) { u32 reg = 0; u32 prev_reg = 0; prev_reg = DSI_R32(ctrl, DSI_LANE_CTRL); prev_reg &= BIT(24); if (lanes & DSI_CLOCK_LANE) reg |= BIT(12); if (lanes & DSI_DATA_LANE_0) reg |= BIT(8); if (lanes & DSI_DATA_LANE_1) reg |= BIT(9); if (lanes & DSI_DATA_LANE_2) reg |= BIT(10); if (lanes & DSI_DATA_LANE_3) reg |= BIT(11); /* * ULPS Exit Request * Hardware requirement is to wait for at least 1ms */ DSI_W32(ctrl, DSI_LANE_CTRL, reg | prev_reg); usleep_range(1000, 1010); /* * Sometimes when exiting ULPS, it is possible that some DSI * lanes are not in the stop state which could lead to DSI * commands not going through. To avoid this, force the lanes * to be in stop state. */ DSI_W32(ctrl, DSI_LANE_CTRL, (reg << 8) | prev_reg); wmb(); /* ensure lanes are put to stop state */ DSI_W32(ctrl, DSI_LANE_CTRL, 0x0 | prev_reg); wmb(); /* ensure lanes are put to stop state */ DSI_CTRL_HW_DBG(ctrl, "ULPS exit request for lanes=0x%x\n", lanes); } /** * get_lanes_in_ulps() - returns the list of lanes in ULPS mode * @ctrl: Pointer to the controller host hardware. * * Returns an ORed list of lanes (enum dsi_data_lanes) that are in ULPS * state. If 0 is returned, all the lanes are active. * * Return: List of lanes in ULPS state. */ u32 dsi_ctrl_hw_cmn_get_lanes_in_ulps(struct dsi_ctrl_hw *ctrl) { u32 reg = 0; u32 lanes = 0; reg = DSI_R32(ctrl, DSI_LANE_STATUS); if (!(reg & BIT(8))) lanes |= DSI_DATA_LANE_0; if (!(reg & BIT(9))) lanes |= DSI_DATA_LANE_1; if (!(reg & BIT(10))) lanes |= DSI_DATA_LANE_2; if (!(reg & BIT(11))) lanes |= DSI_DATA_LANE_3; if (!(reg & BIT(12))) lanes |= DSI_CLOCK_LANE; DSI_CTRL_HW_DBG(ctrl, "lanes in ulps = 0x%x\n", lanes); return lanes; } /** * phy_sw_reset() - perform a soft reset on the PHY. * @ctrl: Pointer to the controller host hardware. */ void dsi_ctrl_hw_cmn_phy_sw_reset(struct dsi_ctrl_hw *ctrl) { DSI_W32(ctrl, DSI_PHY_SW_RESET, BIT(24)|BIT(0)); wmb(); /* make sure reset is asserted */ udelay(1000); DSI_W32(ctrl, DSI_PHY_SW_RESET, 0x0); wmb(); /* ensure reset is cleared before waiting */ udelay(100); DSI_CTRL_HW_DBG(ctrl, "phy sw reset done\n"); } /** * soft_reset() - perform a soft reset on DSI controller * @ctrl: Pointer to the controller host hardware. * * The video, command and controller engines will be disabled before the * reset is triggered and re-enabled after the reset is complete. * * If the reset is done while MDP timing engine is turned on, the video * enigne should be re-enabled only during the vertical blanking time. */ void dsi_ctrl_hw_cmn_soft_reset(struct dsi_ctrl_hw *ctrl) { u32 reg = 0; u32 reg_ctrl = 0; /* Clear DSI_EN, VIDEO_MODE_EN, CMD_MODE_EN */ reg_ctrl = DSI_R32(ctrl, DSI_CTRL); DSI_W32(ctrl, DSI_CTRL, reg_ctrl & ~0x7); wmb(); /* wait controller to be disabled before reset */ /* Force enable PCLK, BYTECLK, AHBM_HCLK */ reg = DSI_R32(ctrl, DSI_CLK_CTRL); DSI_W32(ctrl, DSI_CLK_CTRL, reg | DSI_CTRL_DYNAMIC_FORCE_ON); wmb(); /* wait for clocks to be enabled */ /* Trigger soft reset */ DSI_W32(ctrl, DSI_SOFT_RESET, 0x1); wmb(); /* wait for reset to assert before waiting */ udelay(1); DSI_W32(ctrl, DSI_SOFT_RESET, 0x0); wmb(); /* ensure reset is cleared */ /* Disable force clock on */ DSI_W32(ctrl, DSI_CLK_CTRL, reg); wmb(); /* make sure clocks are restored */ /* Re-enable DSI controller */ DSI_W32(ctrl, DSI_CTRL, reg_ctrl); wmb(); /* make sure DSI controller is enabled again */ DSI_CTRL_HW_DBG(ctrl, "ctrl soft reset done\n"); SDE_EVT32(ctrl->index); } /** * setup_misr() - Setup frame MISR * @ctrl: Pointer to the controller host hardware. * @panel_mode: CMD or VIDEO mode indicator * @enable: Enable/disable MISR. * @frame_count: Number of frames to accumulate MISR. */ void dsi_ctrl_hw_cmn_setup_misr(struct dsi_ctrl_hw *ctrl, enum dsi_op_mode panel_mode, bool enable, u32 frame_count) { u32 addr; u32 config = 0; if (panel_mode == DSI_OP_CMD_MODE) { addr = DSI_MISR_CMD_CTRL; if (enable) config = DSI_CTRL_CMD_MISR_ENABLE; } else { addr = DSI_MISR_VIDEO_CTRL; if (enable) config = DSI_CTRL_VIDEO_MISR_ENABLE; if (frame_count > 255) frame_count = 255; config |= frame_count << 8; } DSI_CTRL_HW_DBG(ctrl, "MISR ctrl: 0x%x\n", config); DSI_W32(ctrl, addr, config); wmb(); /* make sure MISR is configured */ } /** * collect_misr() - Read frame MISR * @ctrl: Pointer to the controller host hardware. * @panel_mode: CMD or VIDEO mode indicator */ u32 dsi_ctrl_hw_cmn_collect_misr(struct dsi_ctrl_hw *ctrl, enum dsi_op_mode panel_mode) { u32 addr; u32 enabled; u32 misr = 0; if (panel_mode == DSI_OP_CMD_MODE) { addr = DSI_MISR_CMD_MDP0_32BIT; enabled = DSI_R32(ctrl, DSI_MISR_CMD_CTRL) & DSI_CTRL_CMD_MISR_ENABLE; } else { addr = DSI_MISR_VIDEO_32BIT; enabled = DSI_R32(ctrl, DSI_MISR_VIDEO_CTRL) & DSI_CTRL_VIDEO_MISR_ENABLE; } if (enabled) misr = DSI_R32(ctrl, addr); DSI_CTRL_HW_DBG(ctrl, "MISR enabled %x value: 0x%x\n", enabled, misr); return misr; } /** * set_timing_db() - enable/disable Timing DB register * @ctrl: Pointer to controller host hardware. * @enable: Enable/Disable flag. * * Enable or Disabe the Timing DB register. */ void dsi_ctrl_hw_cmn_set_timing_db(struct dsi_ctrl_hw *ctrl, bool enable) { if (enable) DSI_W32(ctrl, DSI_DSI_TIMING_DB_MODE, 0x1); else DSI_W32(ctrl, DSI_DSI_TIMING_DB_MODE, 0x0); wmb(); /* make sure timing db registers are set */ DSI_CTRL_HW_DBG(ctrl, "ctrl timing DB set:%d\n", enable); SDE_EVT32(ctrl->index, enable); } /** * get_dce_params() - get the dce params * @mode: mode information. * @width: width to be filled up * @bytes_per_pkt: Bytes per packet