// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include "msm_vidc_dt.h" #include "msm_vidc_internal.h" #include "msm_vidc_core.h" #include "msm_vidc_debug.h" #include "msm_vidc_driver.h" static size_t get_u32_array_num_elements(struct device_node *np, char *name) { int len; size_t num_elements = 0; if (!of_get_property(np, name, &len)) { d_vpr_e("Failed to read %s from device tree\n", name); goto fail_read; } num_elements = len / sizeof(u32); if (num_elements <= 0) { d_vpr_e("%s not specified in device tree\n", name); goto fail_read; } return num_elements; fail_read: return 0; } /** * msm_vidc_load_u32_table() - load dtsi table entries * @pdev: A pointer to the platform device. * @of_node: A pointer to the device node. * @table_name: A pointer to the dtsi table entry name. * @struct_size: The size of the structure which is nothing but * a single entry in the dtsi table. * @table: A pointer to the table pointer which needs to be * filled by the dtsi table entries. * @num_elements: Number of elements pointer which needs to be filled * with the number of elements in the table. * * This is a generic implementation to load single or multiple array * table from dtsi. The array elements should be of size equal to u32. * * Return: Return '0' for success else appropriate error value. */ static int msm_vidc_load_u32_table(struct platform_device *pdev, struct device_node *of_node, char *table_name, int struct_size, u32 **table, u32 *num_elements) { int rc = 0, num_elemts = 0; u32 *ptbl = NULL; if (!of_find_property(of_node, table_name, NULL)) { d_vpr_h("%s not found\n", table_name); return 0; } num_elemts = get_u32_array_num_elements(of_node, table_name); if (!num_elemts) { d_vpr_e("no elements in %s\n", table_name); return 0; } num_elemts /= struct_size / sizeof(u32); ptbl = devm_kzalloc(&pdev->dev, num_elemts * struct_size, GFP_KERNEL); if (!ptbl) { d_vpr_e("Failed to alloc table %s\n", table_name); return -ENOMEM; } if (of_property_read_u32_array(of_node, table_name, ptbl, num_elemts * struct_size / sizeof(u32))) { d_vpr_e("Failed to read %s\n", table_name); return -EINVAL; } *table = ptbl; if (num_elements) *num_elements = num_elemts; return rc; } /* A comparator to compare loads (needed later on) */ static int cmp(const void *a, const void *b) { /* want to sort in reverse so flip the comparison */ return ((struct allowed_clock_rates_table *)b)->clock_rate - ((struct allowed_clock_rates_table *)a)->clock_rate; } static void msm_vidc_free_allowed_clocks_table(struct msm_vidc_dt *dt) { dt->allowed_clks_tbl = NULL; } static void msm_vidc_free_reg_table(struct msm_vidc_dt *dt) { dt->reg_set.reg_tbl = NULL; } static void msm_vidc_free_qdss_addr_table(struct msm_vidc_dt *dt) { dt->qdss_addr_set.addr_tbl = NULL; } static void msm_vidc_free_bus_table(struct msm_vidc_dt *dt) { dt->bus_set.bus_tbl = NULL; dt->bus_set.count = 0; } static void msm_vidc_free_buffer_usage_table(struct msm_vidc_dt *dt) { dt->buffer_usage_set.buffer_usage_tbl = NULL; } static void msm_vidc_free_regulator_table(struct msm_vidc_dt *dt) { int c = 0; for (c = 0; c < dt->regulator_set.count; ++c) { struct regulator_info *rinfo = &dt->regulator_set.regulator_tbl[c]; rinfo->name = NULL; } dt->regulator_set.regulator_tbl = NULL; dt->regulator_set.count = 0; } static void msm_vidc_free_clock_table(struct msm_vidc_dt *dt) { dt->clock_set.clock_tbl = NULL; dt->clock_set.count = 0; } static int msm_vidc_load_fw_name(struct msm_vidc_core *core) { struct platform_device *pdev = core->pdev; return of_property_read_string_index(pdev->dev.of_node, "vidc,firmware-name", 0, &core->dt->fw_name); } static int msm_vidc_load_reg_table(struct msm_vidc_core *core) { struct reg_set *reg_set; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; int i; int rc = 0; if (!of_find_property(pdev->dev.of_node, "qcom,reg-presets", NULL)) { /* * qcom,reg-presets is an optional property. It likely won't be * present if we don't have any register settings to program */ d_vpr_h("reg-presets not found\n"); return 0; } reg_set = &dt->reg_set; reg_set->count = get_u32_array_num_elements(pdev->dev.of_node, "qcom,reg-presets"); reg_set->count /= sizeof(*reg_set->reg_tbl) / sizeof(u32); if (!reg_set->count) { d_vpr_h("no elements in reg set\n"); return rc; } reg_set->reg_tbl = devm_kzalloc(&pdev->dev, reg_set->count * sizeof(*(reg_set->reg_tbl)), GFP_KERNEL); if (!reg_set->reg_tbl) { d_vpr_e("%s: Failed to alloc register table\n", __func__); return -ENOMEM; } if (of_property_read_u32_array(pdev->dev.of_node, "qcom,reg-presets", (u32 *)reg_set->reg_tbl, reg_set->count * 3)) { d_vpr_e("Failed to read register table\n"); msm_vidc_free_reg_table(core->dt); return -EINVAL; } for (i = 0; i < reg_set->count; i++) { d_vpr_h("reg = %#x, value = %#x, mask = %#x\n", reg_set->reg_tbl[i].reg, reg_set->reg_tbl[i].value, reg_set->reg_tbl[i].mask); } return rc; } static int msm_vidc_load_qdss_table(struct msm_vidc_core *core) { struct addr_set *qdss_addr_set; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; int i; int rc = 0; if (!of_find_property(pdev->dev.of_node, "qcom,qdss-presets", NULL)) { /* * qcom,qdss-presets is an optional property. It likely won't be * present if we don't have any register settings to program */ d_vpr_h("qdss-presets not found\n"); return rc; } qdss_addr_set = &dt->qdss_addr_set; qdss_addr_set->count = get_u32_array_num_elements(pdev->dev.of_node, "qcom,qdss-presets"); qdss_addr_set->count /= sizeof(*qdss_addr_set->addr_tbl) / sizeof(u32); if (!qdss_addr_set->count) { d_vpr_h("no elements in qdss reg set\n"); return rc; } qdss_addr_set->addr_tbl = devm_kzalloc(&pdev->dev, qdss_addr_set->count * sizeof(*qdss_addr_set->addr_tbl), GFP_KERNEL); if (!qdss_addr_set->addr_tbl) { d_vpr_e("%s: Failed to alloc register table\n", __func__); rc = -ENOMEM; goto err_qdss_addr_tbl; } rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,qdss-presets", (u32 *)qdss_addr_set->addr_tbl, qdss_addr_set->count * 2); if (rc) { d_vpr_e("Failed to read qdss address table\n"); msm_vidc_free_qdss_addr_table(core->dt); rc = -EINVAL; goto err_qdss_addr_tbl; } for (i = 0; i < qdss_addr_set->count; i++) { d_vpr_h("qdss addr = %x, value = %x\n", qdss_addr_set->addr_tbl[i].start, qdss_addr_set->addr_tbl[i].size); } err_qdss_addr_tbl: return rc; } static int msm_vidc_load_subcache_info(struct msm_vidc_core *core) { int rc = 0, num_subcaches = 0, c; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; struct subcache_set *subcaches = &dt->subcache_set; num_subcaches = of_property_count_strings(pdev->dev.of_node, "cache-slice-names"); if (num_subcaches <= 0) { d_vpr_h("No subcaches found\n"); goto err_load_subcache_table_fail; } subcaches->subcache_tbl = devm_kzalloc(&pdev->dev, sizeof(*subcaches->subcache_tbl) * num_subcaches, GFP_KERNEL); if (!subcaches->subcache_tbl) { d_vpr_e("Failed to allocate memory for subcache tbl\n"); rc = -ENOMEM; goto err_load_subcache_table_fail; } subcaches->count = num_subcaches; d_vpr_h("Found %d subcaches\n", num_subcaches); for (c = 0; c < num_subcaches; ++c) { struct subcache_info *vsc = &dt->subcache_set.subcache_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "cache-slice-names", c, &vsc->name); } dt->sys_cache_present = true; return 0; err_load_subcache_table_fail: dt->sys_cache_present = false; subcaches->count = 0; subcaches->subcache_tbl = NULL; return rc; } static int msm_vidc_load_allowed_clocks_table( struct msm_vidc_core *core) { int rc = 0; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; int i; if (!of_find_property(pdev->dev.of_node, "qcom,allowed-clock-rates", NULL)) { d_vpr_h("allowed-clock-rates not found\n"); return 0; } rc = msm_vidc_load_u32_table(pdev, pdev->dev.of_node, "qcom,allowed-clock-rates", sizeof(*dt->allowed_clks_tbl), (u32 **)&dt->allowed_clks_tbl, &dt->allowed_clks_tbl_size); if (rc) { d_vpr_e("%s: failed to read allowed clocks table\n", __func__); return rc; } sort(dt->allowed_clks_tbl, dt->allowed_clks_tbl_size, sizeof(*dt->allowed_clks_tbl), cmp, NULL); d_vpr_h("Found allowed clock rates\n"); for (i = 0; i < dt->allowed_clks_tbl_size; i++) d_vpr_h(" %d\n", dt->allowed_clks_tbl[i]); return 0; } static int msm_vidc_load_bus_table(struct msm_vidc_core *core) { int rc = 0; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; struct bus_set *buses = &dt->bus_set; int c = 0, num_buses = 0; u32 *bus_ranges = NULL; num_buses = of_property_count_strings(pdev->dev.of_node, "interconnect-names"); if (num_buses <= 0) { d_vpr_e("No buses found\n"); return -EINVAL; } buses->count = num_buses; d_vpr_h("Found %d bus interconnects\n", num_buses); bus_ranges = kzalloc(2 * num_buses * sizeof(*bus_ranges), GFP_KERNEL); if (!bus_ranges) { d_vpr_e("No memory to read bus ranges\n"); return -ENOMEM; } rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,bus-range-kbps", bus_ranges, num_buses * 2); if (rc) { d_vpr_e( "Failed to read bus ranges: defaulting to <0 INT_MAX>\n"); for (c = 0; c < num_buses; c++) { bus_ranges[c * 2] = 0; bus_ranges[c * 2 + 1] = INT_MAX; } } buses->bus_tbl = devm_kzalloc(&pdev->dev, num_buses * sizeof(*buses->bus_tbl), GFP_KERNEL); if (!buses->bus_tbl) { d_vpr_e("No memory for bus table\n"); rc = -ENOMEM; goto exit; } for (c = 0; c < num_buses; c++) { struct bus_info *bus = &dt->bus_set.bus_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "interconnect-names", c, &bus->name); bus->dev = &pdev->dev; bus->range[0] = bus_ranges[c * 2]; bus->range[1] = bus_ranges[c * 2 + 1]; d_vpr_h("Found bus %s, range [%d %d]\n", bus->name, bus->range[0], bus->range[1]); } exit: kfree(bus_ranges); return rc; } /* TODO: move this to platform data */ static int msm_vidc_load_buffer_usage_table(struct msm_vidc_core *core) { int rc = 0; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; struct buffer_usage_set *buffer_usage_set = &dt->buffer_usage_set; if (!of_find_property(pdev->dev.of_node, "qcom,buffer-type-tz-usage-table", NULL)) { /* * qcom,buffer-type-tz-usage-table is an optional property. It * likely won't be present if the core doesn't support content * protection */ d_vpr_h("buffer-type-tz-usage-table not found\n"); return 0; } buffer_usage_set->count = get_u32_array_num_elements( pdev->dev.of_node, "qcom,buffer-type-tz-usage-table"); buffer_usage_set->count /= sizeof(*buffer_usage_set->buffer_usage_tbl) / sizeof(u32); if (!buffer_usage_set->count) { d_vpr_h("no elements in buffer usage set\n"); return 0; } buffer_usage_set->buffer_usage_tbl = devm_kzalloc(&pdev->dev, buffer_usage_set->count * sizeof(*buffer_usage_set->buffer_usage_tbl), GFP_KERNEL); if (!buffer_usage_set->buffer_usage_tbl) { d_vpr_e("%s: Failed to alloc buffer usage table\n", __func__); rc = -ENOMEM; goto err_load_buf_usage; } rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,buffer-type-tz-usage-table", (u32 *)buffer_usage_set->buffer_usage_tbl, buffer_usage_set->count * sizeof(*buffer_usage_set->buffer_usage_tbl) / sizeof(u32)); if (rc) { d_vpr_e("Failed to read buffer usage table\n"); goto err_load_buf_usage; } return 0; err_load_buf_usage: msm_vidc_free_buffer_usage_table(core->dt); return rc; } static int msm_vidc_load_regulator_table(struct msm_vidc_core *core) { int rc = 0; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; struct regulator_set *regulators = &dt->regulator_set; struct device_node *domains_parent_node = NULL; struct property *domains_property = NULL; int reg_count = 0; regulators->count = 0; regulators->regulator_tbl = NULL; domains_parent_node = pdev->dev.of_node; for_each_property_of_node(domains_parent_node, domains_property) { const char *search_string = "-supply"; char *supply; bool matched = false; /* check if current property is possibly a regulator */ supply = strnstr(domains_property->name, search_string, strlen(domains_property->name) + 1); matched = supply && (*(supply + strlen(search_string)) == '\0'); if (!matched) continue; reg_count++; } regulators->regulator_tbl = devm_kzalloc(&pdev->dev, sizeof(*regulators->regulator_tbl) * reg_count, GFP_KERNEL); if (!regulators->regulator_tbl) { rc = -ENOMEM; d_vpr_e("Failed to alloc memory for regulator table\n"); goto err_reg_tbl_alloc; } for_each_property_of_node(domains_parent_node, domains_property) { const char *search_string = "-supply"; char *supply; bool matched = false; struct device_node *regulator_node = NULL; struct regulator_info *rinfo = NULL; /* check if current property is possibly a regulator */ supply = strnstr(domains_property->name, search_string, strlen(domains_property->name) + 1); matched = supply && (supply[strlen(search_string)] == '\0'); if (!matched) continue; /* make sure prop isn't being misused */ regulator_node = of_parse_phandle(domains_parent_node, domains_property->name, 0); if (IS_ERR(regulator_node)) { d_vpr_e("%s is not a phandle\n", domains_property->name); continue; } regulators->count++; /* populate regulator info */ rinfo = ®ulators->regulator_tbl[regulators->count - 1]; rinfo->name = devm_kzalloc(&pdev->dev, (supply - domains_property->name) + 1, GFP_KERNEL); if (!rinfo->name) { rc = -ENOMEM; d_vpr_e("Failed to alloc memory for regulator name\n"); goto err_reg_name_alloc; } strlcpy(rinfo->name, domains_property->name, (supply - domains_property->name) + 1); rinfo->has_hw_power_collapse = of_property_read_bool( regulator_node, "qcom,support-hw-trigger"); d_vpr_h("Found regulator %s: h/w collapse = %s\n", rinfo->name, rinfo->has_hw_power_collapse ? "yes" : "no"); } if (!regulators->count) d_vpr_h("No regulators found"); return 0; err_reg_name_alloc: err_reg_tbl_alloc: msm_vidc_free_regulator_table(core->dt); return rc; } static int