/* * Copyright (c) 2015-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "targcfg.h" #include "qdf_lock.h" #include "qdf_status.h" #include "qdf_status.h" #include /* qdf_atomic_read */ #include #include "hif_io32.h" #include #include #include "regtable.h" #define ATH_MODULE_NAME hif #include #include "hif_main.h" #include "hif_hw_version.h" #if (defined(HIF_PCI) || defined(HIF_SNOC) || defined(HIF_AHB) || \ defined(HIF_IPCI)) #include "ce_tasklet.h" #include "ce_api.h" #endif #include "qdf_trace.h" #include "qdf_status.h" #include "hif_debug.h" #include "mp_dev.h" #if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \ defined(QCA_WIFI_QCA5018) || defined(QCA_WIFI_QCA9574) || \ defined(QCA_WIFI_QCA5332) #include "hal_api.h" #endif #include "hif_napi.h" #include "hif_unit_test_suspend_i.h" #include "qdf_module.h" #ifdef HIF_CE_LOG_INFO #include #include #endif #include #include void hif_dump(struct hif_opaque_softc *hif_ctx, uint8_t cmd_id, bool start) { hif_trigger_dump(hif_ctx, cmd_id, start); } /** * hif_get_target_id(): hif_get_target_id * * Return the virtual memory base address to the caller * * @scn: hif_softc * * Return: A_target_id_t */ A_target_id_t hif_get_target_id(struct hif_softc *scn) { return scn->mem; } /** * hif_get_targetdef(): hif_get_targetdef * @scn: scn * * Return: void * */ void *hif_get_targetdef(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); return scn->targetdef; } #ifdef FORCE_WAKE void hif_srng_init_phase(struct hif_opaque_softc *hif_ctx, bool init_phase) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (ce_srng_based(scn)) hal_set_init_phase(scn->hal_soc, init_phase); } #endif /* FORCE_WAKE */ #ifdef HIF_IPCI void hif_shutdown_notifier_cb(void *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); scn->recovery = true; } #endif /** * hif_vote_link_down(): unvote for link up * * Call hif_vote_link_down to release a previous request made using * hif_vote_link_up. A hif_vote_link_down call should only be made * after a corresponding hif_vote_link_up, otherwise you could be * negating a vote from another source. When no votes are present * hif will not guarantee the linkstate after hif_bus_suspend. * * SYNCHRONIZE WITH hif_vote_link_up by only calling in MC thread * and initialization deinitialization sequencences. * * Return: n/a */ void hif_vote_link_down(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); QDF_BUG(scn); if (scn->linkstate_vote == 0) QDF_DEBUG_PANIC("linkstate_vote(%d) has already been 0", scn->linkstate_vote); scn->linkstate_vote--; hif_info("Down_linkstate_vote %d", scn->linkstate_vote); if (scn->linkstate_vote == 0) hif_bus_prevent_linkdown(scn, false); } /** * hif_vote_link_up(): vote to prevent bus from suspending * * Makes hif guarantee that fw can message the host normally * during suspend. * * SYNCHRONIZE WITH hif_vote_link_up by only calling in MC thread * and initialization deinitialization sequencences. * * Return: n/a */ void hif_vote_link_up(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); QDF_BUG(scn); scn->linkstate_vote++; hif_info("Up_linkstate_vote %d", scn->linkstate_vote); if (scn->linkstate_vote == 1) hif_bus_prevent_linkdown(scn, true); } /** * hif_can_suspend_link(): query if hif is permitted to suspend the link * * Hif will ensure that the link won't be suspended if the upperlayers * don't want it to. * * SYNCHRONIZATION: MC thread is stopped before bus suspend thus * we don't need extra locking to ensure votes dont change while * we are in the process of suspending or resuming. * * Return: false if hif will guarantee link up during suspend. */ bool hif_can_suspend_link(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); QDF_BUG(scn); return scn->linkstate_vote == 0; } /** * hif_hia_item_address(): hif_hia_item_address * @target_type: target_type * @item_offset: item_offset * * Return: n/a */ uint32_t hif_hia_item_address(uint32_t target_type, uint32_t item_offset) { switch (target_type) { case TARGET_TYPE_AR6002: return AR6002_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_AR6003: return AR6003_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_AR6004: return AR6004_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_AR6006: return AR6006_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_AR9888: return AR9888_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_AR6320: case TARGET_TYPE_AR6320V2: return AR6320_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_ADRASTEA: /* ADRASTEA doesn't have a host interest address */ ASSERT(0); return 0; case TARGET_TYPE_AR900B: return AR900B_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_QCA9984: return QCA9984_HOST_INTEREST_ADDRESS + item_offset; case TARGET_TYPE_QCA9888: return QCA9888_HOST_INTEREST_ADDRESS + item_offset; default: ASSERT(0); return 0; } } /** * hif_max_num_receives_reached() - check max receive is reached * @scn: HIF Context * @count: unsigned int. * * Output check status as bool * * Return: bool */ bool hif_max_num_receives_reached(struct hif_softc *scn, unsigned int count) { if (QDF_IS_EPPING_ENABLED(hif_get_conparam(scn))) return count > 120; else return count > MAX_NUM_OF_RECEIVES; } /** * init_buffer_count() - initial buffer count * @maxSize: qdf_size_t * * routine to modify the initial buffer count to be allocated on an os * platform basis. Platform owner will need to modify this as needed * * Return: qdf_size_t */ qdf_size_t init_buffer_count(qdf_size_t maxSize) { return maxSize; } /** * hif_save_htc_htt_config_endpoint() - save htt_tx_endpoint * @hif_ctx: hif context * @htc_htt_tx_endpoint: htt_tx_endpoint * * Return: void */ void hif_save_htc_htt_config_endpoint(struct hif_opaque_softc *hif_ctx, int htc_htt_tx_endpoint) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) { hif_err("scn or scn->hif_sc is NULL!"); return; } scn->htc_htt_tx_endpoint = htc_htt_tx_endpoint; } qdf_export_symbol(hif_save_htc_htt_config_endpoint); static const struct qwlan_hw qwlan_hw_list[] = { { .id = AR6320_REV1_VERSION, .subid = 0, .name = "QCA6174_REV1", }, { .id = AR6320_REV1_1_VERSION, .subid = 0x1, .name = "QCA6174_REV1_1", }, { .id = AR6320_REV1_3_VERSION, .subid = 0x2, .name = "QCA6174_REV1_3", }, { .id = AR6320_REV2_1_VERSION, .subid = 0x4, .name = "QCA6174_REV2_1", }, { .id = AR6320_REV2_1_VERSION, .subid = 0x5, .name = "QCA6174_REV2_2", }, { .id = AR6320_REV3_VERSION, .subid = 0x6, .name = "QCA6174_REV2.3", }, { .id = AR6320_REV3_VERSION, .subid = 0x8, .name = "QCA6174_REV3", }, { .id = AR6320_REV3_VERSION, .subid = 0x9, .name = "QCA6174_REV3_1", }, { .id = AR6320_REV3_2_VERSION, .subid = 0xA, .name = "AR6320_REV3_2_VERSION", }, { .id = QCA6390_V1, .subid = 0x0, .name = "QCA6390_V1", }, { .id = QCA6490_V1, .subid = 0x0, .name = "QCA6490_V1", }, { .id = WCN3990_v1, .subid = 0x0, .name = "WCN3990_V1", }, { .id = WCN3990_v2, .subid = 0x0, .name = "WCN3990_V2", }, { .id = WCN3990_v2_1, .subid = 0x0, .name = "WCN3990_V2.1", }, { .id = WCN3998, .subid = 0x0, .name = "WCN3998", }, { .id = QCA9379_REV1_VERSION, .subid = 0xC, .name = "QCA9379_REV1", }, { .id = QCA9379_REV1_VERSION, .subid = 0xD, .name = "QCA9379_REV1_1", }, { .id = MANGO_V1, .subid = 0xF, .name = "MANGO_V1", }, { .id = KIWI_V1, .subid = 0, .name = "KIWI_V1", }, { .id = KIWI_V2, .subid = 0, .name = "KIWI_V2", }, { .id = WCN6750_V1, .subid = 0, .name = "WCN6750_V1", }, { .id = QCA6490_v2_1, .subid = 0, .name = "QCA6490", }, { .id = QCA6490_v2, .subid = 0, .name = "QCA6490", }, { .id = WCN3990_v2_2, .subid = 0, .name = "WCN3990_v2_2", }, { .id = WCN3990_TALOS, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_MOOREA, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_SAIPAN, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_RENNELL, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_BITRA, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_DIVAR, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_ATHERTON, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_STRAIT, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_NETRANI, .subid = 0, .name = "WCN3990", }, { .id = WCN3990_CLARENCE, .subid = 0, .name = "WCN3990", } }; /** * hif_get_hw_name(): get a human readable name for the hardware * @info: Target Info * * Return: human readable name for the underlying wifi hardware. */ static const char *hif_get_hw_name(struct hif_target_info *info) { int i; hif_debug("target version = %d, target revision = %d", info->target_version, info->target_revision); if (info->hw_name) return info->hw_name; for (i = 0; i < ARRAY_SIZE(qwlan_hw_list); i++) { if (info->target_version == qwlan_hw_list[i].id && info->target_revision == qwlan_hw_list[i].subid) { return qwlan_hw_list[i].name; } } info->hw_name = qdf_mem_malloc(64); if (!info->hw_name) return "Unknown Device (nomem)"; i = qdf_snprint(info->hw_name, 64, "HW_VERSION=%x.", info->target_version); if (i < 0) return "Unknown Device (snprintf failure)"; else return info->hw_name; } /** * hif_get_hw_info(): hif_get_hw_info * @scn: scn * @version: version * @revision: revision * * Return: n/a */ void hif_get_hw_info(struct hif_opaque_softc *scn, u32 *version, u32 *revision, const char **target_name) { struct hif_target_info *info = hif_get_target_info_handle(scn); struct hif_softc *sc = HIF_GET_SOFTC(scn); if (sc->bus_type == QDF_BUS_TYPE_USB) hif_usb_get_hw_info(sc); *version = info->target_version; *revision = info->target_revision; *target_name = hif_get_hw_name(info); } /** * hif_get_dev_ba(): API to get device base address. * @scn: scn * @version: version * @revision: revision * * Return: n/a */ void *hif_get_dev_ba(struct hif_opaque_softc *hif_handle) { struct hif_softc *scn = (struct hif_softc *)hif_handle; return scn->mem; } qdf_export_symbol(hif_get_dev_ba); /** * hif_get_dev_ba_ce(): API to get device ce base address. * @scn: scn * * Return: dev mem base address for CE */ void *hif_get_dev_ba_ce(struct hif_opaque_softc *hif_handle) { struct hif_softc *scn = (struct hif_softc *)hif_handle; return scn->mem_ce; } qdf_export_symbol(hif_get_dev_ba_ce); uint32_t hif_get_soc_version(struct hif_opaque_softc *hif_handle) { struct hif_softc *scn = (struct hif_softc *)hif_handle; return scn->target_info.soc_version; } qdf_export_symbol(hif_get_soc_version); /** * hif_get_dev_ba_cmem(): API to get device ce base address. * @scn: scn * * Return: dev mem base address for CMEM */ void *hif_get_dev_ba_cmem(struct hif_opaque_softc *hif_handle) { struct hif_softc *scn = (struct hif_softc *)hif_handle; return scn->mem_cmem; } qdf_export_symbol(hif_get_dev_ba_cmem); #ifdef FEATURE_RUNTIME_PM void hif_runtime_prevent_linkdown(struct hif_softc *scn, bool is_get) { if (is_get) qdf_runtime_pm_prevent_suspend(&scn->prevent_linkdown_lock); else qdf_runtime_pm_allow_suspend(&scn->prevent_linkdown_lock); } static inline void hif_rtpm_lock_init(struct hif_softc *scn) { qdf_runtime_lock_init(&scn->prevent_linkdown_lock); } static inline void hif_rtpm_lock_deinit(struct hif_softc *scn) { qdf_runtime_lock_deinit(&scn->prevent_linkdown_lock); } #else static inline void hif_rtpm_lock_init(struct hif_softc *scn) { } static inline void hif_rtpm_lock_deinit(struct hif_softc *scn) { } #endif #ifdef WLAN_CE_INTERRUPT_THRESHOLD_CONFIG /** * hif_get_interrupt_threshold_cfg_from_psoc() - Retrieve ini cfg from psoc * @scn: hif context * @psoc: psoc objmgr handle * * Return: None */ static inline void hif_get_interrupt_threshold_cfg_from_psoc(struct hif_softc *scn, struct wlan_objmgr_psoc *psoc) { if (psoc) { scn->ini_cfg.ce_status_ring_timer_threshold = cfg_get(psoc, CFG_CE_STATUS_RING_TIMER_THRESHOLD); scn->ini_cfg.ce_status_ring_batch_count_threshold = cfg_get(psoc, CFG_CE_STATUS_RING_BATCH_COUNT_THRESHOLD); } } #else static inline void hif_get_interrupt_threshold_cfg_from_psoc(struct hif_softc *scn, struct wlan_objmgr_psoc *psoc) { } #endif /* WLAN_CE_INTERRUPT_THRESHOLD_CONFIG */ /** * hif_get_cfg_from_psoc() - Retrieve ini cfg from psoc * @scn: hif context * @psoc: psoc objmgr handle * * Return: None */ static inline void hif_get_cfg_from_psoc(struct hif_softc *scn, struct wlan_objmgr_psoc *psoc) { if (psoc) { scn->ini_cfg.disable_wake_irq = cfg_get(psoc, CFG_DISABLE_WAKE_IRQ); /** * Wake IRQ can't share the same IRQ with the copy engines * In one MSI mode, we don't know whether wake IRQ is triggered * or not in wake IRQ handler. known issue CR 2055359 * If you want to support Wake IRQ. Please allocate at least * 2 MSI vector. The first is for wake IRQ while the others * share the second vector */ if (pld_is_one_msi(scn->qdf_dev->dev)) { hif_debug("Disable wake IRQ once it is one MSI mode"); scn->ini_cfg.disable_wake_irq = true; } hif_get_interrupt_threshold_cfg_from_psoc(scn, psoc); } } #if defined(HIF_CE_LOG_INFO) || defined(HIF_BUS_LOG_INFO) /** * hif_recovery_notifier_cb - Recovery notifier callback to log * hang event data * @block: notifier block * @state: state * @data: notifier data * * Return: status */ static int hif_recovery_notifier_cb(struct notifier_block *block, unsigned long state, void *data) { struct qdf_notifer_data *notif_data = data; qdf_notif_block *notif_block; struct hif_softc *hif_handle; bool bus_id_invalid; if (!data || !block) return -EINVAL; notif_block = qdf_container_of(block, qdf_notif_block, notif_block); hif_handle = notif_block->priv_data; if (!hif_handle) return -EINVAL; bus_id_invalid = hif_log_bus_info(hif_handle, notif_data->hang_data, ¬if_data->offset); if (bus_id_invalid) return NOTIFY_STOP_MASK; hif_log_ce_info(hif_handle, notif_data->hang_data, ¬if_data->offset); return 0; } /** * hif_register_recovery_notifier - Register hif recovery notifier * @hif_handle: hif handle * * Return: status */ static QDF_STATUS hif_register_recovery_notifier(struct hif_softc *hif_handle) { qdf_notif_block *hif_notifier; if (!hif_handle) return QDF_STATUS_E_FAILURE; hif_notifier = &hif_handle->hif_recovery_notifier; hif_notifier->notif_block.notifier_call = hif_recovery_notifier_cb; hif_notifier->priv_data = hif_handle; return qdf_hang_event_register_notifier(hif_notifier); } /** * hif_unregister_recovery_notifier - Un-register hif recovery notifier * @hif_handle: hif handle * * Return: status */ static QDF_STATUS hif_unregister_recovery_notifier(struct hif_softc *hif_handle) { qdf_notif_block *hif_notifier = &hif_handle->hif_recovery_notifier; return qdf_hang_event_unregister_notifier(hif_notifier); } #else static inline QDF_STATUS hif_register_recovery_notifier(struct hif_softc *hif_handle) { return QDF_STATUS_SUCCESS; } static inline QDF_STATUS hif_unregister_recovery_notifier(struct hif_softc *hif_handle) { return QDF_STATUS_SUCCESS; } #endif #ifdef HIF_CPU_PERF_AFFINE_MASK /** * __hif_cpu_hotplug_notify() - CPU hotplug event handler * @cpu: CPU Id of the CPU generating the event * @cpu_up: true if the CPU is online * * Return: None */ static void __hif_cpu_hotplug_notify(void *context, uint32_t cpu, bool cpu_up) { struct hif_softc *scn = context; if (!scn) return; if (hif_is_driver_unloading(scn) || hif_is_recovery_in_progress(scn)) return; if (cpu_up) { hif_config_irq_set_perf_affinity_hint(GET_HIF_OPAQUE_HDL(scn)); hif_debug("Setting affinity for online CPU: %d", cpu); } else { hif_debug("Skip setting affinity for offline CPU: %d", cpu); } } /** * hif_cpu_hotplug_notify - cpu core up/down notification * handler * @cpu: CPU generating the event * @cpu_up: true if the CPU is online * * Return: None */ static void hif_cpu_hotplug_notify(void *context, uint32_t cpu, bool cpu_up) { struct qdf_op_sync *op_sync; if (qdf_op_protect(&op_sync)) return; __hif_cpu_hotplug_notify(context, cpu, cpu_up); qdf_op_unprotect(op_sync); } static void hif_cpu_online_cb(void *context, uint32_t cpu) { hif_cpu_hotplug_notify(context, cpu, true); } static void hif_cpu_before_offline_cb(void *context, uint32_t cpu) { hif_cpu_hotplug_notify(context, cpu, false); } static void hif_cpuhp_register(struct hif_softc *scn) { if (!scn) { hif_info_high("cannot register hotplug notifiers"); return; } qdf_cpuhp_register(&scn->cpuhp_event_handle, scn, hif_cpu_online_cb, hif_cpu_before_offline_cb); } static void hif_cpuhp_unregister(struct hif_softc *scn) { if (!scn) { hif_info_high("cannot unregister hotplug notifiers"); return; } qdf_cpuhp_unregister(&scn->cpuhp_event_handle); } #else static void hif_cpuhp_register(struct hif_softc *scn) { } static void hif_cpuhp_unregister(struct hif_softc *scn) { } #endif /* ifdef HIF_CPU_PERF_AFFINE_MASK */ #ifdef HIF_DETECTION_LATENCY_ENABLE void hif_tasklet_latency(struct hif_softc *scn, bool from_timer) { qdf_time_t ce2_tasklet_sched_time = scn->latency_detect.ce2_tasklet_sched_time; qdf_time_t ce2_tasklet_exec_time = scn->latency_detect.ce2_tasklet_exec_time; qdf_time_t curr_jiffies = qdf_system_ticks(); uint32_t detect_latency_threshold = scn->latency_detect.detect_latency_threshold; int cpu_id = qdf_get_cpu(); /* 2 kinds of check here. * from_timer==true: check if tasklet stall * from_timer==false: check tasklet execute comes late */ if ((from_timer ? qdf_system_time_after(ce2_tasklet_sched_time, ce2_tasklet_exec_time) : qdf_system_time_after(ce2_tasklet_exec_time, ce2_tasklet_sched_time)) && qdf_system_time_after( curr_jiffies, ce2_tasklet_sched_time + qdf_system_msecs_to_ticks(detect_latency_threshold))) { hif_err("tasklet ce2 latency: from_timer %d, curr_jiffies %lu, ce2_tasklet_sched_time %lu,ce2_tasklet_exec_time %lu, detect_latency_threshold %ums detect_latency_timer_timeout %ums, cpu_id %d, called: %ps", from_timer, curr_jiffies, ce2_tasklet_sched_time, ce2_tasklet_exec_time, detect_latency_threshold, scn->latency_detect.detect_latency_timer_timeout, cpu_id, (void *)_RET_IP_); goto latency; } return; latency: qdf_trigger_self_recovery(NULL, QDF_TASKLET_CREDIT_LATENCY_DETECT); } void hif_credit_latency(struct hif_softc *scn, bool from_timer) { qdf_time_t credit_request_time = scn->latency_detect.credit_request_time; qdf_time_t credit_report_time = scn->latency_detect.credit_report_time; qdf_time_t curr_jiffies = qdf_system_ticks(); uint32_t detect_latency_threshold = scn->latency_detect.detect_latency_threshold; int cpu_id = qdf_get_cpu(); /* 2 kinds of check here. * from_timer==true: check if credit report stall * from_timer==false: check credit report comes late */ if ((from_timer ? qdf_system_time_after(credit_request_time, credit_report_time) : qdf_system_time_after(credit_report_time, credit_request_time)) && qdf_system_time_after( curr_jiffies, credit_request_time + qdf_system_msecs_to_ticks(detect_latency_threshold))) { hif_err("credit report latency: from timer %d, curr_jiffies %lu, credit_request_time %lu,credit_report_time %lu, detect_latency_threshold %ums, detect_latency_timer_timeout %ums, cpu_id %d, called: %ps", from_timer, curr_jiffies, credit_request_time, credit_report_time, detect_latency_threshold, scn->latency_detect.detect_latency_timer_timeout, cpu_id, (void *)_RET_IP_); goto latency; } return; latency: qdf_trigger_self_recovery(NULL, QDF_TASKLET_CREDIT_LATENCY_DETECT); } /** * hif_check_detection_latency(): to check if latency for tasklet/credit * * @scn: hif context * @from_timer: if called from timer handler * @bitmap_type: indicate if check tasklet or credit * * Return: none */ void hif_check_detection_latency(struct hif_softc *scn, bool from_timer, uint32_t bitmap_type) { if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; if (!scn->latency_detect.enable_detection) return; if (bitmap_type & BIT(HIF_DETECT_TASKLET)) hif_tasklet_latency(scn, from_timer); if (bitmap_type & BIT(HIF_DETECT_CREDIT)) hif_credit_latency(scn, from_timer); } static void