to be filled up * @pkt_per_line: Packet per line parameter * @eol_byte_num: End-of-line byte number * * Get the compression parameters based on compression type. */ static void dsi_ctrl_hw_cmn_get_vid_dce_params(struct dsi_mode_info *mode, u32 *width, u32 *bytes_per_pkt, u32 *pkt_per_line, u32 *eol_byte_num) { if (dsi_dsc_compression_enabled(mode)) { *width = mode->dsc->pclk_per_line; *bytes_per_pkt = mode->dsc->bytes_per_pkt; *pkt_per_line = mode->dsc->pkt_per_line; *eol_byte_num = mode->dsc->eol_byte_num; } else if (dsi_vdc_compression_enabled(mode)) { *width = mode->vdc->pclk_per_line; *bytes_per_pkt = mode->vdc->bytes_per_pkt; *pkt_per_line = mode->vdc->pkt_per_line; *eol_byte_num = mode->vdc->eol_byte_num; } } /** * set_video_timing() - set up the timing for video frame * @ctrl: Pointer to controller host hardware. * @mode: Video mode information. * * Set up the video timing parameters for the DSI video mode operation. */ void dsi_ctrl_hw_cmn_set_video_timing(struct dsi_ctrl_hw *ctrl, struct dsi_mode_info *mode) { u32 reg = 0; u32 hs_start = 0; u32 hs_end, active_h_start, active_h_end, h_total, width = 0; u32 bytes_per_pkt = 0, pkt_per_line = 0, eol_byte_num = 0; u32 vs_start = 0, vs_end = 0; u32 vpos_start = 0, vpos_end, active_v_start, active_v_end, v_total; if (dsi_compression_enabled(mode)) { dsi_ctrl_hw_cmn_get_vid_dce_params(mode, &width, &bytes_per_pkt, &pkt_per_line, &eol_byte_num); reg = bytes_per_pkt << 16; /* data type of compressed image */ reg |= (0x0b << 8); /* * pkt_per_line: * 0 == 1 pkt * 1 == 2 pkt * 2 == 4 pkt * 3 pkt is not supported */ reg |= (pkt_per_line >> 1) << 6; reg |= eol_byte_num << 4; reg |= 1; DSI_W32(ctrl, DSI_VIDEO_COMPRESSION_MODE_CTRL, reg); if (ctrl->widebus_support) { reg = DSI_R32(ctrl, DSI_VIDEO_MODE_CTRL); reg |= BIT(25); DSI_W32(ctrl, DSI_VIDEO_MODE_CTRL, reg); } mode->h_active = DIV_ROUND_UP(mode->h_active * mode->pclk_scale.numer, mode->pclk_scale.denom); } else { width = mode->h_active; } hs_end = mode->h_sync_width; active_h_start = mode->h_sync_width + mode->h_back_porch; active_h_end = active_h_start + width; h_total = (mode->h_sync_width + mode->h_back_porch + width + mode->h_front_porch) - 1; vpos_end = mode->v_sync_width; active_v_start = mode->v_sync_width + mode->v_back_porch; active_v_end = active_v_start + mode->v_active; v_total = (mode->v_sync_width + mode->v_back_porch + mode->v_active + mode->v_front_porch) - 1; reg = ((active_h_end & 0xFFFF) << 16) | (active_h_start & 0xFFFF); DSI_W32(ctrl, DSI_VIDEO_MODE_ACTIVE_H, reg); reg = ((active_v_end & 0xFFFF) << 16) | (active_v_start & 0xFFFF); DSI_W32(ctrl, DSI_VIDEO_MODE_ACTIVE_V, reg); reg = ((v_total & 0xFFFF) << 16) | (h_total & 0xFFFF); DSI_W32(ctrl, DSI_VIDEO_MODE_TOTAL, reg); reg = ((hs_end & 0xFFFF) << 16) | (hs_start & 0xFFFF); DSI_W32(ctrl, DSI_VIDEO_MODE_HSYNC, reg); reg = ((vs_end & 0xFFFF) << 16) | (vs_start & 0xFFFF); DSI_W32(ctrl, DSI_VIDEO_MODE_VSYNC, reg); reg = ((vpos_end & 0xFFFF) << 16) | (vpos_start & 0xFFFF); DSI_W32(ctrl, DSI_VIDEO_MODE_VSYNC_VPOS, reg); /* TODO: HS TIMER value? */ DSI_W32(ctrl, DSI_HS_TIMER_CTRL, 0x3FD08); DSI_W32(ctrl, DSI_MISR_VIDEO_CTRL, 0x10100); DSI_W32(ctrl, DSI_DSI_TIMING_FLUSH, 0x1); DSI_CTRL_HW_DBG(ctrl, "ctrl video parameters updated\n"); SDE_EVT32(v_total, h_total); } /** * setup_cmd_stream() - set up parameters for command pixel streams * @ctrl: Pointer to controller host hardware. * @mode: Pointer to mode information. * @cfg: DSI host configuration that is common to both * video and command modes. * @vc_id: stream_id * * Setup parameters for command mode pixel stream size. */ void dsi_ctrl_hw_cmn_setup_cmd_stream(struct dsi_ctrl_hw *ctrl, struct dsi_mode_info *mode, struct dsi_host_common_cfg *cfg, u32 vc_id, struct dsi_rect *roi) { u32 width_final = 0, stride_final = 0; u32 height_final = 0; u32 stream_total = 0, stream_ctrl = 0; u32 reg_ctrl = 0, reg_ctrl2 = 0, data = 0; u32 reg = 0, offset = 0; int pic_width = 0, this_frame_slices = 0, intf_ip_w = 0; u32 pkt_per_line = 0, eol_byte_num = 0, bytes_in_slice = 0; if (roi && (!roi->w || !roi->h)) return; if (dsi_dsc_compression_enabled(mode)) { struct msm_display_dsc_info dsc; pic_width = roi ? roi->w : mode->h_active; memcpy(&dsc, mode->dsc, sizeof(dsc)); this_frame_slices = pic_width / dsc.config.slice_width; intf_ip_w = this_frame_slices * dsc.config.slice_width; sde_dsc_populate_dsc_private_params(&dsc, intf_ip_w); width_final = dsc.bytes_per_pkt * dsc.pkt_per_line; stride_final = dsc.bytes_per_pkt; pkt_per_line = dsc.pkt_per_line; eol_byte_num = dsc.eol_byte_num; bytes_in_slice = dsc.bytes_in_slice; } else if (dsi_vdc_compression_enabled(mode)) { struct msm_display_vdc_info vdc; pic_width = roi ? roi->w : mode->h_active; memcpy(&vdc, mode->vdc, sizeof(vdc)); this_frame_slices = pic_width / vdc.slice_width; intf_ip_w = this_frame_slices * vdc.slice_width; sde_vdc_intf_prog_params(&vdc, intf_ip_w); width_final = vdc.bytes_per_pkt * vdc.pkt_per_line; stride_final = vdc.bytes_per_pkt; pkt_per_line = vdc.pkt_per_line; eol_byte_num = vdc.eol_byte_num; bytes_in_slice = vdc.bytes_in_slice; } else if (roi) { width_final = roi->w; stride_final = roi->w * 3; height_final = roi->h; } else { width_final = mode->h_active; stride_final = mode->h_active * 3; height_final = mode->v_active; } if (dsi_compression_enabled(mode)) { pic_width = roi ? roi->w : mode->h_active; height_final = roi ? roi->h : mode->v_active; if (ctrl->widebus_support) { width_final = DIV_ROUND_UP(width_final, 6); reg = DSI_R32(ctrl, DSI_COMMAND_MODE_MDP_CTRL2); reg |= BIT(20); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_CTRL2, reg); } else { width_final = DIV_ROUND_UP(width_final, 3); } reg_ctrl = DSI_R32(ctrl, DSI_COMMAND_COMPRESSION_MODE_CTRL); reg_ctrl2 = DSI_R32(ctrl, DSI_COMMAND_COMPRESSION_MODE_CTRL2); if (vc_id != 0) offset = 16; reg = 0x39 << 8; /* * pkt_per_line: * 0 == 1 pkt * 1 == 2 pkt * 2 == 4 pkt * 3 pkt is not supported */ reg |= (pkt_per_line >> 1) << 6; reg |= eol_byte_num << 4; reg |= 1; reg_ctrl &= ~(0xFFFF << offset); reg_ctrl |= (reg << offset); reg_ctrl2 &= ~(0xFFFF << offset); reg_ctrl2 |= (bytes_in_slice << offset); DSI_CTRL_HW_DBG(ctrl, "reg_ctrl 0x%x reg_ctrl2 0x%x\n", reg_ctrl, reg_ctrl2); } /* HS Timer value */ DSI_W32(ctrl, DSI_HS_TIMER_CTRL, 0x3FD08); stream_ctrl = (stride_final + 1) << 16; stream_ctrl |= (vc_id & 0x3) << 8; stream_ctrl |= 0x39; /* packet data type */ DSI_W32(ctrl, DSI_COMMAND_COMPRESSION_MODE_CTRL, reg_ctrl); DSI_W32(ctrl, DSI_COMMAND_COMPRESSION_MODE_CTRL2, reg_ctrl2); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_STREAM0_CTRL, stream_ctrl); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_STREAM1_CTRL, stream_ctrl); stream_total = (height_final << 16) | width_final; DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_STREAM0_TOTAL, stream_total); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_STREAM1_TOTAL, stream_total); if (ctrl->null_insertion_enabled) { /* enable null packet insertion */ data = (vc_id << 1); data |= 0 << 16; data |= 0x1; DSI_W32(ctrl, DSI_COMMAND_MODE_NULL_INSERTION_CTRL, data); } DSI_CTRL_HW_DBG(ctrl, "stream_ctrl 0x%x stream_total 0x%x\n", stream_ctrl, stream_total); } /** * setup_avr() - set the AVR_SUPPORT_ENABLE bit in DSI_VIDEO_MODE_CTRL * @ctrl: Pointer to controller host hardware. * @enable: Controls whether this bit is set or cleared * * Set or clear the AVR_SUPPORT_ENABLE bit in DSI_VIDEO_MODE_CTRL. */ void dsi_ctrl_hw_cmn_setup_avr(struct dsi_ctrl_hw *ctrl, bool enable) { u32 reg = DSI_R32(ctrl, DSI_VIDEO_MODE_CTRL); if (enable) reg |= BIT(29); else reg &= ~BIT(29); DSI_W32(ctrl, DSI_VIDEO_MODE_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "AVR %s\n", enable ? "enabled" : "disabled"); } /** * video_engine_setup() - Setup dsi host controller for video mode * @ctrl: Pointer to controller host hardware. * @common_cfg: Common configuration parameters. * @cfg: Video mode configuration. * * Set up DSI video engine with a specific configuration. Controller and * video engine are not enabled as part of this function. */ void dsi_ctrl_hw_cmn_video_engine_setup(struct dsi_ctrl_hw *ctrl, struct dsi_host_common_cfg *common_cfg, struct dsi_video_engine_cfg *cfg) { u32 reg = 0; reg |= (cfg->last_line_interleave_en ? BIT(31) : 0); reg |= (cfg->pulse_mode_hsa_he ? BIT(28) : 0); reg |= (cfg->hfp_lp11_en ? BIT(24) : 0); reg |= (cfg->hbp_lp11_en ? BIT(20) : 0); reg |= (cfg->hsa_lp11_en ? BIT(16) : 0); reg |= (cfg->eof_bllp_lp11_en ? BIT(15) : 0); reg |= (cfg->bllp_lp11_en ? BIT(12) : 0); reg |= (cfg->traffic_mode & 0x3) << 8; reg |= (cfg->vc_id & 0x3); reg |= (video_mode_format_map[common_cfg->dst_format] & 0x3) << 4; DSI_W32(ctrl, DSI_VIDEO_MODE_CTRL, reg); reg = (common_cfg->swap_mode & 0x7) << 12; reg |= (common_cfg->bit_swap_red ? BIT(0) : 0); reg |= (common_cfg->bit_swap_green ? BIT(4) : 0); reg |= (common_cfg->bit_swap_blue ? BIT(8) : 0); DSI_W32(ctrl, DSI_VIDEO_MODE_DATA_CTRL, reg); /* Disable Timing double buffering */ DSI_W32(ctrl, DSI_DSI_TIMING_DB_MODE, 0x0); DSI_CTRL_HW_DBG(ctrl, "Video engine setup done\n"); } /** * cmd_engine_setup() - setup dsi host controller for command mode * @ctrl: Pointer to the controller host hardware. * @common_cfg: Common configuration parameters. * @cfg: Command mode configuration. * * Setup DSI CMD engine with a specific configuration. Controller and * command engine are not enabled as part of this function. */ void dsi_ctrl_hw_cmn_cmd_engine_setup(struct dsi_ctrl_hw *ctrl, struct dsi_host_common_cfg *common_cfg, struct dsi_cmd_engine_cfg *cfg) { u32 reg = 0; reg = (cfg->max_cmd_packets_interleave & 0xF) << 20; reg |= (common_cfg->bit_swap_red ? BIT(4) : 0); reg |= (common_cfg->bit_swap_green ? BIT(8) : 0); reg |= (common_cfg->bit_swap_blue ? BIT(12) : 0); reg |= cmd_mode_format_map[common_cfg->dst_format]; DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_CTRL, reg); if (!cfg->mdp_idle_ctrl_en) { reg = DSI_R32(ctrl, DSI_COMMAND_MODE_MDP_CTRL2); reg |= BIT(16); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_CTRL2, reg); } reg = cfg->wr_mem_start & 0xFF; reg |= (cfg->wr_mem_continue & 0xFF) << 8; reg |= (cfg->insert_dcs_command ? BIT(16) : 0); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_DCS_CMD_CTRL, reg); if (cfg->mdp_idle_ctrl_en) { reg = cfg->mdp_idle_ctrl_len & 0x3FF; reg |= BIT(12); DSI_W32(ctrl, DSI_COMMAND_MODE_MDP_IDLE_CTRL, reg); } DSI_CTRL_HW_DBG(ctrl, "Cmd engine setup done\n"); } /** * video_engine_en() - enable DSI video engine * @ctrl: Pointer to controller host hardware. * @on: Enable/disabel video engine. */ void dsi_ctrl_hw_cmn_video_engine_en(struct dsi_ctrl_hw *ctrl, bool on) { u32 reg = 0; /* Set/Clear VIDEO_MODE_EN bit */ reg = DSI_R32(ctrl, DSI_CTRL); if (on) reg |= BIT(1); else reg &= ~BIT(1); DSI_W32(ctrl, DSI_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "Video engine = %d\n", on); } /** * ctrl_en() - enable DSI controller engine * @ctrl: Pointer to the controller host hardware. * @on: turn on/off the DSI controller