msm_vidc_load_clock_table(struct msm_vidc_core *core) { int rc = 0, num_clocks = 0, c = 0; struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; int *clock_ids = NULL; int *clock_props = NULL; struct clock_set *clocks = &dt->clock_set; num_clocks = of_property_count_strings(pdev->dev.of_node, "clock-names"); if (num_clocks <= 0) { d_vpr_h("No clocks found\n"); clocks->count = 0; rc = 0; goto err_load_clk_table_fail; } clock_ids = devm_kzalloc(&pdev->dev, num_clocks * sizeof(*clock_ids), GFP_KERNEL); if (!clock_ids) { d_vpr_e("No memory to read clock ids\n"); rc = -ENOMEM; goto err_load_clk_table_fail; } rc = of_property_read_u32_array(pdev->dev.of_node, "clock-ids", clock_ids, num_clocks); if (rc) { d_vpr_e("Failed to read clock ids: %d\n", rc); goto err_load_clk_prop_fail; } clock_props = devm_kzalloc(&pdev->dev, num_clocks * sizeof(*clock_props), GFP_KERNEL); if (!clock_props) { d_vpr_e("No memory to read clock properties\n"); rc = -ENOMEM; goto err_load_clk_table_fail; } rc = of_property_read_u32_array(pdev->dev.of_node, "qcom,clock-configs", clock_props, num_clocks); if (rc) { d_vpr_e("Failed to read clock properties: %d\n", rc); goto err_load_clk_prop_fail; } clocks->clock_tbl = devm_kzalloc(&pdev->dev, sizeof(*clocks->clock_tbl) * num_clocks, GFP_KERNEL); if (!clocks->clock_tbl) { d_vpr_e("Failed to allocate memory for clock tbl\n"); rc = -ENOMEM; goto err_load_clk_prop_fail; } clocks->count = num_clocks; d_vpr_h("Found %d clocks\n", num_clocks); for (c = 0; c < num_clocks; ++c) { struct clock_info *vc = &dt->clock_set.clock_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "clock-names", c, &vc->name); vc->clk_id = clock_ids[c]; if (clock_props[c] & CLOCK_PROP_HAS_SCALING) { vc->has_scaling = true; } else { vc->has_scaling = false; } if (clock_props[c] & CLOCK_PROP_HAS_MEM_RETENTION) vc->has_mem_retention = true; else vc->has_mem_retention = false; d_vpr_h("Found clock %s: scale-able = %s\n", vc->name, vc->has_scaling ? "yes" : "no"); } return 0; err_load_clk_prop_fail: err_load_clk_table_fail: return rc; } static int msm_vidc_load_reset_table(struct msm_vidc_core *core) { struct platform_device *pdev = core->pdev; struct msm_vidc_dt *dt = core->dt; struct reset_set *rst = &dt->reset_set; int num_clocks = 0, c = 0; num_clocks = of_property_count_strings(pdev->dev.of_node, "reset-names"); if (num_clocks <= 0) { d_vpr_h("No reset clocks found\n"); rst->count = 0; return 0; } rst->reset_tbl = devm_kcalloc(&pdev->dev, num_clocks, sizeof(*rst->reset_tbl), GFP_KERNEL); if (!rst->reset_tbl) return -ENOMEM; rst->count = num_clocks; d_vpr_h("Found %d reset clocks\n", num_clocks); for (c = 0; c < num_clocks; ++c) { struct reset_info *rc = &dt->reset_set.reset_tbl[c]; of_property_read_string_index(pdev->dev.of_node, "reset-names", c, &rc->name); } return 0; } static int msm_decide_dt_node(struct msm_vidc_core *core) { int rc = 0; struct platform_device *pdev = core->pdev; u32 sku_index = 0; rc = of_property_read_u32(pdev->dev.of_node, "sku-index", &sku_index); if (rc) { d_vpr_h("'sku_index' not found in node\n"); return 0; } return 0; } static int msm_vidc_read_resources_from_dt(struct platform_device *pdev) { int rc = 0; struct msm_vidc_core *core; struct msm_vidc_dt *dt; struct resource *kres; if (!pdev) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } core = dev_get_drvdata(&pdev->dev); if (!core || !core->dt) { d_vpr_e("%s: core not found in device %s", dev_name(&pdev->dev)); return -EINVAL; } dt = core->dt; rc = msm_decide_dt_node(core); if (rc) return rc; INIT_LIST_HEAD(&dt->context_banks); kres = platform_get_resource(pdev, IORESOURCE_MEM, 0); dt->register_base = kres ? kres->start : -1; dt->register_size = kres ? (kres->end + 1 - kres->start) : -1; d_vpr_h("%s: register base %pa, size %#x\n", __func__, &dt->register_base, dt->register_size); kres = platform_get_resource(pdev, IORESOURCE_IRQ, 0); dt->irq = kres ? kres->start : -1; d_vpr_h("%s: irq %d\n", __func__, dt->irq); rc = msm_vidc_load_fw_name(core); if (rc) d_vpr_e("%s: failed to load fw name, rc %d, using default fw\n", __func__, rc); rc = msm_vidc_load_subcache_info(core); if (rc) d_vpr_e("Failed to load subcache info: %d\n", rc); rc = msm_vidc_load_qdss_table(core); if (rc) d_vpr_e("Failed to load qdss reg table: %d\n", rc); rc = msm_vidc_load_reg_table(core); if (rc) { d_vpr_e("Failed to load reg table: %d\n", rc); goto err_load_reg_table; } // TODO: move this table to platform rc = msm_vidc_load_buffer_usage_table(core); if (rc) { d_vpr_e("Failed to load buffer usage table: %d\n", rc); goto err_load_buffer_usage_table; } rc = msm_vidc_load_regulator_table(core); if (rc) { d_vpr_e("Failed to load list of regulators %d\n", rc); goto err_load_regulator_table; } rc = msm_vidc_load_bus_table(core); if (rc) { d_vpr_e("Failed to load bus table: %d\n", rc); goto err_load_bus_table; } rc = msm_vidc_load_clock_table(core); if (rc) { d_vpr_e("Failed to load clock table: %d\n", rc); goto err_load_clock_table; } // TODO: move this table to platform rc = msm_vidc_load_allowed_clocks_table(core); if (rc) { d_vpr_e("Failed to load allowed clocks table: %d\n", rc); goto err_load_allowed_clocks_table; } rc = msm_vidc_load_reset_table(core); if (rc) { d_vpr_e("Failed to load reset table: %d\n", rc); goto err_load_reset_table; } return rc; err_load_reset_table: msm_vidc_free_allowed_clocks_table(core->dt); err_load_allowed_clocks_table: msm_vidc_free_clock_table(core->dt); err_load_clock_table: msm_vidc_free_bus_table(core->dt); err_load_bus_table: msm_vidc_free_regulator_table(core->dt); err_load_regulator_table: msm_vidc_free_buffer_usage_table(core->dt); err_load_buffer_usage_table: msm_vidc_free_reg_table(core->dt); err_load_reg_table: return rc; } static int msm_vidc_setup_context_bank(struct msm_vidc_core *core, struct context_bank_info *cb, struct device *dev) { int rc = 0; struct bus_type *bus; if (!core || !dev || !cb) { d_vpr_e("%s: Invalid Input params\n", __func__); return -EINVAL; } cb->dev = dev; bus = cb->dev->bus; if (IS_ERR_OR_NULL(bus)) { d_vpr_e("%s: failed to get bus type\n", __func__); rc = PTR_ERR(bus) ? PTR_ERR(bus) : -ENODEV; goto remove_cb; } cb->domain = iommu_get_domain_for_dev(cb->dev); /* * When memory is fragmented, below configuration increases the * possibility to get a mapping for buffer in the configured CB. */ iommu_dma_enable_best_fit_algo(cb->dev); /* * configure device segment size and segment boundary to ensure * iommu mapping returns one mapping (which is required for partial * cache operations) */ if (!dev->dma_parms) dev->dma_parms = devm_kzalloc(dev, sizeof(*dev->dma_parms), GFP_KERNEL); dma_set_max_seg_size(dev, (unsigned int)DMA_BIT_MASK(32)); dma_set_seg_boundary(dev, (unsigned long)DMA_BIT_MASK(64)); d_vpr_h("Attached %s and created mapping\n", dev_name(dev)); d_vpr_h( "Context