hif_latency_detect_timeout_handler(void *arg) { struct hif_softc *scn = (struct hif_softc *)arg; int next_cpu; hif_check_detection_latency(scn, true, BIT(HIF_DETECT_TASKLET) | BIT(HIF_DETECT_CREDIT)); /* it need to make sure timer start on a different cpu, * so it can detect the tasklet schedule stall, but there * is still chance that, after timer has been started, then * irq/tasklet happens on the same cpu, then tasklet will * execute before softirq timer, if this tasklet stall, the * timer can't detect it, we can accept this as a limitation, * if tasklet stall, anyway other place will detect it, just * a little later. */ next_cpu = cpumask_any_but( cpu_active_mask, scn->latency_detect.ce2_tasklet_sched_cpuid); if (qdf_unlikely(next_cpu >= nr_cpu_ids)) { hif_debug("start timer on local"); /* it doesn't found a available cpu, start on local cpu*/ qdf_timer_mod( &scn->latency_detect.detect_latency_timer, scn->latency_detect.detect_latency_timer_timeout); } else { qdf_timer_start_on( &scn->latency_detect.detect_latency_timer, scn->latency_detect.detect_latency_timer_timeout, next_cpu); } } static void hif_latency_detect_timer_init(struct hif_softc *scn) { if (!scn) { hif_info_high("scn is null"); return; } if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; scn->latency_detect.detect_latency_timer_timeout = DETECTION_TIMER_TIMEOUT; scn->latency_detect.detect_latency_threshold = DETECTION_LATENCY_THRESHOLD; hif_info("timer timeout %u, latency threshold %u", scn->latency_detect.detect_latency_timer_timeout, scn->latency_detect.detect_latency_threshold); scn->latency_detect.is_timer_started = false; qdf_timer_init(NULL, &scn->latency_detect.detect_latency_timer, &hif_latency_detect_timeout_handler, scn, QDF_TIMER_TYPE_SW_SPIN); } static void hif_latency_detect_timer_deinit(struct hif_softc *scn) { if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; hif_info("deinit timer"); qdf_timer_free(&scn->latency_detect.detect_latency_timer); } void hif_latency_detect_timer_start(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; hif_debug_rl("start timer"); if (scn->latency_detect.is_timer_started) { hif_info("timer has been started"); return; } qdf_timer_start(&scn->latency_detect.detect_latency_timer, scn->latency_detect.detect_latency_timer_timeout); scn->latency_detect.is_timer_started = true; } void hif_latency_detect_timer_stop(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; hif_debug_rl("stop timer"); qdf_timer_sync_cancel(&scn->latency_detect.detect_latency_timer); scn->latency_detect.is_timer_started = false; } void hif_latency_detect_credit_record_time( enum hif_credit_exchange_type type, struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) { hif_err("Could not do runtime put, scn is null"); return; } if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; if (HIF_REQUEST_CREDIT == type) scn->latency_detect.credit_request_time = qdf_system_ticks(); else if (HIF_PROCESS_CREDIT_REPORT == type) scn->latency_detect.credit_report_time = qdf_system_ticks(); hif_check_detection_latency(scn, false, BIT(HIF_DETECT_CREDIT)); } void hif_set_enable_detection(struct hif_opaque_softc *hif_ctx, bool value) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) { hif_err("Could not do runtime put, scn is null"); return; } if (QDF_GLOBAL_MISSION_MODE != hif_get_conparam(scn)) return; scn->latency_detect.enable_detection = value; } #else static void hif_latency_detect_timer_init(struct hif_softc *scn) {} static void hif_latency_detect_timer_deinit(struct hif_softc *scn) {} #endif struct hif_opaque_softc *hif_open(qdf_device_t qdf_ctx, uint32_t mode, enum qdf_bus_type bus_type, struct hif_driver_state_callbacks *cbk, struct wlan_objmgr_psoc *psoc) { struct hif_softc *scn; QDF_STATUS status = QDF_STATUS_SUCCESS; int bus_context_size = hif_bus_get_context_size(bus_type); if (bus_context_size == 0) { hif_err("context size 0 not allowed"); return NULL; } scn = (struct hif_softc *)qdf_mem_malloc(bus_context_size); if (!scn) return GET_HIF_OPAQUE_HDL(scn); scn->qdf_dev = qdf_ctx; scn->hif_con_param = mode; qdf_atomic_init(&scn->active_tasklet_cnt); qdf_atomic_init(&scn->active_grp_tasklet_cnt); qdf_atomic_init(&scn->link_suspended); qdf_atomic_init(&scn->tasklet_from_intr); hif_system_pm_set_state_on(GET_HIF_OPAQUE_HDL(scn)); qdf_mem_copy(&scn->callbacks, cbk, sizeof(struct hif_driver_state_callbacks)); scn->bus_type = bus_type; hif_allow_ep_vote_access(GET_HIF_OPAQUE_HDL(scn)); hif_get_cfg_from_psoc(scn, psoc); hif_set_event_hist_mask(GET_HIF_OPAQUE_HDL(scn)); status = hif_bus_open(scn, bus_type); if (status != QDF_STATUS_SUCCESS) { hif_err("hif_bus_open error = %d, bus_type = %d", status, bus_type); qdf_mem_free(scn); scn = NULL; goto out; } hif_rtpm_lock_init(scn); hif_cpuhp_register(scn); hif_latency_detect_timer_init(scn); out: return GET_HIF_OPAQUE_HDL(scn); } #ifdef ADRASTEA_RRI_ON_DDR /** * hif_uninit_rri_on_ddr(): free consistent memory allocated for rri * @scn: hif context * * Return: none */ void hif_uninit_rri_on_ddr(struct hif_softc *scn) { if (scn->vaddr_rri_on_ddr) qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev, (CE_COUNT * sizeof(uint32_t)), scn->vaddr_rri_on_ddr, scn->paddr_rri_on_ddr, 0); scn->vaddr_rri_on_ddr = NULL; } #endif /** * hif_close(): hif_close * @hif_ctx: hif_ctx * * Return: n/a */ void hif_close(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) { hif_err("hif_opaque_softc is NULL"); return; } hif_latency_detect_timer_deinit(scn); if (scn->athdiag_procfs_inited) { athdiag_procfs_remove(); scn->athdiag_procfs_inited = false; } if (scn->target_info.hw_name) { char *hw_name = scn->target_info.hw_name; scn->target_info.hw_name = "ErrUnloading"; qdf_mem_free(hw_name); } hif_uninit_rri_on_ddr(scn); hif_cleanup_static_buf_to_target(scn); hif_cpuhp_unregister(scn); hif_rtpm_lock_deinit(scn); hif_bus_close(scn); qdf_mem_free(scn); } /** * hif_get_num_active_grp_tasklets() - get the number of active * datapath group tasklets pending to be completed. * @scn: HIF context * * Returns: the number of datapath group tasklets which are active */ static inline int hif_get_num_active_grp_tasklets(struct hif_softc *scn) { return qdf_atomic_read(&scn->active_grp_tasklet_cnt); } #if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \ defined(QCA_WIFI_QCA6290) || defined(QCA_WIFI_QCA6390) || \ defined(QCA_WIFI_QCN9000) || defined(QCA_WIFI_QCA6490) || \ defined(QCA_WIFI_QCA6750) || defined(QCA_WIFI_QCA5018) || \ defined(QCA_WIFI_KIWI) || defined(QCA_WIFI_QCN9224) || \ defined(QCA_WIFI_QCA9574)) || defined(QCA_WIFI_QCA5332) /** * hif_get_num_pending_work() - get the number of entries in * the workqueue pending to be completed. * @scn: HIF context * * Returns: the number of tasklets which are active */ static inline int hif_get_num_pending_work(struct hif_softc *scn) { return hal_get_reg_write_pending_work(scn->hal_soc); } #else static inline int hif_get_num_pending_work(struct hif_softc *scn) { return 0; } #endif QDF_STATUS hif_try_complete_tasks(struct hif_softc *scn) { uint32_t task_drain_wait_cnt = 0; int tasklet = 0, grp_tasklet = 0, work = 0; while ((tasklet = hif_get_num_active_tasklets(scn)) || (grp_tasklet = hif_get_num_active_grp_tasklets(scn)) || (work = hif_get_num_pending_work(scn))) { if (++task_drain_wait_cnt > HIF_TASK_DRAIN_WAIT_CNT) { hif_err("pending tasklets %d grp tasklets %d work %d", tasklet, grp_tasklet, work); return QDF_STATUS_E_FAULT; } hif_info("waiting for tasklets %d grp tasklets %d work %d", tasklet, grp_tasklet, work); msleep(10); } return QDF_STATUS_SUCCESS; } #if defined(HIF_IPCI) && defined(FEATURE_HAL_DELAYED_REG_WRITE) QDF_STATUS hif_try_prevent_ep_vote_access(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); uint32_t work_drain_wait_cnt = 0; uint32_t wait_cnt = 0; int work = 0; qdf_atomic_set(&scn->dp_ep_vote_access, HIF_EP_VOTE_ACCESS_DISABLE); qdf_atomic_set(&scn->ep_vote_access, HIF_EP_VOTE_ACCESS_DISABLE); while ((work = hif_get_num_pending_work(scn))) { if (++work_drain_wait_cnt > HIF_WORK_DRAIN_WAIT_CNT) { qdf_atomic_set(&scn->dp_ep_vote_access, HIF_EP_VOTE_ACCESS_ENABLE); qdf_atomic_set(&scn->ep_vote_access, HIF_EP_VOTE_ACCESS_ENABLE); hif_err("timeout wait for pending work %d ", work); return QDF_STATUS_E_FAULT; } qdf_sleep(10); } if (pld_is_pci_ep_awake(scn->qdf_dev->dev) == -ENOTSUPP) return QDF_STATUS_SUCCESS; while (pld_is_pci_ep_awake(scn->qdf_dev->dev)) { if (++wait_cnt > HIF_EP_WAKE_RESET_WAIT_CNT) { hif_err("Release EP vote is not proceed by Fw"); return QDF_STATUS_E_FAULT; } qdf_sleep(5); } return QDF_STATUS_SUCCESS; } void hif_set_ep_intermediate_vote_access(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); uint8_t vote_access; vote_access = qdf_atomic_read(&scn->ep_vote_access); if (vote_access != HIF_EP_VOTE_ACCESS_DISABLE) hif_info("EP vote changed from:%u to intermediate state", vote_access); if (QDF_IS_STATUS_ERROR(hif_try_prevent_ep_vote_access(hif_ctx))) QDF_BUG(0); qdf_atomic_set(&scn->ep_vote_access, HIF_EP_VOTE_INTERMEDIATE_ACCESS); } void hif_allow_ep_vote_access(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); qdf_atomic_set(&scn->dp_ep_vote_access, HIF_EP_VOTE_ACCESS_ENABLE); qdf_atomic_set(&scn->ep_vote_access, HIF_EP_VOTE_ACCESS_ENABLE); } void hif_set_ep_vote_access(struct hif_opaque_softc *hif_ctx, uint8_t type, uint8_t access) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (type == HIF_EP_VOTE_DP_ACCESS) qdf_atomic_set(&scn->dp_ep_vote_access, access); else qdf_atomic_set(&scn->ep_vote_access, access); } uint8_t hif_get_ep_vote_access(struct hif_opaque_softc *hif_ctx, uint8_t type) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (type == HIF_EP_VOTE_DP_ACCESS) return qdf_atomic_read(&scn->dp_ep_vote_access); else return qdf_atomic_read(&scn->ep_vote_access); } #endif #if (defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018) || \ defined(QCA_WIFI_QCA6290) || defined(QCA_WIFI_QCA6390) || \ defined(QCA_WIFI_QCN9000) || defined(QCA_WIFI_QCA6490) || \ defined(QCA_WIFI_QCA6750) || defined(QCA_WIFI_QCA5018) || \ defined(QCA_WIFI_KIWI) || defined(QCA_WIFI_QCN9224) || \ defined(QCA_WIFI_QCA9574)) || defined(QCA_WIFI_QCA5332) static QDF_STATUS hif_hal_attach(struct hif_softc *scn) { if (ce_srng_based(scn)) { scn->hal_soc = hal_attach( hif_softc_to_hif_opaque_softc(scn), scn->qdf_dev); if (!scn->hal_soc) return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } static QDF_STATUS hif_hal_detach(struct hif_softc *scn) { if (ce_srng_based(scn)) { hal_detach(scn->hal_soc); scn->hal_soc = NULL; } return QDF_STATUS_SUCCESS; } #else static QDF_STATUS hif_hal_attach(struct hif_softc *scn) { return QDF_STATUS_SUCCESS; } static QDF_STATUS hif_hal_detach(struct hif_softc *scn) { return QDF_STATUS_SUCCESS; } #endif int hif_init_dma_mask(struct device *dev, enum qdf_bus_type bus_type) { int ret; switch (bus_type) { case QDF_BUS_TYPE_IPCI: ret = qdf_set_dma_coherent_mask(dev, DMA_COHERENT_MASK_DEFAULT); if (ret) { hif_err("Failed to set dma mask error = %d", ret); return ret; } break; default: /* Follow the existing sequence for other targets */ break; } return 0; } /** * hif_enable(): hif_enable * @hif_ctx: hif_ctx * @dev: dev * @bdev: bus dev * @bid: bus ID * @bus_type: bus type * @type: enable type * * Return: QDF_STATUS */ QDF_STATUS hif_enable(struct hif_opaque_softc *hif_ctx, struct device *dev, void *bdev, const struct hif_bus_id *bid, enum qdf_bus_type bus_type, enum hif_enable_type type) { QDF_STATUS status; struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) { hif_err("hif_ctx = NULL"); return QDF_STATUS_E_NULL_VALUE; } status = hif_enable_bus(scn, dev, bdev, bid, type); if (status != QDF_STATUS_SUCCESS) { hif_err("hif_enable_bus error = %d", status); return status; } status = hif_hal_attach(scn); if (status != QDF_STATUS_SUCCESS) { hif_err("hal attach failed"); goto disable_bus; } if (hif_bus_configure(scn)) { hif_err("Target probe failed"); status = QDF_STATUS_E_FAILURE; goto hal_detach; } hif_ut_suspend_init(scn); hif_register_recovery_notifier(scn); hif_latency_detect_timer_start(hif_ctx); /* * Flag to avoid potential unallocated memory access from MSI * interrupt handler which could get scheduled as soon as MSI * is enabled, i.e to take care of the race due to the order * in where MSI is enabled before the memory, that will be * in interrupt handlers, is allocated. */ scn->hif_init_done = true; hif_debug("OK"); return QDF_STATUS_SUCCESS; hal_detach: hif_hal_detach(scn); disable_bus: hif_disable_bus(scn); return status; } void hif_disable(struct hif_opaque_softc *hif_ctx, enum hif_disable_type type) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) return; hif_set_enable_detection(hif_ctx, false); hif_latency_detect_timer_stop(hif_ctx); hif_unregister_recovery_notifier(scn); hif_nointrs(scn); if (scn->hif_init_done == false) hif_shutdown_device(hif_ctx); else hif_stop(hif_ctx); hif_hal_detach(scn); hif_disable_bus(scn); hif_wlan_disable(scn); scn->notice_send = false; hif_debug("X"); } #ifdef CE_TASKLET_DEBUG_ENABLE void hif_enable_ce_latency_stats(struct hif_opaque_softc *hif_ctx, uint8_t val) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!scn) return; scn->ce_latency_stats = val; } #endif void hif_display_stats(struct hif_opaque_softc *hif_ctx) { hif_display_bus_stats(hif_ctx); } qdf_export_symbol(hif_display_stats); void hif_clear_stats(struct hif_opaque_softc *hif_ctx) { hif_clear_bus_stats(hif_ctx); } /** * hif_crash_shutdown_dump_bus_register() - dump bus registers * @hif_ctx: hif_ctx * * Return: n/a */ #if defined(TARGET_RAMDUMP_AFTER_KERNEL_PANIC) && defined(WLAN_FEATURE_BMI) static void hif_crash_shutdown_dump_bus_register(void *hif_ctx) { struct hif_opaque_softc *scn = hif_ctx; if (hif_check_soc_status(scn)) return; if (hif_dump_registers(scn)) hif_err("Failed to dump bus registers!"); } /** * hif_crash_shutdown(): hif_crash_shutdown * * This function is called by the platform driver to dump CE registers * * @hif_ctx: hif_ctx * * Return: n/a */ void hif_crash_shutdown(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); if (!hif_ctx) return; if (scn->bus_type == QDF_BUS_TYPE_SNOC) { hif_warn("RAM dump disabled for bustype %d", scn->bus_type); return; } if (TARGET_STATUS_RESET == scn->target_status) { hif_warn("Target is already asserted, ignore!"); return; } if (hif_is_load_or_unload_in_progress(scn)) { hif_err("Load/unload is in progress, ignore!"); return; } hif_crash_shutdown_dump_bus_register(hif_ctx); hif_set_target_status(hif_ctx, TARGET_STATUS_RESET); if (ol_copy_ramdump(hif_ctx)) goto out; hif_info("RAM dump collecting completed!"); out: return; } #else void hif_crash_shutdown(struct hif_opaque_softc *hif_ctx) { hif_debug("Collecting target RAM dump disabled"); } #endif /* TARGET_RAMDUMP_AFTER_KERNEL_PANIC */ #ifdef QCA_WIFI_3_0 /** * hif_check_fw_reg(): hif_check_fw_reg * @scn: scn * @state: * * Return: int */ int hif_check_fw_reg(struct hif_opaque_softc *scn) { return 0; } #endif /** * hif_read_phy_mem_base(): hif_read_phy_mem_base * @scn: scn * @phy_mem_base: physical mem base * * Return: n/a */ void hif_read_phy_mem_base(struct hif_softc *scn, qdf_dma_addr_t *phy_mem_base) { *phy_mem_base = scn->mem_pa; } qdf_export_symbol(hif_read_phy_mem_base); /** * hif_get_device_type(): hif_get_device_type * @device_id: device_id * @revision_id: revision_id * @hif_type: returned hif_type * @target_type: returned target_type * * Return: int */ int hif_get_device_type(uint32_t device_id, uint32_t revision_id, uint32_t *hif_type, uint32_t *target_type) { int ret = 0; switch (device_id) { case ADRASTEA_DEVICE_ID_P2_E12: *hif_type = HIF_TYPE_ADRASTEA; *target_type = TARGET_TYPE_ADRASTEA; break; case AR9888_DEVICE_ID: *hif_type = HIF_TYPE_AR9888; *target_type = TARGET_TYPE_AR9888; break; case AR6320_DEVICE_ID: switch (revision_id) { case AR6320_FW_1_1: case AR6320_FW_1_3: *hif_type = HIF_TYPE_AR6320; *target_type = TARGET_TYPE_AR6320; break; case AR6320_FW_2_0: case AR6320_FW_3_0: case AR6320_FW_3_2: *hif_type = HIF_TYPE_AR6320V2; *target_type = TARGET_TYPE_AR6320V2; break; default: hif_err("dev_id = 0x%x, rev_id = 0x%x", device_id, revision_id); ret = -ENODEV; goto end; } break; case AR9887_DEVICE_ID: *hif_type = HIF_TYPE_AR9888; *target_type = TARGET_TYPE_AR9888; hif_info(" *********** AR9887 **************"); break; case QCA9984_DEVICE_ID: *hif_type = HIF_TYPE_QCA9984; *target_type = TARGET_TYPE_QCA9984; hif_info(" *********** QCA9984 *************"); break; case QCA9888_DEVICE_ID: *hif_type = HIF_TYPE_QCA9888; *target_type = TARGET_TYPE_QCA9888; hif_info(" *********** QCA9888 *************"); break; case AR900B_DEVICE_ID: *hif_type = HIF_TYPE_AR900B; *target_type = TARGET_TYPE_AR900B; hif_info(" *********** AR900B *************"); break; case QCA8074_DEVICE_ID: *hif_type = HIF_TYPE_QCA8074; *target_type = TARGET_TYPE_QCA8074; hif_info(" *********** QCA8074 *************"); break; case QCA6290_EMULATION_DEVICE_ID: case QCA6290_DEVICE_ID: *hif_type = HIF_TYPE_QCA6290; *target_type = TARGET_TYPE_QCA6290; hif_info(" *********** QCA6290EMU *************"); break; case QCN9000_DEVICE_ID: *hif_type = HIF_TYPE_QCN9000; *target_type = TARGET_TYPE_QCN9000; hif_info(" *********** QCN9000 *************"); break; case QCN9224_DEVICE_ID: *hif_type = HIF_TYPE_QCN9224; *target_type = TARGET_TYPE_QCN9224; hif_info(" *********** QCN9224 *************"); break; case QCN6122_DEVICE_ID: *hif_type = HIF_TYPE_QCN6122; *target_type = TARGET_TYPE_QCN6122; hif_info(" *********** QCN6122 *************"); break; case QCN9160_DEVICE_ID: *hif_type = HIF_TYPE_QCN9160; *target_type = TARGET_TYPE_QCN9160; hif_info(" *********** QCN9160 *************"); break; case QCN7605_DEVICE_ID: case QCN7605_COMPOSITE: case QCN7605_STANDALONE: case QCN7605_STANDALONE_V2: case QCN7605_COMPOSITE_V2: *hif_type = HIF_TYPE_QCN7605; *target_type = TARGET_TYPE_QCN7605; hif_info(" *********** QCN7605 *************"); break; case QCA6390_DEVICE_ID: case QCA6390_EMULATION_DEVICE_ID: *hif_type = HIF_TYPE_QCA6390; *target_type = TARGET_TYPE_QCA6390; hif_info(" *********** QCA6390 *************"); break; case QCA6490_DEVICE_ID: case QCA6490_EMULATION_DEVICE_ID: *hif_type = HIF_TYPE_QCA6490; *target_type = TARGET_TYPE_QCA6490; hif_info(" *********** QCA6490 *************"); break; case QCA6750_DEVICE_ID: case QCA6750_EMULATION_DEVICE_ID: *hif_type = HIF_TYPE_QCA6750; *target_type = TARGET_TYPE_QCA6750; hif_info(" *********** QCA6750 *************"); break; case KIWI_DEVICE_ID: *hif_type = HIF_TYPE_KIWI; *target_type = TARGET_TYPE_KIWI; hif_info(" *********** KIWI *************"); break; case MANGO_DEVICE_ID: *hif_type = HIF_TYPE_MANGO; *target_type = TARGET_TYPE_MANGO; hif_info(" *********** MANGO *************"); break; case QCA8074V2_DEVICE_ID: *hif_type = HIF_TYPE_QCA8074V2; *target_type = TARGET_TYPE_QCA8074V2; hif_info(" *********** QCA8074V2 *************"); break; case QCA6018_DEVICE_ID: case RUMIM2M_DEVICE_ID_NODE0: case RUMIM2M_DEVICE_ID_NODE1: case RUMIM2M_DEVICE_ID_NODE2: case RUMIM2M_DEVICE_ID_NODE3: case RUMIM2M_DEVICE_ID_NODE4: case RUMIM2M_DEVICE_ID_NODE5: *hif_type = HIF_TYPE_QCA6018; *target_type = TARGET_TYPE_QCA6018; hif_info(" *********** QCA6018 *************"); break; case QCA5018_DEVICE_ID: *hif_type = HIF_TYPE_QCA5018; *target_type = TARGET_TYPE_QCA5018; hif_info(" *********** qca5018 *************"); break; case QCA5332_DEVICE_ID: *hif_type = HIF_TYPE_QCA5332; *target_type = TARGET_TYPE_QCA5332; hif_info(" *********** QCA5332 *************"); break; case QCA9574_DEVICE_ID: *hif_type = HIF_TYPE_QCA9574; *target_type = TARGET_TYPE_QCA9574; hif_info(" *********** QCA9574 *************"); break; default: hif_err("Unsupported device ID = 0x%x!", device_id); ret = -ENODEV; break; } if (*target_type == TARGET_TYPE_UNKNOWN) { hif_err("Unsupported target_type!"); ret = -ENODEV; } end: return ret; } /** * hif_get_bus_type() - return the bus type * * Return: enum qdf_bus_type */ enum qdf_bus_type hif_get_bus_type(struct hif_opaque_softc *hif_hdl) { struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl); return scn->bus_type; } /** * Target info and ini parameters are global to the driver * Hence these structures are exposed to all the modules in * the driver and they don't need to maintains multiple copies * of the same info, instead get the handle from hif and * modify them in hif */ /** * hif_get_ini_handle() - API to get hif_config_param handle * @hif_ctx: HIF Context * * Return: pointer to hif_config_info */ struct hif_config_info *hif_get_ini_handle(struct hif_opaque_softc *hif_ctx) { struct hif_softc *sc = HIF_GET_SOFTC(hif_ctx); return &sc->hif_config; } /** * hif_get_target_info_handle() - API to get hif_target_info handle * @hif_ctx: HIF context * * Return: Pointer to hif_target_info */ struct hif_target_info *hif_get_target_info_handle( struct hif_opaque_softc *hif_ctx) { struct hif_softc *sc = HIF_GET_SOFTC(hif_ctx); return &sc->target_info; } qdf_export_symbol(hif_get_target_info_handle); #ifdef RECEIVE_OFFLOAD void hif_offld_flush_cb_register(struct hif_opaque_softc *scn, void (offld_flush_handler)(void *)) { if (hif_napi_enabled(scn, -1)) hif_napi_rx_offld_flush_cb_register(scn, offld_flush_handler); else hif_err("NAPI not enabled"); } qdf_export_symbol(hif_offld_flush_cb_register); void hif_offld_flush_cb_deregister(struct hif_opaque_softc *scn) { if (hif_napi_enabled(scn, -1)) hif_napi_rx_offld_flush_cb_deregister(scn); else hif_err("NAPI not enabled"); } qdf_export_symbol(hif_offld_flush_cb_deregister); int hif_get_rx_ctx_id(int ctx_id, struct hif_opaque_softc *hif_hdl) { if (hif_napi_enabled(hif_hdl, -1)) return NAPI_PIPE2ID(ctx_id); else return ctx_id; } #else /* RECEIVE_OFFLOAD */ int hif_get_rx_ctx_id(int ctx_id, struct hif_opaque_softc *hif_hdl) { return 0; } qdf_export_symbol(hif_get_rx_ctx_id); #endif /* RECEIVE_OFFLOAD */ #if defined(FEATURE_LRO) /** * hif_get_lro_info - Returns LRO instance for instance ID * @ctx_id: LRO instance ID * @hif_hdl: HIF Context * * Return: Pointer to LRO instance. */ void *hif_get_lro_info(int ctx_id, struct hif_opaque_softc *hif_hdl) { void *data; if (hif_napi_enabled(hif_hdl, -1)) data = hif_napi_get_lro_info(hif_hdl, ctx_id); else data = hif_ce_get_lro_ctx(hif_hdl, ctx_id); return data; } #endif /** * hif_get_target_status - API to get target status * @hif_ctx: HIF Context * * Return: enum hif_target_status */ enum hif_target_status hif_get_target_status(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); return scn->target_status; } qdf_export_symbol(hif_get_target_status); /** * hif_set_target_status() - API to set target status * @hif_ctx: HIF Context * @status: Target Status * * Return: void */ void hif_set_target_status(struct hif_opaque_softc *hif_ctx, enum hif_target_status status) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); scn->target_status = status; } /** * hif_init_ini_config() - API to initialize HIF configuration parameters * @hif_ctx: HIF Context * @cfg: HIF Configuration * * Return: void */ void hif_init_ini_config(struct hif_opaque_softc *hif_ctx, struct hif_config_info *cfg) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); qdf_mem_copy(&scn->hif_config, cfg, sizeof(struct hif_config_info)); } /** * hif_get_conparam() - API to get driver mode in HIF * @scn: HIF Context * * Return: driver mode of operation */ uint32_t hif_get_conparam(struct hif_softc *scn) { if (!scn) return 0; return scn->hif_con_param; } /** * hif_get_callbacks_handle() - API to get callbacks Handle * @scn: HIF Context * * Return: pointer to HIF Callbacks */ struct hif_driver_state_callbacks *hif_get_callbacks_handle( struct hif_softc *scn) { return &scn->callbacks; } /** * hif_is_driver_unloading() - API to query upper layers if driver is unloading * @scn: HIF Context * * Return: True/False */ bool hif_is_driver_unloading(struct hif_softc *scn) { struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); if (cbk && cbk->is_driver_unloading) return cbk->is_driver_unloading(cbk->context); return false; } /** * hif_is_load_or_unload_in_progress() - API to query upper layers if * load/unload in progress * @scn: HIF Context * * Return: True/False */ bool hif_is_load_or_unload_in_progress(struct hif_softc *scn) { struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); if (cbk && cbk->is_load_unload_in_progress) return cbk->is_load_unload_in_progress(cbk->context); return false; } /** * hif_is_recovery_in_progress() - API to query upper layers if recovery in * progress * @scn: HIF Context * * Return: True/False */ bool hif_is_recovery_in_progress(struct hif_softc *scn) { struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); if (cbk && cbk->is_recovery_in_progress) return cbk->is_recovery_in_progress(cbk->context); return false; } #if defined(HIF_PCI) || defined(HIF_SNOC) || defined(HIF_AHB) || \ defined(HIF_IPCI) /** * hif_update_pipe_callback() - API to register pipe specific callbacks * @osc: Opaque softc * @pipeid: pipe id * @callbacks: callbacks to register * * Return: void */ void hif_update_pipe_callback(struct hif_opaque_softc *osc, u_int8_t pipeid, struct hif_msg_callbacks *callbacks) { struct hif_softc *scn = HIF_GET_SOFTC(osc); struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn); struct HIF_CE_pipe_info *pipe_info; QDF_BUG(pipeid < CE_COUNT_MAX); hif_debug("pipeid: %d", pipeid); pipe_info = &hif_state->pipe_info[pipeid]; qdf_mem_copy(&pipe_info->pipe_callbacks, callbacks, sizeof(pipe_info->pipe_callbacks)); } qdf_export_symbol(hif_update_pipe_callback); /** * hif_is_target_ready() - API to query if target is in ready state * progress * @scn: HIF Context * * Return: True/False */ bool hif_is_target_ready(struct hif_softc *scn) { struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); if (cbk && cbk->is_target_ready) return cbk->is_target_ready(cbk->context); /* * if callback is not registered then there is no way to determine * if target is ready. In-such case return true to indicate that * target is ready. */ return true; } qdf_export_symbol(hif_is_target_ready); int hif_get_bandwidth_level(struct hif_opaque_softc *hif_handle) { struct hif_softc *scn = HIF_GET_SOFTC(hif_handle); struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); if (cbk && cbk->get_bandwidth_level) return cbk->get_bandwidth_level(cbk->context); return 0; } qdf_export_symbol(hif_get_bandwidth_level); #ifdef DP_MEM_PRE_ALLOC void *hif_mem_alloc_consistent_unaligned(struct hif_softc *scn, qdf_size_t size, qdf_dma_addr_t *paddr, uint32_t ring_type, uint8_t *is_mem_prealloc) { void *vaddr = NULL; struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); *is_mem_prealloc = false; if (cbk && cbk->prealloc_get_consistent_mem_unaligned) { vaddr = cbk->prealloc_get_consistent_mem_unaligned(size, paddr, ring_type); if (vaddr) { *is_mem_prealloc = true; goto end; } } vaddr = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev, size, paddr); end: dp_info("%s va_unaligned %pK pa_unaligned %pK size %d ring_type %d", *is_mem_prealloc ? "pre-alloc" : "dynamic-alloc", vaddr, (void *)*paddr, (int)size, ring_type); return vaddr; } void hif_mem_free_consistent_unaligned(struct hif_softc *scn, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr, qdf_dma_context_t memctx, uint8_t is_mem_prealloc) { struct hif_driver_state_callbacks *cbk = hif_get_callbacks_handle(scn); if (is_mem_prealloc) { if (cbk && cbk->prealloc_put_consistent_mem_unaligned) { cbk->prealloc_put_consistent_mem_unaligned(vaddr); } else { dp_warn("dp_prealloc_put_consistent_unligned NULL"); QDF_BUG(0); } } else { qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev, size, vaddr, paddr, memctx); } } #endif /** * hif_batch_send() - API to access hif specific function * ce_batch_send. * @osc: HIF Context * @msdu : list of msdus to be sent * @transfer_id : transfer id * @len : downloaded length * * Return: list of msds not sent */ qdf_nbuf_t hif_batch_send(struct hif_opaque_softc *osc, qdf_nbuf_t msdu, uint32_t transfer_id, u_int32_t len, uint32_t sendhead) { void *ce_tx_hdl = hif_get_ce_handle(osc, CE_HTT_TX_CE); if (!ce_tx_hdl) return NULL; return ce_batch_send((struct CE_handle *)ce_tx_hdl, msdu, transfer_id, len, sendhead); } qdf_export_symbol(hif_batch_send); /** * hif_update_tx_ring() - API to access hif specific function * ce_update_tx_ring. * @osc: HIF Context * @num_htt_cmpls : number of htt compl received. * * Return: void */ void hif_update_tx_ring(struct hif_opaque_softc *osc, u_int32_t num_htt_cmpls) { void *ce_tx_hdl = hif_get_ce_handle(osc, CE_HTT_TX_CE); ce_update_tx_ring(ce_tx_hdl, num_htt_cmpls); } qdf_export_symbol(hif_update_tx_ring); /** * hif_send_single() - API to access hif specific function * ce_send_single. * @osc: HIF Context * @msdu : msdu to be sent * @transfer_id: transfer id * @len : downloaded length * * Return: msdu sent status */ QDF_STATUS hif_send_single(struct hif_opaque_softc *osc, qdf_nbuf_t msdu, uint32_t transfer_id, u_int32_t len) { void *ce_tx_hdl = hif_get_ce_handle(osc, CE_HTT_TX_CE); if (!ce_tx_hdl) return QDF_STATUS_E_NULL_VALUE; return ce_send_single((struct CE_handle *)ce_tx_hdl, msdu, transfer_id, len); } qdf_export_symbol(hif_send_single); #endif /** * hif_reg_write() - API to access hif specific function * hif_write32_mb. * @hif_ctx : HIF Context * @offset : offset on which value has to be written * @value : value to be written * * Return: None */ void hif_reg_write(struct hif_opaque_softc *hif_ctx, uint32_t offset, uint32_t value) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); hif_write32_mb(scn, scn->mem + offset, value); } qdf_export_symbol(hif_reg_write); /** * hif_reg_read() - API to access hif specific function * hif_read32_mb. * @hif_ctx : HIF Context * @offset : offset from which value has to be read * * Return: Read value */ uint32_t hif_reg_read(struct hif_opaque_softc *hif_ctx, uint32_t offset) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); return hif_read32_mb(scn, scn->mem + offset); } qdf_export_symbol(hif_reg_read); /** * hif_ramdump_handler(): generic ramdump handler * @scn: struct hif_opaque_softc * * Return: None */ void hif_ramdump_handler(struct hif_opaque_softc *scn) { if (hif_get_bus_type(scn) == QDF_BUS_TYPE_USB) hif_usb_ramdump_handler(scn); } hif_pm_wake_irq_type hif_pm_get_wake_irq_type(struct hif_opaque_softc *hif_ctx) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); return scn->wake_irq_type; } irqreturn_t hif_wake_interrupt_handler(int irq, void *context) { struct hif_softc *scn = context; hif_info("wake interrupt received on irq %d", irq); hif_rtpm_set_monitor_wake_intr(0); hif_rtpm_request_resume(); if (scn->initial_wakeup_cb) scn->initial_wakeup_cb(scn->initial_wakeup_priv); if (hif_is_ut_suspended(scn)) hif_ut_fw_resume(scn); qdf_pm_system_wakeup(); return IRQ_HANDLED; } void hif_set_initial_wakeup_cb(struct hif_opaque_softc *hif_ctx, void (*callback)(void *), void *priv) { struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx); scn->initial_wakeup_cb = callback; scn->initial_wakeup_priv = priv; } void hif_set_ce_service_max_yield_time(struct hif_opaque_softc *hif, uint32_t ce_service_max_yield_time) { struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif); hif_ctx->ce_service_max_yield_time = ce_service_max_yield_time * 1000; } unsigned long long hif_get_ce_service_max_yield_time(struct hif_opaque_softc *hif) { struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif); return hif_ctx->ce_service_max_yield_time; } void hif_set_ce_service_max_rx_ind_flush(struct hif_opaque_softc *hif, uint8_t ce_service_max_rx_ind_flush) { struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif); if (ce_service_max_rx_ind_flush == 0 || ce_service_max_rx_ind_flush > MSG_FLUSH_NUM) hif_ctx->ce_service_max_rx_ind_flush = MSG_FLUSH_NUM; else hif_ctx->ce_service_max_rx_ind_flush = ce_service_max_rx_ind_flush; } #ifdef SYSTEM_PM_CHECK void __hif_system_pm_set_state(struct hif_opaque_softc *hif, enum hif_system_pm_state state) { struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif); qdf_atomic_set(&hif_ctx->sys_pm_state, state); } int32_t hif_system_pm_get_state(struct hif_opaque_softc *hif) { struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif); return qdf_atomic_read(&hif_ctx->sys_pm_state); } int hif_system_pm_state_check(struct hif_opaque_softc *hif) { struct hif_softc *hif_ctx = HIF_GET_SOFTC(hif); int32_t sys_pm_state; if (!hif_ctx) { hif_err("hif context is null"); return -EFAULT; } sys_pm_state = qdf_atomic_read(&hif_ctx->sys_pm_state); if (sys_pm_state == HIF_SYSTEM_PM_STATE_BUS_SUSPENDING || sys_pm_state == HIF_SYSTEM_PM_STATE_BUS_SUSPENDED) { hif_info("Triggering system wakeup"); qdf_pm_system_wakeup(); return -EAGAIN; } return 0; } #endif