engine. */ void dsi_ctrl_hw_cmn_ctrl_en(struct dsi_ctrl_hw *ctrl, bool on) { u32 reg = 0; u32 clk_ctrl; clk_ctrl = DSI_R32(ctrl, DSI_CLK_CTRL); DSI_W32(ctrl, DSI_CLK_CTRL, clk_ctrl | DSI_CTRL_DYNAMIC_FORCE_ON); wmb(); /* wait for clocks to enable */ /* Set/Clear DSI_EN bit */ reg = DSI_R32(ctrl, DSI_CTRL); if (on) reg |= BIT(0); else reg &= ~BIT(0); DSI_W32(ctrl, DSI_CTRL, reg); wmb(); /* wait for DSI_EN update before disabling clocks */ DSI_W32(ctrl, DSI_CLK_CTRL, clk_ctrl); wmb(); /* make sure clocks are restored */ DSI_CTRL_HW_DBG(ctrl, "Controller engine = %d\n", on); } /** * cmd_engine_en() - enable DSI controller command engine * @ctrl: Pointer to the controller host hardware. * @on: Turn on/off the DSI command engine. */ void dsi_ctrl_hw_cmn_cmd_engine_en(struct dsi_ctrl_hw *ctrl, bool on) { u32 reg = 0; /* Set/Clear CMD_MODE_EN bit */ reg = DSI_R32(ctrl, DSI_CTRL); if (on) reg |= BIT(2); else reg &= ~BIT(2); DSI_W32(ctrl, DSI_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "command engine = %d\n", on); } /** * kickoff_command() - transmits commands stored in memory * @ctrl: Pointer to the controller host hardware. * @cmd: Command information. * @flags: Modifiers for command transmission. * * The controller hardware is programmed with address and size of the * command buffer. The transmission is kicked off if * DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER flag is not set. If this flag is * set, caller should make a separate call to trigger_command_dma() to * transmit the command. */ void dsi_ctrl_hw_cmn_kickoff_command(struct dsi_ctrl_hw *ctrl, struct dsi_ctrl_cmd_dma_info *cmd, u32 flags) { u32 reg = 0; /*Set BROADCAST_EN and EMBEDDED_MODE */ reg = DSI_R32(ctrl, DSI_COMMAND_MODE_DMA_CTRL); if (cmd->en_broadcast) reg |= BIT(31); else reg &= ~BIT(31); if (cmd->is_master) reg |= BIT(30); else reg &= ~BIT(30); if (cmd->use_lpm) reg |= BIT(26); else reg &= ~BIT(26); reg |= BIT(28);/* Select embedded mode */ reg &= ~BIT(24);/* packet type */ reg &= ~BIT(29);/* WC_SEL to 0 */ DSI_W32(ctrl, DSI_COMMAND_MODE_DMA_CTRL, reg); reg = DSI_R32(ctrl, DSI_DMA_FIFO_CTRL); reg |= BIT(20);/* Disable write watermark*/ reg |= BIT(16);/* Disable read watermark */ DSI_W32(ctrl, DSI_DMA_FIFO_CTRL, reg); DSI_W32(ctrl, DSI_DMA_CMD_OFFSET, cmd->offset); DSI_W32(ctrl, DSI_DMA_CMD_LENGTH, (cmd->length & 0xFFFFFF)); /* wait for writes to complete before kick off */ wmb(); if (!(flags & DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER)) DSI_W32(ctrl, DSI_CMD_MODE_DMA_SW_TRIGGER, 0x1); } /** * kickoff_fifo_command() - transmits a command using FIFO in dsi * hardware. * @ctrl: Pointer to the controller host hardware. * @cmd: Command information. * @flags: Modifiers for command transmission. * * The controller hardware FIFO is programmed with command header and * payload. The transmission is kicked off if * DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER flag is not set. If this flag is * set, caller should make a separate call to trigger_command_dma() to * transmit the command. */ void dsi_ctrl_hw_cmn_kickoff_fifo_command(struct dsi_ctrl_hw *ctrl, struct dsi_ctrl_cmd_dma_fifo_info *cmd, u32 flags) { u32 reg = 0, i = 0; u32 *ptr = cmd->command; /* * Set CMD_DMA_TPG_EN, TPG_DMA_FIFO_MODE and * CMD_DMA_PATTERN_SEL = custom pattern stored in TPG DMA FIFO */ reg = (BIT(1) | BIT(2) | (0x3 << 16)); DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CTRL, reg); /* * Program the FIFO with command buffer. Hardware requires an extra * DWORD (set to zero) if the length of command buffer is odd DWORDS. */ for (i = 0; i < cmd->size; i += 4) { DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CMD_DMA_INIT_VAL, *ptr); ptr++; } if ((cmd->size / 4) & 0x1) DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CMD_DMA_INIT_VAL, 0); /*Set BROADCAST_EN and EMBEDDED_MODE */ reg = DSI_R32(ctrl, DSI_COMMAND_MODE_DMA_CTRL); if (cmd->en_broadcast) reg |= BIT(31); else reg &= ~BIT(31); if (cmd->is_master) reg |= BIT(30); else reg &= ~BIT(30); if (cmd->use_lpm) reg |= BIT(26); else reg &= ~BIT(26); reg |= BIT(28); DSI_W32(ctrl, DSI_COMMAND_MODE_DMA_CTRL, reg); DSI_W32(ctrl, DSI_DMA_CMD_LENGTH, (cmd->size & 0xFFFFFFFF)); /* Finish writes before command trigger */ wmb(); if (!(flags & DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER)) DSI_W32(ctrl, DSI_CMD_MODE_DMA_SW_TRIGGER, 0x1); DSI_CTRL_HW_DBG(ctrl, "size=%d, trigger = %d\n", cmd->size, (flags & DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER) ? false : true); } void dsi_ctrl_hw_cmn_reset_cmd_fifo(struct dsi_ctrl_hw *ctrl) { /* disable cmd dma tpg */ DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CTRL, 0x0); DSI_W32(ctrl, DSI_TPG_DMA_FIFO_RESET, 0x1); udelay(1); DSI_W32(ctrl, DSI_TPG_DMA_FIFO_RESET, 0x0); } /** * trigger_command_dma() - trigger transmission of command buffer. * @ctrl: Pointer to the controller host hardware. * * This trigger can be only used if there was a prior call to * kickoff_command() of kickoff_fifo_command() with * DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER flag. */ void dsi_ctrl_hw_cmn_trigger_command_dma(struct dsi_ctrl_hw *ctrl) { DSI_W32(ctrl, DSI_CMD_MODE_DMA_SW_TRIGGER, 0x1); } /** * clear_rdbk_reg() - clear previously read panel data. * @ctrl: Pointer to the controller host hardware. * * This function is called before sending DSI Rx command to * panel in order to clear if any stale data remaining from * previous read operation. */ void dsi_ctrl_hw_cmn_clear_rdbk_reg(struct dsi_ctrl_hw *ctrl) { DSI_W32(ctrl, DSI_RDBK_DATA_CTRL, 0x1); wmb(); /* ensure read back register is reset */ DSI_W32(ctrl, DSI_RDBK_DATA_CTRL, 0x0); wmb(); /* ensure read back register is cleared */ } /** * get_cmd_read_data() - get data read from the peripheral * @ctrl: Pointer to the controller host hardware. * @rd_buf: Buffer where data will be read into. * @total_read_len: Number of bytes to read. * * return: number of bytes read. */ u32 dsi_ctrl_hw_cmn_get_cmd_read_data(struct dsi_ctrl_hw *ctrl, u8 *rd_buf, u32 read_offset, u32 rx_byte, u32 pkt_size, u32 *hw_read_cnt) { u32 *lp, *temp, data; int i, j = 0, cnt, off; u32 read_cnt; u32 repeated_bytes = 0; u8 reg[16] = {0}; bool ack_err = false; lp = (u32 *)rd_buf; temp = (u32 *)reg; cnt = (rx_byte + 3) >> 2; if (cnt > 4) cnt = 4; read_cnt = (DSI_R32(ctrl, DSI_RDBK_DATA_CTRL) >> 16); ack_err = (rx_byte == 4) ? (read_cnt == 8) : ((read_cnt - 4) == (pkt_size + 6)); if (ack_err) read_cnt -= 4; if (!read_cnt) { DSI_CTRL_HW_ERR(ctrl, "Panel detected error, no data read\n"); return 0; } if (read_cnt > 16) { int bytes_shifted, data_lost = 0, rem_header = 0; bytes_shifted = read_cnt - rx_byte; if (bytes_shifted >= 4) data_lost = bytes_shifted - 4; /* remove DCS header */ else rem_header = 4 - bytes_shifted; /* remaining header */ repeated_bytes = (read_offset - 4) - data_lost + rem_header; } off = DSI_RDBK_DATA0; off += ((cnt - 1) * 4); for (i = 0; i < cnt; i++) { data = DSI_R32(ctrl, off); if (!repeated_bytes) *lp++ = ntohl(data); else *temp++ = ntohl(data); off -= 4; } if (repeated_bytes) { for (i = repeated_bytes; i < 16; i++) rd_buf[j++] = reg[i]; } *hw_read_cnt = read_cnt; DSI_CTRL_HW_DBG(ctrl, "Read %d bytes\n", rx_byte); return rx_byte; } /** * poll_dma_status() - API to poll DMA status * @ctrl: Pointer to the controller host hardware. * * Return: DMA status. */ u32 dsi_ctrl_hw_cmn_poll_dma_status(struct dsi_ctrl_hw *ctrl) { int rc = 0; u32 status; u32 const delay_us = 10; u32 const timeout_us = 5000; rc = DSI_READ_POLL_TIMEOUT_ATOMIC(ctrl, DSI_INT_CTRL, status, ((status & DSI_CMD_MODE_DMA_DONE) > 0), delay_us, timeout_us); if (rc) { DSI_CTRL_HW_DBG(ctrl, "CMD_MODE_DMA_DONE failed\n"); status = 0; } return status; } /** * get_interrupt_status() - returns the interrupt status * @ctrl: Pointer to the controller host hardware. * * Returns the ORed list of interrupts(enum dsi_status_int_type) that * are active. This list does not include any error interrupts. Caller * should call get_error_status for error interrupts. * * Return: List of active interrupts. */ u32 dsi_ctrl_hw_cmn_get_interrupt_status(struct dsi_ctrl_hw *ctrl) { u32 reg = 0; u32 ints = 0; reg = DSI_R32(ctrl, DSI_INT_CTRL); if (reg & BIT(0)) ints |= DSI_CMD_MODE_DMA_DONE; if (reg & BIT(8)) ints |= DSI_CMD_FRAME_DONE; if (reg & BIT(10)) ints |= DSI_CMD_STREAM0_FRAME_DONE; if (reg & BIT(12)) ints |= DSI_CMD_STREAM1_FRAME_DONE; if (reg & BIT(14)) ints |= DSI_CMD_STREAM2_FRAME_DONE; if (reg & BIT(16)) ints |= DSI_VIDEO_MODE_FRAME_DONE; if (reg & BIT(20)) ints |= DSI_BTA_DONE; if (reg & BIT(28)) ints |= DSI_DYN_REFRESH_DONE; if (reg & BIT(30)) ints |= DSI_DESKEW_DONE; if (reg & BIT(24)) ints |= DSI_ERROR; DSI_CTRL_HW_DBG(ctrl, "Interrupt status = 0x%x, INT_CTRL=0x%x\n", ints, reg); return ints; } /** * clear_interrupt_status() - clears the specified interrupts * @ctrl: Pointer to the controller host hardware. * @ints: List of interrupts to be cleared. */ void dsi_ctrl_hw_cmn_clear_interrupt_status(struct dsi_ctrl_hw *ctrl, u32 ints) { u32 reg = 0; reg = DSI_R32(ctrl, DSI_INT_CTRL); if (ints & DSI_CMD_MODE_DMA_DONE) reg |= BIT(0); if (ints & DSI_CMD_FRAME_DONE) reg |= BIT(8); if (ints & DSI_CMD_STREAM0_FRAME_DONE) reg |= BIT(10); if (ints & DSI_CMD_STREAM1_FRAME_DONE) reg |= BIT(12); if (ints & DSI_CMD_STREAM2_FRAME_DONE) reg |= BIT(14); if (ints & DSI_VIDEO_MODE_FRAME_DONE) reg |= BIT(16); if (ints & DSI_BTA_DONE) reg |= BIT(20); if (ints & DSI_DYN_REFRESH_DONE) reg |= BIT(28); if (ints & DSI_DESKEW_DONE) reg |= BIT(30); /* * Do not clear error status. * It will be cleared as part of * error handler function. */ reg &= ~BIT(24); DSI_W32(ctrl, DSI_INT_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "Clear interrupts, ints = 0x%x, INT_CTRL=0x%x\n", ints, reg); } /** * enable_status_interrupts() - enable the specified interrupts * @ctrl: Pointer to the controller host hardware. * @ints: List of interrupts to be enabled. * * Enables the specified interrupts. This list will override the * previous interrupts enabled through this function. Caller has to * maintain the state of the interrupts enabled. To disable all * interrupts, set ints to 0. */ void dsi_ctrl_hw_cmn_enable_status_interrupts( struct dsi_ctrl_hw *ctrl, u32 ints) { u32 reg = 0; /* Do not change value of DSI_ERROR_MASK bit */ reg |= (DSI_R32(ctrl, DSI_INT_CTRL) & BIT(25)); if (ints & DSI_CMD_MODE_DMA_DONE) reg |= BIT(1); if (ints & DSI_CMD_FRAME_DONE) reg |= BIT(9); if (ints & DSI_CMD_STREAM0_FRAME_DONE) reg |= BIT(11); if (ints & DSI_CMD_STREAM1_FRAME_DONE) reg |= BIT(13); if (ints & DSI_CMD_STREAM2_FRAME_DONE) reg |= BIT(15); if (ints & DSI_VIDEO_MODE_FRAME_DONE) reg |= BIT(17); if (ints & DSI_BTA_DONE) reg |= BIT(21); if (ints & DSI_DYN_REFRESH_DONE) reg |= BIT(29); if (ints & DSI_DESKEW_DONE) reg |= BIT(31); DSI_W32(ctrl, DSI_INT_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "Enable interrupts 0x%x, INT_CTRL=0x%x\n", ints, reg); } /** * get_error_status() - returns the error status * @ctrl: Pointer to the controller host