bank: %s, is_secure: %d, address range start: %#x, size: %#x, dev: %pK, domain: %pK", cb->name, cb->is_secure, cb->addr_range.start, cb->addr_range.size, cb->dev, cb->domain); remove_cb: return rc; } static int msm_vidc_populate_context_bank(struct device *dev, struct msm_vidc_core *core) { int rc = 0; struct context_bank_info *cb = NULL; struct device_node *np = NULL; if (!dev || !core || !core->dt) { d_vpr_e("%s: invalid inputs\n", __func__); return -EINVAL; } np = dev->of_node; cb = devm_kzalloc(dev, sizeof(*cb), GFP_KERNEL); if (!cb) { d_vpr_e("%s: Failed to allocate cb\n", __func__); return -ENOMEM; } INIT_LIST_HEAD(&cb->list); list_add_tail(&cb->list, &core->dt->context_banks); rc = of_property_read_string(np, "label", &cb->name); if (rc) { d_vpr_h("Failed to read cb label from device tree\n"); rc = 0; } d_vpr_h("%s: context bank has name %s\n", __func__, cb->name); rc = of_property_read_u32_array(np, "virtual-addr-pool", (u32 *)&cb->addr_range, 2); if (rc) { d_vpr_e("Could not read addr pool: context bank: %s %d\n", cb->name, rc); goto err_setup_cb; } cb->is_secure = of_property_read_bool(np, "qcom,secure-context-bank"); d_vpr_h("context bank %s: secure = %d\n", cb->name, cb->is_secure); d_vpr_h("context bank %s address start %x size %x\n", cb->name, cb->addr_range.start, cb->addr_range.size); rc = msm_vidc_setup_context_bank(core, cb, dev); if (rc) { d_vpr_e("Cannot setup context bank %d\n", rc); goto err_setup_cb; } iommu_set_fault_handler(cb->domain, msm_vidc_smmu_fault_handler, (void *)core); return 0; err_setup_cb: list_del(&cb->list); return rc; } int msm_vidc_read_context_bank_resources_from_dt(struct platform_device *pdev) { struct msm_vidc_core *core; int rc = 0; if (!pdev) { d_vpr_e("Invalid platform device\n"); return -EINVAL; } else if (!pdev->dev.parent) { d_vpr_e("Failed to find a parent for %s\n", dev_name(&pdev->dev)); return -ENODEV; } core = dev_get_drvdata(pdev->dev.parent); if (!core) { d_vpr_e("Failed to find cookie in parent device %s", dev_name(pdev->dev.parent)); return -EINVAL; } rc = msm_vidc_populate_context_bank(&pdev->dev, core); if (rc) d_vpr_e("Failed to probe context bank\n"); else d_vpr_h("Successfully probed context bank\n"); return rc; } void msm_vidc_deinit_dt(struct platform_device *pdev) { struct msm_vidc_core *core; if (!pdev) { d_vpr_e("%s: invalid params\n", __func__); return; } core = dev_get_drvdata(&pdev->dev); if (!core) { d_vpr_e("%s: core not found in device %s", dev_name(&pdev->dev)); return; } else if (!core->dt) { d_vpr_e("%s: invalid dt in device %s", dev_name(&pdev->dev)); return; } msm_vidc_free_clock_table(core->dt); msm_vidc_free_regulator_table(core->dt); msm_vidc_free_allowed_clocks_table(core->dt); msm_vidc_free_reg_table(core->dt); msm_vidc_free_qdss_addr_table(core->dt); msm_vidc_free_bus_table(core->dt); msm_vidc_free_buffer_usage_table(core->dt); } int msm_vidc_init_dt(struct platform_device *pdev) { int rc = 0; struct msm_vidc_dt *dt; struct msm_vidc_core *core; if (!pdev) { d_vpr_e("%s: invalid params\n", __func__); return -EINVAL; } core = dev_get_drvdata(&pdev->dev); if (!core) { d_vpr_e("%s: core not found in device %s", dev_name(&pdev->dev)); return -EINVAL; } dt = kzalloc(sizeof(struct msm_vidc_dt), GFP_KERNEL); if (!dt) return -ENOMEM; core->dt = dt; dt->core = core; rc = msm_vidc_read_resources_from_dt(pdev); if (rc) return rc; return 0; }