hardware. * * Returns the ORed list of errors(enum dsi_error_int_type) that are * active. This list does not include any status interrupts. Caller * should call get_interrupt_status for status interrupts. * * Return: List of active error interrupts. */ u64 dsi_ctrl_hw_cmn_get_error_status(struct dsi_ctrl_hw *ctrl) { u32 dln0_phy_err; u32 fifo_status; u32 ack_error; u32 timeout_errors; u32 clk_error; u32 dsi_status; u64 errors = 0, shift = 0x1; dln0_phy_err = DSI_R32(ctrl, DSI_DLN0_PHY_ERR); if (dln0_phy_err & BIT(0)) errors |= DSI_DLN0_ESC_ENTRY_ERR; if (dln0_phy_err & BIT(4)) errors |= DSI_DLN0_ESC_SYNC_ERR; if (dln0_phy_err & BIT(8)) errors |= DSI_DLN0_LP_CONTROL_ERR; if (dln0_phy_err & BIT(12)) errors |= DSI_DLN0_LP0_CONTENTION; if (dln0_phy_err & BIT(16)) errors |= DSI_DLN0_LP1_CONTENTION; fifo_status = DSI_R32(ctrl, DSI_FIFO_STATUS); if (fifo_status & BIT(7)) errors |= DSI_CMD_MDP_FIFO_UNDERFLOW; if (fifo_status & BIT(10)) errors |= DSI_CMD_DMA_FIFO_UNDERFLOW; if (fifo_status & BIT(18)) errors |= DSI_DLN0_HS_FIFO_OVERFLOW; if (fifo_status & BIT(19)) errors |= DSI_DLN0_HS_FIFO_UNDERFLOW; if (fifo_status & BIT(22)) errors |= DSI_DLN1_HS_FIFO_OVERFLOW; if (fifo_status & BIT(23)) errors |= DSI_DLN1_HS_FIFO_UNDERFLOW; if (fifo_status & BIT(26)) errors |= DSI_DLN2_HS_FIFO_OVERFLOW; if (fifo_status & BIT(27)) errors |= DSI_DLN2_HS_FIFO_UNDERFLOW; if (fifo_status & BIT(30)) errors |= DSI_DLN3_HS_FIFO_OVERFLOW; if (fifo_status & BIT(31)) errors |= DSI_DLN3_HS_FIFO_UNDERFLOW; ack_error = DSI_R32(ctrl, DSI_ACK_ERR_STATUS); if (ack_error & BIT(16)) errors |= DSI_RDBK_SINGLE_ECC_ERR; if (ack_error & BIT(17)) errors |= DSI_RDBK_MULTI_ECC_ERR; if (ack_error & BIT(20)) errors |= DSI_RDBK_CRC_ERR; if (ack_error & BIT(23)) errors |= DSI_RDBK_INCOMPLETE_PKT; if (ack_error & BIT(24)) errors |= DSI_PERIPH_ERROR_PKT; if (ack_error & BIT(15)) errors |= (shift << DSI_EINT_PANEL_SPECIFIC_ERR); timeout_errors = DSI_R32(ctrl, DSI_TIMEOUT_STATUS); if (timeout_errors & BIT(0)) errors |= DSI_HS_TX_TIMEOUT; if (timeout_errors & BIT(4)) errors |= DSI_LP_RX_TIMEOUT; if (timeout_errors & BIT(8)) errors |= DSI_BTA_TIMEOUT; clk_error = DSI_R32(ctrl, DSI_CLK_STATUS); if (clk_error & BIT(16)) errors |= DSI_PLL_UNLOCK; dsi_status = DSI_R32(ctrl, DSI_STATUS); if (dsi_status & BIT(31)) errors |= DSI_INTERLEAVE_OP_CONTENTION; DSI_CTRL_HW_DBG(ctrl, "Error status = 0x%llx, phy=0x%x, fifo=0x%x\n", errors, dln0_phy_err, fifo_status); DSI_CTRL_HW_DBG(ctrl, "ack=0x%x, timeout=0x%x, clk=0x%x, dsi=0x%x\n", ack_error, timeout_errors, clk_error, dsi_status); return errors; } /** * clear_error_status() - clears the specified errors * @ctrl: Pointer to the controller host hardware. * @errors: List of errors to be cleared. */ void dsi_ctrl_hw_cmn_clear_error_status(struct dsi_ctrl_hw *ctrl, u64 errors) { u32 dln0_phy_err = 0; u32 fifo_status = 0; u32 ack_error = 0; u32 timeout_error = 0; u32 clk_error = 0; u32 dsi_status = 0; if (errors & DSI_RDBK_SINGLE_ECC_ERR) ack_error |= BIT(16); if (errors & DSI_RDBK_MULTI_ECC_ERR) ack_error |= BIT(17); if (errors & DSI_RDBK_CRC_ERR) ack_error |= BIT(20); if (errors & DSI_RDBK_INCOMPLETE_PKT) ack_error |= BIT(23); if (errors & DSI_PERIPH_ERROR_PKT) ack_error |= BIT(24); if (errors & DSI_PANEL_SPECIFIC_ERR) ack_error |= BIT(15); if (errors & DSI_LP_RX_TIMEOUT) timeout_error |= BIT(4); if (errors & DSI_HS_TX_TIMEOUT) timeout_error |= BIT(0); if (errors & DSI_BTA_TIMEOUT) timeout_error |= BIT(8); if (errors & DSI_PLL_UNLOCK) clk_error |= BIT(16); if (errors & DSI_DLN0_LP0_CONTENTION) dln0_phy_err |= BIT(12); if (errors & DSI_DLN0_LP1_CONTENTION) dln0_phy_err |= BIT(16); if (errors & DSI_DLN0_ESC_ENTRY_ERR) dln0_phy_err |= BIT(0); if (errors & DSI_DLN0_ESC_SYNC_ERR) dln0_phy_err |= BIT(4); if (errors & DSI_DLN0_LP_CONTROL_ERR) dln0_phy_err |= BIT(8); if (errors & DSI_CMD_DMA_FIFO_UNDERFLOW) fifo_status |= BIT(10); if (errors & DSI_CMD_MDP_FIFO_UNDERFLOW) fifo_status |= BIT(7); if (errors & DSI_DLN0_HS_FIFO_OVERFLOW) fifo_status |= BIT(18); if (errors & DSI_DLN1_HS_FIFO_OVERFLOW) fifo_status |= BIT(22); if (errors & DSI_DLN2_HS_FIFO_OVERFLOW) fifo_status |= BIT(26); if (errors & DSI_DLN3_HS_FIFO_OVERFLOW) fifo_status |= BIT(30); if (errors & DSI_DLN0_HS_FIFO_UNDERFLOW) fifo_status |= BIT(19); if (errors & DSI_DLN1_HS_FIFO_UNDERFLOW) fifo_status |= BIT(23); if (errors & DSI_DLN2_HS_FIFO_UNDERFLOW) fifo_status |= BIT(27); if (errors & DSI_DLN3_HS_FIFO_UNDERFLOW) fifo_status |= BIT(31); if (errors & DSI_INTERLEAVE_OP_CONTENTION) dsi_status |= BIT(31); DSI_W32(ctrl, DSI_DLN0_PHY_ERR, dln0_phy_err); DSI_W32(ctrl, DSI_FIFO_STATUS, fifo_status); /* Writing of an extra 0 is needed to clear ack error bits */ DSI_W32(ctrl, DSI_ACK_ERR_STATUS, ack_error); wmb(); /* make sure register is committed */ DSI_W32(ctrl, DSI_ACK_ERR_STATUS, 0x0); DSI_W32(ctrl, DSI_TIMEOUT_STATUS, timeout_error); DSI_W32(ctrl, DSI_CLK_STATUS, clk_error); DSI_W32(ctrl, DSI_STATUS, dsi_status); DSI_CTRL_HW_DBG(ctrl, "clear errors = 0x%llx, phy=0x%x, fifo=0x%x\n", errors, dln0_phy_err, fifo_status); DSI_CTRL_HW_DBG(ctrl, "ack=0x%x, timeout=0x%x, clk=0x%x, dsi=0x%x\n", ack_error, timeout_error, clk_error, dsi_status); } /** * enable_error_interrupts() - enable the specified interrupts * @ctrl: Pointer to the controller host hardware. * @errors: List of errors to be enabled. * * Enables the specified interrupts. This list will override the * previous interrupts enabled through this function. Caller has to * maintain the state of the interrupts enabled. To disable all * interrupts, set errors to 0. */ void dsi_ctrl_hw_cmn_enable_error_interrupts(struct dsi_ctrl_hw *ctrl, u64 errors) { u32 int_ctrl = 0; u32 int_mask0 = 0x7FFF3BFF; u32 dln0_phy_err = 0x11111; u32 fifo_status = 0xCCCC0789; u32 ack_error = 0x1193BFFF; u32 timeout_status = 0x11111111; u32 clk_status = 0x10000; u32 dsi_status_error = 0x80000000; u32 reg = 0; DSI_W32(ctrl, DSI_DLN0_PHY_ERR, dln0_phy_err); DSI_W32(ctrl, DSI_FIFO_STATUS, fifo_status); DSI_W32(ctrl, DSI_TIMEOUT_STATUS, timeout_status); DSI_W32(ctrl, DSI_ACK_ERR_STATUS, ack_error); reg = DSI_R32(ctrl, DSI_CLK_STATUS); DSI_W32(ctrl, DSI_CLK_STATUS, reg | clk_status); reg = DSI_R32(ctrl, DSI_STATUS); DSI_W32(ctrl, DSI_STATUS, reg | dsi_status_error); int_ctrl = DSI_R32(ctrl, DSI_INT_CTRL); if (errors) int_ctrl |= BIT(25); else int_ctrl &= ~BIT(25); if (errors & DSI_RDBK_SINGLE_ECC_ERR) int_mask0 &= ~BIT(0); if (errors & DSI_RDBK_MULTI_ECC_ERR) int_mask0 &= ~BIT(1); if (errors & DSI_RDBK_CRC_ERR) int_mask0 &= ~BIT(2); if (errors & DSI_RDBK_INCOMPLETE_PKT) int_mask0 &= ~BIT(3); if (errors & DSI_PERIPH_ERROR_PKT) int_mask0 &= ~BIT(4); if (errors & DSI_LP_RX_TIMEOUT) int_mask0 &= ~BIT(5); if (errors & DSI_HS_TX_TIMEOUT) int_mask0 &= ~BIT(6); if (errors & DSI_BTA_TIMEOUT) int_mask0 &= ~BIT(7); if (errors & DSI_PLL_UNLOCK) int_mask0 &= ~BIT(28); if (errors & DSI_DLN0_LP0_CONTENTION) int_mask0 &= ~BIT(24); if (errors & DSI_DLN0_LP1_CONTENTION) int_mask0 &= ~BIT(25); if (errors & DSI_DLN0_ESC_ENTRY_ERR) int_mask0 &= ~BIT(21); if (errors & DSI_DLN0_ESC_SYNC_ERR) int_mask0 &= ~BIT(22); if (errors & DSI_DLN0_LP_CONTROL_ERR) int_mask0 &= ~BIT(23); if (errors & DSI_CMD_DMA_FIFO_UNDERFLOW) int_mask0 &= ~BIT(9); if (errors & DSI_CMD_MDP_FIFO_UNDERFLOW) int_mask0 &= ~BIT(11); if (errors & DSI_DLN0_HS_FIFO_OVERFLOW) int_mask0 &= ~BIT(16); if (errors & DSI_DLN1_HS_FIFO_OVERFLOW) int_mask0 &= ~BIT(17); if (errors & DSI_DLN2_HS_FIFO_OVERFLOW) int_mask0 &= ~BIT(18); if (errors & DSI_DLN3_HS_FIFO_OVERFLOW) int_mask0 &= ~BIT(19); if (errors & DSI_DLN0_HS_FIFO_UNDERFLOW) int_mask0 &= ~BIT(26); if (errors & DSI_DLN1_HS_FIFO_UNDERFLOW) int_mask0 &= ~BIT(27); if (errors & DSI_DLN2_HS_FIFO_UNDERFLOW) int_mask0 &= ~BIT(29); if (errors & DSI_DLN3_HS_FIFO_UNDERFLOW) int_mask0 &= ~BIT(30); if (errors & DSI_INTERLEAVE_OP_CONTENTION) int_mask0 &= ~BIT(8); DSI_W32(ctrl, DSI_INT_CTRL, int_ctrl); DSI_W32(ctrl, DSI_ERR_INT_MASK0, int_mask0); DSI_CTRL_HW_DBG(ctrl, "[DSI_%d] enable errors = 0x%llx, int_mask0=0x%x\n", ctrl->index, errors, int_mask0); } /** * video_test_pattern_setup() - setup test pattern engine for video mode * @ctrl: Pointer to the controller host hardware. * @type: Type of test pattern. * @init_val: Initial value to use for generating test pattern. */ void dsi_ctrl_hw_cmn_video_test_pattern_setup(struct dsi_ctrl_hw *ctrl, enum dsi_test_pattern type, u32 init_val) { u32 reg = 0; DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_VIDEO_INIT_VAL, init_val); switch (type) { case DSI_TEST_PATTERN_FIXED: reg |= (0x2 << 4); break; case DSI_TEST_PATTERN_INC: reg |= (0x1 << 4); break; case DSI_TEST_PATTERN_POLY: DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_VIDEO_POLY, 0xF0F0F); break; default: break; } DSI_W32(ctrl, DSI_TPG_MAIN_CONTROL, 0x100); DSI_W32(ctrl, DSI_TPG_VIDEO_CONFIG, 0x5); DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "Video test pattern setup done\n"); } /** * cmd_test_pattern_setup() - setup test patttern engine for cmd mode * @ctrl: Pointer to the controller host hardware. * @type: Type of test pattern. * @init_val: Initial value to use for generating test pattern. * @stream_id: Stream Id on which packets are generated. */ void dsi_ctrl_hw_cmn_cmd_test_pattern_setup(struct dsi_ctrl_hw *ctrl, enum dsi_test_pattern type, u32 init_val, u32 stream_id) { u32 reg = 0; u32 init_offset; u32 poly_offset; u32 pattern_sel_shift; switch (stream_id) { case 0: init_offset = DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL0; poly_offset = DSI_TEST_PATTERN_GEN_CMD_MDP_STREAM0_POLY; pattern_sel_shift = 8; break; case 1: init_offset = DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL1; poly_offset = DSI_TEST_PATTERN_GEN_CMD_MDP_STREAM1_POLY; pattern_sel_shift = 12; break; case 2: init_offset = DSI_TEST_PATTERN_GEN_CMD_MDP_INIT_VAL2; poly_offset = DSI_TEST_PATTERN_GEN_CMD_MDP_STREAM2_POLY; pattern_sel_shift = 20; break; default: return; } DSI_W32(ctrl, init_offset, init_val); switch (type) { case DSI_TEST_PATTERN_FIXED: reg |= (0x2 << pattern_sel_shift); break; case DSI_TEST_PATTERN_INC: reg |= (0x1 << pattern_sel_shift); break; case DSI_TEST_PATTERN_POLY: DSI_W32(ctrl, poly_offset, 0xF0F0F); break; default: break; } DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "Cmd test pattern setup done\n"); } /** * test_pattern_enable() - enable test pattern engine * @ctrl: Pointer to the controller host hardware. * @enable: Enable/Disable test pattern engine. */ void dsi_ctrl_hw_cmn_test_pattern_enable(struct dsi_ctrl_hw *ctrl, bool enable) { u32 reg = DSI_R32(ctrl, DSI_TEST_PATTERN_GEN_CTRL); if (enable) reg |= BIT(0); else reg &= ~BIT(0); DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CTRL, reg); DSI_CTRL_HW_DBG(ctrl, "Test pattern enable=%d\n", enable); } /** * trigger_cmd_test_pattern() - trigger a command mode frame update with * test pattern * @ctrl: Pointer to the controller host hardware. * @stream_id: Stream on which frame update is sent. */ void dsi_ctrl_hw_cmn_trigger_cmd_test_pattern(struct dsi_ctrl_hw *ctrl, u32 stream_id) { switch (stream_id) { case 0: DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CMD_STREAM0_TRIGGER, 0x1); break; case 1: DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CMD_STREAM1_TRIGGER, 0x1); break; case 2: DSI_W32(ctrl, DSI_TEST_PATTERN_GEN_CMD_STREAM2_TRIGGER, 0x1); break; default: break; } DSI_CTRL_HW_DBG(ctrl, "Cmd Test pattern trigger\n"); } void dsi_ctrl_hw_dln0_phy_err(struct dsi_ctrl_hw *ctrl) { u32 status = 0; /* * Clear out any phy errors prior to exiting ULPS * This fixes certain instances where phy does not exit * ULPS cleanly. Also, do not print error during such cases. */ status = DSI_R32(ctrl, DSI_DLN0_PHY_ERR); if (status & 0x011111) { DSI_W32(ctrl, DSI_DLN0_PHY_ERR, status); DSI_CTRL_HW_ERR(ctrl, "phy_err_status = %x\n", status); } } void dsi_ctrl_hw_cmn_phy_reset_config(struct dsi_ctrl_hw *ctrl, bool enable) { u32 reg = 0; reg = DSI_MMSS_MISC_R32(ctrl, MMSS_MISC_CLAMP_REG_OFF); /* Mask/unmask disable PHY reset bit */ if (enable) reg |= BIT(30); else reg &= ~BIT(30); DSI_MMSS_MISC_W32(ctrl, MMSS_MISC_CLAMP_REG_OFF, reg); } int dsi_ctrl_hw_cmn_ctrl_reset(struct dsi_ctrl_hw *ctrl, int mask) { int rc = 0; u32 data; DSI_CTRL_HW_DBG(ctrl, "DSI CTRL and PHY reset, mask=%d\n", mask); data = DSI_R32(ctrl, 0x0004); /* Disable DSI video mode */ DSI_W32(ctrl, 0x004, (data & ~BIT(1))); wmb(); /* ensure register committed */ /* Disable DSI controller */ DSI_W32(ctrl, 0x004, (data & ~(BIT(0) | BIT(1)))); wmb(); /* ensure register committed */ /* "Force On" all dynamic clocks */ DSI_W32(ctrl, 0x11c, 0x100a00); /* DSI_SW_RESET */ DSI_W32(ctrl, 0x118, 0x1); wmb(); /* ensure register is committed */ DSI_W32(ctrl, 0x118, 0x0); wmb(); /* ensure register is committed */ /* Remove "Force On" all dynamic clocks */ DSI_W32(ctrl, 0x11c, 0x00); /* Enable DSI controller */ DSI_W32(ctrl, 0x004, (data & ~BIT(1))); wmb(); /* ensure register committed */ return rc; } void dsi_ctrl_hw_cmn_mask_error_intr(struct dsi_ctrl_hw *ctrl, u32 idx, bool en) { u32 reg = 0; u32 fifo_status = 0, timeout_status = 0; u32 overflow_clear = BIT(10) | BIT(18) | BIT(22) | BIT(26) | BIT(30); u32 underflow_clear = BIT(19) | BIT(23) | BIT(27) | BIT(31); u32 lp_rx_clear = BIT(4); reg = DSI_R32(ctrl, 0x10c); /* * Before unmasking we should clear the corresponding error status bits * that might have been set while we masked these errors. Since these * are sticky bits, these errors will trigger the moment we unmask * the error bits. */ if (idx & BIT(DSI_FIFO_OVERFLOW)) { if (en) { reg |= (0x1f << 16); reg |= BIT(9); } else { reg &= ~(0x1f << 16); reg &= ~BIT(9); fifo_status = DSI_R32(ctrl, 0x00c); DSI_W32(ctrl, 0x00c, fifo_status | overflow_clear); } } if (idx & BIT(DSI_FIFO_UNDERFLOW)) { if (en) reg |= (0x1b << 26); else { reg &= ~(0x1b << 26); fifo_status = DSI_R32(ctrl, 0x00c); DSI_W32(ctrl, 0x00c, fifo_status | underflow_clear); } } if (idx & BIT(DSI_LP_Rx_TIMEOUT)) { if (en) reg |= (0x7 << 23); else { reg &= ~(0x7 << 23); timeout_status = DSI_R32(ctrl, 0x0c0); DSI_W32(ctrl, 0x0c0, timeout_status | lp_rx_clear); } } if (idx & BIT(DSI_PLL_UNLOCK_ERR)) { if (en) reg |= BIT(28); else reg &= ~BIT(28); } DSI_W32(ctrl, 0x10c, reg); wmb(); /* ensure error is masked */ } void dsi_ctrl_hw_cmn_error_intr_ctrl(struct dsi_ctrl_hw *ctrl, bool en) { u32 reg = 0; u32 dsi_total_mask = 0x2222AA02; reg = DSI_R32(ctrl, 0x110); reg &= dsi_total_mask; if (en) reg |= (BIT(24) | BIT(25)); else reg &= ~BIT(25); DSI_W32(ctrl, 0x110, reg); wmb(); /* ensure error is masked */ } u32 dsi_ctrl_hw_cmn_get_error_mask(struct dsi_ctrl_hw *ctrl) { u32 reg = 0; reg = DSI_R32(ctrl, 0x10c); return reg; } u32 dsi_ctrl_hw_cmn_get_hw_version(struct dsi_ctrl_hw *ctrl) { u32 reg = 0; reg = DSI_R32(ctrl, 0x0); return reg; } int dsi_ctrl_hw_cmn_wait_for_cmd_mode_mdp_idle(struct dsi_ctrl_hw *ctrl) { int rc = 0, val = 0; u32 cmd_mode_mdp_busy_mask = BIT(2); u32 const sleep_us = 2 * 1000; u32 const timeout_us = 200 * 1000; rc = DSI_READ_POLL_TIMEOUT(ctrl, DSI_STATUS, val, !(val & cmd_mode_mdp_busy_mask), sleep_us, timeout_us); if (rc) DSI_CTRL_HW_ERR(ctrl, "timed out waiting for idle\n"); return rc; } void dsi_ctrl_hw_cmn_hs_req_sel(struct dsi_ctrl_hw *ctrl, bool sel_phy) { u32 reg = 0; reg = DSI_R32(ctrl, DSI_LANE_CTRL); if (sel_phy) reg &= ~BIT(24); else reg |= BIT(24); DSI_W32(ctrl, DSI_LANE_CTRL, reg); wmb(); /* make sure request is set */ } void dsi_ctrl_hw_cmn_set_continuous_clk(struct dsi_ctrl_hw *ctrl, bool enable) { u32 reg = 0; reg = DSI_R32(ctrl, DSI_LANE_CTRL); if (enable) reg |= BIT(28); else reg &= ~BIT(28); DSI_W32(ctrl, DSI_LANE_CTRL, reg); wmb(); /* make sure request is set */ } int dsi_ctrl_hw_cmn_wait4dynamic_refresh_done(struct dsi_ctrl_hw *ctrl) { int rc; u32 const sleep_us = 1000; u32 const timeout_us = 84000; /* approximately 5 vsyncs */ u32 reg = 0, dyn_refresh_done = BIT(28); rc = DSI_READ_POLL_TIMEOUT(ctrl, DSI_INT_CTRL, reg, (reg & dyn_refresh_done), sleep_us, timeout_us); if (rc) { DSI_CTRL_HW_ERR(ctrl, "wait4dynamic refresh timedout %d\n", rc); return rc; } /* ack dynamic refresh done status */ reg = DSI_R32(ctrl, DSI_INT_CTRL); reg |= dyn_refresh_done; DSI_W32(ctrl, DSI_INT_CTRL, reg); return 0; } bool dsi_ctrl_hw_cmn_vid_engine_busy(struct dsi_ctrl_hw *ctrl) { u32 reg = 0, video_engine_busy = BIT(3); int rc; u32 const sleep_us = 1000; u32 const timeout_us = 50000; rc = DSI_READ_POLL_TIMEOUT(ctrl, DSI_STATUS, reg, !(reg & video_engine_busy), sleep_us, timeout_us); if (rc) return true; return false; }